Check for
Updates

Use of an Anti-Pattern in CS2:
Sequential if Statements with Exclusive Conditions

Sara Nurollahian
University of Utah
Salt Lake City, USA

sara.nurollahian@utah.edu

Adriana Salazar

University of Utah

Salt Lake City, USA
u1328390@utah.edu

ABSTRACT

How can we teach students to use more readable code structures?
How common is it for students to choose less readable (but still
functional) alternatives? We explore these questions for a specific
anti-pattern: using sequential if statements when conditions are
exclusive (rather than using else-if or else). We created and
validated an automated detector to identify this anti-pattern in
student’s code. Running the detector on 1,764 homework submis-
sions (from 270 students in a CS2 class on data structures and
algorithms) showed that this anti-pattern was common and varied
by assignment: across 12 assignments, 3% to 50% of submissions
used sequential ifs for exclusive cases. However, using this anti-
pattern did not preclude using else-ifs : for one assignment, 34%
of submissions used both forms. Further, students used sequential
if statements in surprising ways, such as checking a condition and
then the negation of that condition, indicating a more novice level
of understanding than expected for an intermediate course. Hand-
inspection of the detector-flagged cases suggests that sequential
ifs for exclusive cases may be a code smell that can indicate larger
problems with logic and abstraction.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; - Software and its engineering — Patterns.

KEYWORDS
Code structure, Discourse rules, Static code analyzer, Anti-patterns

ACM Reference Format:

Sara Nurollahian, Matthew Hooper, Adriana Salazar, and Eliane Wiese. 2023.
Use of an Anti-Pattern in CS2: Sequential if Statements with Exclusive Con-
ditions. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2023), March 15-18, 2023, Toronto, ON, Canada.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3545945.3569744

1 INTRODUCTION: CODE STRUCTURE

@ @ @ This work is licensed under a Creative Commons Attribution

International 4.0 License.

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9431-4/23/03.
https://doi.org/10.1145/3545945 3569744

542

Matthew Hooper
University of Utah
Salt Lake City, USA

matthew.hooper@utah.edu

Eliane Wiese
University of Utah
Salt Lake City, USA

eliane. wiese@utah.edu

if(midpoint - item > @){ if (midpoint - item > 0){

end = midpoint - 1; end = midpoint - 1;
3} } else if(midpoint - item < @){
if(midpoint - item < 0){ start = midpoint + 1;
start = midpoint + 1; } else{
} return true;
if(midpoint - item) == 0){ }

return true;

}

Table 1: Left: the exclusive ifs anti-pattern, using if state-
ments with exclusive conditions. Right: the desired pattern,
using else-if and else to make the exclusivity explicit.

Well-structured, idiomatic code is often called “clean” [32], “ele-
gant”, and “beautiful” [33]. Such code communicates the program-
mer’s intentions and is easier for others to read, modify, and main-
tain [21]. However, teaching students to write well-structured code
is hard, partially because experts’ knowledge of code structure is
often implicit [37]. Studies measuring the extent of code structure
issues in student code motivate further research and instruction on
those anti-patterns [19, 27]. Here, we explore the prevalence of the
exclusive ifs anti-pattern [41]: checking exclusive conditions with a
sequence of if-statements rather than else-if or else (Table 1).

While many anti-patterns relate to structures taught in intro-
ductory classes (e.g., if-statements, loops), inappropriate structure
choices persist across all levels of undergraduate courses [15, 24].
Instructors may not grade student work on code structure, un-
derstandably focusing on metrics that can be auto-graded, such
as passing test cases [35]. While hand-inspection of code and in-
person code reviews are useful, they are time intensive [23, 44].
Creating automated tools to detect anti-patterns offers scalability
and could provide students with immediate feedback while coding.

We explore the exclusive ifs anti-pattern in CS2 students’ home-
work assignments. This anti-pattern was identified in prior work [41]
and is important to instructors at our institution. We built a detector
for exclusive ifs and used it to answer our first 2 research questions:

RQ1 How common are novice patterns in the wild? Specifically,
the exclusive ifs anti-pattern on CS2 homework?

RQ2 What sub-categories of the exclusive ifs anti-pattern or
co-occurring anti-patterns do students demonstrate?

RQ3 How do learning resources teach this structure?



SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

2 PRIOR WORK: STUDENT ANTI-PATTERNS

Code quality encompasses many facets, from white space and vari-
able names to control flow structural choices. We examine a specific
control flow as an anti-pattern, an approach that is distinct from
summarizing code quality in a metric. Some anti-pattern research
creates detectors for specific assignments, relying on a corpus of
prior student submissions (e.g., [43]). We focus on strategies that
can apply across assignments. This type of anti-pattern research
often takes one of two approaches. The first is identifying anti-
patterns and their frequencies at scale, using professional code ana-
lyzers (e.g., PMD [12], CheckStyle [10], Clang Static Analyzer [1])
that perform static analysis on the code’s Abstract Syntax Tree
(AST) [17, 19, 26, 27]. However, such analyzers are not sufficient
for students to improve their own code [27], and this research ap-
proach is inherently limited to the patterns that can be detected
on an AST. The second approach is to describe important anti-
patterns [28, 40, 41] and propose ways to teach students to revise or
avoid them [29, 39]. However, the more-complex patterns described
in this line of work cannot be identified from an AST alone; un-
surprisingly, we lack detectors for them. Most research on student
code structure does not involve building custom detectors for anti-
patterns that are missing in professional code analyzers (de Ruvo et
al. [16] and Ureel et al. [38] are exceptions, detecting anti-patterns
from the AST). Additionally, research on anti-patterns typically
does not look for correct pattern usage. Drawing on the strengths
and limitations of this prior work, we explicate an important anti-
pattern, build a detector for it, and examine students’ use of the
anti-pattern and pattern. We are not aware of prior work examining
students’ use of exclusive ifs in code writing. Keuning et al. built a
tutoring system to teach a subset of this pattern (using else rather
than if(a)-if(!a)) [29], and prior work has examined related
anti-patterns (nested if-statements rather than conjoined condi-
tions [42]; explicit if-else [16, 29] rather than directly returning
a Boolean expression).

3 THE EXCLUSIVE IFS ANTI-PATTERN

The exclusive ifs anti-pattern is a set of sequential if-statements
that check mutually exclusive conditions (Table 1, Left). Exclusive
conditions should use else-if to make the exclusivity explicit
(ending with an else when the conditions cover all possibilities
exhaustively). However, since some instructors see control transfer
statements as communicating exclusivity [41], we do not apply
exclusive ifs to those cases (discussed in section 4.2). Replacing
exclusive ifs with else-if statements will not change the code’s
functionality. However, else-if and el se statements make the pro-
grammer’s intent clearer. With sequential if-statements, a reader
must examine the intersections between the conditions to deter-
mine what inputs cause multiple if-statement bodies to execute.
The correct pattern can save a reader the trouble of determining
that there are no such intersections and can make the code easier
to maintain and modify by explicitly showing which conditions
are related. However, early programmers may prefer sequential
if statements since all the conditions are explicit. Our algorithm
for detecting instances of this anti-pattern is in Section 4.2. All
examples in this paper of code flagged by the detector are from
student homework submissions (some lightly edited for length).

543

Sara Nurollahian, Matthew Hooper, Adriana Salazar, and Eliane Wiese

4 METHODS

We built and validated a detector for exclusive ifs and used it to
analyze the programming homework submissions from an offering
of a CS2 course (on data structures and algorithms) of a large public
university in the U.S. This analysis was performed on anonymized
assignments after the course was over, under exempt IRB_00123431.

4.1 Homework Data and Classroom Context

Data structures and algorithms (CS2) is a required course for CS
minors and majors. As introductory programming (CS1) is a prereq-
uisite, all students in the CS2 course are familiar with programming
and conditional statements. Further, CS1 includes lecture exam-
ples and personalized feedback on the use of some anti-patterns,
including exclusive ifs. In CS1 and CS2, code structure rarely im-
pacts grades. However, in the subsequent software course, 35% of
assignment grades are based on code structure, style, and design.

CS2 includes 12 Java homework assignments, worth 50% of the
course grade, of which code quality is 5% (2.5% of the final grade).
Code quality is based on commenting, variable names, and consis-
tent formatting (e.g., brackets, white space). Code structure patterns
are not part of the code quality rubric. Hooper, a former teaching
assistant (TA) for this class, reports that TAs grade the homework
and do not look for quality issues beyond the rubric. Also, during
help hours, students focus on getting their code to function cor-
rectly, with little (if any) time spent on code quality. However, if
instructors notice such issues, they bring them up in class discus-
sions. The 12 assignments are primarily graded on functionality,
the exhaustiveness of students’ test cases, and Big O performance.
Students are shown some tests and can run the auto-grader on
them before the deadline. After the deadline, assignments are auto-
graded against the provided test cases, and additional hidden ones.
Our data includes only the final submission for each assignment
and provides a baseline view of exclusive ifs from students who
were not incentivized to attend to this anti-pattern.

Assignment 1 was done individually (267 submissions) and the
rest were done in pairs (131 to 142 submissions). Since students
could drop one homework grade, they did not submit all assign-
ments. Overall, we have submissions from 270 students. As students
changed partners over the semester, we cannot analyze a pair’s pro-
gression over the course. We explain the details of the assignments
important to our findings in sections 5.1 and 6.

4.2 Exclusive Ifs Detector

We developed a detector to identify exclusive ifs. The detector is an
extension to PMD [12], an open-source code analyzer for Java and
other languages. PMD compiles the code into an AST and examines
it for anti-patterns. While we can identify a pair of sequential if
statements from the AST alone, deciding on exclusivity requires
checking the logic of the conditions. Thus, to check exclusivity, we
use Z3 [14]; a Satisfiability Modulo Theories (SMT) solver.

The exclusivity test can be framed as a Boolean satisfiability
problem. Consider p as a Boolean value. Since no value for p makes
(p && !p) true, it is unsatisfiable: if (p)-if (!p) are exclusive ifs.
Z3 extends Boolean satisfiability to a variety of data types, including
numbers, arrays, and strings. We developed a translator to use Z3
to test the conditions of if statements written in Java. Z3 handles



© % oo

10

Use of an Anti-Pattern in CS2: Sequential if Statements with Exclusive Conditions

Java expressions with primitive type. It translates expressions with
Object type as Int, corresponding to the Object address in memory,
preserving the behavior of the “==" operator for objects. Our detec-
tor traverses the AST until it finds a sequential pair of i f statements.
Using Z3, it checks the conjunction of the conditions, and when
the conjunction is unsatisfiable, it flags the second if. However,
there are two exceptions that we do not test for exclusivity: (1)
a pair of if statements where either if has an else (Examples 1
and 2 in Listing 1); and (2) when the body of first if has a transfer
control statement (since that imposes exclusivity, as in Example
3 in Listing 1). In Java, five statements transfer control: return,
break, continue, throw, and yield.

Example 1: if-statements are sequential in the AST but not in the code.
if (x < @) message = "negative";
else message = "not negative";
if (x >0 & x < 1) message += " tiny positive";

Example 2: The second if statement has an else child.

if (y > 10) message = "Greater than ten.";

if (y<10 & y %2 ==0 ) message = "Even and smaller than 10.";
else message+= " An odd number or greater than or equal to ten.";

1| Example 3: The first if statement has a return statement.
| if (z > 0) {

message="greater than zero";
return;

3
5] if (z < @) message="less than zero";

Example 4: The second if is exclusive with the first, but not its else-if child
if ( x % 4 == 0) message = "Multiple of 4.";

else if ( x % 4 == 1) message = "1 more than a multiple of 4.";

if (x %2 ==1) message + = " An odd number.";

Listing 1: Sequential AST if statements that are not flagged.

Also, if a candidate pair of if statements has else-if children, the
second if is only flagged as a violation if the conditions of the if
statements are exclusive with the other’s children (example 4 in
Listing 1 would not be flagged). Algorithm 1 describes our detector,
available on githubl. To the best of our knowledge, this is the first
open-source detector for the exclusive ifs anti-pattern.

The detector has two main limitations. First, it identifies ifs that
should be else-ifs or elses, not else-ifs that should be elses.
Second, it does not consider side effects. When the conditions call
methods, the detector assumes a method will have a consistent
result if (and only if) it is called with the same arguments. How-
ever, in reality, the same method with the same arguments can
have different results. In Example 1 in Listing 2, flagged during
development, the first call to checkin() returns true if the book
was successfully checked in to the library, and, due to a side effect,
the second call returns false (a checked-in book cannot be checked
in again). Further, the same method with different arguments can
have the same results, as in Example 2 in Listing 2, which was not
flagged by the detector.

Example 1: These ifs are not exclusive because checkin() has a side effect
if (11ib2.checkin(9781843190004L) )

System.err.println("TEST FAILED -- library: check in");
if (1ib2.checkin(9781843190004L))
System.err.println("TEST FAILED -- library: check in again");

Example 2: These ifs are exclusive even though the method arguments differ
if (aChar.equals('/"'))

isComment = true;
if (aChar.equals('x*'))

isMultiLineComment = true;

Listing 2: A false positive (Ex. 1) and false negative (Ex. 2)

!https://github.com/elianeswiese/code_structure_pattern_detector

544

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

Algorithm 1 Detecting exclusive ifs

for consecutive pairs of if statements (first, second) do
if first contains transfer control statements then
continue
if first ends with else or second ends with else then
continue
if first is exclusive with second and each of second’s else
if children then
if second is exclusive with each of first’s else if children
then addViolation (second)

4.2.1 Validating the Detector. Before developing the detector, we
divided the submissions into training and test sets (for developing
and evaluating, respectively). For the test set, we randomly chose
15 students who submitted all assignments, representing 10% of the
total number of submissions. The rest of the data was the training
set. For each assignment, we randomly selected 2-3 submissions
from the training set and hand-inspected them, identifying 156
pairs of sequential if statements, which were further examined
for exclusivity. We ran the detector on these samples, examining
detector-human disagreements to improve the detector. The detec-
tor’s final recall and precision on these samples from the training
set were 0.97 and 0.95. To validate the detector, Salazar, (who was
not involved in building the detector), hand-inspected every if
statement in the test set. Comparing the detector’s performance on
the test set to this human ground-truth (Table 2) results in a recall
of 0.85, precision of 1, Cohen’s k of 0.906, and 98.20% agreement
with the human. Afterward, we modified the anti-pattern detec-
tor to identify the correct usage of the pattern (i.e., using else-if
with exclusive conditions). Given the performance of the original
detector, we expect this modified detector to also be reliable.

Detector verification | Flagged exclusive | Not flagged exclusive

Human agreed 77 688

Human disagreed 0 14

Table 2: Validation on the test set (15”12 submissions)

5 FINDINGS

We report findings from running the detector on the entire dataset.
Students frequently use the exclusive if's anti-pattern, doing so
for 30% of all instances when exclusive conditions were checked.
However, the rate varies by assignment. Many submissions include
both instances of if-if and if-else-if, suggesting that students
can use both, but may not know when to use which. Hand inspec-
tion revealed sub-categories of exclusive if's, and co-occurrence of
this anti-pattern with more serious structural problems.

5.1 RQ1: Students Frequently Use Exclusive ifs

Students’ use of exclusive ifs varied by assignment, from 3% of
submissions using this anti-pattern on assignment 1 to 50% on as-
signment 7 (Fig. 1). For three assignments (7, 8 and 9), over 25% of
submissions include exclusive ifs (347 instances of the anti-pattern



SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

100% )
No exclusive checks

Only used the pattern

W Only used the anti-pattern

% of submissions

Assignments

Used both anti-pattern and pattern

Figure 1: Percentage of submissions that include the anti-
pattern, pattern, or do not check for exclusive cases at all. The
sum of the red (only using the anti-pattern) and the orange (us-
ing both the pattern and anti-pattern) yield the total percentage

of submissions that include an anti-pattern (e.g., 50% on #7).

over 409 submissions). Of submissions that used the anti-pattern,
the number of instances per submission ranged from a mean of
1.18 on assignment #3 to 3.19 on #7. While these means are small,
this range represents 15-91% of the instances when exclusive cases
are checked: when examining exclusive cases, students frequently
use exclusive ifs. The decision to check exclusive conditions de-
pends on students’ approaches to the problems and the different
requirements of each assignment. For example, #7, “Balanced Sym-
bol Checker,” checked Java source code for unmatched parentheses,
brackets, braces, and block comments. As Java programs can in-
clude non-code text (e.g., comments, strings, and escape sequences),
it is necessary to account for special cases while parsing. Many
students checked exclusive cases sequentially to determine if a
character was a specific opening or closing symbol. In contrast, #1,
“Matrix” required the implementation of 2D matrix operations like
addition and multiplication, and did not necessitate checking exclu-
sive conditions sequentially. Further, all assignments had at least
one submission including both the novice and expert versions of
this pattern (from 1 submission for assignment #1 to 47 submissions
(34%) for #7). Within those 47 submissions for #7, 139 instances of
checking exclusive cases used the anti-pattern, and 190 used the
else-if pattern. Overall, 142 unique students submitted at least
one assignment with both the pattern and anti-pattern.

For each assignment, students created files for testing the cor-
rectness of their code and for measuring its run-time with different
inputs. We hypothesized that students may have approached the
readability of their timing and testing code differently from the
readability of their “regular” assignment code. However, only the
first two assignments had more occurrences of exclusive ifs in the
testing/timing files than in the regular files.

5.2 RQ2: Sub-Categories by Required Revision

Hand-inspection of code flagged by the detector revealed different
contexts where students used exclusive ifs, requiring different
revisions. Making these categories explicit may aid instructional
design, as students who only see examples from one category may
not transfer to the others. While we can recommend easy fixes for
some categories, this is not the case for code with larger problems.

5.2.1 Replace with else-if. When the exclusive conditions do not
exhaustively cover all possibilities, as in Example 1 in Listing 3, the

545

Sara Nurollahian, Matthew Hooper, Adriana Salazar, and Eliane Wiese

latter if-statements should be replaced with else-if. This simple
revision does not require changing the conditions. However, this
type of revision can allow for simplifying the conditions in some
cases (e.g., if (x<10)...if(x>=10 && x<20) could be simplified
to if(x<10)...else if(x<20).

5.2.2 Replace with else-if and else. When the exclusive conditions
exhaustively cover all possibilities (as in Table 1), the middle if-
statements should be replaced with else-if, and the last should
be replaced with an else. Hand-inspection uncovered instances of
using sequential else-if rather than ending with an else, as in
Listing 3, Example 2 (note that this usage of else-if is not flagged
by our detector). While straightforward replacement with else-if
and else would communicate how the conditions are related (and
that they are exhaustive), it would not address the ordering of the
conditions (e.g., in Listing 3 Example 2, some instructors would
prefer the if-statement with the return comes first).

Example 1: Line 5 should be else-if: conditions are exclusive but not exhaustive

2| if (start.charAt(i) == ’<’) {
3 location[@] = i;

4}

51 if (start.charAt(i) == ’>’) {

5 location[1] = i+1;

}
Example 2: The last else-if should be an else: conditions are exhaustive
if (comparison < @) {

10 low = mid+1;

1]}

12| else if (comparison > @) {
13 high = mid-1;

4]}

15 else if (comparison == 0) {
16 return true;

171}

Listing 3: Easy-to-fix anti-patterns.

5.2.3 Replace with else. A specific case of exhaustiveness is using
sequential ifs to check a condition and its negation (Listing 4). The
use of this anti-pattern in CS2 is concerning, as it suggests a lack of
fluency with else. While our data cannot tell us why students used
this anti-pattern, or how it is related to conceptual understanding,
we consider this anti-pattern important enough to merit its own
category. Note that for the example in Listing 4, this anti-pattern
co-occurs with a larger problem of a helper method doing more
than one thing, which we discuss in section 5.2.5.

public boolean CompatibleSize(Matrix m,boolean
isMultiplication) {
if (!isMultiplication)
if (!(m.data.length == this.data.length) ||
[0].length == this.data[@].length))
return false;
if (isMultiplication)
if (!(this.data[@].length
return false;
return true;

!'(m.data

== m.data.length))

Listing 4: Using exclusive ifs to check a condition and its
negation (rather than if-else).

5.24 Replace with Switch. Another specific case is when exclusive
if's (that are also exhaustive) could be converted to a switch case.
Fitting this subcategory requires 3 characteristics: (1) the conditions
only check different values of the same variable; (2) at least 4 possi-
ble values are checked; and (3) each if-statement body has at most
two lines of code. Listing 5 shows an example: (1) each if-statement
checks a value for the variable maze[i1[j].nodeType; (2) it checks



Use of an Anti-Pattern in CS2: Sequential if Statements with Exclusive Conditions

for 5 different values; and (3) each if body has one line of code.
This subcategory may indicate student difficulties in identifying
when to use a switch-case or lack of comfort in implementing it.

for (int i = @; i < height; i++) {

for (int j = @; j < width; j++) {

if (mazel[iJ[j].nodeType == 0) {
output.print("X");

3}

if (mazel[il[j].nodeType == 1) {
output.print(" ");

3

if (mazel[il[j].nodeType == 2) {

output.print("S");

[}

f (mazel[il[j].nodeType == 3) {
output.print("G");

f (maze[i][j].nodeType == 4) {
output.print(".");

[}

Listing 5: Exclusive ifs that should be a switch case.

5.25 Symptom of a Larger Problem. In several cases, the exclusive
ifs anti-pattern co-occurs with a deeper structural issue. We re-
viewed all such examples with the course instructor, who agreed
that the co-occurring issues were more important than the anti-
pattern. The code in Listing 4 would still be problematic even if it
used if-else. This code also returns Boolean literals rather than
returning a Boolean expression directly (an anti-pattern discussed
in [16, 29, 41]). More importantly, the helper method is doing two
things instead of one: it determines if two matrices can be added
or multiplied, with a parameter indicating the target operation. A
cleaner solution would have one method for each action. Listing 6
shows a related problem: lack of a helper method. This code, from
the balanced symbol checker, hard-codes closing symbols in a series
of if's (while exclusive, they aren’t flagged because of the return
statements). Instead, a helper method should identify matching
symbols. Both listings suggest possible difficulties with abstraction.

513

else if (currentChar == '}') {
if (stack.isEmpty())

return unmatchedSymbol (rowNum, colNum, currentChar, Vs
if (stack.peek() == '(')

return unmatchedSymbol (rowNum, colNum, currentChar, ')');
if (stack.peek() == '[')

return unmatchedSymbol (rowNum, colNum, currentChar, ']1');

stack.pop();
else if (currentChar 1) {
if (stack.isEmpty())
return unmatchedSymbol (rowNum + 1,
if (stack.peek( ")
return unmatchedSymbol (rowNum, colNum, currentChar, ')
if (stack.peek() !
return unmatchedSymbol (rowNum,
stack.pop();

[}

colNum, currentChar, ' ');

")
)

colNum, currentChar, '}

Listing 6: Sequential ifs co-occuring with the lack of a helper
method. This excerpt shows 6 of the 9 if-statements that
hard-code matched symbols.

Exclusive ifs can also co-occur with unnecessary code (List-
ing 7). Example 1 shows an unnecessary for loop, with if-statements
checking all values of the index; all of those control structures
could be removed. We note that usage of else-if can also co-occur
with this problem, as in Listing 7, Examples 2 and 3. Example 2
includes an else-if that can never execute, and Example 3 shows
an else-if and else with identical bodies. These examples caution
us against using the presence or absence of the anti-pattern as a
measure of overall code quality or conceptual understanding.

546

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

Example 1: An unnecessary for loop.

for (int i = @; i < 5; i++) {
if (i ==0) {

4 output.println('{");

5 output.println("<a>");

6 output.println("a");

output.println('}');

8 output.println();

3

3

if (i == 1) {
println('{");
println("<b>");
println("b");
println('}");
println();

1 output.
output.
output.
4 output.
output.

}
3| Example 2: An else-if that will never execute.
9| if (!lineScan.hasNext()) {
) return unmatchedSymbol (lineCount, colCount,currVal.charAt(j),
stack.peek().toString().charAt(0));

| else if (!scan.hasNextLine() && !lineScan.hasNext()) {
23 return unmatchedSymbolAtEOF (currVal.charAt(j));

24| }

2 Example 3: An else-if block that is redundant with the else block.
7| if (size == @) {

Node<T> newNode =

28 new Node<T>(element);
29 head =

= newNode;
30 tail = newNode;
1
else if (size == 1) {

Node<T> newNode = new Node<T>(element);
newNode.next = head;
head.previous = newNode;

36| }

37| else {

38 Node<T> newNode = new Node<T>(element);
39 newNode.next = head;

10 head.previous = newNode;

]}

Listing 7: Unnecessary code co-occurring with exclusive ifs
(Example 1) and with else-if (Examples 2 and 3).

5.3 RQ3: Online Resources Lack Explanation on
When to Use else-if/else vs. Sequential ifs

We examined online textbooks from our university library, and free

online resources. We chose Java because it is the language used
in our university’s intermediate programming courses. While our
exploration is not an exhaustive review, it covers the resources
that our students are likely to find with a quick internet search.

We examined six textbooks from our university library: The Java

Programming Language [13], Java Programming [34], Introduction to
Programming Using Java [18], Java Programming for Beginners [30],
Java Programming 24-Hour Trainer [20], and Teach Yourself Java in
21 Days [31]. For the tutorial websites, we did Google search with

“java” and each of the following keywords: “conditional structures,”
“decision structures,” and “else-if;” checking the top 7 results for each

search. This process yielded 11 online resources (many came up in
multiple searches): Java-Decision Making from turorialspoint [5],
Decision Structures [4], Decision Making in Java by GeeksforGeeks
[11], Decision Making in Java by DataFlair 7], Decision Making
in Java by TechVidvan [6], Java Decision Making by w3school[2],
Java If-else Statement [3], Control Structures in Java [25], How to
Use If... Else Statements in Java [22], Else if statement in Java [8],
and if/else by khan academy [9].

We looked specifically for: (1) an explanation that a condition in
an if-else-if-chain is only evaluated if all previous conditions
in the chain have evaluated to false, and (2) guidance on choos-
ing an else-if structure when the conditions are exclusive and
else for the last statement when the conditions are also exhaustive.
All of the textbooks address else, and all but one ([30]) include
else-if. (We examined all chapters of [30] that seemed relevant:



SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

branching, data structures and functions). However, none of the
textbooks discuss the difference in code execution of if-else-if
vs. if-1if structures when the conditions were exclusive, and none
offer guidance on when one structure is more appropriate than
the other. Even the most in-depth explanation, from Java Program-
ming [36], only noted that, for two sequential if-statements, “the
second if statement will be executed irrespective of whether the
first if statement is evaluated to true or not” [36, section 2.2.2].

Of the online resources, many explain the execution of else-if,
but none compare the execution of exclusive ifs with if-else-if
or if-else and none explain when each structure is more appro-
priate and why. The most comprehensive explanation of the online
tutorials, from khan academy, gives examples of code with sequen-
tial ifs with nonexclusive conditions and compares them with
else-if, noting how the functionality and execution differ. How-
ever, it did not explain the difference in machine execution between
if-if and if-else-if when the conditions are exclusive.

6 DISCUSSION

Overall, 30% of the exclusive checks across all assignments were ex-
clusive if's, indicating that this anti-pattern is common. The preva-
lence of the anti-pattern varied by assignment, with the fewest on
#1 and the most on #7. However, we do not interpret raw prevalence
as an indication of student knowledge, as the assignments differed
in how much they lent themselves to checking exclusive conditions
(see section 5.1). Assignment 8, with the highest number of exclu-
sive checks, required creating a binary tree and a priority queue
backed by a binary heap, in which students used exclusive checks
to decide which side of the tree to traverse. While our data shows
which assignments are most likely to elicit exclusive checks, it
does not show which assignments should include exclusive checks
in their most elegant implementations. Still, even if we use the
percentage of submissions with exclusive checks as a proxy for
opportunities to use them, our data does not show improvement
across the semester. Considering the assignments where at least
10% of submissions used exclusive checks (all but #1), the 3 highest
rates of using exclusive if's (out of the total number of submissions
with exclusive checks) occur in each third of the semester, on as-
signments 2, 7, and 12. Thus, consistent with prior work [17, 27],
we cannot conclude that the propensity to use the anti-pattern
declines over CS2. This is not surprising given that students were
not incentivized to avoid exclusive ifs anti-pattern.

Although many submissions included the anti-pattern, many also
included if-else-ifs. This suggests that a student’s usage of an
anti-pattern may not mean that the student cannot use the correct
pattern. We found that 142 students used both the pattern and
anti-pattern in the same submission. Another 18 students used the
pattern in one submission and then used the anti-pattern in a later
assignment. These 160 students are 59% of the class. While our field
has mainly focused on detecting anti-patterns [16, 17, 27, 38], this
may provide an incomplete picture of students’ knowledge of code
structure. If pattern detectors seek out correct usages in addition
to anti-patterns, when they flag those anti-patterns, they could
remind students of where a correct example is in the students’ own
code. Further, if students are capable of using the correct pattern,
instruction on that pattern may not be as effective as instruction
on identifying opportunities for using the pattern.

547

Sara Nurollahian, Matthew Hooper, Adriana Salazar, and Eliane Wiese

More important than the anti-pattern itself, we found larger co-
occurring problems. This finding shows promise for exploring anti-
patterns as symptoms of more important issues that are harder to
detect directly. Conversely, it cautions against providing feedback
to students that may help them revise the anti-pattern without
considering the deeper issues in their code.

6.1 Threats to Validity

Our human ground truth is limited by the difficulty of determining
side effects through hand-inspection. Also, our data shows what
students did but not why they did it — use of the exclusive if's anti-
pattern may be due to flaws in logical reasoning. Our data includes
noise inherent to the ecological context (e.g., some students dropped
the class, started late, or did not submit all assignments). And, since
students worked in pairs, instances of using the pattern and anti-
pattern on the same assignment could reflect the work of different
students. Finally, while this anti-pattern is explored in prior work
and is important to our instructors, this study does not examine its
importance in professional settings.

6.2 Implications for Educators

Since else-if is taught in CS1, CS2 instructors may assume that
students know how to use it properly. However, our exploration of
17 online resources suggests an instructional gap on this structure.
Our CS2 instructor is considering using our data as a wake-up
call to students in his class, to show them that while they think
they are not susceptible to this anti-pattern, it is common and
they should look out for it. Instruction on this anti-pattern should
provide examples from each of the sub-categories, should focus
on identifying opportunities to revise the anti-pattern, and should
emphasize the importance of looking for deeper structural issues
that may co-occur. Instruction should also draw on students’ prior
knowledge of the correct pattern, since students are likely capable
of both. Consideration of these deeper issues is also important in
courses where students are given automated feedback on structure.

7 CONCLUSION AND FUTURE WORK

We developed a detector for the exclusive ifs anti-pattern by com-
bining static analysis with an SMT solver. Running the detector
on students’ programming assignments showed this anti-pattern
was common in CS2. Hand inspection revealed sub-categories of
the anti-pattern. Online resources lacked instruction on this anti-
pattern, making it unlikely that students will learn it on their own.

In future work, we plan to refine the detector and examine how
instructors might use it in their courses. We advocate think-aloud
studies and interviews to examine why students use anti-patterns,
further explorations of how usage of anti-patterns relates to con-
ceptual knowledge, and the development of additional detectors
for complex anti-patterns.

8 AKNOWLEDGEMENTS

We thank Dr. Daniel Kopta, Dr. David Johnson, and Dr. Anna Raf-
ferty for their guidance and feedback. This work was supported by
the National Science Foundation through award SHF 1948519.



Use of an Anti-Pattern in CS2: Sequential if Statements with Exclusive Conditions

REFERENCES

[15

[16

[17

[18
[19

[20

[21

[23

[24

]

]
]

]

2016. https://clang-analyzer.llvm.org/

2019. Java decision making. https://www.w3schools.in/java-tutorial/decision-
making/

2019. Java if else - javatpoint. https://www.javatpoint.com/java-if-else

2020. Decision Structures. https://www2lawrence.edu/fast/GREGG]J/CMSC150/
012Decisions/Decisions.html

2020. tutorialspoint.  https://www.tutorialspoint.com/java/java_decision_
making.htm

2021. Decision making in java - explore the types of statements with syntax.
https://techvidvan.com/tutorials/decision-making-in-java/

2021. Decision making in java (syntax amp; example)- A complete guide for you!
https://data-flair.training/blogs/decision-making- in-java/

2021. Else if statement java. https://code-knowledge.com/java-elseif/

2021. If/else - part 2 | logic and if statements | Intro to JS: Drawing amp; animation |
computer programming | computing. https://www.khanacademy.org/computing/
computer-programming/programming/logic-if-statements/pt/ifelse- part-2
2022. Checkstyle 10.3.2. https://checkstyle.sourceforge.io/index.html

2022. Decision making in Java (if, if-else, switch, break, continue,
jump).  https://www.geeksforgeeks.org/decision-making-javaif-else-switch-
break- continue-jump/

2022. pmd source code analyzer. https://pmd.github.io/latest/

Ken Arnold, James Gosling, and David Holmes. 2005. The Java programming
language. Addison Wesley Professional.

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337-340.

Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B Rowe, and
Nasser Giacaman. 2018. Understanding semantic style by analysing student code.
In Proceedings of the 20th Australasian Computing Education Conference. 73-82.
Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B Rowe, and
Nasser Giacaman. 2018. Understanding semantic style by analysing student code.
In Proceedings of the 20th Australasian Computing Education Conference. 73-82.
Tomche Delev and Dejan Gjorgjevikj. 2017. Static analysis of source code written
by novice programmers. In 2017 IEEE Global Engineering Education Conference
(EDUCON). IEEE, 825-830.

David J Eck. 2015. Introduction to programming using Java. David J. Eck.
Tomas Effenberger and Radek Pelanek. 2022. Code Quality Defects across Intro-
ductory Programming Topics. In Proceedings of the 53rd ACM Technical Sympo-
sium on Computer Science Education V. 1. 941-947.

Yakov Fain. 2015. Java Programming 24-Hour Trainer. (2nd ed.. ed.).

Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

James Gallagher. 2020. How to use if...else statements in Java.
//careerkarma.com/blog/java-if-else/

Christopher Hundhausen, Anukrati Agrawal, Dana Fairbrother, and Michael
Trevisan. 2009. Integrating Pedagogical Code Reviews into a CS 1 Course: An
Empirical Study. Proceedings of the 40th ACM technical symposium on Computer
science education (SIGCSE’09) (2009), 291-295.

Saj-Nicole A Joni and Elliot Soloway. 1986. But My Program Runs! Discourse
Rules for Novice Programmers. Journal of Educational Computing Research 2, 1

https:

548

[25

[26]

[27]

@
£,

@
20,

~
=

N
furg

[42

[43

[44

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

(1986), 95-125.

Nickson Joram. 2021. Control structures in Java-conditional state-
ments. https://medium.com/javarevisited/control-structures-in-java-
conditional-statements-e4d8da0421cc

Oscar Karnalim, William Chivers, et al. 2022. Work-In-Progress: Code Quality
Issues of Computing Undergraduates. In 2022 IEEE Global Engineering Education
Conference (EDUCON). IEEE, 1734-1736.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code quality issues in
student programs. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. 110-115.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2019. How teachers would
help students to improve their code. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education. 119-125.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A tutoring system to
learn code refactoring. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education. 562-568.

Mark Lassoff. 2017. Java programming for beginners (1st ed. ed.). PACKT Pub-
lishing.

Laura Lemay, Charles L Perkins, and Michael Morrison. 1999. Teach yourself Java
in 21 Days. Sama Publishing.

Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

Andy Oram and Greg Wilson. 2007. Beautiful Code: Leading Programmers Explain
How They Think (Theory in Practice (O’Reilly)). O’Reilly Media, Inc.

Hari Pandey. 2011. Java Programming (1st edition. ed.).

Raymond Pettit, John Homer, Roger Gee, Susan Mengel, and Adam Starbuck. 2015.
An empirical study of iterative improvement in programming assignments. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
410-415.

K Rajkumar. 2013. JAVA Programming (1st edition. ed.).

Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowl-
edge. IEEE Trans. Software Eng. SE-10, 5 (1984), 595-609.

Leo C Ureel II and Charles Wallace. 2019. Automated critique of early pro-
gramming antipatterns. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 738-744.

Nathaniel Weinman, Armando Fox, and Marti A Hearst. 2021. Improving instruc-
tion of programming patterns with faded parsons problems. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1-4.

JL Whalley, Tony Clear, Phil Robbins, and Errol Thompson. 2011. Salient elements
in novice solutions to code writing problems. (2011).

Eliane S Wiese, Anna N Rafferty, and Armando Fox. 2019. Linking code read-
ability, structure, and comprehension among novices: it’s complicated. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET). IEEE, 84-94.

Eliane S Wiese, Anna N Rafferty, and Garrett Moseke. 2021. Students’ Misun-
derstanding of the Order of Evaluation in Conjoined Conditions. In ICPC’21:
Proceedings of the 29th International Conference on Program Comprehension.
Eliane S Wiese, Michael Yen, Antares Chen, Lucas A Santos, and Armando Fox.
2017. Teaching students to recognize and implement good coding style. In
Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale. 41-50.

M Woodley and S N Kamin. 2007. Programming studio: A course for improv-
ing programming skills in undergraduates. SIGCSE 2007: 38th SIGCSE Technical
Symposium on Computer Science Education January 2007 (2007), 531-535.



	Abstract
	1 Introduction: Code Structure
	2 Prior Work: Student Anti-Patterns
	3 The Exclusive Ifs Anti-Pattern
	4 Methods
	4.1 Homework Data and Classroom Context
	4.2 Exclusive Ifs Detector

	5 Findings
	5.1 RQ1: Students Frequently Use Exclusive ifs
	5.2 RQ2: Sub-Categories by Required Revision
	5.3 RQ3: Online Resources Lack Explanation on When to Use else-if/else vs. Sequential ifs

	6 Discussion
	6.1 Threats to Validity
	6.2 Implications for Educators

	7 Conclusion and Future Work
	8 Aknowledgements
	References

