
Use of an Anti-Pattern in CS2:
Sequential if Statements with Exclusive Conditions

Sara Nurollahian
University of Utah
Salt Lake City, USA

sara.nurollahian@utah.edu

Matthew Hooper
University of Utah
Salt Lake City, USA

matthew.hooper@utah.edu

Adriana Salazar
University of Utah
Salt Lake City, USA
u1328390@utah.edu

Eliane Wiese
University of Utah
Salt Lake City, USA

eliane.wiese@utah.edu

ABSTRACT

How can we teach students to use more readable code structures?

How common is it for students to choose less readable (but still

functional) alternatives? We explore these questions for a specific

anti-pattern: using sequential if statements when conditions are

exclusive (rather than using else-if or else). We created and

validated an automated detector to identify this anti-pattern in

student’s code. Running the detector on 1,764 homework submis-

sions (from 270 students in a CS2 class on data structures and

algorithms) showed that this anti-pattern was common and varied

by assignment: across 12 assignments, 3% to 50% of submissions

used sequential ifs for exclusive cases. However, using this anti-

pattern did not preclude using else-ifs : for one assignment, 34%

of submissions used both forms. Further, students used sequential

if statements in surprising ways, such as checking a condition and

then the negation of that condition, indicating a more novice level

of understanding than expected for an intermediate course. Hand-

inspection of the detector-flagged cases suggests that sequential

ifs for exclusive cases may be a code smell that can indicate larger

problems with logic and abstraction.

CCS CONCEPTS

· Social and professional topics→ Computer science educa-

tion; · Software and its engineering → Patterns.

KEYWORDS

Code structure, Discourse rules, Static code analyzer, Anti-patterns

ACM Reference Format:

Sara Nurollahian, Matthew Hooper, Adriana Salazar, and ElianeWiese. 2023.

Use of an Anti-Pattern in CS2: Sequential if Statements with Exclusive Con-

ditions. In Proceedings of the 54th ACM Technical Symposium on Computer

Science Education V. 1 (SIGCSE 2023), March 15ś18, 2023, Toronto, ON, Canada.

ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3545945.3569744

1 INTRODUCTION: CODE STRUCTURE

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9431-4/23/03.
https://doi.org/10.1145/3545945.3569744

if(midpoint - item > 0){

end = midpoint - 1;

}

if(midpoint - item < 0){

start = midpoint + 1;

}

if(midpoint - item) == 0){

return true;

}

if(midpoint - item > 0){

end = midpoint - 1;

} else if(midpoint - item < 0){

start = midpoint + 1;

} else{

return true;

}

Table 1: Left: the exclusive ifs anti-pattern, using if state-

ments with exclusive conditions. Right: the desired pattern,

using else-if and else to make the exclusivity explicit.

Well-structured, idiomatic code is often called łcleanž [32], łele-

gantž, and łbeautifulž [33]. Such code communicates the program-

mer’s intentions and is easier for others to read, modify, and main-

tain [21]. However, teaching students to write well-structured code

is hard, partially because experts’ knowledge of code structure is

often implicit [37]. Studies measuring the extent of code structure

issues in student code motivate further research and instruction on

those anti-patterns [19, 27]. Here, we explore the prevalence of the

exclusive ifs anti-pattern [41]: checking exclusive conditions with a

sequence of if-statements rather than else-if or else (Table 1).

While many anti-patterns relate to structures taught in intro-

ductory classes (e.g., if-statements, loops), inappropriate structure

choices persist across all levels of undergraduate courses [15, 24].

Instructors may not grade student work on code structure, un-

derstandably focusing on metrics that can be auto-graded, such

as passing test cases [35]. While hand-inspection of code and in-

person code reviews are useful, they are time intensive [23, 44].

Creating automated tools to detect anti-patterns offers scalability

and could provide students with immediate feedback while coding.

We explore the exclusive ifs anti-pattern in CS2 students’ home-

work assignments. This anti-patternwas identified in priorwork [41]

and is important to instructors at our institution. We built a detector

for exclusive ifs and used it to answer our first 2 research questions:

RQ1 How common are novice patterns in the wild? Specifically,

the exclusive ifs anti-pattern on CS2 homework?

RQ2 What sub-categories of the exclusive ifs anti-pattern or

co-occurring anti-patterns do students demonstrate?

RQ3 How do learning resources teach this structure?

542



SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada Sara Nurollahian, Matthew Hooper, Adriana Salazar, and Eliane Wiese

2 PRIORWORK: STUDENT ANTI-PATTERNS

Code quality encompasses many facets, from white space and vari-

able names to control flow structural choices. We examine a specific

control flow as an anti-pattern, an approach that is distinct from

summarizing code quality in a metric. Some anti-pattern research

creates detectors for specific assignments, relying on a corpus of

prior student submissions (e.g., [43]). We focus on strategies that

can apply across assignments. This type of anti-pattern research

often takes one of two approaches. The first is identifying anti-

patterns and their frequencies at scale, using professional code ana-

lyzers (e.g., PMD [12], CheckStyle [10], Clang Static Analyzer [1])

that perform static analysis on the code’s Abstract Syntax Tree

(AST) [17, 19, 26, 27]. However, such analyzers are not sufficient

for students to improve their own code [27], and this research ap-

proach is inherently limited to the patterns that can be detected

on an AST. The second approach is to describe important anti-

patterns [28, 40, 41] and propose ways to teach students to revise or

avoid them [29, 39]. However, the more-complex patterns described

in this line of work cannot be identified from an AST alone; un-

surprisingly, we lack detectors for them. Most research on student

code structure does not involve building custom detectors for anti-

patterns that are missing in professional code analyzers (de Ruvo et

al. [16] and Ureel et al. [38] are exceptions, detecting anti-patterns

from the AST). Additionally, research on anti-patterns typically

does not look for correct pattern usage. Drawing on the strengths

and limitations of this prior work, we explicate an important anti-

pattern, build a detector for it, and examine students’ use of the

anti-pattern and pattern. We are not aware of prior work examining

students’ use of exclusive ifs in code writing. Keuning et al. built a

tutoring system to teach a subset of this pattern (using else rather

than if(a)-if(!a)) [29], and prior work has examined related

anti-patterns (nested if-statements rather than conjoined condi-

tions [42]; explicit if-else [16, 29] rather than directly returning

a Boolean expression).

3 THE EXCLUSIVE IFS ANTI-PATTERN
The exclusive ifs anti-pattern is a set of sequential if-statements

that check mutually exclusive conditions (Table 1, Left). Exclusive

conditions should use else-if to make the exclusivity explicit

(ending with an else when the conditions cover all possibilities

exhaustively). However, since some instructors see control transfer

statements as communicating exclusivity [41], we do not apply

exclusive ifs to those cases (discussed in section 4.2). Replacing

exclusive ifs with else-if statements will not change the code’s

functionality. However, else-if and else statements make the pro-

grammer’s intent clearer. With sequential if-statements, a reader

must examine the intersections between the conditions to deter-

mine what inputs cause multiple if-statement bodies to execute.

The correct pattern can save a reader the trouble of determining

that there are no such intersections and can make the code easier

to maintain and modify by explicitly showing which conditions

are related. However, early programmers may prefer sequential

if statements since all the conditions are explicit. Our algorithm

for detecting instances of this anti-pattern is in Section 4.2. All

examples in this paper of code flagged by the detector are from

student homework submissions (some lightly edited for length).

4 METHODS

We built and validated a detector for exclusive ifs and used it to

analyze the programming homework submissions from an offering

of a CS2 course (on data structures and algorithms) of a large public

university in the U.S. This analysis was performed on anonymized

assignments after the course was over, under exempt IRB_00123431.

4.1 Homework Data and Classroom Context

Data structures and algorithms (CS2) is a required course for CS

minors and majors. As introductory programming (CS1) is a prereq-

uisite, all students in the CS2 course are familiar with programming

and conditional statements. Further, CS1 includes lecture exam-

ples and personalized feedback on the use of some anti-patterns,

including exclusive ifs. In CS1 and CS2, code structure rarely im-

pacts grades. However, in the subsequent software course, 35% of

assignment grades are based on code structure, style, and design.

CS2 includes 12 Java homework assignments, worth 50% of the

course grade, of which code quality is 5% (2.5% of the final grade).

Code quality is based on commenting, variable names, and consis-

tent formatting (e.g., brackets, white space). Code structure patterns

are not part of the code quality rubric. Hooper, a former teaching

assistant (TA) for this class, reports that TAs grade the homework

and do not look for quality issues beyond the rubric. Also, during

help hours, students focus on getting their code to function cor-

rectly, with little (if any) time spent on code quality. However, if

instructors notice such issues, they bring them up in class discus-

sions. The 12 assignments are primarily graded on functionality,

the exhaustiveness of students’ test cases, and Big O performance.

Students are shown some tests and can run the auto-grader on

them before the deadline. After the deadline, assignments are auto-

graded against the provided test cases, and additional hidden ones.

Our data includes only the final submission for each assignment

and provides a baseline view of exclusive ifs from students who

were not incentivized to attend to this anti-pattern.

Assignment 1 was done individually (267 submissions) and the

rest were done in pairs (131 to 142 submissions). Since students

could drop one homework grade, they did not submit all assign-

ments. Overall, we have submissions from 270 students. As students

changed partners over the semester, we cannot analyze a pair’s pro-

gression over the course. We explain the details of the assignments

important to our findings in sections 5.1 and 6.

4.2 Exclusive Ifs Detector
We developed a detector to identify exclusive ifs. The detector is an

extension to PMD [12], an open-source code analyzer for Java and

other languages. PMD compiles the code into an AST and examines

it for anti-patterns. While we can identify a pair of sequential if

statements from the AST alone, deciding on exclusivity requires

checking the logic of the conditions. Thus, to check exclusivity, we

use Z3 [14]; a Satisfiability Modulo Theories (SMT) solver.

The exclusivity test can be framed as a Boolean satisfiability

problem. Consider p as a Boolean value. Since no value for pmakes

(p && !p) true, it is unsatisfiable: if(p)-if(!p) are exclusive ifs.

Z3 extends Boolean satisfiability to a variety of data types, including

numbers, arrays, and strings. We developed a translator to use Z3

to test the conditions of if statements written in Java. Z3 handles

543



Use of an Anti-Pattern in CS2: Sequential if Statements with Exclusive Conditions SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada

Java expressions with primitive type. It translates expressions with

Object type as Int, corresponding to the Object address in memory,

preserving the behavior of the ł==ž operator for objects. Our detec-

tor traverses the AST until it finds a sequential pair of if statements.

Using Z3, it checks the conjunction of the conditions, and when

the conjunction is unsatisfiable, it flags the second if. However,

there are two exceptions that we do not test for exclusivity: (1)

a pair of if statements where either if has an else (Examples 1

and 2 in Listing 1); and (2) when the body of first if has a transfer

control statement (since that imposes exclusivity, as in Example

3 in Listing 1). In Java, five statements transfer control: return,

break, continue, throw, and yield.

1 Example 1: if-statements are sequential in the AST but not in the code.
2 if (x < 0) message = "negative";
3 else message = "not negative";
4 if (x > 0 && x < 1) message += " tiny positive";
5
6 Example 2: The second if statement has an else child.
7 if (y > 10) message = "Greater than ten.";
8 if (y < 10 && y % 2 == 0 ) message = "Even and smaller than 10.";
9 else message += " An odd number or greater than or equal to ten.";
10
11 Example 3: The first if statement has a return statement.
12 if (z > 0) {
13 message="greater than zero";
14 return;
15 }
16 if (z < 0) message="less than zero";
17
18 Example 4: The second if is exclusive with the first, but not its else-if child
19 if ( x % 4 == 0) message = "Multiple of 4.";
20 else if ( x % 4 == 1) message = "1 more than a multiple of 4.";
21 if (x % 2 == 1) message + = " An odd number.";

Listing 1: Sequential AST if statements that are not flagged.

Also, if a candidate pair of if statements has else-if children, the

second if is only flagged as a violation if the conditions of the if

statements are exclusive with the other’s children (example 4 in

Listing 1 would not be flagged). Algorithm 1 describes our detector,

available on github1. To the best of our knowledge, this is the first

open-source detector for the exclusive ifs anti-pattern.

The detector has two main limitations. First, it identifies ifs that

should be else-ifs or elses, not else-ifs that should be elses.

Second, it does not consider side effects. When the conditions call

methods, the detector assumes a method will have a consistent

result if (and only if) it is called with the same arguments. How-

ever, in reality, the same method with the same arguments can

have different results. In Example 1 in Listing 2, flagged during

development, the first call to checkin() returns true if the book

was successfully checked in to the library, and, due to a side effect,

the second call returns false (a checked-in book cannot be checked

in again). Further, the same method with different arguments can

have the same results, as in Example 2 in Listing 2, which was not

flagged by the detector.

1 Example 1: These ifs are not exclusive because checkin() has a side effect
2 if(!lib2.checkin(9781843190004L))
3 System.err.println("TEST FAILED -- library: check in");
4 if(lib2.checkin(9781843190004L))
5 System.err.println("TEST FAILED -- library: check in again");
6
7 Example 2: These ifs are exclusive even though the method arguments differ
8 if (aChar.equals('/'))
9 isComment = true;
10 if (aChar.equals('*'))
11 isMultiLineComment = true;

Listing 2: A false positive (Ex. 1) and false negative (Ex. 2)

1https://github.com/elianeswiese/code_structure_pattern_detector

Algorithm 1 Detecting exclusive ifs

for consecutive pairs of if statements (first, second) do

if first contains transfer control statements then

continue

if first ends with else or second ends with else then

continue

if first is exclusive with second and each of second’s else

if children then

if second is exclusive with each of first’s else if children

then addViolation (second)

4.2.1 Validating the Detector. Before developing the detector, we

divided the submissions into training and test sets (for developing

and evaluating, respectively). For the test set, we randomly chose

15 students who submitted all assignments, representing 10% of the

total number of submissions. The rest of the data was the training

set. For each assignment, we randomly selected 2-3 submissions

from the training set and hand-inspected them, identifying 156

pairs of sequential if statements, which were further examined

for exclusivity. We ran the detector on these samples, examining

detector-human disagreements to improve the detector. The detec-

tor’s final recall and precision on these samples from the training

set were 0.97 and 0.95. To validate the detector, Salazar, (who was

not involved in building the detector), hand-inspected every if

statement in the test set. Comparing the detector’s performance on

the test set to this human ground-truth (Table 2) results in a recall

of 0.85, precision of 1, Cohen’s 𝑘 of 0.906, and 98.20% agreement

with the human. Afterward, we modified the anti-pattern detec-

tor to identify the correct usage of the pattern (i.e., using else-if

with exclusive conditions). Given the performance of the original

detector, we expect this modified detector to also be reliable.

Detector verification Flagged exclusive Not flagged exclusive

Human agreed 77 688

Human disagreed 0 14

Table 2: Validation on the test set (15*12 submissions)

5 FINDINGS

We report findings from running the detector on the entire dataset.

Students frequently use the exclusive ifs anti-pattern, doing so

for 30% of all instances when exclusive conditions were checked.

However, the rate varies by assignment. Many submissions include

both instances of if-if and if-else-if, suggesting that students

can use both, but may not know when to use which. Hand inspec-

tion revealed sub-categories of exclusive ifs, and co-occurrence of

this anti-pattern with more serious structural problems.

5.1 RQ1: Students Frequently Use Exclusive ifs

Students’ use of exclusive ifs varied by assignment, from 3% of

submissions using this anti-pattern on assignment 1 to 50% on as-

signment 7 (Fig. 1). For three assignments (7, 8 and 9), over 25% of

submissions include exclusive ifs (347 instances of the anti-pattern

544



SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada Sara Nurollahian, Matthew Hooper, Adriana Salazar, and Eliane Wiese

Figure 1: Percentage of submissions that include the anti-

pattern, pattern, or do not check for exclusive cases at all. The

sum of the red (only using the anti-pattern) and the orange (us-

ing both the pattern and anti-pattern) yield the total percentage

of submissions that include an anti-pattern (e.g., 50% on #7).

over 409 submissions). Of submissions that used the anti-pattern,

the number of instances per submission ranged from a mean of

1.18 on assignment #3 to 3.19 on #7. While these means are small,

this range represents 15-91% of the instances when exclusive cases

are checked: when examining exclusive cases, students frequently

use exclusive ifs. The decision to check exclusive conditions de-

pends on students’ approaches to the problems and the different

requirements of each assignment. For example, #7, łBalanced Sym-

bol Checker,ž checked Java source code for unmatched parentheses,

brackets, braces, and block comments. As Java programs can in-

clude non-code text (e.g., comments, strings, and escape sequences),

it is necessary to account for special cases while parsing. Many

students checked exclusive cases sequentially to determine if a

character was a specific opening or closing symbol. In contrast, #1,

łMatrixž required the implementation of 2D matrix operations like

addition and multiplication, and did not necessitate checking exclu-

sive conditions sequentially. Further, all assignments had at least

one submission including both the novice and expert versions of

this pattern (from 1 submission for assignment #1 to 47 submissions

(34%) for #7). Within those 47 submissions for #7, 139 instances of

checking exclusive cases used the anti-pattern, and 190 used the

else-if pattern. Overall, 142 unique students submitted at least

one assignment with both the pattern and anti-pattern.

For each assignment, students created files for testing the cor-

rectness of their code and for measuring its run-time with different

inputs. We hypothesized that students may have approached the

readability of their timing and testing code differently from the

readability of their łregularž assignment code. However, only the

first two assignments had more occurrences of exclusive ifs in the

testing/timing files than in the regular files.

5.2 RQ2: Sub-Categories by Required Revision

Hand-inspection of code flagged by the detector revealed different

contexts where students used exclusive ifs, requiring different

revisions. Making these categories explicit may aid instructional

design, as students who only see examples from one category may

not transfer to the others. While we can recommend easy fixes for

some categories, this is not the case for code with larger problems.

5.2.1 Replace with else-if. When the exclusive conditions do not

exhaustively cover all possibilities, as in Example 1 in Listing 3, the

latter if-statements should be replaced with else-if. This simple

revision does not require changing the conditions. However, this

type of revision can allow for simplifying the conditions in some

cases (e.g., if(x<10)...if(x>=10 && x<20) could be simplified

to if(x<10)...else if(x<20).

5.2.2 Replace with else-if and else. When the exclusive conditions

exhaustively cover all possibilities (as in Table 1), the middle if-

statements should be replaced with else-if, and the last should

be replaced with an else. Hand-inspection uncovered instances of

using sequential else-if rather than ending with an else, as in

Listing 3, Example 2 (note that this usage of else-if is not flagged

by our detector). While straightforward replacement with else-if

and else would communicate how the conditions are related (and

that they are exhaustive), it would not address the ordering of the

conditions (e.g., in Listing 3 Example 2, some instructors would

prefer the if-statement with the return comes first).

1 Example 1: Line 5 should be else-if: conditions are exclusive but not exhaustive

2 if(start.charAt(i) == ’<’) {

3 location [0] = i;

4 }

5 if(start.charAt(i) == ’>’) {

6 location [1] = i+1;

7 }

8 Example 2: The last else-if should be an else: conditions are exhaustive

9 if(comparison < 0) {

10 low = mid+1;

11 }

12 else if(comparison > 0) {

13 high = mid -1;

14 }

15 else if(comparison == 0) {

16 return true;

17 }

Listing 3: Easy-to-fix anti-patterns.

5.2.3 Replace with else. A specific case of exhaustiveness is using

sequential ifs to check a condition and its negation (Listing 4). The

use of this anti-pattern in CS2 is concerning, as it suggests a lack of

fluency with else. While our data cannot tell us why students used

this anti-pattern, or how it is related to conceptual understanding,

we consider this anti-pattern important enough to merit its own

category. Note that for the example in Listing 4, this anti-pattern

co-occurs with a larger problem of a helper method doing more

than one thing, which we discuss in section 5.2.5.

1 public boolean CompatibleSize(Matrix m,boolean
isMultiplication) {

2 if (!isMultiplication)
3 if (!(m.data.length == this.data.length) || !(m.data

[0]. length == this.data [0]. length))
4 return false;
5 if (isMultiplication)
6 if (!( this.data [0]. length == m.data.length))
7 return false;
8 return true;
9 }

Listing 4: Using exclusive ifs to check a condition and its

negation (rather than if-else).

5.2.4 Replace with Switch. Another specific case is when exclusive

ifs (that are also exhaustive) could be converted to a switch case.

Fitting this subcategory requires 3 characteristics: (1) the conditions

only check different values of the same variable; (2) at least 4 possi-

ble values are checked; and (3) each if-statement body has at most

two lines of code. Listing 5 shows an example: (1) each if-statement

checks a value for the variable maze[i][j].nodeType; (2) it checks

545



Use of an Anti-Pattern in CS2: Sequential if Statements with Exclusive Conditions SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada

for 5 different values; and (3) each if body has one line of code.

This subcategory may indicate student difficulties in identifying

when to use a switch-case or lack of comfort in implementing it.

1 for (int i = 0; i < height; i++) {
2 for (int j = 0; j < width; j++) {
3 if (maze[i][j]. nodeType == 0) {
4 output.print("X");
5 }
6 if (maze[i][j]. nodeType == 1) {
7 output.print(" ");
8 }
9 if (maze[i][j]. nodeType == 2) {
10 output.print("S");
11 }
12 if (maze[i][j]. nodeType == 3) {
13 output.print("G");
14 }
15 if (maze[i][j]. nodeType == 4) {
16 output.print(".");
17 }
18 }
19 }

Listing 5: Exclusive ifs that should be a switch case.

5.2.5 Symptom of a Larger Problem. In several cases, the exclusive

ifs anti-pattern co-occurs with a deeper structural issue. We re-

viewed all such examples with the course instructor, who agreed

that the co-occurring issues were more important than the anti-

pattern. The code in Listing 4 would still be problematic even if it

used if-else. This code also returns Boolean literals rather than

returning a Boolean expression directly (an anti-pattern discussed

in [16, 29, 41]). More importantly, the helper method is doing two

things instead of one: it determines if two matrices can be added

or multiplied, with a parameter indicating the target operation. A

cleaner solution would have one method for each action. Listing 6

shows a related problem: lack of a helper method. This code, from

the balanced symbol checker, hard-codes closing symbols in a series

of ifs (while exclusive, they aren’t flagged because of the return

statements). Instead, a helper method should identify matching

symbols. Both listings suggest possible difficulties with abstraction.

1 ...
2 else if (currentChar == '}') {
3 if (stack.isEmpty ())
4 return unmatchedSymbol(rowNum , colNum , currentChar , ' ');
5 if (stack.peek() == '(')
6 return unmatchedSymbol(rowNum , colNum , currentChar , ')');
7 if (stack.peek() == '[')
8 return unmatchedSymbol(rowNum , colNum , currentChar , ']');
9 stack.pop();
10 } else if (currentChar == ']') {
11 if (stack.isEmpty ())
12 return unmatchedSymbol(rowNum + 1, colNum , currentChar , ' ');
13 if (stack.peek() == '(')
14 return unmatchedSymbol(rowNum , colNum , currentChar , ')');
15 if (stack.peek() == '{')
16 return unmatchedSymbol(rowNum , colNum , currentChar , '}');
17 stack.pop();
18 }

Listing 6: Sequential ifs co-occuring with the lack of a helper

method. This excerpt shows 6 of the 9 if-statements that

hard-code matched symbols.

Exclusive ifs can also co-occur with unnecessary code (List-

ing 7). Example 1 shows an unnecessary for loop, with if-statements

checking all values of the index; all of those control structures

could be removed. We note that usage of else-if can also co-occur

with this problem, as in Listing 7, Examples 2 and 3. Example 2

includes an else-if that can never execute, and Example 3 shows

an else-if and elsewith identical bodies. These examples caution

us against using the presence or absence of the anti-pattern as a

measure of overall code quality or conceptual understanding.

1 Example 1: An unnecessary for loop.
2 for (int i = 0; i < 5; i++) {
3 if (i == 0) {
4 output.println('{');
5 output.println("<a>");
6 output.println("a");
7 output.println('}');
8 output.println ();
9 }
10 if (i == 1) {
11 output.println('{');
12 output.println("<b>");
13 output.println("b");
14 output.println('}');
15 output.println ();
16 ...
17 }
18 Example 2: An else-if that will never execute.
19 if (!lineScan.hasNext()) {
20 return unmatchedSymbol(lineCount , colCount ,currVal.charAt(j),

stack.peek().toString ().charAt (0));
21 }
22 else if (!scan.hasNextLine () && !lineScan.hasNext()) {
23 return unmatchedSymbolAtEOF(currVal.charAt(j));
24 }
25
26 Example 3: An else-if block that is redundant with the else block.
27 if (size == 0) {
28 Node <T> newNode = new Node <T>( element);
29 head = newNode;
30 tail = newNode;
31 }
32 else if (size == 1) {
33 Node <T> newNode = new Node <T>( element);
34 newNode.next = head;
35 head.previous = newNode;
36 }
37 else {
38 Node <T> newNode = new Node <T>( element);
39 newNode.next = head;
40 head.previous = newNode;
41 }

Listing 7: Unnecessary code co-occurring with exclusive ifs

(Example 1) and with else-if (Examples 2 and 3).

5.3 RQ3: Online Resources Lack Explanation on
When to Use else-if/else vs. Sequential ifs

We examined online textbooks from our university library, and free

online resources. We chose Java because it is the language used

in our university’s intermediate programming courses. While our

exploration is not an exhaustive review, it covers the resources

that our students are likely to find with a quick internet search.

We examined six textbooks from our university library: The Java

Programming Language [13], Java Programming [34], Introduction to

Programming Using Java [18], Java Programming for Beginners [30],

Java Programming 24-Hour Trainer [20], and Teach Yourself Java in

21 Days [31]. For the tutorial websites, we did Google search with

łjavaž and each of the following keywords: łconditional structures,ž

łdecision structures,ž and łelse-if,ž checking the top 7 results for each

search. This process yielded 11 online resources (many came up in

multiple searches): Java-Decision Making from turorialspoint [5],

Decision Structures [4], Decision Making in Java by GeeksforGeeks

[11], Decision Making in Java by DataFlair [7], Decision Making

in Java by TechVidvan [6], Java Decision Making by w3school[2],

Java If-else Statement [3], Control Structures in Java [25], How to

Use If. . . Else Statements in Java [22], Else if statement in Java [8],

and if/else by khan academy [9].

We looked specifically for: (1) an explanation that a condition in

an if-else-if-chain is only evaluated if all previous conditions

in the chain have evaluated to false, and (2) guidance on choos-

ing an else-if structure when the conditions are exclusive and

else for the last statement when the conditions are also exhaustive.

All of the textbooks address else, and all but one ([30]) include

else-if. (We examined all chapters of [30] that seemed relevant:

546



SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada Sara Nurollahian, Matthew Hooper, Adriana Salazar, and Eliane Wiese

branching, data structures and functions). However, none of the

textbooks discuss the difference in code execution of if-else-if

vs. if-if structures when the conditions were exclusive, and none

offer guidance on when one structure is more appropriate than

the other. Even the most in-depth explanation, from Java Program-

ming [36], only noted that, for two sequential if-statements, łthe

second if statement will be executed irrespective of whether the

first if statement is evaluated to true or notž [36, section 2.2.2].

Of the online resources, many explain the execution of else-if,

but none compare the execution of exclusive ifs with if-else-if

or if-else and none explain when each structure is more appro-

priate and why. The most comprehensive explanation of the online

tutorials, from khan academy, gives examples of code with sequen-

tial ifs with nonexclusive conditions and compares them with

else-if, noting how the functionality and execution differ. How-

ever, it did not explain the difference in machine execution between

if-if and if-else-if when the conditions are exclusive.

6 DISCUSSION
Overall, 30% of the exclusive checks across all assignments were ex-

clusive ifs, indicating that this anti-pattern is common. The preva-

lence of the anti-pattern varied by assignment, with the fewest on

#1 and the most on #7. However, we do not interpret raw prevalence

as an indication of student knowledge, as the assignments differed

in how much they lent themselves to checking exclusive conditions

(see section 5.1). Assignment 8, with the highest number of exclu-

sive checks, required creating a binary tree and a priority queue

backed by a binary heap, in which students used exclusive checks

to decide which side of the tree to traverse. While our data shows

which assignments are most likely to elicit exclusive checks, it

does not show which assignments should include exclusive checks

in their most elegant implementations. Still, even if we use the

percentage of submissions with exclusive checks as a proxy for

opportunities to use them, our data does not show improvement

across the semester. Considering the assignments where at least

10% of submissions used exclusive checks (all but #1), the 3 highest

rates of using exclusive ifs (out of the total number of submissions

with exclusive checks) occur in each third of the semester, on as-

signments 2, 7, and 12. Thus, consistent with prior work [17, 27],

we cannot conclude that the propensity to use the anti-pattern

declines over CS2. This is not surprising given that students were

not incentivized to avoid exclusive ifs anti-pattern.

Althoughmany submissions included the anti-pattern, many also

included if-else-ifs. This suggests that a student’s usage of an

anti-pattern may not mean that the student cannot use the correct

pattern. We found that 142 students used both the pattern and

anti-pattern in the same submission. Another 18 students used the

pattern in one submission and then used the anti-pattern in a later

assignment. These 160 students are 59% of the class. While our field

has mainly focused on detecting anti-patterns [16, 17, 27, 38], this

may provide an incomplete picture of students’ knowledge of code

structure. If pattern detectors seek out correct usages in addition

to anti-patterns, when they flag those anti-patterns, they could

remind students of where a correct example is in the students’ own

code. Further, if students are capable of using the correct pattern,

instruction on that pattern may not be as effective as instruction

on identifying opportunities for using the pattern.

More important than the anti-pattern itself, we found larger co-

occurring problems. This finding shows promise for exploring anti-

patterns as symptoms of more important issues that are harder to

detect directly. Conversely, it cautions against providing feedback

to students that may help them revise the anti-pattern without

considering the deeper issues in their code.

6.1 Threats to Validity

Our human ground truth is limited by the difficulty of determining

side effects through hand-inspection. Also, our data shows what

students did but not why they did it ś use of the exclusive ifs anti-

pattern may be due to flaws in logical reasoning. Our data includes

noise inherent to the ecological context (e.g., some students dropped

the class, started late, or did not submit all assignments). And, since

students worked in pairs, instances of using the pattern and anti-

pattern on the same assignment could reflect the work of different

students. Finally, while this anti-pattern is explored in prior work

and is important to our instructors, this study does not examine its

importance in professional settings.

6.2 Implications for Educators

Since else-if is taught in CS1, CS2 instructors may assume that

students know how to use it properly. However, our exploration of

17 online resources suggests an instructional gap on this structure.

Our CS2 instructor is considering using our data as a wake-up

call to students in his class, to show them that while they think

they are not susceptible to this anti-pattern, it is common and

they should look out for it. Instruction on this anti-pattern should

provide examples from each of the sub-categories, should focus

on identifying opportunities to revise the anti-pattern, and should

emphasize the importance of looking for deeper structural issues

that may co-occur. Instruction should also draw on students’ prior

knowledge of the correct pattern, since students are likely capable

of both. Consideration of these deeper issues is also important in

courses where students are given automated feedback on structure.

7 CONCLUSION AND FUTURE WORK

We developed a detector for the exclusive ifs anti-pattern by com-

bining static analysis with an SMT solver. Running the detector

on students’ programming assignments showed this anti-pattern

was common in CS2. Hand inspection revealed sub-categories of

the anti-pattern. Online resources lacked instruction on this anti-

pattern, making it unlikely that students will learn it on their own.

In future work, we plan to refine the detector and examine how

instructors might use it in their courses. We advocate think-aloud

studies and interviews to examine why students use anti-patterns,

further explorations of how usage of anti-patterns relates to con-

ceptual knowledge, and the development of additional detectors

for complex anti-patterns.

8 AKNOWLEDGEMENTS

We thank Dr. Daniel Kopta, Dr. David Johnson, and Dr. Anna Raf-

ferty for their guidance and feedback. This work was supported by

the National Science Foundation through award SHF 1948519.

547



Use of an Anti-Pattern in CS2: Sequential if Statements with Exclusive Conditions SIGCSE 2023, March 15ś18, 2023, Toronto, ON, Canada

REFERENCES
[1] 2016. https://clang-analyzer.llvm.org/
[2] 2019. Java decision making. https://www.w3schools.in/java-tutorial/decision-

making/
[3] 2019. Java if else - javatpoint. https://www.javatpoint.com/java-if-else
[4] 2020. Decision Structures. https://www2.lawrence.edu/fast/GREGGJ/CMSC150/

012Decisions/Decisions.html
[5] 2020. tutorialspoint. https://www.tutorialspoint.com/java/java_decision_

making.htm
[6] 2021. Decision making in java - explore the types of statements with syntax.

https://techvidvan.com/tutorials/decision-making-in-java/
[7] 2021. Decision making in java (syntax amp; example)- A complete guide for you!

https://data-flair.training/blogs/decision-making-in-java/
[8] 2021. Else if statement java. https://code-knowledge.com/java-elseif/
[9] 2021. If/else - part 2 | logic and if statements | Intro to JS: Drawing amp; animation |

computer programming | computing. https://www.khanacademy.org/computing/
computer-programming/programming/logic-if-statements/pt/ifelse-part-2

[10] 2022. Checkstyle 10.3.2. https://checkstyle.sourceforge.io/index.html
[11] 2022. Decision making in Java (if, if-else, switch, break, continue,

jump). https://www.geeksforgeeks.org/decision-making-javaif-else-switch-
break-continue-jump/

[12] 2022. pmd source code analyzer. https://pmd.github.io/latest/
[13] Ken Arnold, James Gosling, and David Holmes. 2005. The Java programming

language. Addison Wesley Professional.
[14] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In

Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337ś340.

[15] Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B Rowe, and
Nasser Giacaman. 2018. Understanding semantic style by analysing student code.
In Proceedings of the 20th Australasian Computing Education Conference. 73ś82.

[16] Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B Rowe, and
Nasser Giacaman. 2018. Understanding semantic style by analysing student code.
In Proceedings of the 20th Australasian Computing Education Conference. 73ś82.

[17] Tomche Delev and Dejan Gjorgjevikj. 2017. Static analysis of source code written
by novice programmers. In 2017 IEEE Global Engineering Education Conference
(EDUCON). IEEE, 825ś830.

[18] David J Eck. 2015. Introduction to programming using Java. David J. Eck.
[19] Tomáš Effenberger and Radek Pelánek. 2022. Code Quality Defects across Intro-

ductory Programming Topics. In Proceedings of the 53rd ACM Technical Sympo-
sium on Computer Science Education V. 1. 941ś947.

[20] Yakov Fain. 2015. Java Programming 24-Hour Trainer. (2nd ed.. ed.).
[21] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-

Wesley Professional.
[22] James Gallagher. 2020. How to use if...else statements in Java. https:

//careerkarma.com/blog/java-if-else/
[23] Christopher Hundhausen, Anukrati Agrawal, Dana Fairbrother, and Michael

Trevisan. 2009. Integrating Pedagogical Code Reviews into a CS 1 Course: An
Empirical Study. Proceedings of the 40th ACM technical symposium on Computer
science education (SIGCSE’09) (2009), 291ś295.

[24] Saj-Nicole A Joni and Elliot Soloway. 1986. But My Program Runs! Discourse
Rules for Novice Programmers. Journal of Educational Computing Research 2, 1

(1986), 95ś125.
[25] Nickson Joram. 2021. Control structures in Java-conditional state-

ments. https://medium.com/javarevisited/control-structures-in-java-
conditional-statements-e4d8da0421cc

[26] Oscar Karnalim, William Chivers, et al. 2022. Work-In-Progress: Code Quality
Issues of Computing Undergraduates. In 2022 IEEE Global Engineering Education
Conference (EDUCON). IEEE, 1734ś1736.

[27] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code quality issues in
student programs. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. 110ś115.

[28] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2019. How teachers would
help students to improve their code. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education. 119ś125.

[29] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A tutoring system to
learn code refactoring. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education. 562ś568.

[30] Mark Lassoff. 2017. Java programming for beginners (1st ed. ed.). PACKT Pub-
lishing.

[31] Laura Lemay, Charles L Perkins, and Michael Morrison. 1999. Teach yourself Java
in 21 Days. Sama Publishing.

[32] Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

[33] Andy Oram and Greg Wilson. 2007. Beautiful Code: Leading Programmers Explain
How They Think (Theory in Practice (O’Reilly)). O’Reilly Media, Inc.

[34] Hari Pandey. 2011. Java Programming (1st edition. ed.).
[35] Raymond Pettit, John Homer, Roger Gee, SusanMengel, and Adam Starbuck. 2015.

An empirical study of iterative improvement in programming assignments. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
410ś415.

[36] K Rajkumar. 2013. JAVA Programming (1st edition. ed.).
[37] Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowl-

edge. IEEE Trans. Software Eng. SE-10, 5 (1984), 595ś609.
[38] Leo C Ureel II and Charles Wallace. 2019. Automated critique of early pro-

gramming antipatterns. In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 738ś744.

[39] Nathaniel Weinman, Armando Fox, and Marti A Hearst. 2021. Improving instruc-
tion of programming patterns with faded parsons problems. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems. 1ś4.

[40] JLWhalley, Tony Clear, Phil Robbins, and Errol Thompson. 2011. Salient elements
in novice solutions to code writing problems. (2011).

[41] Eliane S Wiese, Anna N Rafferty, and Armando Fox. 2019. Linking code read-
ability, structure, and comprehension among novices: it’s complicated. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET). IEEE, 84ś94.

[42] Eliane S Wiese, Anna N Rafferty, and Garrett Moseke. 2021. Students’ Misun-
derstanding of the Order of Evaluation in Conjoined Conditions. In ICPC’21:
Proceedings of the 29th International Conference on Program Comprehension.

[43] Eliane S Wiese, Michael Yen, Antares Chen, Lucas A Santos, and Armando Fox.
2017. Teaching students to recognize and implement good coding style. In
Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale. 41ś50.

[44] M Woodley and S N Kamin. 2007. Programming studio: A course for improv-
ing programming skills in undergraduates. SIGCSE 2007: 38th SIGCSE Technical
Symposium on Computer Science Education January 2007 (2007), 531ś535.

548


	Abstract
	1 Introduction: Code Structure
	2 Prior Work: Student Anti-Patterns
	3 The Exclusive Ifs Anti-Pattern
	4 Methods
	4.1 Homework Data and Classroom Context
	4.2 Exclusive Ifs Detector

	5 Findings
	5.1 RQ1: Students Frequently Use Exclusive ifs
	5.2 RQ2: Sub-Categories by Required Revision
	5.3 RQ3: Online Resources Lack Explanation on When to Use else-if/else vs. Sequential ifs

	6 Discussion
	6.1 Threats to Validity
	6.2 Implications for Educators

	7 Conclusion and Future Work
	8 Aknowledgements
	References

