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Abstract 

Background:  Large medical centers in urban areas, like Los Angeles, care for a diverse patient population and offer 
the potential to study the interplay between genetic ancestry and social determinants of health. Here, we explore 
the implications of genetic ancestry within the University of California, Los Angeles (UCLA) ATLAS Community Health 
Initiative—an ancestrally diverse biobank of genomic data linked with de-identified electronic health records (EHRs) 
of UCLA Health patients (N=36,736).

Methods:  We quantify the extensive continental and subcontinental genetic diversity within the ATLAS data through 
principal component analysis, identity-by-descent, and genetic admixture. We assess the relationship between 
genetically inferred ancestry (GIA) and >1500 EHR-derived phenotypes (phecodes). Finally, we demonstrate the utility 
of genetic data linked with EHR to perform ancestry-specific and multi-ancestry genome and phenome-wide scans 
across a broad set of disease phenotypes.

Results:  We identify 5 continental-scale GIA clusters including European American (EA), African American (AA), 
Hispanic Latino American (HL), South Asian American (SAA) and East Asian American (EAA) individuals and 7 subcon-
tinental GIA clusters within the EAA GIA corresponding to Chinese American, Vietnamese American, and Japanese 
American individuals. Although we broadly find that self-identified race/ethnicity (SIRE) is highly correlated with 
GIA, we still observe marked differences between the two, emphasizing that the populations defined by these two 
criteria are not analogous. We find a total of 259 significant associations between continental GIA and phecodes even 
after accounting for individuals’ SIRE, demonstrating that for some phenotypes, GIA provides information not already 
captured by SIRE. GWAS identifies significant associations for liver disease in the 22q13.31 locus across the HL and EAA 
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Background
Linking electronic health records (EHRs) to patient 
genomic data within biobanks in a de-identified fashion 
has the potential to significantly advance genomic dis-
coveries and precision medicine efforts (e.g., population 
screening, identifying drug targets) [1–4]. However, the 
underrepresentation of minoritized populations in bio-
medical research [5–11] raises concerns that advance-
ments in precision medicine may widen disparities in 
access to high-quality health care [12–14]. For example, 
European-ancestry individuals constitute approximately 
16% of the global population, yet account for almost 80% 
of all genome-wide association study (GWAS) partici-
pants [13]. As a direct result of this imbalance, existing 
methods to predict disease risk from genetics (e.g., poly-
genic risk scores) are vastly inaccurate in individuals of 
non-European ancestry [13, 15] thus forming a barrier 
for advancing genomic medicine to benefit patients of all 
ancestries.

The University of California, Los Angeles (UCLA) 
Health medical system is located in Los Angeles, one 
of the most ethnically diverse cities in the world. There 
is no ethnic majority: 48.5% of Los Angeles residents 
self-identify as Hispanic or Latino, 11.6% as Asian, and 
8.9% as Black or African American; additionally, 37% 
of Los Angeles residents are neither U.S. nationals, nor 
U.S. citizens at birth [16]. Therefore, the UCLA Health 
patient population and the availability of digital health 
data captured in EHRs from a single medical system 
presents a unique opportunity to increase the inclusion 
of underrepresented minorities in biomedical research. 
In this study, we investigate the role of genetic ancestry 
in a disease context within the UCLA ATLAS Commu-
nity Health Initiative (or ATLAS for brevity), a biobank 
embedded within the UCLA Health medical system 
composed of de-identified, EHR-linked genomic data 
from a diverse patient population [17, 18]. The current 
initiative aims to collect genomic data from over 150,000 
individuals; currently this consists of N=36,736 indi-
viduals genotyped at M=667,191 SNPs genome-wide 
using the Illumina global screening array (GSA) [19] and 
then imputed to >8 million SNPs using a multi-ancestry 
imputation panel (TOPMed Freeze5 [20]). A detailed 

description describing the recruitment, consent process, 
sample collection, and genotype and phenotype quality 
control are discussed in prior works [17, 18, 21].

The EHR contains a de-identified extract of medical 
records (billing codes, laboratory values, etc.) as well as 
demographic information such as self-identified race 
and ethnicity information. It is important to note that 
self-identified race and ethnicity (SIRE) represent social 
constructs that capture shared values, cultural norms, 
and behaviors of subgroups [22] that are distinct con-
cepts from genetic ancestry which refers to the ancestral 
history of one’s genome. This difference is even more 
relevant for individuals self-describing as multi-racial 
(and/or admixed) where genetic ancestry bears little cor-
relation to SIRE [23, 24]. Understanding the interplay 
of genetic factors (such as genetic ancestry) with social 
determinants of health (as inferred from self-reports) 
is still mired in the confounding overlaps between race, 
socioeconomic status, and disease, but serves as a critical 
step in mapping and predicting disease risk across indi-
viduals of all ancestries.

In this work, we leverage the unique genomic diver-
sity of our single-center cohort to explore the intercon-
nected effects of self-identified race/ethnicity and genetic 
ancestry on clinical phenotypes. We cluster individuals 
by genetically inferred ancestry (GIA) within the EHR-
linked biobank, systematically construct phenotypes 
from EHR, and compute disease associations using 
multi-ancestry pipelines for both genome-wide and 
phenome-wide association studies (PheWAS). We find 
that genetically derived and self-identified information 
yield distinct subpopulations, emphasizing the distinc-
tion between GIA and SIRE. We leverage genetic and 
self-identified data to find extensive variation of subcon-
tinental ancestry within ATLAS across European Ameri-
can (EA), East Asian American (EAA), Hispanic Latino 
American (HL), and African American (AA) GIA groups. 
For example, we find clusters of individuals with recent 
inferred ancestry from Filipino, Chinese, Japanese, and 
Korean ancestries among the EAA cluster. Such sub-
continental clusters also stratify individuals according to 
disease groups thus emphasizing their utility in biomedi-
cal research. We perform both ancestry-specific GWAS 

GIA groups (HL p-value=2.32×10−16, EAA p-value=6.73×10−11). A subsequent PheWAS at the top SNP reveals signifi-
cant associations with neurologic and neoplastic phenotypes specifically within the HL GIA group.

Conclusions:  Overall, our results explore the interplay between SIRE and GIA within a disease context and under-
score the utility of studying the genomes of diverse individuals through biobank-scale genotyping linked with EHR-
based phenotyping.

Keywords:  Electronic health records, Biobank, Genetic ancestry, Genome-wide association studies, Phenome-wide 
association studies
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and meta-analyses across GIA groups and recapitulate 
known genomic risk regions. We perform PheWAS on 
significant regions and describe genetic associations for 
liver-related phenotypes in multiple ancestry groups as 
well as associations with neurologic and neoplastic phe-
notypes that are associated exclusively in the HL GIA 
group. These results underscore how the utility of large-
scale genetic analyses and deep phenotyping in diverse 
populations can make substantial medical contributions 
for population health.

Methods
Study population
The UCLA Health System includes two hospitals (520 
and 281 inpatient beds) and 210 primary and specialty 
outpatient locations predominantly located in Los 
Angeles County. The UCLA Data Discovery Repository 
(DDR) contains de-identified patient EHRs that have 
been collected since March 2, 2013, under the auspices 
of the UCLA Health Office of Health Informatics Ana-
lytics and the UCLA Institute of Precision Health. Cur-
rently, the DDR contains longitudinal records for more 
than 1.5 million patients (inpatient and outpatient), 
including basic patient information (height, weight, 
gender), diagnosis codes, laboratory tests, medications, 
prescriptions, hospital admissions, and procedures. The 
UCLA ATLAS Community Health Initiative includes the 
EHR-linked biobank within the UCLA Health System. 
Currently, there are more than 37,000 genotyped par-
ticipants with their de-identified EHR linked through the 
DDR. Participation is voluntary and privacy is protected 
by de-identifying the samples. Additional information 
regarding recruitment, consent, sample processing, and 
quality control pipelines can be found in previous work 
[17, 18, 21]. Patient Recruitment and Sample Collection 
for Precision Health Activities at UCLA is an approved 
study by the UCLA Institutional Review Board (UCLA 
IRB). IRB#17-001013.

Self‑identified demographic information
Self-identified demographic information is collected 
as a part of clinical care which is then translated to 
the EHR. Participants self-identify race and ethnicity 
via two distinct drop-down fields where there are pre-
determined multiple-choice fields for race and ethnicity 
(see Additional file 2: Table S1, S2 for full list contain-
ing exact terminology). At this time, only one selection 
from each category can be chosen as a patient’s primary 
race and ethnicity [25]. We group together race/eth-
nicity pairings to form “self-identified race/ethnicity” 
(SIRE) groupings (Additional file  2: Table  S3). Patients 
also report their “Preferred Language” from pre-deter-
mined multiple-choice fields within the EHR. See the 

section  “Notes on terminology and naming conven-
tions” for a more detailed discussion of terminology 
used for SIREs.

Notes on terminology and naming conventions
In this section, we explicitly discuss the origin of the ter-
minology and naming conventions used throughout this 
manuscript with respect to genetic ancestry, race, and 
ethnicity. We refer to Peterson et al. [26] for a more com-
prehensive description of terms for GWAS in ancestrally 
diverse populations.

The term “genetic ancestry” refers to the characteri-
zation of the population(s) from which an individual is 
descended and describes the genetic relationship implied 
by shared, large segments of genomic DNA between an 
individual and these ancestors [27]. Throughout this 
work, we reserve this term to describe individuals with 
information about the origin of their recent biological 
ancestors. For instance, we treat populations represented 
in genetic reference panels (e.g., 1000 Genomes Project 
[28, 29]) as instances of genetic ancestry since the infor-
mation describing the origin of the recent biological 
ancestors represented in the samples is known.

Much of this work involves inferring the genetic ances-
try information for a set of individuals. We introduce the 
term “genetically inferred ancestry (GIA)” to describe the 
genetic characterization of individuals within a group 
who likely share recent biological ancestors as inferred by 
a method of choice. We emphasize that GIA differs from 
genetic ancestry in that GIA depends on the inference 
method (e.g., clustering) and choice of reference data 
(e.g., 1000 Genomes).

The terms “Native American genetic ancestry” and 
“Native American GIA” refer to ancestry and/or recent 
biological ancestors from individuals originating from 
indigenous groups originally from North America, Cen-
tral American, and South America. The term “Native 
American race” refers to the definition used by the US 
Census, “ a person having origins in any of the original 
peoples of North and South America (including Central 
America) and who maintains tribal affiliation or com-
munity attachment” [30]. We recognize that individuals 
in this group may prefer other terms such as “American 
Indians.” To be clear, identification of subjects as Native 
American GIA is not meant to imply a tribal status.

In the context of this work, the term “African genetic 
ancestry” describes individuals whose recent biological 
ancestors originated from the continent of Africa. “Afri-
can American (AA) GIA” refers to an admixed group 
of individuals within the USA who have recent biologi-
cal ancestors inferred to be of African ancestry and thus 
have partial or total ancestry originating from Africa. The 
term “Admixed American ancestry” refers to those with 
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recent biological ancestors from European, African, and 
Native American ancestries that achieved admixture in 
North America, Central America, and South America. 
Thus, Admixed American ancestry contains global pro-
portions of all three ancestry groups. “Hispanic Latino 
American (HL) GIA” refers to the group of admixed indi-
viduals within the USA whose recent biological ancestors 
were inferred to be individuals of Admixed American 
ancestry. “European ancestry” refers to individuals with 
recent biological ancestors with origins in continental 
Europe. “European American (EA) GIA” refers to indi-
viduals within the USA with recent biological ancestors 
inferred to be of European ancestry, thus, partial or total 
ancestry originating from Europe. “East Asian ancestry” 
and “South Asian ancestry” refers to individuals with 
recent biological ancestors from East Asia and South 
Asia respectively. “East Asian American (EAA) GIA” and 
“South Asian American (SAA) GIA” refers to individuals 
within the USA with recent biological ancestors inferred 
to be of East Asian ancestry or South Asian ancestry.

We disapprove that the term “White/Caucasian” is a 
preset multiple-choice option under the race field within 
the medical records and renounce its usage due to its 
erroneous origins and historically racist implications. We 
strongly discourage the connection of the term “Cauca-
sian” with the discussion of race, a social construct sepa-
rate from biology, and emphasize that the term does not 
have biological implications [31]. For subsequent analy-
ses presented in this work, we use “White” to refer to the 
“White/Caucasian” category. Although this terminology 
is still built into the language of many documents and 
surveys, such as EHRs, we make this change to avoid per-
petuating its usage within the field.

Basic genotype quality control
Bio-samples collected from the UCLA ATLAS Commu-
nity Health Initiative in the form of blood samples were 
de-identified and then processed for DNA extraction and 
genotyping. We utilized a “frozen snapshot” of ATLAS 
data composed of all samples processed up to 6/18/2021. 
ATLAS participants (N=36,779) were genotyped using 
a custom genotyping array constructed from the Global 
Screening Array with the multi-disease drop-in panel [19] 
under the GRCh38 assembly. Overall, the array measured 
700,079 sites for capturing single-nucleotide polymor-
phisms (SNPs) and short insertions and deletions (indels).

We filtered out poor-quality markers by remov-
ing unmapped SNPs, SNPs with >5% missingness, and 
strand-ambiguous SNPs (M = 19,313 variants removed). 
We excluded samples with missingness >5% (N=1 indi-
vidual removed). We identified duplicate individuals 
(or identical twins/triplets, etc.) using KING 2.2.2 [32] 
(“--duplicate”) and removed the individual with the 

lowest missing rate from each pair (N=42 individuals 
removed). All quality control steps were conducted using 
PLINK 1.9 [33]. Following sample- and variant-level 
quality control, M=667,191 genotyped SNPs remained 
across N=36,736 individuals for downstream analyses. 
All subsequent genetic analyses in this paper utilize this 
QC’d set of genotypes. Additional steps of QC may be 
conducted before running specific analyses, as described 
in more detail below. A summary of the sample sizes and 
sets of SNPs used in subsequent analyses is described 
in Additional file 8: Table S14. We refer to our previous 
work for a more thorough description of the quality con-
trol pipelines constructed for ATLAS [17].

Genotype imputation
After performing array-level genotype quality control, 
the PLINK-formatted genotypes were converted to VCF 
format and uploaded to the Michigan Imputation Server 
[34]. On a variant level, the server removed the variant if 
it was not an A, C, G, T allele, monomorphic, a duplicate, 
an allele mismatch between the reference panel and pro-
vided data, an insertion-deletion, or if the SNP call rate is 
less than 90%. The server will additionally correct for any 
necessary strand flips or allele switches needed to match 
the reference panel. The server additionally phases the 
data using Eagle v2.4 [35], and imputation is performed 
against the TOPMed Freeze5 imputation panel [20] using 
minimac4 [36]. In summary, the explicit parameters 
used on the server are “TOPMed Freeze5” for the refer-
ence panel, “GRCh38/hg38” for the array build, “off” for 
the rsq filter, “Eagle v2.4” for phasing, no QC frequency 
check, and “quality control & imputation” for the mode. 
After we filtered by R2>0.90 and MAF>1%, the final set of 
variants contained M=8,048,268 sites.

Genetic relatedness inference
We computed pairwise kinship coefficients to deter-
mine family relationships using King 2.2.2 [32]. We per-
formed inference on the set of genotype data passing 
quality control (see “Basic genotype quality control”) for 
a total of N=36,736 individuals and M=667,191 SNPs. 
We identified a set of unrelated individuals (N=35,761) 
up to degree 2 where individuals with kinship coefficient 
<0.0884 were included (“king --unrelated --degree 2”). 
This level of relatedness is expected since members of 
the same family will often be within the same healthcare 
system.

Continental genetic inferred ancestry
We estimated GIA membership using a 2-step cluster-
ing procedure. First, we performed principal component 
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analysis (PCA) [37] on all individuals in ATLAS 
(N=36,736) and samples from 1000 Genomes. Specifi-
cally, we first filtered genotypes from ATLAS by Mendel 
error rate (“plink --me 1 1 –set-me-missing”), founders 
(“--filter-founders”), minor allele frequency (“–maf 0.15”), 
genotype missing call rate (“--geno 0.05”), and Hardy-
Weinberg equilibrium test p-value (“–hwe 0.001”). The 
filtered genotypes from ATLAS are then merged with the 
1000 Genomes phase 3 dataset [28]. We align reference 
alleles between the two sets of data and filter out SNPs 
that are not an A, C, T, or G allele. Next, a 2-step LD 
pruning is performed on the merged dataset: (1) “--indep 
200 5 1.15”, (2) “--indep-pairwise 100 5 0.1.” All filtering 
steps and LD pruning were performed using PLINK 1.9 
[38]. This resulted in a total of 22,589 SNPs across 36,736 
individuals in ATLAS. We computed the first 10 principal 
components using the FlashPCA 2.0 software [39] with 
all default settings.

For the second step, we perform clustering on the 
principal components to estimate GIA cluster member-
ship for each individual in ATLAS. We use the K-near-
est neighbors (KNN) algorithm where we use the 
superpopulation name of the samples in 1000 Genomes 
to define the cluster labels. The superpopulations 
form 5 clusters: European, African, Admixed Ameri-
can, East Asian, and South Asian genetic ancestry. For 
each ancestry cluster, we run KNN on the pair of PCs 
that capture the most variation for each genetic ances-
try group: European, East Asian, and African ancestry 
groups utilize PCs 1 and 2, the Admixed American 
group use PCs 2 and 3, and the South Asian group use 
PCs 4 and 5. For each ancestry group inference, we run 
KNN separately. In each analysis, we use 10-fold cross-
validation to select the “k” hyper-parameter from k=5, 
10, 15, 20. If a sample from ATLAS had >0.50 cluster 
membership, then the sample is reported as the genetic 
inferred ancestry represented in that cluster (European 
genetic ancestry (GA) → European GIA, African GA 
→ African American GIA, Admixed American GA → 
Hispanic Latino American GIA, East Asian GA → East 
Asian American GIA, South Asian GA → South Asian 
American GIA). See “Notes on terminology and naming 
conventions” for a more in-depth discussion about the 
naming of GIA clusters. Individuals who did not attain 
>0.50 membership in any cluster or were matched to 
multiple clusters were reported as being ‘Ambiguous 
GIA’. A comparison between the GIA clusters and the 
genetic ancestry clusters from 1000 Genomes in PC-
space is visualized in Additional file 1: Fig. S2.

Subcontinental genetic inferred ancestry
We estimate subcontinental GIA membership for indi-
viduals within the East Asian American GIA group using 

a 2-step clustering procedure similar to the continental 
GIA clustering discussed in a prior section (“Continental 
genetic inferred ancestry”). First, we perform PCA on all 
individuals in the EAA GIA group in ATLAS (N=3,331) 
and samples from the East Asian ancestry population in 
1000 Genomes. Using only the genotyped SNPs, we per-
form the same filtering steps as described above, namely 
filtering ATLAS genotypes by Mendel error rate, found-
ers, MAF > 0.15, genotype missing call rate, Hardy-
Weinberg equilibrium test, and LD pruning. Following 
sample- and variant-level quality control, M=36,504 
SNPs remained. We also found that not restricting to 
only unrelated individuals does not bias our estimates 
(Additional file 8: Table S16). We then compute the first 
10 principal components using FlashPCA with all default 
settings.

For the second step, we perform clustering on the 
principal components to estimate subcontinental GIA 
cluster membership for each individual in the East Asian 
American GIA group in ATLAS. We use the K-nearest 
neighbors (KNN) algorithm where we use the popula-
tion name of the East Asian ancestry samples in 1000 
Genomes to define the cluster labels. The populations 
form 5 clusters: Han Chinese, Southern Han Chinese, 
Dai Chinese, Japanese, Kinh Vietnamese genetic ances-
try. We run KNN using PCs 1–4 with 10-fold cross-
validation to select the “k” hyper-parameter from k=5, 
10, 15, 20. If a sample from ATLAS had >0.90 cluster 
membership, then the sample is reported as the genetic 
inferred ancestry represented in that cluster. Individuals 
who did not attain >0.90 membership in any cluster were 
reported as being “Ambiguous EAA.” A visualization 
of the inferred GIA clusters is visualized in Additional 
file 1: Fig. S3A.

Alternatively, we can define GIA clusters using self-
identified information from the samples in ATLAS. 
We perform a similar approach as above, except we use 
ATLAS individuals’ self-identified race as the labels to 
define the clusters. We limit cluster definitions to self-
identified race groups with N>20 for a total of 7 clusters: 
Chinese, Filipino, Japanese, Korean, Taiwanese, Thai, and 
Vietnamese. Although we do not utilize label information 
from 1000 Genomes, we still use the PCs computed on 
the merged ATLAS and 1000 Genomes dataset to keep 
PCA projections consistent across the 1000 Genomes-
based and self-identified race-based clustering methods. 
We run KNN using the same procedure and thresholds as 
above. Again, individuals who did not attain >0.90 mem-
bership in any cluster were reported as being “Ambigu-
ous EAA.” A visualization of the race-based inferred GIA 
clusters is visualized in Additional file 1: Fig. S3B. Explicit 
clusters could not be confidently computed for other 
continental GIA groups.
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IBD calling
For identity-by-descent (IBD) calling, an interim ver-
sion of the ATLAS data consisting of 24,318 individuals 
was used. First, ATLAS data was merged with the 1000 
Genome Project [28], the Simons Genome Diversity Pro-
ject [40, 41], and the Human Genome Diversity Project 
[42, 43]. Data was filtered to remove duplicated sites 
and individuals or sites with more than 1% missingness. 
Hardy-Weinberg equilibrium was calculated in the larg-
est SIRE groups (NH-White, HL-Oth, NH-AfAm, NH-
Asian) and we removed sites that did not pass a filter of 
p-value < 1×10−10. We also removed individuals whose 
EHR sex did not match PLINK estimated genotyped sex 
and those who had excess heterozygosity. Lastly, we used 
only sites with a MAF greater than 5%. In total, 418,195 
SNPs were kept for IBD analysis. The merged dataset 
was then statistically phased using Shapeit4 [44]. IBD 
was called using iLASH using default parameters [2]. 
For downstream analysis, IBD segments were summed 
between individuals to create a list of edges, where each 
row represented a pair of individuals, and each column 
represented the total genome-wide IBD between those 
two individuals. This matrix was filtered to remove rows 
representing individuals who were third degree relatives 
or closer, calculated using KING. We then created an 
undirected weighted graph using the R Package iGraph 
[45] where the nodes were the individuals, and the edges 
represented the amount of IBD shared between a pair 
of individuals. The InfoMap community detection algo-
rithm, implemented in iGraph, was used to detect IBD 
communities [46]. InfoMap was run with default param-
eters. iGraph was again used for cluster visualization. The 
20 largest communities were selected for visualization, 
and outlier nodes with degree less than 30 were removed. 
The graph was then visualized with the Fruchterman and 
Reingold force directed layout, run with 1000 iterations 
[47]. Each community was assigned a unique color to 
ease visualization.

Genetic admixture analysis
We inferred the proportion of genetic ancestry using 
the ADMIXTURE software [48] under the unsuper-
vised clustering mode with the number of clusters k=4, 
5, 6. Specifically, we restrict to only SNPs with only 
an A, C, G, T allele and with MAF > 0.05 (“--maf 0.05 
--snps-only ‘just-acgt’”) within ATLAS. We then merge 
the data from ATLAS with the 1000 Genomes phase 3 
dataset and limit inference to only the subset of the over-
lapping SNPs. We then perform LD pruning every 2 kb 
on the merged dataset (“--bp-space 2000”). All filtering 
steps and LD pruning were performed using PLINK. 
This resulted in a total of 223,095 SNPs across 36,736 
individuals in ATLAS which was then used for ancestry 

inference using ADMIXTURE. We also found that not 
restricting to only unrelated individuals does not bias 
our estimates (Additional file 8: Table S16).

Finally, we performed the admixture analysis with 
“./admixture atlas_1kg_bed_fille k” with k equal to 4, 
5, or 6. We compare the ancestry proportions from 
each SIRE to estimate the ancestry represented in 
each mixture component. For k=4, we label the com-
ponent with the majority of NH-White individuals as 
European ancestry, the component with the majority 
of NH-AfAm individuals as African ancestry, the com-
ponent with the majority of NH-Asian individuals as 
East Asian ancestry, and the component with the high-
est number of HL-Other and HL-White individuals as 
Native American ancestry.

Phecodes
Billing codes documented in the medical record were 
used to generate phenotypes for analysis. The previ-
ously described phecode ontology (v1.2) maps the specific 
ICD-9 and ICD-10 codes from each patient’s chart onto 
a group of >1800 more general and clinically meaning-
ful phenotype terms [49]. Mapping completed with the 
PheWAS R package [50] (https://​github.​com/​PheWAS/​
PheWAS) creates binary phenotypes. Patients with one 
or more instances of a phecode were considered cases 
while patients without any instance of the corresponding 
phecode were considered controls. We limited analyses 
to phecodes with at least N-Case > 50 in each GIA group 
for a total of 1568 phecodes meeting this threshold in the 
EA GIA, 802 in the AA GIA, 1223 in the HL GIA, and 
891 in the EAA GIA group.

Role of phecode occurrences for defining cases
We define a phecode occurrence as an encounter con-
taining at least one of the ICD codes specified in the 
phecode definition. If a corresponding ICD code is found 
on another separate encounter, we treat this instance 
as a separate phecode occurrence. We compare two 
definitions of phecodes. For the first definition, we only 
require the presence of an ICD code attached to any 
type of patient encounter (i.e., laboratory tests, hospi-
tal, outpatient, medications, telehealth appointments, 
notes, phone calls). For the second definition, we require 
the presence of an ICD code attached to only encoun-
ters from appointment, office, hospital, or procedure 
visits. This stricter definition attempts to avoid captur-
ing encounters that may be less indicative of a diagnosis 
(e.g., patient-physician telehealth messaging). We refer 
to these two definitions as all-encounter-derived and 
visit-derived phecodes. Using these two types of defini-
tions, we then vary the number of phecode occurrences 
required for defining cases and compute the proportion 

https://github.com/PheWAS/PheWAS
https://github.com/PheWAS/PheWAS
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of retained cases compared to the sample sizes if only 1 
occurrence was required.

Association between phecodes and genetic ancestry
To test the differential prevalence of phecodes across 
genetic ancestry group, we performed a marginal asso-
ciation test for each phecode to compare its prevalence 
in one of the genetic ancestry groups (EA, AA, HL, and 
EAA) with the other three groups using the following 
logistic regression model:

To account for the potential confounding effects of 
SIRE, we performed additional analyses with the model:

Statistical significance was determined after correcting 
for the number of tested phecodes with Bonferroni cor-
rection procedure (p-value<1.12×10−05).

We also applied the method to the East Asian Ameri-
can group to test the phecode prevalence difference 
across subcontinental ancestry groups including Chinese, 
Japanese, Filipino, and Korean Americans.

Association between genetic admixture proportions 
and phecodes
Given the substantial variation of admixture propor-
tion within each SIRE group, we test the association of 
phecode with admixture proportion (k=4) for 600 phe-
codes within each of the seven ATLAS SIRE groups (NH-
White, NH-AfAm, HL-Other, HL-White, NH-Asian, 
NH-PI, NH-AmIn) with the following model:

Each model is limited to individuals of one SIRE instead 
of all ATLAS individuals. Only traits with >10 cases per 
SIRE were tested. Significance is determined after adjust-
ing for the number of tested phenotypes with Bonferroni 
correction procedure (p-value <2.08×10−05).

GWAS quality control per GIA
When performing GWAS, we stratified individuals by 
GIA groups and then performed an additional level 
of QC separately within each GIA group. We limited 
analyses to the 4 largest GIA groups: European Ameri-
can (N=22,380), African American (N=1995), Hispanic 
Latino American (N=6073), and East Asian American 
GIA (N=3331). At this time, we omitted GWAS analyses 
within the South Asian American GIA group due to the 

logit(phecode) = β0+β1genetic_ancestry_group+β2sex+β3age [over all ATLAS individuals]

logit(phecode) = β0+β1genetic_ancestry_group+β2sex+β3age+β4SIRE [over all ATLAS individuals]

logit(phecode) = β0+β1admixture_proportion+β2sex+β3age [over individuals within a SIRE]

limited sample size (N=625). Individuals who could not 
be clustered into a specific GIA group (N=2332) were 
also omitted from GWAS analyses.

For GWAS, we utilized imputed data consisting of 
8,048,268 SNPs across N=36,736 individuals. Within 
each ancestry group, samples identified as heterozygo-
sity outliers (+/− 3 SDs from the mean) were removed 
and SNPs that failed the Hardy-Weinberg equilibrium 
test (p-value <1×10−12) were also removed. Finally, we 
limited analyses to only SNPs with MAF > 1% within 

each GIA group, yielding a total of N=22,380 individu-
als and M=6.0 million SNPs within the European Ameri-

can GIA group, N=1995 individuals and M=5.9 million 
SNPs within the African American group, N=6073 and 
M=6.3 million SNPs within the Hispanic Latino Ameri-
can group, and N=3331 individuals and M=4.8 million 
SNPs within the East Asian American group.

Ancestry‑specific GWAS
GWAS for all 6 traits were performed separately within 
each of the 4 continental ancestry groups that met the 
minimum N>50 cases. Additional GWAS-specific quality 
control is performed within each GIA group (see GWAS 
quality control per GIA). Using marginal logistic regres-
sion implemented in PLINK, we computed association 
statistics at each imputed autosomal SNP (“plink --logis-
tic beta”). We additionally used age, sex, and PCs 1–10 as 
covariates where age is defined as the individuals’ current 

age within the EHR (as of September 2021). The values 
used to represent sex in this specific analysis are derived 
from patients’ self-identified sex as reported in the EHR. 
Within the EHR, this specific field is labeled as “Sex” and 
has a list of pre-determined multiple-choice fields where 
participants select one of the following options: “Male,” 
“Female,” “Other,” “Unknown,” “*Unspecified,” “X.” We 
find that 45.1% of individuals self-identify as male and 
54.9% self-identify as female.

Meta‑analyses
We perform meta-analyses for each trait across all GIA 
groups. First, we run ancestry-specific GWAS (see 
“Ancestry-specific GWAS”) within each GIA group 
with adequate sample size (N-Cases>50). We exclude 
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analyses where very few of the SNPs produced a valid 
(non-NA) p-value which is likely attributed to a small 
sample size. The meta-analysis for skin cancer consisted 
of measurements from the EA and HL GIA groups; EA, 
AA, HL, and EAA GIA groups for ischemic heart dis-
ease; EA, AA, HL, and EAA GIA groups for chronic 
nonalcoholic liver disease; AA and HL GIA groups 
for uterine leiomyoma; HL and EAA GIA groups for 
liver/intrahepatic bile duct cancer; EA, AA, and HL 
GIA groups for chronic kidney disease. We performed 
each meta-analysis using a fixed effect model as imple-
mented in PLINK (“--meta-analysis + logscale”). Asso-
ciation statistics computed from the meta-analyses are 
reported for SNPs that occur in at least two of the GIA 
groups.

PheWAS
We perform a PheWAS on the top SNPs from each 
ancestry-specific GWAS analysis that met genome-
wide significance (p-value <5×10−8). Only phecodes 
with at least N-Cases>50 per GIA group were con-
sidered, resulting in a total of 1568 phecodes meeting 
this threshold in the EA GIA and 1223 in the HL GIA. 
Analyses in the AA and EAA GIA groups were excluded 
since the top SNPs were not significantly associated in 
these groups. We additionally stratified individuals by 
sex for the sex-specific phecodes, which are denoted in 
the definition of each phecode. This resulted in a total 
of 24 male- and 113 female-specific phecodes within 
the EA GIA group, and 12 male- and 87 female-specific 
phecodes within the HL group after limiting to phe-
codes with at least N-Cases > 50. We used individu-
als’ self-identified sex as reported in the EHR for this 
analysis.

We performed an association test between the top 
SNP and all phecodes in a given GIA group under a 
logistic regression model. Age, sex, and PCs 1-10 were 
used as covariates in the regression where age is defined 
as the individuals’ current age within the EHR (as of 
September 2021), and sex is derived from individuals’ 
EHR. The association test is performed using the logis-
tic regression option implemented in PLINK (“plink 
--logistic beta”). The PCs used in the regression analysis 
were re-computed using only on individuals from within 
each respective GIA group. Phenotype significance was 
determined as p-value <0.05/(# phecodes), thus each 
GIA group has a specific significance threshold due to 
the different number of tested phecodes. A more strin-
gent threshold also accounting for genome-wide sig-
nificance is also computed where p-value <5×10−8/(# 
phecodes). Both thresholds are denoted in the PheWAS 
plots.

Effective sample size of associated phecodes
To assess the power of the PheWas analysis at rs2294915 
between the European American (EA) GIA and Hispanic 
Latino American (HL) GIA groups, we compute the 
effective sample size (Neff) of each associated phecode, 
where the effective sample size balances the number of 
cases and controls when measuring the power of an anal-
ysis [51]: Neff = 2 / (1/Ncases + 1/Ncontrols).

Results
ATLAS includes individuals of diverse continental 
ancestries
The UCLA Health patient population is diverse, with 
65.36% self-identifying their race as White, 5.23% as Black 
or African American, 9.89% as Asian, 0.41% as Native 
American or Alaska Native, 0.31% as Pacific Islander, 
and 18.81% identify as one of the additional races listed 
in detail in the Additional file 2 (Table S1, S3). For eth-
nicity, a separate concept from race and recorded under 
a different field in the EHR, 15.96% of individuals self-
identify as Hispanic or Latino; the remaining individuals 
self-identify as non-Hispanic/Latino (Additional file  2: 
Table S2, S3). We define genetic ancestry as the charac-
terization of the population(s) from which an individual 
is biologically descended and the genetic relationship 
between an individual and these ancestors. When infor-
mation describing the origin of individuals’ recent bio-
logical ancestors is not available, we can instead infer the 
genetic ancestry using statistical methods. We introduce 
the term “genetically inferred ancestry (GIA)” to describe 
the genetic characterization of individuals within a group 
who likely share recent biological ancestors as inferred by 
a method of choice. We emphasize that GIA differs from 
genetic ancestry in that GIA is highly dependent on the 
inference method (e.g., PCA, IBD) and choice of refer-
ence data. We provide a discussion about the rationale 
behind the terminology and naming conventions used in 
this work under the section “Notes on terminology and 
naming conventions”.

Using data from the 1000 Genomes Project [28], we 
investigated genetically inferred ancestry in ATLAS 
through principal component analysis (PCA) [37, 52] 
and clustering techniques (see “Methods”). Using the five 
continental ancestry populations within 1000 Genomes 
(European, African, Admixed American, East Asian, South 
Asian ancestry) as reference, we identify clusters of indi-
viduals with European American, African American, His-
panic Latino American, East Asian American, and South 
Asian American genetically inferred ancestry (Additional 
file 2: Table S4, Additional file 1: Fig. S1, S2). Although we 
broadly find that self-identified race and ethnicity highly 
correlates with an individual’s inferred genetic ancestry, we 
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still observe marked differences between the two (Fig. 1). 
For example, we find 10.63% of individuals within the 
European American GIA cluster do not identify as being 
within the Non-Hispanic/Latino – White (NH-White) 
SIRE; 13.33% of individuals within the African American 
GIA cluster do not self-identify as Non-Hispanic/Latino 
– Black/African American (NH-AfAm), and 16.58% of the 
Hispanic Latino American cluster do not identify as His-
panic/Latino – Other Race (HL-Other) or Hispanic/Latino 
– White (HL-White) (Additional file 2: Table S5). This fur-
ther emphasizes that SIRE is not equivalent to GIA and 
that these two concepts form distinct groupings.

Further emphasizing the distinction between GIA and 
SIRE, we reveal extensive genetic heterogeneity both 
between and within SIREs, as observed from the orthog-
onal spectra from PCA (Fig.  2A, B). For example, most 
individuals who self-report as NH-AfAm lie along a cline 
between the AA and EA GIA clusters. However, 102 

individuals in this SIRE cannot be clustered into either the 
AA or EA ancestry cluster. This is likely because many of 
these individuals in ATLAS self-identify as African Amer-
ican, which suggests genetic admixture between African 
and European ancestry in this group. We also find that the 
NH-Asian SIRE has individuals spread along all PC1 and 
PC2, spanning the entire space between the EAA and EA 
GIA clusters (Fig.  2B). However, when looking solely at 
GIA, we are not able to observe this pattern. Instead, most 
individuals in between these two clusters were inferred to 
have ambiguous GIA, where specifically, 221 individuals 
within the NH-Asian SIRE were not able to be clustered 
into a specific GIA group. Overall, 6.35% of individuals 
still have unclassifiable genetic ancestry (Additional file 2: 
Table  S4) either because they were clustered into multi-
ple GIA groups or none at all. The latter could be due to 
extensive admixture in their genomes or the absence of 
relevant ancestral groups in the chosen reference panels.

Fig. 1  Self-identified race/ethnicity (SIRE) and genetically inferred ancestry (GIA) are not analogous. We show a Sankey diagram visualizing the 
sample size breakdown of individuals in each genetically inferred ancestry group and SIRE groups for all individuals in ATLAS (N = 36,736)
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Categorizing individuals by self-identified preferred 
language, we observe trends that are consistent with both 
SIRE and continental GIA (Fig.  2C). For example, out 
of all individuals who report Spanish as their preferred 
language, 94.47% of these individuals were estimated 
to have Hispanic Latino American GIA. Additionally, 
99.76% of individuals who report Japanese, Korean, Taga-
log, Vietnamese, Mandarin Chinese, or Cantonese as 
their primary languages were inferred to have East Asian 
American GIA. We also observe clusters of individu-
als who speak Armenian, Arabic, and Farsi/Persian; we 
find that 47.13% of the individuals that speak these lan-
guages could not be classified into one of the five conti-
nental GIA groups. This discrepancy is likely because the 
1000 Genomes reference panel does not contain samples 

from regions where these languages are primarily spo-
ken. These findings showcase the limitation of current 
reference panels of genetic diversity and demonstrate 
the value of characterizing individuals using both genetic 
ancestry and self-identified information.

Fine‑scale subcontinental ancestry within ATLAS 
individuals
Next, we assessed genetic ancestry at the subcontinen-
tal level. Performing PCA only on individuals from the 
EAA GIA group from ATLAS and the East Asian ances-
try group from 1000 Genomes, we observe distinct 
clusters of individuals as shown in Fig.  3A, where the 
cluster annotations provide a visual reference describ-
ing the approximate location and size of GIA clusters 

Fig. 2  Global PCA reflects self-identified race/ethnicity and language of ATLAS participants. A Genetic PCs 1 and 2 of individuals in ATLAS 
(N=36,736) shaded by continental GIA as inferred from 1000 Genomes. B, C The first two genetic PCs of the ATLAS participants shaded by SIRE and 
preferred language, respectively. To improve visualization in C, only languages with >10 responses were assigned a color
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(as opposed to the formal cluster membership thresh-
olds). Shading by the subcontinental East Asian genetic 
ancestry groups present in 1000 Genomes, we observe 
clusters corresponding to three different subgroups of 
Chinese ancestry (Han Chinese, Southern Han Chi-
nese, and Dai Chinese). Additionally, we see clusters 
of both Japanese and Vietnamese ancestry. Using 1000 
Genomes as a reference panel, we can use a K-nearest 
neighbors clustering approach to infer the subcontinen-
tal genetic ancestry of individuals in ATLAS where we 
find N=307 in the Han Chinese American GIA cluster, 
N=224 in the Southern Han Chinese American GIA 
cluster, N=483 in the Japanese American GIA cluster, 
and N=136 in the Vietnamese American GIA cluster 

(see “Methods”; Additional file 1: Fig. S4A). There were 
not any ATLAS individuals assigned to the Dai Chinese 
American GIA cluster. When projecting ATLAS indi-
viduals’ preferred language onto the PCs, two distinct 
clusters are delineated according to the Chinese Man-
darin and Chinese Cantonese/Toishanese languages 
(Additional file 1: Fig. S3B). The Southern Han Chinese 
American cluster of individuals correlates with indi-
viduals speaking Chinese Cantonese/Toishanese, where 
37.50% of individuals who speak Chinese Cantonese/
Toishanese are within this cluster. The Han Chinese 
American cluster correlates with Chinese Mandarin 
where 45.33% of individuals who speak Chinese Manda-
rin fall within this cluster.

Fig. 3  PCA of individuals with inferred East Asian American, European American, and Hispanic Latino American genetic ancestry in ATLAS captures 
fine-scale subcontinental ancestry groupings. PCA was performed separately within each continental GIA in ATLAS with the corresponding 
subcontinental ancestry samples from 1000 Genomes: A East Asian American, B European American, C Hispanic Latino American. Cluster 
annotation labels were determined using a combination of samples from 1000 Genomes and self-identified race, ethnicity, and language 
information from the EHR
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From Fig. 3A, there are two notable clusters that do not 
match any of the East Asian subcontinental ancestries 
represented within 1000 Genomes. Projecting ATLAS 
individuals’ self-identified preferred languages onto the 
PCs shows that many of these individuals in these two 
clusters self-identify as speaking Korean and Tagalog 
(Additional file  1: Fig. S3B). These patterns are simi-
larly reflected by individuals’ self-identified race where 
the majority of these individuals self-identify as Korean 
and Filipino (Additional file  1: Fig. S3A). Because there 
is descriptive self-identified demographic information 
available in the EHR, we can alternatively use this to 
define subcontinental GIA clusters in ATLAS. This could 
be advantageous since a >65.48% (N=2181) ATLAS indi-
viduals within the EA GIA group could not be further 
clustered into a subcontinental GIA group derived from 
1000 Genomes. Using self-identified race groups with 
N>20 individuals, we repeat the same clustering process 
described above using individuals’ self-identified race as 
cluster category labels. Using self-identified race informa-
tion over information available in 1000 Genomes, we are 
able to recover two large clusters consisting of individu-
als with Korean American (N=533) and Filipino Ameri-
can (N=761) GIA as well as identify additional clusters of 
individuals corresponding to Thai (N=33) and Taiwanese 
(N=73) GIA (Additional file 1: Fig. S4B, Table S4). This 
clustering not only characterizes the fine-scale genetic 
and ethnic diversity of ATLAS, but also emphasizes how 
self-reported information such as primary spoken lan-
guage can be combined with genetic information to iden-
tify patterns not otherwise evident.

Next, we looked at individuals with subcontinental 
genetic ancestry of European descent in ATLAS, but due 
to limitations in the 1000 Genomes reference panel, we 
were unable to describe the origins of the majority of the 
observed genetic variation within the ATLAS European 
American GIA cluster (Fig.  3B). Comparing self-identi-
fied race and ethnicity information also did not deline-
ate any subgroups since most individuals fell within the 
NH-White SIRE (Additional file  1: Fig. S5A). Instead, 
we project individuals’ preferred language onto the pro-
jected PCs. Aside from English, we observe clusters of 
individuals whose preferred languages are Arabic, Arme-
nian, and Farsi/Persian. Notably the primary populations 
that speak these languages are not present in the current 
1000 Genomes reference panel (Additional file  1: Fig. 
S5B). Although not a definitive determination of ances-
tral origin, these results suggest that individuals in these 
clusters may have cultural ties relating to the Middle 
East. We also observe two distinct clusters of individuals 
who speak Farsi/Persian (labeled as “Farsi, Persian I” and 
“Farsi, Persian II” in Fig.  3B), suggesting that although 
these groups may share cultural and/or ethnic ties, the 

groups could have multiple ancestral origins. However, 
due to limited genetic and self-identified information, 
we did not attempt to formally infer the subcontinental 
ancestry for these individuals.

We perform a similar analysis for the Hispanic Latino 
American cluster of individuals where we re-ran PCA 
only on individuals in the HL GIA cluster within ATLAS 
and individuals from the Admixed American popula-
tion in 1000 Genomes. Projecting population labels from 
1000 Genomes onto the PCs, we observe relatively sparse 
clusters of individuals of Mexican, Peruvian, Colombian, 
and Puerto Rican ancestry from 1000 Genomes (Fig. 3C). 
Due to the overlapping and sparse shape of these clus-
ters, we did not attempt to formally infer subcontinen-
tal ancestry for these individuals. Overlaying SIRE and 
language as previously discussed also did not reveal any 
additional population structure in this group (Additional 
file 1: Fig. S6). Since the HL GIA group is inherently an 
admixed population, we instead shade the PCs by the 
estimated proportions of European and Native American 
ancestry (see “Methods”; Additional file  1: Fig. S6B, C). 
We observe a cline between European and Native Ameri-
can ancestries, demonstrating that although we cannot 
determine discrete clusters within our data, there is still 
substantial population structure present.

Corresponding analyses were also performed for the 
African American GIA group in ATLAS, but clear sub-
continental clusters could not be constructed from ref-
erence panel information (Additional file  1: Fig. S7A). 
Similarly, SIRE information did not delineate any clusters 
nor did preferred language (Additional file  1: Fig. S7B, 
C). Since the majority of patients self-identify as African 
American, an admixed population of African and Euro-
pean ancestry, we project the proportion of European 
and African ancestry onto the PCs (Additional file  1: 
Fig. S7D, E). We observe a cline going from higher pro-
portions of European ancestry to higher proportions of 
African ancestry. This suggests that for very admixed 
populations, it would be more advantageous to quantify 
population substructure continuously rather than within 
discrete categories. We omitted the subcontinental analy-
sis for the South Asian American GIA group due to the 
small sample size (N=625).

IBD sharing reveals communities of recent shared ancestry 
within ATLAS
A complementary method to principal components for 
inferring fine-scale ancestry is identical-by-descent (IBD) 
analysis [53–55]. Using pairwise IBD estimates for all 
individuals in ATLAS and reference population infor-
mation from the 1000 Genomes Project [28], Simons 
Genome Diversity Project [40], and Human Genome 
Diversity Project [42], we describe fine-scale populations 
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based on total pairwise IBD (Fig. 4; see “Methods”). Each 
subgroup is annotated according to a combination of 
genetic ancestry from reference populations as well as 
self-identified race, ethnicity, and language information. 
Many subgroups have similar characteristics to those 
defined from PCA-based methods, such as the Filipino 
and Dai Chinese clusters. We can also characterize sub-
groups not previously identified through the previous 
PCA analysis. For example, PCA-based methods were 
only able to distinguish clusters at the level of continen-
tal African ancestry, whereas IBD clustering identified 
West African, East African, and Ethiopian subgroups. 
In contrast, Japanese and Korean individuals form a 
single subgroup when estimated by the IBD clustering 
approach, whereas PCA-based methods delineated these 
individuals into two separate groups. Note that both 
IBD and PCA-based methods’ granularity is dependent 
on the clustering algorithm used and here we report at 
only a single level of resolution. For further discussion of 
PCA and IBD for fine-scale population analyses, see Bel-
bin et al. [56]. These results show that each stratification 
method identifies distinctive features to infer fine-scale 
subgroups. These techniques can then be combined to 
divide a population into more descriptive subgroups. A 
more in-depth IBD analyses within ATLAS is described 
in additional work [57].

Admixture describes genetic variation 
within self‑identified race/ethnicity groups
As demonstrated in prior sections, many individuals do 
not fall within a single GIA cluster, but instead lie on 
the continuum between multiple ancestry groups. We 
can characterize this variation through genetic admix-
ture, the exchange of genetic information across two or 
more populations [58]. We estimate genetic ancestry 
proportions using k=4, 5, or 6 ancestral populations and 
visualize groups of individuals by SIRE (see “Methods”; 
Additional file 1: Fig. S8). For the following analyses, we 
use k=4 ancestral populations where the clusters corre-
spond to European, African, Native American, and East 
Asian ancestry. Among individuals in the NH-AfAm 
SIRE, the estimated average proportion of European 
ancestry is 24% and 73% African ancestry (Additional 
file 2: Table S6). We also observe that the HL-Other and 
HL-White SIREs have approximately the same admix-
ture profile, where the proportion of European ancestry 
is 48% and 58% respectively, 6% and 5% African ances-
try, and 44% and 35% Native American ancestry. This 
admixture profile is consistent with individuals of Mexi-
can ancestry where there is mainly European and Native 
American ancestry [59]. However, there is also a large 
amount of variation within SIREs, where for example, 
individuals who identify as Hispanic or Latino ethnicity 

Fig. 4  IBD sharing between ATLAS participants. InfoMap community membership is indicated by color for all communities with >100 individuals 
(20 communities total) and individuals with a degree >30. Community membership indicates elevated shared IBD within that community. 
Community identity is labeled adjacent to the network plot in the corresponding color
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are estimated to have European ancestry percentages 
ranging from nearly 0% to almost 100%.

Genetic ancestry groups correlate with disease prevalence 
within ATLAS
Understanding how disease prevalence varies across 
populations is integral to understanding how the inter-
play of genetic factors and social determinants of health 
contribute to disease risk. We investigated over 1500 
EHR-derived phenotypes (phecodes) [49] from across a 
wide set of disease groups. We define cases as individu-
als having the presence of at least one occurrence of the 
specified phecode (see “Methods”). We find that vary-
ing the number of required phecode occurrences and 
types of encounters when defining cases does not sub-
stantially change case and control assignment in this 
dataset (Additional file  1: Fig. S19, Table  S13). Limiting 
our analyses to phecodes with a minimum of 50 cases, 
we identify 1512 total significant phecode-GIA associa-
tions across the 4 largest continental GIA groups after 
adjusting for age and sex (p-value<1.12×10−5; Bonfer-
roni correction for all phecodes tested across 4 GIA 

groups) (Additional file  3: Table  S7). Overall, there are 
732 phenotypes that show cross-ancestry differences 
whose prevalence varies significantly by GIA. From this 
set of significant associations, the highest number of 
phecodes are from the circulatory (N=89), endocrine/
metabolic (N=84), and digestive (N=90) system-related 
categories. Specifically, we recapitulate many known 
associations such as skin cancer (p-value=3.13×10−281) 
in the EA GIA group [36, 37]; chronic nonalcoholic liver 
disease in the HL GIA group (p-value=4.83×10−97); 
ischemic heart disease (p-value=6.74×10−08), chronic 
kidney disease (p-value=1.98×10−41) and uterine leio-
myoma (p-value=2.30×10−33) in the AA GIA group 
[60–63], and liver and intrahepatic bile duct cancer 
(p-value=1.85×10−38) within the EAA GIA group [32, 
34, 35] (Fig. 5).

To further explore the implications of genetic ancestry 
for a range of diseases, we focus on 6 phenotypes that 
were found to be significantly associated with geneti-
cally inferred ancestry (GIA) in ATLAS. This set rep-
resents a wide variety of diseases: skin cancer, ischemic 
heart disease, chronic nonalcoholic liver disease, uterine 

Fig. 5  Disease associations vary across continental genetically inferred ancestry groups in ATLAS. We show the odds ratio computed from 
associating each phenotype with individuals’ genetically inferred ancestry in ATLAS (N=36,736) under a logistic regression model. Error bars 
represent 95% confidence intervals
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leiomyoma, chronic kidney disease, and liver/intrahe-
patic bile duct cancer. Our goal was to capture variation 
across each GIA group: ischemic heart disease, chronic 
kidney disease, and uterine leiomyoma have the strong-
est association with the African American GIA group, 
skin cancer with the European GIA, chronic nonalco-
holic liver disease with the Hispanic Latino American 
GIA, and liver/intrahepatic bile duct cancer with the East 
Asian American GIA group (Additional file 3: Table S7). 
Additionally, previous literature has already shown that 
the prevalence of these 6 diseases has some level of vari-
ation across racial and ethnic groups, making them ideal 
candidates for the further analysis of disease variation 
across GIA groups in ATLAS [59–70].

The GIA clusters are often correlated with SIRE, as 
demonstrated in previous sections. To assess whether the 
observed effect is primarily driven by the role of genetic 
ancestry, we also add individuals’ SIRE as a covariate into 
the model. After multiple hypothesis testing (Bonferroni 
correction for all tested phecodes across 4 GIA groups: 
p-value <1.12×10−5), we replicate 259 out of 1512 phe-
code-GIA associations despite the reduced effect mag-
nitude and association significance (Additional file  4: 
Table S8). Out of the 6 example traits, all but the 2 within 
the NH-AfAm SIRE maintained significance (Additional 
file 1: Fig. S9). This demonstrates that there is some level 
of disease association attributed to the ancestry compo-
nent. Incorporation of SIRE should not be interpreted as 
formal adjustment for environmental factors. However, 
SIRE could capture sociocultural and socioeconomic fac-
tors that are not explicitly modeled and/or available to 
use through the EHR.

We also observe substantial disease risk heterogeneity 
across subgroups of the same continental GIA group. We 
perform association tests between subcontinental GIA 
and phecodes within the East Asian American GIA group 
in ATLAS for phenotypes with N>20 cases (Additional 
file  3: Table  S7). To maximize sample size, we use the 
race-based GIA clusters (see “Methods”) and limit analy-
ses to the Korean (N=552 individuals, 546 phenotypes), 
Japanese (N=548 individuals, 600 phenotypes), Fili-
pino (N=844 individuals, 700 phenotypes), and Chinese 
(N=1217 individuals, 812 phenotypes) GIA subgroups in 
ATLAS. Across subgroups, we observe disease associa-
tions to varying degrees (Additional file 1: Fig. S10). We 
find 3 significant associations with subcontinental GIA 
and phenotypes where significance was determined after 
correcting for 812 tested phecodes, p-value<6.16×10−5 
(see “Methods”). For example, the direction of the associ-
ation with chronic kidney disease, varies across subconti-
nental GIA groups where the odds ratio for the Chinese 
American GIA group is 0.54 (p-value=2.9×10−5) but 
the odds ratio for the Filipino American GIA group is 

1.83 (p-value=2.87×10−5). Additionally, the odds ratio 
estimated for ischemic heart disease in the Filipino 
American GIA subgroup is 1.81 (p=3.33×10−7), but 
performing the association at the continental EAA GIA 
level, a conclusive trend cannot be determined (OR 0.91, 
p-value=7.10×10−2). These results indicate that geneti-
cally grouping individuals across subcontinental GIA 
groups yields meaningful interpretation of disease risk 
across groups of individuals that might be missed when 
only grouping individuals at the continental level.

We also investigated disease prevalence within 
admixed individuals where variation in genetic ancestry 
across individuals in the population allows for the cor-
relation of disease risk with the proportion of genetic 
ancestry from any given continental group. Within each 
SIRE group, we perform an association test between 
the proportions of inferred ancestry estimated from 
ADMIXTURE [48] and each phecode (see “Methods”; 
Additional file  5: Table  S9). After correcting for the 
number of tested phecodes, we find numerous signifi-
cant phecode-ancestry associations: 210 associations 
within the HL-Other SIRE, 133 within the NH-White 
SIRE, and 65 within the NH-Asian SIRE, and 16 associa-
tions within the NH-AfAm SIRE. Across SIREs, both the 
top associated phecode categories as well as the direc-
tion of the associations greatly vary. Out of the top 3 
phecode categories with the most associations in each 
SIRE group, the most commonly shared group is the 
endocrine/metabolic category (HL-Other, NH-White, 
NH-Asian). Even within this category, looking at the 
statistics quantifying the association of the proportion 
of European ancestry with endocrine/metabolic phe-
notypes, there are exclusively 5 negative associations 
within the NH-White group, 22 negative associations 
within the HL-Other group (and 2 positive associations), 
but 5 positive associations and no negative associations 
within the NH-Asian group. The other top phenotype 
categories for each SIRE are also unique, where the HL-
Other SIRE’s top categories include digestive and respir-
atory phenotypes, the NH-White SIRE’s top categories 
include neoplasms and dermatologic phenotypes, and 
the NH-Asian SIRE’s top categories includes psychiatric 
and infectious diseases. Specifically, we find that within 
the HL-Other population, the overall proportion of 
European ancestry is significantly negatively associated 
(p-value=8.09×10−10) with chronic nonalcoholic liver 
disease and the proportion of Native American ances-
try is significantly positively associated (p=7.68×10−9) 
(Fig.  6, Additional file  1: Fig. S11), which is consistent 
with previous studies [71, 72]. These results suggest that 
not only are some disease statuses associated with SIRE 
and continental GIA, but the specific ancestry propor-
tions may also correlate with disease risk.
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Genome and phenome‑wide association scans identify 
known risk regions and elucidate correlated phenotypes
EHR-linked biobanks also offer the opportunity of investi-
gating genetic associations with traits across the genome. 
These efforts impose special challenges, such as adjust-
ing for population stratification and cryptic relatedness 
in health systems that serve entire families as well as 
extracting phenotypes from EHR, namely due to incon-
sistencies in mapping diagnosis codes (ICD codes) to phe-
notypes and difficulties in defining appropriate controls 
for specific phenotypes. We perform GWAS on each of 
the 6 phenotypes within each GIA group. After filtering 
out analyses with small sample sizes (N<50) and analyses 
where most SNPs failed the regression, we have a total of 
17 analyses (see “Methods”; Additional file 6: Table S10). 
Overall, we find associations are well-calibrated with lit-
tle evidence of test statistic inflation (median lambda-
GC: 1.01). We find a total of 212 genome-wide significant 
SNPs (p-value <5×10−8): 77 associations for skin cancer, 
1 for ischemic heart disease, and 58 for chronic nonalco-
holic liver disease in the EAA GIA group; 1 association for 
liver/intrahepatic bile duct cancer and 78 for nonalcoholic 

liver disease in the HL group; and 1 in the EAA group for 
heart disease (Additional file  7: Table  S11). We did not 
find any genome-wide significant SNPs within the AA 
GIA group which could be due to the smaller sample size 
(N=1995).

First, we observe ancestry-specific associations, such 
as a strong association at rs12203592 for skin cancer 
(p-value=2.59×10−32) in the European American (EA) 
GIA group (Additional file  1: Fig. S12). When perform-
ing the association for this phenotype in the other GIA 
groups, we do not have adequate sample size to perform 
a successful association test at the majority of the SNPs. 
For the East Asian American (EAA) and the Hispanic 
Latino (HL) GIA groups, all SNPs resulted in a p-value 
estimate of NA, denoting that the association test had 
failed. When performing a meta-analysis between the EA 
and HL GIA groups, we do not find any significant asso-
ciations despite the strong association originally reported 
in the EA GIA group. And an analysis within the Afri-
can American (AA) GIA group was not performed 
due to low sample size (N < 50). We also see significant 

Fig. 6  Global ancestry correlates with disease prevalence in admixed individuals. Individuals by SIRE who have had a diagnosis of A chronic 
nonalcoholic liver disease, B uterine leiomyoma, or C liver/intrahepatic bile duct cancer are binned by their proportions of either European, African, 
Native American, or East Asian ancestry estimated using ADMIXTURE. Within each bin, we plot the prevalence of the diagnoses and provide 
standard errors (+/− 1.96 SE) of the computed frequencies
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associations across multiple ancestry groups. For exam-
ple, in the analyses for nonalcoholic liver disease, we 
find 58 genome-wide significant SNPs in the EA GIA 
analysis and 70 in the HL analysis (Fig.  7). All genome-
wide significant SNPs from both studies fall within the 
22q13.31 locus, which contains the PNPLA3 gene. This 
gene has been extensively studied for its role in the risk 
of various liver diseases such as nonalcoholic fatty liver 
disease [73, 74]. Interestingly, we see more associated 
SNPs within the Admixed American (N-Case=1466) 
ancestry group despite the larger sample size in the Euro-
pean ancestry group (N-Case=3177). The lead SNP from 
both analyses, rs2294915 (p-value(HL)=2.32×10−16, 
p-value(EA)=6.73×10−11), is an intronic variant in the 
PNPLA3 gene and has MAF=0.49 in the HL GIA but 
only MAF=0.24 in the EA GIA which could contribute to 
the heightened associations in the HL GIA.

We next perform a meta-analysis across all genetic 
ancestry groups under a fixed effects model for each trait 
for a total of 6 meta-analyses (Additional file 1: Fig. S12-
S17). Meta-analyses present a way to increase statisti-
cal power through increased sample size. We observe a 
total of 11 genome-wide significant associations: 28 for 
ischemic heart disease (27 new), 82 (14 new) for chronic 
nonalcoholic liver disease, and 1 (new) association for 
liver/intrahepatic bile duct cancer. Specifically, 42 of 
these associations were not found in any of the ancestry-
specific analyses, such as the two additional significantly 

associated regions from the meta-analysis of chronic liver 
disease (Fig. 7), demonstrating that the added power can 
identify associations not significant in the ancestry-spe-
cific analyses. In the ancestry-specific analyses for heart 
disease, we only see 1 significant SNP across all ances-
try groups that barely reaches genome-wide significance 
(p-value=4.109×10−8). After performing the meta-anal-
ysis, this increases to a total of 28 significant SNPs all 
within a locus on chromosome 9, with the top SNP hav-
ing p-value=3.22×10−10 (Additional file 1: Fig. S14).

We are not able to perform a meta-analysis for skin 
cancer since were are limited to only the statistics 
computed from the EA GIA group (N-Case=4,583, 
N-Control=17,603, M=6,017,984). The analysis in 
the AA group was omitted to insufficient sample size 
(N-Case=38, N-Control=1923), and all of the SNPs 
in the HL (N-Case=247, N-Control=5720) and EAA 
(N-Case=83, N-Control=3205) analyses had failed asso-
ciation tests at all SNPs. Specifically, the association tests 
resulted in a p-value estimate of NA which is likely due 
to the small number of cases or difference in allele fre-
quencies across GIA groups. For example, the minor 
allele frequencies (MAF) of rs12203592, the top SNP for 
skin cancer in the EA analysis, greatly vary across GIA 
groups: MAF-EA=0.17, MAF-AA=0.01, MAF-HL=0.07, 
MAF-EAA=6.010–4. Thus, populations with a lower 
MAF of associated variants would require larger sample 
sizes to have sufficiently powered association tests. This 

Fig. 7  Recapitulating known associations for chronic nonalcoholic liver disease in ancestry-specific and multi-ancestry meta-analyses in ATLAS. 
GWAS Manhattan plots for chronic nonalcoholic liver disease in the A European American, B Hispanic Latino American, C African American, D 
East Asian American GIA groups in ATLAS, and E the meta-analysis performed across all 4 GIA groups. The red dashed line denotes genome-wide 
significance (p-value < 5×10-8). We recapitulate a known association at the 22q13.31 locus
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demonstrates that in cases where there are large differ-
ences in MAF at associated variations, ancestry-specific 
analyses would be preferred over a meta-analysis which 
could actually lead to a reduction in power.

Next, we investigated the top significant association 
for each phenotype and GIA group through a PheWAS. 
For rs12203592, an intron variant in the IRF4 gene, we 
observe significantly associated phenotypes related to 
skin cancer such as actinic keratosis and basal cell carci-
noma in the EA GIA analysis, both of which have been 
identified in previous PheWAS studies [33] (Additional 
file  1: Fig. S18A). At rs1333045, the top SNP associated 
with ischemic heart disease in the EA GIA analysis, we 
find related phenotypes such as coronary atherosclerosis 

and angina pectoris (Additional file  1: Fig. S18B). We 
also perform a PheWAS at rs2294915, the lead SNP for 
liver/intrahepatic bile duct cancer in the HL GIA analy-
sis and the lead SNP in the analyses for chronic nonalco-
holic liver disease in both the EA and HL GIA analyses 
(Fig. 8). We find that multiple neoplastic and neurologic 
phenotypes reach significance exclusively in the HL 
analysis. These groups of phenotypes are consistent with 
the known comorbidities with severe liver disease [75–
77]. Performing a power analysis on the effective sam-
ple sizes [51] of the associated phenotypes in both GIA 
groups, we do not find evidence that the observed effects 
are solely due to sample size (see “Methods”; Additional 
file 8: Table S12). Overall, these findings suggest possible 

Fig. 8  Identifying correlated phenotypes at rs2294915 in both the Hispanic Latino American and European American GIA groups in ATLAS. We 
show a PheWAS plot at rs2294915 for the Hispanic Latino American (top) and European American (bottom) GIA groups. The red dashed line 
denotes p-value=4.09×10−5, the significance threshold after adjusting for the number of tested phenotypes. The red dotted line denotes the 
significance threshold after correcting for both genome-wide significance and the number of tested phenotypes (p-value=4.09×10−11)
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differential genetic architecture across these two popu-
lations, as well as variation even at the phenotype level, 
reflecting possible genetic or environmental modifiers of 
important comorbidities.

Discussion
As the field moves forward with increased collaboration 
between the genetics and healthcare communities, it is of 
utmost importance to also be aware of potential pitfalls 
that may occur when translating research findings into 
actual clinical populations. Currently, many clinical pro-
tocols implicitly perpetuate racial bias [23, 78–81]. Many 
of these flawed policies stemmed from erroneously link-
ing race, a social rather than biological construct, with 
disease risk despite not presenting any biological justifi-
cation. Although race and genetic ancestry are correlated 
[82, 83], our work shows that populations constructed 
from these two concepts are not analogous. We encour-
age protocol decisions that are rooted in concrete bio-
logical phenomena whenever possible, such as genetic 
markers, providing transparent, immutable criteria. For 
example, Benign Ethnic Neutropenia (BEN) is observed 
predominantly in African Americans, but specifically is 
strongly associated with the variant at rs2814778 [84, 85]. 
Recent studies have suggested that genotype screening 
at rs2814778 could aid in the interpretation of neutrope-
nia in African Americans and avoid unnecessary invasive 
procedures as well as lead to an increase of the inclusion 
of these individuals to various treatments [86].

However, in practice, genetic information is not eas-
ily accessible for patients at all institutions. Additionally, 
certain disease prediction-based algorithms that lever-
age SIRE may be favorable to the non-adjusted version. 
SIRE is correlated with genetic ancestry as well as other 
disease risk factors (sociocultural, socioeconomic, and 
geographic), making it straightforward and more eas-
ily accessible to add valuable information into models 
without explicit measurements. We recommend delib-
erately considering the potential harm versus benefit of 
using SIRE-adjusted prediction models in each use-case. 
The practice of race/ethnicity-guided algorithms and 
guidelines inherently reinforces the idea of race-based 
medicine and embeds the idea that health inequities also 
stem from biological differences. It is an ongoing discus-
sion about whether or not the inclusion of race/ethnic-
ity information actually re-allocates resources away from 
racial/ethnic minority patients, causing more harm and 
an increase in health inequities.

There are various limitations within our study, and we 
describe a few of these in detail as follows. First, the phe-
codes are based on ICD codes, and due to the nature of 
billing codes, this form of labeling does not constitute 
a formal patient diagnosis and may contain individuals 

who do not have the specific disease. We also only 
require the presence of one phecode to define a pheno-
type which is a significant assumption. Although we pre-
sent exploratory analyses assessing the role of phecode 
occurrence when defining phenotypes, we underscore 
that this imprecise phenotyping limits the power of our 
study. For further investigation into specific phenotypes, 
we recommend refining each phenotype definition based 
on additional disease-specific factors and metrics. For 
example, one could incorporate additional EHR features, 
such as those described by the algorithms in the PheKB 
database [70]. Although ICD codes are an international 
standard, the accuracy of phecode assignment could dif-
fer considerably due to heterogeneity in billing practices 
across medical centers, hospitals, and clinics both within 
the UCLA Health System as well as across other institu-
tions. This heterogeneity could present future challenges 
when replicating studies or porting algorithms to other 
institutions. Second, due to the de-identified nature of 
the data, we lack information that could help us better 
describe the fine-scale population groups. For example, 
birthplace, zip code, and family history have been shown 
to be useful descriptors for determining subgroups of 
genetic ancestry [56]. Geographic information could also 
be used as a proxy for various environmental exposures 
such as pollution. Additional socioeconomic informa-
tion, such as income and availability of health insurance, 
could likely account for a portion of observed associa-
tions as well as provide more insight into the socioeco-
nomic determinants of health. Third, our findings within 
the African and South Asian ancestry populations are 
limited due to the smaller sample sizes. As sample sizes 
increase, we hope to further refine population substruc-
ture within these initial continental ancestry groups and 
have the power to detect novel disease associations that 
have previously been mired by lack of statistical power.

An open question and potential additional limitation of 
this work is generalizing these results to broader popula-
tions that extend beyond the UCLA Health system. For 
example, even when assessing self-identified race/ethnic-
ity statistics, there is a discrepancy between the break-
down of SIRE within ATLAS and the city of Los Angeles. 
For example, it is reported that 48.5% of residents of Los 
Angeles self-identify as Hispanic or Latino [16], com-
pared to only 15.96% of individuals in ATLAS. This could 
be due to the specific location of the UCLA Health sys-
tem which consists of hospitals both in West Los Ange-
les and Santa Monica which are both located in affluent 
neighborhoods. When comparing demographic data 
recorded for the city of Santa Monica, which could be a 
more accurate representation of the area surrounding the 
UCLA hospitals as opposed to Los Angeles as whole, we 
find that 15.4% of individuals self-identify as Hispanic or 
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Latino [87]. Overall, the distribution of the majority of 
racial groups in Santa Monica have a high concordance 
with those reported in ATLAS (Additional file 2: Tables 
S1, S2, S3). Since travel to treatment centers is often a 
barrier to treatment [88], this might explain why the 
ATLAS population mostly captures the demographics of 
the nearby areas. Furthermore, previous work has shown 
that referral rates for some types of procedures vary dis-
proportionately across race and ethnic groups [89–91]. 
As a tertiary and quaternary referral center, this pat-
tern could be reflected in the UCLA patient population. 
In addition, this discrepancy could specifically reflect 
the variations in patient participation rate across demo-
graphic groups. Previous studies have shown that trust 
in the health system and medical community is a large 
factor when patients consider whether to participate in 
medical research [92–94]. Overall, there are a myriad of 
factors that influence the population and health of a spe-
cific region such as socioeconomic status, political geog-
raphy, immigration, and historical events—the majority 
of these not being race neutral. These observations sug-
gest that many of these analyses should be interpreted 
with respect to the UCLA Health system specifically and 
extrapolating results to larger geographic areas or groups 
as a whole, should be done with caution.

Conclusions
In this work, we introduce the ATLAS Community 
Health Initiative, a biobank embedded within the UCLA 
Health medical system consisting of de-identified EHR-
linked genomic data from a diverse patient population. 
The UCLA Health system serves Los Angeles County, 
leading to a study population of great demographic, 
genetic, and phenotypic diversity. We investigate ances-
try both on the continental as well as the subcontinen-
tal population level and find that genetic ancestry and 
self-reported demographic information yield distinct 
subpopulations in the ATLAS biobank. We present a 
collection of results cataloging the associations between 
genetically inferred ancestry and EHR-derived phe-
notypes where we find that disease status is not only 
associated with continental genetic ancestry but also 
associated with the specific admixture profile describ-
ing an individual. We use multi-ancestry pipelines to 
recapitulate known associations for chronic nonalco-
holic liver disease at the 22q13.31 locus and perform 
a PheWAS at the lead SNP, where we find associations 
with neurologic and neoplastic phenotypes exclusively 
in the HL GIA group. As the sample size increases, 
the ATLAS Community Health Initiative will enable 
rigorous genetic and epidemiological studies to fur-
ther understand the role of genetic ancestry in disease 

etiology, with a specific aim to accelerate genomic med-
icine in diverse populations. Already, the ATLAS 
biobank accounted for 73.4% of the Admixed Ameri-
can samples utilized in the primary analysis from the 
COVID-19 Host Genetics Initiative [95].

We conclude by discussing directions for future work. 
Although we investigate admixed populations, such as 
African American and Hispanic/Latino populations, 
admixed individuals who do not fall under these groups 
are excluded from downstream analyses due to con-
cerns over population structure. In the future, we hope 
to incorporate methods and pipelines that properly 
control for population structure in all types of admixed 
populations. Additionally, we plan to compute poly-
genic risk scores (PRS) across all 5 continental ancestry 
groups. PRS has already shown modest clinical utility 
for diseases such as breast cancer [96] and cardiovas-
cular disease [97], but has proven difficult to perform 
accurate predictions across populations [13]. The 
genetic diversity within the ATLAS Community Health 
Initiative biobank partnered with the longitudinal clini-
cal data provides a unique resource to further explore 
the role of ancestry in PRS prediction. Furthermore, as 
the size of the biobank grows and more data is collected 
over time, we hope to explore even more individualized 
health solutions and interventions.
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