Johnson et al. Genome Medicine (2022) 14:104 s
https://doi.org/10.1186/513073-022-01106-x Gen O m e M ed ICI ne

Leveraging genomic diversity for discovery

in an electronic health record linked biobank:
the UCLA ATLAS Community Health Initiative

Ruth Johnson'?"®, Yi Ding??, Vidhya Venkateswaran®“, Arjun Bhattacharya®?, Kristin Boulier®®, Alec Chiu?,
Sergey Knyazev?”, Tommer Schwarz?3, Malika Freund”®, Lingyu Zhan?, Kathryn S. Burch??, Christa Caggiano?'°,
Brian Hill', Nadav Rakocz', Brunilda Balliu'', Christopher T. Denny'#'*'* Jae Hoon Sul'®, Noah Zaitlen'®'",

Valerie A. Arboleda®”!", Eran Halperin''"'®, Sriram Sankararaman'”'!, Manish J. Butte'”, UCLA Precision Health

Data Discovery Repository Working Group, UCLA Precision Health ATLAS Working Group, Clara Lajonchere'®'8,

Daniel H. Geschwind”'®'® and Bogdan Pasaniuc?>/'18

Abstract

Background: Large medical centers in urban areas, like Los Angeles, care for a diverse patient population and offer
the potential to study the interplay between genetic ancestry and social determinants of health. Here, we explore
the implications of genetic ancestry within the University of California, Los Angeles (UCLA) ATLAS Community Health
Initiative—an ancestrally diverse biobank of genomic data linked with de-identified electronic health records (EHRs)
of UCLA Health patients (N=36,736).

Methods: We quantify the extensive continental and subcontinental genetic diversity within the ATLAS data through
principal component analysis, identity-by-descent, and genetic admixture. We assess the relationship between
genetically inferred ancestry (GIA) and >1500 EHR-derived phenotypes (phecodes). Finally, we demonstrate the utility
of genetic data linked with EHR to perform ancestry-specific and multi-ancestry genome and phenome-wide scans
across a broad set of disease phenotypes.

Results: We identify 5 continental-scale GIA clusters including European American (EA), African American (AA),
Hispanic Latino American (HL), South Asian American (SAA) and East Asian American (EAA) individuals and 7 subcon-
tinental GIA clusters within the EAA GIA corresponding to Chinese American, Vietnamese American, and Japanese
American individuals. Although we broadly find that self-identified race/ethnicity (SIRE) is highly correlated with

GIA, we still observe marked differences between the two, emphasizing that the populations defined by these two
criteria are not analogous. We find a total of 259 significant associations between continental GIA and phecodes even
after accounting for individuals' SIRE, demonstrating that for some phenotypes, GIA provides information not already
captured by SIRE. GWAS identifies significant associations for liver disease in the 22q13.31 locus across the HL and EAA
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GIA groups (HL p-value=2.32x 107'%, EAA p-value=6.73x107""). A subsequent PheWAS at the top SNP reveals signifi-
cant associations with neurologic and neoplastic phenotypes specifically within the HL GIA group.

Conclusions: Overall, our results explore the interplay between SIRE and GIA within a disease context and under-
score the utility of studying the genomes of diverse individuals through biobank-scale genotyping linked with EHR-

based phenotyping.
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Background

Linking electronic health records (EHRs) to patient
genomic data within biobanks in a de-identified fashion
has the potential to significantly advance genomic dis-
coveries and precision medicine efforts (e.g., population
screening, identifying drug targets) [1-4]. However, the
underrepresentation of minoritized populations in bio-
medical research [5-11] raises concerns that advance-
ments in precision medicine may widen disparities in
access to high-quality health care [12—-14]. For example,
European-ancestry individuals constitute approximately
16% of the global population, yet account for almost 80%
of all genome-wide association study (GWAS) partici-
pants [13]. As a direct result of this imbalance, existing
methods to predict disease risk from genetics (e.g., poly-
genic risk scores) are vastly inaccurate in individuals of
non-European ancestry [13, 15] thus forming a barrier
for advancing genomic medicine to benefit patients of all
ancestries.

The University of California, Los Angeles (UCLA)
Health medical system is located in Los Angeles, one
of the most ethnically diverse cities in the world. There
is no ethnic majority: 48.5% of Los Angeles residents
self-identify as Hispanic or Latino, 11.6% as Asian, and
8.9% as Black or African American; additionally, 37%
of Los Angeles residents are neither U.S. nationals, nor
U.S. citizens at birth [16]. Therefore, the UCLA Health
patient population and the availability of digital health
data captured in EHRs from a single medical system
presents a unique opportunity to increase the inclusion
of underrepresented minorities in biomedical research.
In this study, we investigate the role of genetic ancestry
in a disease context within the UCLA ATLAS Commu-
nity Health Initiative (or ATLAS for brevity), a biobank
embedded within the UCLA Health medical system
composed of de-identified, EHR-linked genomic data
from a diverse patient population [17, 18]. The current
initiative aims to collect genomic data from over 150,000
individuals; currently this consists of N=36,736 indi-
viduals genotyped at M=667,191 SNPs genome-wide
using the Illumina global screening array (GSA) [19] and
then imputed to >8 million SNPs using a multi-ancestry
imputation panel (TOPMed Freeze5 [20]). A detailed

description describing the recruitment, consent process,
sample collection, and genotype and phenotype quality
control are discussed in prior works [17, 18, 21].

The EHR contains a de-identified extract of medical
records (billing codes, laboratory values, etc.) as well as
demographic information such as self-identified race
and ethnicity information. It is important to note that
self-identified race and ethnicity (SIRE) represent social
constructs that capture shared values, cultural norms,
and behaviors of subgroups [22] that are distinct con-
cepts from genetic ancestry which refers to the ancestral
history of one’s genome. This difference is even more
relevant for individuals self-describing as multi-racial
(and/or admixed) where genetic ancestry bears little cor-
relation to SIRE [23, 24]. Understanding the interplay
of genetic factors (such as genetic ancestry) with social
determinants of health (as inferred from self-reports)
is still mired in the confounding overlaps between race,
socioeconomic status, and disease, but serves as a critical
step in mapping and predicting disease risk across indi-
viduals of all ancestries.

In this work, we leverage the unique genomic diver-
sity of our single-center cohort to explore the intercon-
nected effects of self-identified race/ethnicity and genetic
ancestry on clinical phenotypes. We cluster individuals
by genetically inferred ancestry (GIA) within the EHR-
linked biobank, systematically construct phenotypes
from EHR, and compute disease associations using
multi-ancestry pipelines for both genome-wide and
phenome-wide association studies (PheWAS). We find
that genetically derived and self-identified information
yield distinct subpopulations, emphasizing the distinc-
tion between GIA and SIRE. We leverage genetic and
self-identified data to find extensive variation of subcon-
tinental ancestry within ATLAS across European Ameri-
can (EA), East Asian American (EAA), Hispanic Latino
American (HL), and African American (AA) GIA groups.
For example, we find clusters of individuals with recent
inferred ancestry from Filipino, Chinese, Japanese, and
Korean ancestries among the EAA cluster. Such sub-
continental clusters also stratify individuals according to
disease groups thus emphasizing their utility in biomedi-
cal research. We perform both ancestry-specific GWAS
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and meta-analyses across GIA groups and recapitulate
known genomic risk regions. We perform PheWAS on
significant regions and describe genetic associations for
liver-related phenotypes in multiple ancestry groups as
well as associations with neurologic and neoplastic phe-
notypes that are associated exclusively in the HL GIA
group. These results underscore how the utility of large-
scale genetic analyses and deep phenotyping in diverse
populations can make substantial medical contributions
for population health.

Methods

Study population

The UCLA Health System includes two hospitals (520
and 281 inpatient beds) and 210 primary and specialty
outpatient locations predominantly located in Los
Angeles County. The UCLA Data Discovery Repository
(DDR) contains de-identified patient EHRs that have
been collected since March 2, 2013, under the auspices
of the UCLA Health Office of Health Informatics Ana-
lytics and the UCLA Institute of Precision Health. Cur-
rently, the DDR contains longitudinal records for more
than 1.5 million patients (inpatient and outpatient),
including basic patient information (height, weight,
gender), diagnosis codes, laboratory tests, medications,
prescriptions, hospital admissions, and procedures. The
UCLA ATLAS Community Health Initiative includes the
EHR-linked biobank within the UCLA Health System.
Currently, there are more than 37,000 genotyped par-
ticipants with their de-identified EHR linked through the
DDR. Participation is voluntary and privacy is protected
by de-identifying the samples. Additional information
regarding recruitment, consent, sample processing, and
quality control pipelines can be found in previous work
[17, 18, 21]. Patient Recruitment and Sample Collection
for Precision Health Activities at UCLA is an approved
study by the UCLA Institutional Review Board (UCLA
IRB). IRB#17-001013.

Self-identified demographic information

Self-identified demographic information is collected
as a part of clinical care which is then translated to
the EHR. Participants self-identify race and ethnicity
via two distinct drop-down fields where there are pre-
determined multiple-choice fields for race and ethnicity
(see Additional file 2: Table S1, S2 for full list contain-
ing exact terminology). At this time, only one selection
from each category can be chosen as a patient’s primary
race and ethnicity [25]. We group together race/eth-
nicity pairings to form “self-identified race/ethnicity”
(SIRE) groupings (Additional file 2: Table S3). Patients
also report their “Preferred Language” from pre-deter-
mined multiple-choice fields within the EHR. See the
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section “Notes on terminology and naming conven-
tions” for a more detailed discussion of terminology
used for SIREs.

Notes on terminology and naming conventions

In this section, we explicitly discuss the origin of the ter-
minology and naming conventions used throughout this
manuscript with respect to genetic ancestry, race, and
ethnicity. We refer to Peterson et al. [26] for a more com-
prehensive description of terms for GWAS in ancestrally
diverse populations.

The term “genetic ancestry” refers to the characteri-
zation of the population(s) from which an individual is
descended and describes the genetic relationship implied
by shared, large segments of genomic DNA between an
individual and these ancestors [27]. Throughout this
work, we reserve this term to describe individuals with
information about the origin of their recent biological
ancestors. For instance, we treat populations represented
in genetic reference panels (e.g., 1000 Genomes Project
[28, 29]) as instances of genetic ancestry since the infor-
mation describing the origin of the recent biological
ancestors represented in the samples is known.

Much of this work involves inferring the genetic ances-
try information for a set of individuals. We introduce the
term “genetically inferred ancestry (GIA)” to describe the
genetic characterization of individuals within a group
who likely share recent biological ancestors as inferred by
a method of choice. We emphasize that GIA differs from
genetic ancestry in that GIA depends on the inference
method (e.g., clustering) and choice of reference data
(e.g., 1000 Genomes).

The terms “Native American genetic ancestry” and
“Native American GIA” refer to ancestry and/or recent
biological ancestors from individuals originating from
indigenous groups originally from North America, Cen-
tral American, and South America. The term “Native
American race” refers to the definition used by the US
Census, “ a person having origins in any of the original
peoples of North and South America (including Central
America) and who maintains tribal affiliation or com-
munity attachment” [30]. We recognize that individuals
in this group may prefer other terms such as “American
Indians” To be clear, identification of subjects as Native
American GIA is not meant to imply a tribal status.

In the context of this work, the term “African genetic
ancestry” describes individuals whose recent biological
ancestors originated from the continent of Africa. “Afri-
can American (AA) GIA” refers to an admixed group
of individuals within the USA who have recent biologi-
cal ancestors inferred to be of African ancestry and thus
have partial or total ancestry originating from Africa. The
term “Admixed American ancestry” refers to those with
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recent biological ancestors from European, African, and
Native American ancestries that achieved admixture in
North America, Central America, and South America.
Thus, Admixed American ancestry contains global pro-
portions of all three ancestry groups. “Hispanic Latino
American (HL) GIA” refers to the group of admixed indi-
viduals within the USA whose recent biological ancestors
were inferred to be individuals of Admixed American
ancestry. “European ancestry” refers to individuals with
recent biological ancestors with origins in continental
Europe. “European American (EA) GIA” refers to indi-
viduals within the USA with recent biological ancestors
inferred to be of European ancestry, thus, partial or total
ancestry originating from Europe. “East Asian ancestry”
and “South Asian ancestry” refers to individuals with
recent biological ancestors from East Asia and South
Asia respectively. “East Asian American (EAA) GIA” and
“South Asian American (SAA) GIA” refers to individuals
within the USA with recent biological ancestors inferred
to be of East Asian ancestry or South Asian ancestry.

We disapprove that the term “White/Caucasian” is a
preset multiple-choice option under the race field within
the medical records and renounce its usage due to its
erroneous origins and historically racist implications. We
strongly discourage the connection of the term “Cauca-
sian” with the discussion of race, a social construct sepa-
rate from biology, and emphasize that the term does not
have biological implications [31]. For subsequent analy-
ses presented in this work, we use “White” to refer to the
“White/Caucasian” category. Although this terminology
is still built into the language of many documents and
surveys, such as EHRs, we make this change to avoid per-
petuating its usage within the field.

Basic genotype quality control
Bio-samples collected from the UCLA ATLAS Commu-
nity Health Initiative in the form of blood samples were
de-identified and then processed for DNA extraction and
genotyping. We utilized a “frozen snapshot” of ATLAS
data composed of all samples processed up to 6/18/2021.
ATLAS participants (N=36,779) were genotyped using
a custom genotyping array constructed from the Global
Screening Array with the multi-disease drop-in panel [19]
under the GRCh38 assembly. Overall, the array measured
700,079 sites for capturing single-nucleotide polymor-
phisms (SNPs) and short insertions and deletions (indels).
We filtered out poor-quality markers by remov-
ing unmapped SNPs, SNPs with >5% missingness, and
strand-ambiguous SNPs (M = 19,313 variants removed).
We excluded samples with missingness >5% (N=1 indi-
vidual removed). We identified duplicate individuals
(or identical twins/triplets, etc.) using KING 2.2.2 [32]
(“--duplicate”) and removed the individual with the
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lowest missing rate from each pair (N=42 individuals
removed). All quality control steps were conducted using
PLINK 1.9 [33]. Following sample- and variant-level
quality control, M=667,191 genotyped SNPs remained
across N=36,736 individuals for downstream analyses.
All subsequent genetic analyses in this paper utilize this
QCd set of genotypes. Additional steps of QC may be
conducted before running specific analyses, as described
in more detail below. A summary of the sample sizes and
sets of SNPs used in subsequent analyses is described
in Additional file 8: Table S14. We refer to our previous
work for a more thorough description of the quality con-
trol pipelines constructed for ATLAS [17].

Genotype imputation

After performing array-level genotype quality control,
the PLINK-formatted genotypes were converted to VCF
format and uploaded to the Michigan Imputation Server
[34]. On a variant level, the server removed the variant if
itwas notan A, C, G, T allele, monomorphic, a duplicate,
an allele mismatch between the reference panel and pro-
vided data, an insertion-deletion, or if the SNP call rate is
less than 90%. The server will additionally correct for any
necessary strand flips or allele switches needed to match
the reference panel. The server additionally phases the
data using Eagle v2.4 [35], and imputation is performed
against the TOPMed Freeze5 imputation panel [20] using
minimac4 [36]. In summary, the explicit parameters
used on the server are “TOPMed Freeze5” for the refer-
ence panel, “GRCh38/hg38” for the array build, “oft” for
the rsq filter, “Eagle v2.4” for phasing, no QC frequency
check, and “quality control & imputation” for the mode.
After we filtered by R?>0.90 and MAF>1%, the final set of
variants contained A=8,048,268 sites.

Genetic relatedness inference

We computed pairwise kinship coefficients to deter-
mine family relationships using King 2.2.2 [32]. We per-
formed inference on the set of genotype data passing
quality control (see “Basic genotype quality control”) for
a total of N=36,736 individuals and M=667,191 SNPs.
We identified a set of unrelated individuals (N=35,761)
up to degree 2 where individuals with kinship coefficient
<0.0884 were included (“king --unrelated --degree 2”).
This level of relatedness is expected since members of
the same family will often be within the same healthcare
system.

Continental genetic inferred ancestry
We estimated GIA membership using a 2-step cluster-
ing procedure. First, we performed principal component
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analysis (PCA) [37] on all individuals in ATLAS
(N=36,736) and samples from 1000 Genomes. Specifi-
cally, we first filtered genotypes from ATLAS by Mendel
error rate (“plink --me 1 1 —set-me-missing”), founders
(“--filter-founders”), minor allele frequency (“~maf 0.15”),
genotype missing call rate (“--geno 0.05”), and Hardy-
Weinberg equilibrium test p-value (“~hwe 0.001”). The
filtered genotypes from ATLAS are then merged with the
1000 Genomes phase 3 dataset [28]. We align reference
alleles between the two sets of data and filter out SNPs
that are not an A, C, T, or G allele. Next, a 2-step LD
pruning is performed on the merged dataset: (1) “--indep
200 5 1.15% (2) “--indep-pairwise 100 5 0.1 All filtering
steps and LD pruning were performed using PLINK 1.9
[38]. This resulted in a total of 22,589 SNPs across 36,736
individuals in ATLAS. We computed the first 10 principal
components using the FlashPCA 2.0 software [39] with
all default settings.

For the second step, we perform clustering on the
principal components to estimate GIA cluster member-
ship for each individual in ATLAS. We use the K-near-
est neighbors (KNN) algorithm where we use the
superpopulation name of the samples in 1000 Genomes
to define the cluster labels. The superpopulations
form 5 clusters: European, African, Admixed Ameri-
can, East Asian, and South Asian genetic ancestry. For
each ancestry cluster, we run KNN on the pair of PCs
that capture the most variation for each genetic ances-
try group: European, East Asian, and African ancestry
groups utilize PCs 1 and 2, the Admixed American
group use PCs 2 and 3, and the South Asian group use
PCs 4 and 5. For each ancestry group inference, we run
KNN separately. In each analysis, we use 10-fold cross-
validation to select the “k” hyper-parameter from k=5,
10, 15, 20. If a sample from ATLAS had >0.50 cluster
membership, then the sample is reported as the genetic
inferred ancestry represented in that cluster (European
genetic ancestry (GA) — European GIA, African GA
— African American GIA, Admixed American GA —
Hispanic Latino American GIA, East Asian GA — East
Asian American GIA, South Asian GA — South Asian
American GIA). See “Notes on terminology and naming
conventions” for a more in-depth discussion about the
naming of GIA clusters. Individuals who did not attain
>0.50 membership in any cluster or were matched to
multiple clusters were reported as being ‘Ambiguous
GIA’ A comparison between the GIA clusters and the
genetic ancestry clusters from 1000 Genomes in PC-
space is visualized in Additional file 1: Fig. S2.

Subcontinental genetic inferred ancestry
We estimate subcontinental GIA membership for indi-
viduals within the East Asian American GIA group using

Page 5 of 23

a 2-step clustering procedure similar to the continental
GIA clustering discussed in a prior section (“Continental
genetic inferred ancestry”). First, we perform PCA on all
individuals in the EAA GIA group in ATLAS (N=3,331)
and samples from the East Asian ancestry population in
1000 Genomes. Using only the genotyped SNPs, we per-
form the same filtering steps as described above, namely
filtering ATLAS genotypes by Mendel error rate, found-
ers, MAF > 0.15, genotype missing call rate, Hardy-
Weinberg equilibrium test, and LD pruning. Following
sample- and variant-level quality control, M=36,504
SNPs remained. We also found that not restricting to
only unrelated individuals does not bias our estimates
(Additional file 8: Table S16). We then compute the first
10 principal components using FlashPCA with all default
settings.

For the second step, we perform clustering on the
principal components to estimate subcontinental GIA
cluster membership for each individual in the East Asian
American GIA group in ATLAS. We use the K-nearest
neighbors (KNN) algorithm where we use the popula-
tion name of the East Asian ancestry samples in 1000
Genomes to define the cluster labels. The populations
form 5 clusters: Han Chinese, Southern Han Chinese,
Dai Chinese, Japanese, Kinh Vietnamese genetic ances-
try. We run KNN using PCs 1-4 with 10-fold cross-
validation to select the “4” hyper-parameter from k=5,
10, 15, 20. If a sample from ATLAS had >0.90 cluster
membership, then the sample is reported as the genetic
inferred ancestry represented in that cluster. Individuals
who did not attain >0.90 membership in any cluster were
reported as being “Ambiguous EAA” A visualization
of the inferred GIA clusters is visualized in Additional
file 1: Fig. S3A.

Alternatively, we can define GIA clusters using self-
identified information from the samples in ATLAS.
We perform a similar approach as above, except we use
ATLAS individuals’ self-identified race as the labels to
define the clusters. We limit cluster definitions to self-
identified race groups with N>20 for a total of 7 clusters:
Chinese, Filipino, Japanese, Korean, Taiwanese, Thai, and
Vietnamese. Although we do not utilize label information
from 1000 Genomes, we still use the PCs computed on
the merged ATLAS and 1000 Genomes dataset to keep
PCA projections consistent across the 1000 Genomes-
based and self-identified race-based clustering methods.
We run KNN using the same procedure and thresholds as
above. Again, individuals who did not attain >0.90 mem-
bership in any cluster were reported as being “Ambigu-
ous EAA” A visualization of the race-based inferred GIA
clusters is visualized in Additional file 1: Fig. S3B. Explicit
clusters could not be confidently computed for other
continental GIA groups.
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IBD calling

For identity-by-descent (IBD) calling, an interim ver-
sion of the ATLAS data consisting of 24,318 individuals
was used. First, ATLAS data was merged with the 1000
Genome Project [28], the Simons Genome Diversity Pro-
ject [40, 41], and the Human Genome Diversity Project
[42, 43]. Data was filtered to remove duplicated sites
and individuals or sites with more than 1% missingness.
Hardy-Weinberg equilibrium was calculated in the larg-
est SIRE groups (NH-White, HL-Oth, NH-AfAm, NH-
Asian) and we removed sites that did not pass a filter of
p-value < 1x107'% We also removed individuals whose
EHR sex did not match PLINK estimated genotyped sex
and those who had excess heterozygosity. Lastly, we used
only sites with a MAF greater than 5%. In total, 418,195
SNPs were kept for IBD analysis. The merged dataset
was then statistically phased using Shapeit4 [44]. IBD
was called using iLASH using default parameters [2].
For downstream analysis, IBD segments were summed
between individuals to create a list of edges, where each
row represented a pair of individuals, and each column
represented the total genome-wide IBD between those
two individuals. This matrix was filtered to remove rows
representing individuals who were third degree relatives
or closer, calculated using KING. We then created an
undirected weighted graph using the R Package iGraph
[45] where the nodes were the individuals, and the edges
represented the amount of IBD shared between a pair
of individuals. The InfoMap community detection algo-
rithm, implemented in iGraph, was used to detect IBD
communities [46]. InfoMap was run with default param-
eters. iGraph was again used for cluster visualization. The
20 largest communities were selected for visualization,
and outlier nodes with degree less than 30 were removed.
The graph was then visualized with the Fruchterman and
Reingold force directed layout, run with 1000 iterations
[47]. Each community was assigned a unique color to
ease visualization.

Genetic admixture analysis

We inferred the proportion of genetic ancestry using
the ADMIXTURE software [48] under the unsuper-
vised clustering mode with the number of clusters k=4,
5, 6. Specifically, we restrict to only SNPs with only
an A, C, G, T allele and with MAF > 0.05 (“--maf 0.05
--snps-only ‘just-acgt”) within ATLAS. We then merge
the data from ATLAS with the 1000 Genomes phase 3
dataset and limit inference to only the subset of the over-
lapping SNPs. We then perform LD pruning every 2 kb
on the merged dataset (“--bp-space 2000”). All filtering
steps and LD pruning were performed using PLINK.
This resulted in a total of 223,095 SNPs across 36,736
individuals in ATLAS which was then used for ancestry
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inference using ADMIXTURE. We also found that not
restricting to only unrelated individuals does not bias
our estimates (Additional file 8: Table S16).

Finally, we performed the admixture analysis with
“/admixture atlas_lkg bed_fille k” with k equal to 4,
5, or 6. We compare the ancestry proportions from
each SIRE to estimate the ancestry represented in
each mixture component. For k=4, we label the com-
ponent with the majority of NH-White individuals as
European ancestry, the component with the majority
of NH-AfAm individuals as African ancestry, the com-
ponent with the majority of NH-Asian individuals as
East Asian ancestry, and the component with the high-
est number of HL-Other and HL-White individuals as
Native American ancestry.

Phecodes

Billing codes documented in the medical record were
used to generate phenotypes for analysis. The previ-
ously described phecode ontology (v1.2) maps the specific
ICD-9 and ICD-10 codes from each patient’s chart onto
a group of >1800 more general and clinically meaning-
ful phenotype terms [49]. Mapping completed with the
PheWAS R package [50] (https://github.com/PheWAS/
PheWAS) creates binary phenotypes. Patients with one
or more instances of a phecode were considered cases
while patients without any instance of the corresponding
phecode were considered controls. We limited analyses
to phecodes with at least N-Case > 50 in each GIA group
for a total of 1568 phecodes meeting this threshold in the
EA GIA, 802 in the AA GIA, 1223 in the HL GIA, and
891 in the EAA GIA group.

Role of phecode occurrences for defining cases

We define a phecode occurrence as an encounter con-
taining at least one of the ICD codes specified in the
phecode definition. If a corresponding ICD code is found
on another separate encounter, we treat this instance
as a separate phecode occurrence. We compare two
definitions of phecodes. For the first definition, we only
require the presence of an ICD code attached to any
type of patient encounter (i.e., laboratory tests, hospi-
tal, outpatient, medications, telehealth appointments,
notes, phone calls). For the second definition, we require
the presence of an ICD code attached to only encoun-
ters from appointment, office, hospital, or procedure
visits. This stricter definition attempts to avoid captur-
ing encounters that may be less indicative of a diagnosis
(e.g., patient-physician telehealth messaging). We refer
to these two definitions as all-encounter-derived and
visit-derived phecodes. Using these two types of defini-
tions, we then vary the number of phecode occurrences
required for defining cases and compute the proportion
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of retained cases compared to the sample sizes if only 1
occurrence was required.

Association between phecodes and genetic ancestry

To test the differential prevalence of phecodes across
genetic ancestry group, we performed a marginal asso-
ciation test for each phecode to compare its prevalence
in one of the genetic ancestry groups (EA, AA, HL, and
EAA) with the other three groups using the following
logistic regression model:
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limited sample size (N=625). Individuals who could not
be clustered into a specific GIA group (N=2332) were
also omitted from GWAS analyses.

For GWAS, we utilized imputed data consisting of
8,048,268 SNPs across N=36,736 individuals. Within
each ancestry group, samples identified as heterozygo-
sity outliers (+/— 3 SDs from the mean) were removed
and SNPs that failed the Hardy-Weinberg equilibrium
test (p-value <1x107'?) were also removed. Finally, we
limited analyses to only SNPs with MAF > 1% within

logit(phecode) = Bo+pB1genetic_ancestry_group+ fBasex—+pBsage [over all ATLAS individuals]

To account for the potential confounding effects of
SIRE, we performed additional analyses with the model:

each GIA group, yielding a total of N=22,380 individu-
als and M=6.0 million SNPs within the European Ameri-

logit(phecode) = Bo+pP1genetic_ancestry_group+ Basex—+pBzage+BaSIRE [over all ATLAS individuals]

Statistical significance was determined after correcting
for the number of tested phecodes with Bonferroni cor-
rection procedure (p-value<1.12x107%).

We also applied the method to the East Asian Ameri-
can group to test the phecode prevalence difference
across subcontinental ancestry groups including Chinese,
Japanese, Filipino, and Korean Americans.

Association between genetic admixture proportions

and phecodes

Given the substantial variation of admixture propor-
tion within each SIRE group, we test the association of
phecode with admixture proportion (k=4) for 600 phe-
codes within each of the seven ATLAS SIRE groups (NH-
White, NH-AfAm, HL-Other, HL-White, NH-Asian,
NH-PI, NH-AmlIn) with the following model:

can GIA group, N=1995 individuals and M=5.9 million
SNPs within the African American group, N=6073 and
M=6.3 million SNPs within the Hispanic Latino Ameri-
can group, and N=3331 individuals and M=4.8 million
SNPs within the East Asian American group.

Ancestry-specific GWAS

GWAS for all 6 traits were performed separately within
each of the 4 continental ancestry groups that met the
minimum N>50 cases. Additional GWAS-specific quality
control is performed within each GIA group (see GWAS
quality control per GIA). Using marginal logistic regres-
sion implemented in PLINK, we computed association
statistics at each imputed autosomal SNP (“plink --logis-
tic beta”). We additionally used age, sex, and PCs 1-10 as
covariates where age is defined as the individuals’ current

logit(phecode) = Bo+p1admixture_proportion+ SBosex—+fBsage [over individuals within a SIRE]

Each model is limited to individuals of one SIRE instead
of all ATLAS individuals. Only traits with >10 cases per
SIRE were tested. Significance is determined after adjust-
ing for the number of tested phenotypes with Bonferroni
correction procedure (p-value <2.08x10%),

GWAS quality control per GIA

When performing GWAS, we stratified individuals by
GIA groups and then performed an additional level
of QC separately within each GIA group. We limited
analyses to the 4 largest GIA groups: European Ameri-
can (N=22,380), African American (N=1995), Hispanic
Latino American (N=6073), and East Asian American
GIA (N=3331). At this time, we omitted GWAS analyses
within the South Asian American GIA group due to the

age within the EHR (as of September 2021). The values
used to represent sex in this specific analysis are derived
from patients’ self-identified sex as reported in the EHR.
Within the EHR, this specific field is labeled as “Sex” and
has a list of pre-determined multiple-choice fields where
participants select one of the following options: “Male,
“Female,” “Other; “Unknown,” “*Unspecified, “X” We
find that 45.1% of individuals self-identify as male and
54.9% self-identify as female.

Meta-analyses

We perform meta-analyses for each trait across all GIA
groups. First, we run ancestry-specific GWAS (see
“Ancestry-specific GWAS”) within each GIA group
with adequate sample size (N-Cases>50). We exclude
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analyses where very few of the SNPs produced a valid
(non-NA) p-value which is likely attributed to a small
sample size. The meta-analysis for skin cancer consisted
of measurements from the EA and HL GIA groups; EA,
AA, HL, and EAA GIA groups for ischemic heart dis-
ease; EA, AA, HL, and EAA GIA groups for chronic
nonalcoholic liver disease; AA and HL GIA groups
for uterine leiomyoma; HL and EAA GIA groups for
liver/intrahepatic bile duct cancer; EA, AA, and HL
GIA groups for chronic kidney disease. We performed
each meta-analysis using a fixed effect model as imple-
mented in PLINK (“--meta-analysis + logscale”). Asso-
ciation statistics computed from the meta-analyses are
reported for SNPs that occur in at least two of the GIA
groups.

PheWAS

We perform a PheWAS on the top SNPs from each
ancestry-specific GWAS analysis that met genome-
wide significance (p-value <5x107%). Only phecodes
with at least N-Cases>50 per GIA group were con-
sidered, resulting in a total of 1568 phecodes meeting
this threshold in the EA GIA and 1223 in the HL GIA.
Analyses in the AA and EAA GIA groups were excluded
since the top SNPs were not significantly associated in
these groups. We additionally stratified individuals by
sex for the sex-specific phecodes, which are denoted in
the definition of each phecode. This resulted in a total
of 24 male- and 113 female-specific phecodes within
the EA GIA group, and 12 male- and 87 female-specific
phecodes within the HL group after limiting to phe-
codes with at least N-Cases > 50. We used individu-
als’ self-identified sex as reported in the EHR for this
analysis.

We performed an association test between the top
SNP and all phecodes in a given GIA group under a
logistic regression model. Age, sex, and PCs 1-10 were
used as covariates in the regression where age is defined
as the individuals’ current age within the EHR (as of
September 2021), and sex is derived from individuals’
EHR. The association test is performed using the logis-
tic regression option implemented in PLINK (“plink
--logistic beta”). The PCs used in the regression analysis
were re-computed using only on individuals from within
each respective GIA group. Phenotype significance was
determined as p-value <0.05/(# phecodes), thus each
GIA group has a specific significance threshold due to
the different number of tested phecodes. A more strin-
gent threshold also accounting for genome-wide sig-
nificance is also computed where p-value <5x1078/(#
phecodes). Both thresholds are denoted in the PheWAS
plots.
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Effective sample size of associated phecodes

To assess the power of the PheWas analysis at rs2294915
between the European American (EA) GIA and Hispanic
Latino American (HL) GIA groups, we compute the
effective sample size (N.q) of each associated phecode,
where the effective sample size balances the number of
cases and controls when measuring the power of an anal-
YSiS [51]: Neff =2/ (I/Ncases + l/Ncontrols)'

Results

ATLAS includes individuals of diverse continental
ancestries

The UCLA Health patient population is diverse, with
65.36% self-identifying their race as White, 5.23% as Black
or African American, 9.89% as Asian, 0.41% as Native
American or Alaska Native, 0.31% as Pacific Islander,
and 18.81% identify as one of the additional races listed
in detail in the Additional file 2 (Table S1, S3). For eth-
nicity, a separate concept from race and recorded under
a different field in the EHR, 15.96% of individuals self-
identify as Hispanic or Latino; the remaining individuals
self-identify as non-Hispanic/Latino (Additional file 2:
Table S2, S3). We define genetic ancestry as the charac-
terization of the population(s) from which an individual
is biologically descended and the genetic relationship
between an individual and these ancestors. When infor-
mation describing the origin of individuals’ recent bio-
logical ancestors is not available, we can instead infer the
genetic ancestry using statistical methods. We introduce
the term “genetically inferred ancestry (GIA)” to describe
the genetic characterization of individuals within a group
who likely share recent biological ancestors as inferred by
a method of choice. We emphasize that GIA differs from
genetic ancestry in that GIA is highly dependent on the
inference method (e.g., PCA, IBD) and choice of refer-
ence data. We provide a discussion about the rationale
behind the terminology and naming conventions used in
this work under the section “Notes on terminology and
naming conventions”.

Using data from the 1000 Genomes Project [28], we
investigated genetically inferred ancestry in ATLAS
through principal component analysis (PCA) [37, 52]
and clustering techniques (see “Methods”). Using the five
continental ancestry populations within 1000 Genomes
(European, African, Admixed American, East Asian, South
Asian ancestry) as reference, we identify clusters of indi-
viduals with European American, African American, His-
panic Latino American, East Asian American, and South
Asian American genetically inferred ancestry (Additional
file 2: Table S4, Additional file 1: Fig. S1, S2). Although we
broadly find that self-identified race and ethnicity highly
correlates with an individual’s inferred genetic ancestry, we
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Fig. 1 Self-identified race/ethnicity (SIRE) and genetically inferred ancestry (GIA) are not analogous. We show a Sankey diagram visualizing the
sample size breakdown of individuals in each genetically inferred ancestry group and SIRE groups for all individuals in ATLAS (N = 36,736)

Self-identified race/ethnicity

still observe marked differences between the two (Fig. 1).
For example, we find 10.63% of individuals within the
European American GIA cluster do not identify as being
within the Non-Hispanic/Latino — White (NH-White)
SIRE; 13.33% of individuals within the African American
GIA cluster do not self-identify as Non-Hispanic/Latino
— Black/African American (NH-AfAm), and 16.58% of the
Hispanic Latino American cluster do not identify as His-
panic/Latino — Other Race (HL-Other) or Hispanic/Latino
— White (HL-White) (Additional file 2: Table S5). This fur-
ther emphasizes that SIRE is not equivalent to GIA and
that these two concepts form distinct groupings.

Further emphasizing the distinction between GIA and
SIRE, we reveal extensive genetic heterogeneity both
between and within SIREs, as observed from the orthog-
onal spectra from PCA (Fig. 2A, B). For example, most
individuals who self-report as NH-AfAm lie along a cline
between the AA and EA GIA clusters. However, 102

individuals in this SIRE cannot be clustered into either the
AA or EA ancestry cluster. This is likely because many of
these individuals in ATLAS self-identify as African Amer-
ican, which suggests genetic admixture between African
and European ancestry in this group. We also find that the
NH-Asian SIRE has individuals spread along all PC1 and
PC2, spanning the entire space between the EAA and EA
GIA clusters (Fig. 2B). However, when looking solely at
GIA, we are not able to observe this pattern. Instead, most
individuals in between these two clusters were inferred to
have ambiguous GIA, where specifically, 221 individuals
within the NH-Asian SIRE were not able to be clustered
into a specific GIA group. Overall, 6.35% of individuals
still have unclassifiable genetic ancestry (Additional file 2:
Table S4) either because they were clustered into multi-
ple GIA groups or none at all. The latter could be due to
extensive admixture in their genomes or the absence of
relevant ancestral groups in the chosen reference panels.
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Fig. 2 Global PCA reflects self-identified race/ethnicity and language of ATLAS participants. A Genetic PCs 1 and 2 of individuals in ATLAS
(N=36,736) shaded by continental GIA as inferred from 1000 Genomes. B, C The first two genetic PCs of the ATLAS participants shaded by SIRE and
preferred language, respectively. To improve visualization in C, only languages with >10 responses were assigned a color

Categorizing individuals by self-identified preferred
language, we observe trends that are consistent with both
SIRE and continental GIA (Fig. 2C). For example, out
of all individuals who report Spanish as their preferred
language, 94.47% of these individuals were estimated
to have Hispanic Latino American GIA. Additionally,
99.76% of individuals who report Japanese, Korean, Taga-
log, Vietnamese, Mandarin Chinese, or Cantonese as
their primary languages were inferred to have East Asian
American GIA. We also observe clusters of individu-
als who speak Armenian, Arabic, and Farsi/Persian; we
find that 47.13% of the individuals that speak these lan-
guages could not be classified into one of the five conti-
nental GIA groups. This discrepancy is likely because the
1000 Genomes reference panel does not contain samples

from regions where these languages are primarily spo-
ken. These findings showcase the limitation of current
reference panels of genetic diversity and demonstrate
the value of characterizing individuals using both genetic
ancestry and self-identified information.

Fine-scale subcontinental ancestry within ATLAS
individuals

Next, we assessed genetic ancestry at the subcontinen-
tal level. Performing PCA only on individuals from the
EAA GIA group from ATLAS and the East Asian ances-
try group from 1000 Genomes, we observe distinct
clusters of individuals as shown in Fig. 3A, where the
cluster annotations provide a visual reference describ-
ing the approximate location and size of GIA clusters
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Fig. 3 PCA of individuals with inferred East Asian American, European American, and Hispanic Latino American genetic ancestry in ATLAS captures
fine-scale subcontinental ancestry groupings. PCA was performed separately within each continental GIA in ATLAS with the corresponding
subcontinental ancestry samples from 1000 Genomes: A East Asian American, B European American, C Hispanic Latino American. Cluster
annotation labels were determined using a combination of samples from 1000 Genomes and self-identified race, ethnicity, and language
information from the EHR

(as opposed to the formal cluster membership thresh-
olds). Shading by the subcontinental East Asian genetic
ancestry groups present in 1000 Genomes, we observe
clusters corresponding to three different subgroups of
Chinese ancestry (Han Chinese, Southern Han Chi-
nese, and Dai Chinese). Additionally, we see clusters
of both Japanese and Vietnamese ancestry. Using 1000
Genomes as a reference panel, we can use a K-nearest
neighbors clustering approach to infer the subcontinen-
tal genetic ancestry of individuals in ATLAS where we
find N=307 in the Han Chinese American GIA cluster,
N=224 in the Southern Han Chinese American GIA
cluster, N=483 in the Japanese American GIA cluster,
and N=136 in the Vietnamese American GIA cluster

(see “Methods”; Additional file 1: Fig. S4A). There were
not any ATLAS individuals assigned to the Dai Chinese
American GIA cluster. When projecting ATLAS indi-
viduals’ preferred language onto the PCs, two distinct
clusters are delineated according to the Chinese Man-
darin and Chinese Cantonese/Toishanese languages
(Additional file 1: Fig. S3B). The Southern Han Chinese
American cluster of individuals correlates with indi-
viduals speaking Chinese Cantonese/Toishanese, where
37.50% of individuals who speak Chinese Cantonese/
Toishanese are within this cluster. The Han Chinese
American cluster correlates with Chinese Mandarin
where 45.33% of individuals who speak Chinese Manda-
rin fall within this cluster.
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From Fig. 3A, there are two notable clusters that do not
match any of the East Asian subcontinental ancestries
represented within 1000 Genomes. Projecting ATLAS
individuals’ self-identified preferred languages onto the
PCs shows that many of these individuals in these two
clusters self-identify as speaking Korean and Tagalog
(Additional file 1: Fig. S3B). These patterns are simi-
larly reflected by individuals’ self-identified race where
the majority of these individuals self-identify as Korean
and Filipino (Additional file 1: Fig. S3A). Because there
is descriptive self-identified demographic information
available in the EHR, we can alternatively use this to
define subcontinental GIA clusters in ATLAS. This could
be advantageous since a >65.48% (N=2181) ATLAS indi-
viduals within the EA GIA group could not be further
clustered into a subcontinental GIA group derived from
1000 Genomes. Using self-identified race groups with
N>20 individuals, we repeat the same clustering process
described above using individuals’ self-identified race as
cluster category labels. Using self-identified race informa-
tion over information available in 1000 Genomes, we are
able to recover two large clusters consisting of individu-
als with Korean American (N=533) and Filipino Ameri-
can (N=761) GIA as well as identify additional clusters of
individuals corresponding to Thai (N=33) and Taiwanese
(N=73) GIA (Additional file 1: Fig. S4B, Table S4). This
clustering not only characterizes the fine-scale genetic
and ethnic diversity of ATLAS, but also emphasizes how
self-reported information such as primary spoken lan-
guage can be combined with genetic information to iden-
tify patterns not otherwise evident.

Next, we looked at individuals with subcontinental
genetic ancestry of European descent in ATLAS, but due
to limitations in the 1000 Genomes reference panel, we
were unable to describe the origins of the majority of the
observed genetic variation within the ATLAS European
American GIA cluster (Fig. 3B). Comparing self-identi-
fied race and ethnicity information also did not deline-
ate any subgroups since most individuals fell within the
NH-White SIRE (Additional file 1: Fig. S5A). Instead,
we project individuals’ preferred language onto the pro-
jected PCs. Aside from English, we observe clusters of
individuals whose preferred languages are Arabic, Arme-
nian, and Farsi/Persian. Notably the primary populations
that speak these languages are not present in the current
1000 Genomes reference panel (Additional file 1: Fig.
S5B). Although not a definitive determination of ances-
tral origin, these results suggest that individuals in these
clusters may have cultural ties relating to the Middle
East. We also observe two distinct clusters of individuals
who speak Farsi/Persian (labeled as “Farsi, Persian I” and
“Farsi, Persian II” in Fig. 3B), suggesting that although
these groups may share cultural and/or ethnic ties, the
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groups could have multiple ancestral origins. However,
due to limited genetic and self-identified information,
we did not attempt to formally infer the subcontinental
ancestry for these individuals.

We perform a similar analysis for the Hispanic Latino
American cluster of individuals where we re-ran PCA
only on individuals in the HL GIA cluster within ATLAS
and individuals from the Admixed American popula-
tion in 1000 Genomes. Projecting population labels from
1000 Genomes onto the PCs, we observe relatively sparse
clusters of individuals of Mexican, Peruvian, Colombian,
and Puerto Rican ancestry from 1000 Genomes (Fig. 3C).
Due to the overlapping and sparse shape of these clus-
ters, we did not attempt to formally infer subcontinen-
tal ancestry for these individuals. Overlaying SIRE and
language as previously discussed also did not reveal any
additional population structure in this group (Additional
file 1: Fig. S6). Since the HL GIA group is inherently an
admixed population, we instead shade the PCs by the
estimated proportions of European and Native American
ancestry (see “Methods”; Additional file 1: Fig. S6B, C).
We observe a cline between European and Native Ameri-
can ancestries, demonstrating that although we cannot
determine discrete clusters within our data, there is still
substantial population structure present.

Corresponding analyses were also performed for the
African American GIA group in ATLAS, but clear sub-
continental clusters could not be constructed from ref-
erence panel information (Additional file 1: Fig. S7A).
Similarly, SIRE information did not delineate any clusters
nor did preferred language (Additional file 1: Fig. S7B,
C). Since the majority of patients self-identify as African
American, an admixed population of African and Euro-
pean ancestry, we project the proportion of European
and African ancestry onto the PCs (Additional file 1:
Fig. S7D, E). We observe a cline going from higher pro-
portions of European ancestry to higher proportions of
African ancestry. This suggests that for very admixed
populations, it would be more advantageous to quantify
population substructure continuously rather than within
discrete categories. We omitted the subcontinental analy-
sis for the South Asian American GIA group due to the
small sample size (N=625).

IBD sharing reveals communities of recent shared ancestry
within ATLAS

A complementary method to principal components for
inferring fine-scale ancestry is identical-by-descent (IBD)
analysis [53—-55]. Using pairwise IBD estimates for all
individuals in ATLAS and reference population infor-
mation from the 1000 Genomes Project [28], Simons
Genome Diversity Project [40], and Human Genome
Diversity Project [42], we describe fine-scale populations
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based on total pairwise IBD (Fig. 4; see “Methods”). Each
subgroup is annotated according to a combination of
genetic ancestry from reference populations as well as
self-identified race, ethnicity, and language information.
Many subgroups have similar characteristics to those
defined from PCA-based methods, such as the Filipino
and Dai Chinese clusters. We can also characterize sub-
groups not previously identified through the previous
PCA analysis. For example, PCA-based methods were
only able to distinguish clusters at the level of continen-
tal African ancestry, whereas IBD clustering identified
West African, East African, and Ethiopian subgroups.
In contrast, Japanese and Korean individuals form a
single subgroup when estimated by the IBD clustering
approach, whereas PCA-based methods delineated these
individuals into two separate groups. Note that both
IBD and PCA-based methods’ granularity is dependent
on the clustering algorithm used and here we report at
only a single level of resolution. For further discussion of
PCA and IBD for fine-scale population analyses, see Bel-
bin et al. [56]. These results show that each stratification
method identifies distinctive features to infer fine-scale
subgroups. These techniques can then be combined to
divide a population into more descriptive subgroups. A
more in-depth IBD analyses within ATLAS is described
in additional work [57].

Admixture describes genetic variation

within self-identified race/ethnicity groups

As demonstrated in prior sections, many individuals do
not fall within a single GIA cluster, but instead lie on
the continuum between multiple ancestry groups. We
can characterize this variation through genetic admix-
ture, the exchange of genetic information across two or
more populations [58]. We estimate genetic ancestry
proportions using k=4, 5, or 6 ancestral populations and
visualize groups of individuals by SIRE (see “Methods”;
Additional file 1: Fig. S8). For the following analyses, we
use k=4 ancestral populations where the clusters corre-
spond to European, African, Native American, and East
Asian ancestry. Among individuals in the NH-AfAm
SIRE, the estimated average proportion of European
ancestry is 24% and 73% African ancestry (Additional
file 2: Table S6). We also observe that the HL-Other and
HL-White SIREs have approximately the same admix-
ture profile, where the proportion of European ancestry
is 48% and 58% respectively, 6% and 5% African ances-
try, and 44% and 35% Native American ancestry. This
admixture profile is consistent with individuals of Mexi-
can ancestry where there is mainly European and Native
American ancestry [59]. However, there is also a large
amount of variation within SIREs, where for example,
individuals who identify as Hispanic or Latino ethnicity
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Fig. 5 Disease associations vary across continental genetically inferred ancestry groups in ATLAS. We show the odds ratio computed from
associating each phenotype with individuals' genetically inferred ancestry in ATLAS (N=36,736) under a logistic regression model. Error bars
represent 95% confidence intervals

are estimated to have European ancestry percentages
ranging from nearly 0% to almost 100%.

Genetic ancestry groups correlate with disease prevalence
within ATLAS

Understanding how disease prevalence varies across
populations is integral to understanding how the inter-
play of genetic factors and social determinants of health
contribute to disease risk. We investigated over 1500
EHR-derived phenotypes (phecodes) [49] from across a
wide set of disease groups. We define cases as individu-
als having the presence of at least one occurrence of the
specified phecode (see “Methods”). We find that vary-
ing the number of required phecode occurrences and
types of encounters when defining cases does not sub-
stantially change case and control assignment in this
dataset (Additional file 1: Fig. S19, Table S13). Limiting
our analyses to phecodes with a minimum of 50 cases,
we identify 1512 total significant phecode-GIA associa-
tions across the 4 largest continental GIA groups after
adjusting for age and sex (p-value<1.12x107°; Bonfer-
roni correction for all phecodes tested across 4 GIA

groups) (Additional file 3: Table S7). Overall, there are
732 phenotypes that show cross-ancestry differences
whose prevalence varies significantly by GIA. From this
set of significant associations, the highest number of
phecodes are from the circulatory (N=89), endocrine/
metabolic (N=84), and digestive (N=90) system-related
categories. Specifically, we recapitulate many known
associations such as skin cancer (p-value=3.13x1072%1)
in the EA GIA group [36, 37]; chronic nonalcoholic liver
disease in the HL GIA group (p-value=4.83x10"%);
ischemic heart disease (p-value=6.74x10"%), chronic
kidney disease (p-value=1.98x10"*!) and uterine leio-
myoma (p-value=2.30x107%) in the AA GIA group
[60-63], and liver and intrahepatic bile duct cancer
(p-value=1.85x1072®%) within the EAA GIA group [32,
34, 35] (Fig. 5).

To further explore the implications of genetic ancestry
for a range of diseases, we focus on 6 phenotypes that
were found to be significantly associated with geneti-
cally inferred ancestry (GIA) in ATLAS. This set rep-
resents a wide variety of diseases: skin cancer, ischemic
heart disease, chronic nonalcoholic liver disease, uterine
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leiomyoma, chronic kidney disease, and liver/intrahe-
patic bile duct cancer. Our goal was to capture variation
across each GIA group: ischemic heart disease, chronic
kidney disease, and uterine leiomyoma have the strong-
est association with the African American GIA group,
skin cancer with the European GIA, chronic nonalco-
holic liver disease with the Hispanic Latino American
GIA, and liver/intrahepatic bile duct cancer with the East
Asian American GIA group (Additional file 3: Table S7).
Additionally, previous literature has already shown that
the prevalence of these 6 diseases has some level of vari-
ation across racial and ethnic groups, making them ideal
candidates for the further analysis of disease variation
across GIA groups in ATLAS [59-70].

The GIA clusters are often correlated with SIRE, as
demonstrated in previous sections. To assess whether the
observed effect is primarily driven by the role of genetic
ancestry, we also add individuals’ SIRE as a covariate into
the model. After multiple hypothesis testing (Bonferroni
correction for all tested phecodes across 4 GIA groups:
p-value <1.12x107°), we replicate 259 out of 1512 phe-
code-GIA associations despite the reduced effect mag-
nitude and association significance (Additional file 4:
Table S8). Out of the 6 example traits, all but the 2 within
the NH-AfAm SIRE maintained significance (Additional
file 1: Fig. S9). This demonstrates that there is some level
of disease association attributed to the ancestry compo-
nent. Incorporation of SIRE should not be interpreted as
formal adjustment for environmental factors. However,
SIRE could capture sociocultural and socioeconomic fac-
tors that are not explicitly modeled and/or available to
use through the EHR.

We also observe substantial disease risk heterogeneity
across subgroups of the same continental GIA group. We
perform association tests between subcontinental GIA
and phecodes within the East Asian American GIA group
in ATLAS for phenotypes with N>20 cases (Additional
file 3: Table S7). To maximize sample size, we use the
race-based GIA clusters (see “Methods”) and limit analy-
ses to the Korean (N=552 individuals, 546 phenotypes),
Japanese (N=548 individuals, 600 phenotypes), Fili-
pino (N=844 individuals, 700 phenotypes), and Chinese
(N=1217 individuals, 812 phenotypes) GIA subgroups in
ATLAS. Across subgroups, we observe disease associa-
tions to varying degrees (Additional file 1: Fig. S10). We
find 3 significant associations with subcontinental GIA
and phenotypes where significance was determined after
correcting for 812 tested phecodes, p-value<6.16x107°
(see “Methods”). For example, the direction of the associ-
ation with chronic kidney disease, varies across subconti-
nental GIA groups where the odds ratio for the Chinese
American GIA group is 0.54 (p-value=2.9x107°) but
the odds ratio for the Filipino American GIA group is
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1.83 (p-value=2.87x107°). Additionally, the odds ratio
estimated for ischemic heart disease in the Filipino
American GIA subgroup is 1.81 (p=3.33x1077), but
performing the association at the continental EAA GIA
level, a conclusive trend cannot be determined (OR 0.91,
p-value=7.10x107?). These results indicate that geneti-
cally grouping individuals across subcontinental GIA
groups yields meaningful interpretation of disease risk
across groups of individuals that might be missed when
only grouping individuals at the continental level.

We also investigated disease prevalence within
admixed individuals where variation in genetic ancestry
across individuals in the population allows for the cor-
relation of disease risk with the proportion of genetic
ancestry from any given continental group. Within each
SIRE group, we perform an association test between
the proportions of inferred ancestry estimated from
ADMIXTURE [48] and each phecode (see “Methods”;
Additional file 5: Table S9). After correcting for the
number of tested phecodes, we find numerous signifi-
cant phecode-ancestry associations: 210 associations
within the HL-Other SIRE, 133 within the NH-White
SIRE, and 65 within the NH-Asian SIRE, and 16 associa-
tions within the NH-AfAm SIRE. Across SIREs, both the
top associated phecode categories as well as the direc-
tion of the associations greatly vary. Out of the top 3
phecode categories with the most associations in each
SIRE group, the most commonly shared group is the
endocrine/metabolic category (HL-Other, NH-White,
NH-Asian). Even within this category, looking at the
statistics quantifying the association of the proportion
of European ancestry with endocrine/metabolic phe-
notypes, there are exclusively 5 negative associations
within the NH-White group, 22 negative associations
within the HL-Other group (and 2 positive associations),
but 5 positive associations and no negative associations
within the NH-Asian group. The other top phenotype
categories for each SIRE are also unique, where the HL-
Other SIRE’s top categories include digestive and respir-
atory phenotypes, the NH-White SIRE’s top categories
include neoplasms and dermatologic phenotypes, and
the NH-Asian SIRE’s top categories includes psychiatric
and infectious diseases. Specifically, we find that within
the HL-Other population, the overall proportion of
European ancestry is significantly negatively associated
(p-value=8.09x1071°) with chronic nonalcoholic liver
disease and the proportion of Native American ances-
try is significantly positively associated (p=7.68x107°)
(Fig. 6, Additional file 1: Fig. S11), which is consistent
with previous studies [71, 72]. These results suggest that
not only are some disease statuses associated with SIRE
and continental GIA, but the specific ancestry propor-
tions may also correlate with disease risk.
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Fig. 6 Global ancestry correlates with disease prevalence in admixed individuals. Individuals by SIRE who have had a diagnosis of A chronic
nonalcoholic liver disease, B uterine leiomyoma, or C liver/intrahepatic bile duct cancer are binned by their proportions of either European, African,
Native American, or East Asian ancestry estimated using ADMIXTURE. Within each bin, we plot the prevalence of the diagnoses and provide
standard errors (+/— 1.96 SE) of the computed frequencies

Genome and phenome-wide association scans identify
known risk regions and elucidate correlated phenotypes
EHR-linked biobanks also offer the opportunity of investi-
gating genetic associations with traits across the genome.
These efforts impose special challenges, such as adjust-
ing for population stratification and cryptic relatedness
in health systems that serve entire families as well as
extracting phenotypes from EHR, namely due to incon-
sistencies in mapping diagnosis codes (ICD codes) to phe-
notypes and difficulties in defining appropriate controls
for specific phenotypes. We perform GWAS on each of
the 6 phenotypes within each GIA group. After filtering
out analyses with small sample sizes (N<50) and analyses
where most SNPs failed the regression, we have a total of
17 analyses (see “Methods”; Additional file 6: Table S10).
Overall, we find associations are well-calibrated with lit-
tle evidence of test statistic inflation (median lambda-
GC: 1.01). We find a total of 212 genome-wide significant
SNPs (p-value <5x1078): 77 associations for skin cancer,
1 for ischemic heart disease, and 58 for chronic nonalco-
holic liver disease in the EAA GIA group; 1 association for
liver/intrahepatic bile duct cancer and 78 for nonalcoholic

liver disease in the HL group; and 1 in the EAA group for
heart disease (Additional file 7: Table S11). We did not
find any genome-wide significant SNPs within the AA
GIA group which could be due to the smaller sample size
(N=1995).

First, we observe ancestry-specific associations, such
as a strong association at rs12203592 for skin cancer
(p-value=2.59x10732) in the European American (EA)
GIA group (Additional file 1: Fig. S12). When perform-
ing the association for this phenotype in the other GIA
groups, we do not have adequate sample size to perform
a successful association test at the majority of the SNPs.
For the East Asian American (EAA) and the Hispanic
Latino (HL) GIA groups, all SNPs resulted in a p-value
estimate of NA, denoting that the association test had
failed. When performing a meta-analysis between the EA
and HL GIA groups, we do not find any significant asso-
ciations despite the strong association originally reported
in the EA GIA group. And an analysis within the Afri-
can American (AA) GIA group was not performed
due to low sample size (N < 50). We also see significant



Johnson et al. Genome Medicine (2022) 14:104

Page 17 of 23

Chronic nonalcoholic liver disease (EA)

-log10(pvalue)

6 7 8 9

(g}

Chronic nonalcoholic liver disease (HL)

-log10(pvalue)

10 11 12 13 14 18 20 22

10 11 12 13 14 18 20 22

‘w

o

O]
2
©
>
&
S
1
o
o

Chronic nonalcoholic liver disease (AA)

)
2
T
g
4 84§
o
2
>
o

10 11 12 13 14 18 20 22

-log10(pvalue)
[
o &

5

1 2 3 4 5 6

7

8 9 101112 131418 2022

Fig. 7 Recapitulating known associations for chronic nonalcoholic liver disease in ancestry-specific and multi-ancestry meta-analyses in ATLAS.
GWAS Manhattan plots for chronic nonalcoholic liver disease in the A European American, B Hispanic Latino American, C African American, D
East Asian American GIA groups in ATLAS, and E the meta-analysis performed across all 4 GIA groups. The red dashed line denotes genome-wide
significance (p-value < 5% 10°%). We recapitulate a known association at the 22q13.31 locus

associations across multiple ancestry groups. For exam-
ple, in the analyses for nonalcoholic liver disease, we
find 58 genome-wide significant SNPs in the EA GIA
analysis and 70 in the HL analysis (Fig. 7). All genome-
wide significant SNPs from both studies fall within the
22q13.31 locus, which contains the PNPLA3 gene. This
gene has been extensively studied for its role in the risk
of various liver diseases such as nonalcoholic fatty liver
disease [73, 74]. Interestingly, we see more associated
SNPs within the Admixed American (N-Case=1466)
ancestry group despite the larger sample size in the Euro-
pean ancestry group (N-Case=3177). The lead SNP from
both analyses, rs2294915 (p-value(HL)=2.32x10716,
p-value(EA)=6.73x10"1), is an intronic variant in the
PNPLA3 gene and has MAF=0.49 in the HL GIA but
only MAF=0.24 in the EA GIA which could contribute to
the heightened associations in the HL GIA.

We next perform a meta-analysis across all genetic
ancestry groups under a fixed effects model for each trait
for a total of 6 meta-analyses (Additional file 1: Fig. S12-
S17). Meta-analyses present a way to increase statisti-
cal power through increased sample size. We observe a
total of 11 genome-wide significant associations: 28 for
ischemic heart disease (27 new), 82 (14 new) for chronic
nonalcoholic liver disease, and 1 (new) association for
liver/intrahepatic bile duct cancer. Specifically, 42 of
these associations were not found in any of the ancestry-
specific analyses, such as the two additional significantly

associated regions from the meta-analysis of chronic liver
disease (Fig. 7), demonstrating that the added power can
identify associations not significant in the ancestry-spe-
cific analyses. In the ancestry-specific analyses for heart
disease, we only see 1 significant SNP across all ances-
try groups that barely reaches genome-wide significance
(p-value=4.109x1078). After performing the meta-anal-
ysis, this increases to a total of 28 significant SNPs all
within a locus on chromosome 9, with the top SNP hav-
ing p-value=3.22x1071° (Additional file 1: Fig. S14).

We are not able to perform a meta-analysis for skin
cancer since were are limited to only the statistics
computed from the EA GIA group (N-Case=4,583,
N-Control=17,603, M=6,017,984). The analysis in
the AA group was omitted to insufficient sample size
(N-Case=38, N-Control=1923), and all of the SNPs
in the HL (N-Case=247, N-Control=5720) and EAA
(N-Case=83, N-Control=3205) analyses had failed asso-
ciation tests at all SNPs. Specifically, the association tests
resulted in a p-value estimate of NA which is likely due
to the small number of cases or difference in allele fre-
quencies across GIA groups. For example, the minor
allele frequencies (MAF) of rs12203592, the top SNP for
skin cancer in the EA analysis, greatly vary across GIA
groups: MAF-EA=0.17, MAF-AA=0.01, MAF-HL=0.07,
MAF-EAA=6.010-4. Thus, populations with a lower
MATF of associated variants would require larger sample
sizes to have sufficiently powered association tests. This
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Fig. 8 Identifying correlated phenotypes at rs2294915 in both the Hispanic Latino American and European American GIA groups in ATLAS. We
show a PheWAS plot at rs2294915 for the Hispanic Latino American (top) and European American (bottom) GIA groups. The red dashed line
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demonstrates that in cases where there are large differ-
ences in MAF at associated variations, ancestry-specific
analyses would be preferred over a meta-analysis which
could actually lead to a reduction in power.

Next, we investigated the top significant association
for each phenotype and GIA group through a PheWAS.
For rs12203592, an intron variant in the IRF4 gene, we
observe significantly associated phenotypes related to
skin cancer such as actinic keratosis and basal cell carci-
noma in the EA GIA analysis, both of which have been
identified in previous PheWAS studies [33] (Additional
file 1: Fig. S18A). At rs1333045, the top SNP associated
with ischemic heart disease in the EA GIA analysis, we
find related phenotypes such as coronary atherosclerosis

and angina pectoris (Additional file 1: Fig. S18B). We
also perform a PheWAS at rs2294915, the lead SNP for
liver/intrahepatic bile duct cancer in the HL GIA analy-
sis and the lead SNP in the analyses for chronic nonalco-
holic liver disease in both the EA and HL GIA analyses
(Fig. 8). We find that multiple neoplastic and neurologic
phenotypes reach significance exclusively in the HL
analysis. These groups of phenotypes are consistent with
the known comorbidities with severe liver disease [75—
77]. Performing a power analysis on the effective sam-
ple sizes [51] of the associated phenotypes in both GIA
groups, we do not find evidence that the observed effects
are solely due to sample size (see “Methods”; Additional
file 8: Table S12). Overall, these findings suggest possible
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differential genetic architecture across these two popu-
lations, as well as variation even at the phenotype level,
reflecting possible genetic or environmental modifiers of
important comorbidities.

Discussion

As the field moves forward with increased collaboration
between the genetics and healthcare communities, it is of
utmost importance to also be aware of potential pitfalls
that may occur when translating research findings into
actual clinical populations. Currently, many clinical pro-
tocols implicitly perpetuate racial bias [23, 78-81]. Many
of these flawed policies stemmed from erroneously link-
ing race, a social rather than biological construct, with
disease risk despite not presenting any biological justifi-
cation. Although race and genetic ancestry are correlated
[82, 83], our work shows that populations constructed
from these two concepts are not analogous. We encour-
age protocol decisions that are rooted in concrete bio-
logical phenomena whenever possible, such as genetic
markers, providing transparent, immutable criteria. For
example, Benign Ethnic Neutropenia (BEN) is observed
predominantly in African Americans, but specifically is
strongly associated with the variant at rs2814778 [84, 85].
Recent studies have suggested that genotype screening
at rs2814778 could aid in the interpretation of neutrope-
nia in African Americans and avoid unnecessary invasive
procedures as well as lead to an increase of the inclusion
of these individuals to various treatments [86].

However, in practice, genetic information is not eas-
ily accessible for patients at all institutions. Additionally,
certain disease prediction-based algorithms that lever-
age SIRE may be favorable to the non-adjusted version.
SIRE is correlated with genetic ancestry as well as other
disease risk factors (sociocultural, socioeconomic, and
geographic), making it straightforward and more eas-
ily accessible to add valuable information into models
without explicit measurements. We recommend delib-
erately considering the potential harm versus benefit of
using SIRE-adjusted prediction models in each use-case.
The practice of race/ethnicity-guided algorithms and
guidelines inherently reinforces the idea of race-based
medicine and embeds the idea that health inequities also
stem from biological differences. It is an ongoing discus-
sion about whether or not the inclusion of race/ethnic-
ity information actually re-allocates resources away from
racial/ethnic minority patients, causing more harm and
an increase in health inequities.

There are various limitations within our study, and we
describe a few of these in detail as follows. First, the phe-
codes are based on ICD codes, and due to the nature of
billing codes, this form of labeling does not constitute
a formal patient diagnosis and may contain individuals
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who do not have the specific disease. We also only
require the presence of one phecode to define a pheno-
type which is a significant assumption. Although we pre-
sent exploratory analyses assessing the role of phecode
occurrence when defining phenotypes, we underscore
that this imprecise phenotyping limits the power of our
study. For further investigation into specific phenotypes,
we recommend refining each phenotype definition based
on additional disease-specific factors and metrics. For
example, one could incorporate additional EHR features,
such as those described by the algorithms in the PheKB
database [70]. Although ICD codes are an international
standard, the accuracy of phecode assignment could dif-
fer considerably due to heterogeneity in billing practices
across medical centers, hospitals, and clinics both within
the UCLA Health System as well as across other institu-
tions. This heterogeneity could present future challenges
when replicating studies or porting algorithms to other
institutions. Second, due to the de-identified nature of
the data, we lack information that could help us better
describe the fine-scale population groups. For example,
birthplace, zip code, and family history have been shown
to be useful descriptors for determining subgroups of
genetic ancestry [56]. Geographic information could also
be used as a proxy for various environmental exposures
such as pollution. Additional socioeconomic informa-
tion, such as income and availability of health insurance,
could likely account for a portion of observed associa-
tions as well as provide more insight into the socioeco-
nomic determinants of health. Third, our findings within
the African and South Asian ancestry populations are
limited due to the smaller sample sizes. As sample sizes
increase, we hope to further refine population substruc-
ture within these initial continental ancestry groups and
have the power to detect novel disease associations that
have previously been mired by lack of statistical power.
An open question and potential additional limitation of
this work is generalizing these results to broader popula-
tions that extend beyond the UCLA Health system. For
example, even when assessing self-identified race/ethnic-
ity statistics, there is a discrepancy between the break-
down of SIRE within ATLAS and the city of Los Angeles.
For example, it is reported that 48.5% of residents of Los
Angeles self-identify as Hispanic or Latino [16], com-
pared to only 15.96% of individuals in ATLAS. This could
be due to the specific location of the UCLA Health sys-
tem which consists of hospitals both in West Los Ange-
les and Santa Monica which are both located in affluent
neighborhoods. When comparing demographic data
recorded for the city of Santa Monica, which could be a
more accurate representation of the area surrounding the
UCLA hospitals as opposed to Los Angeles as whole, we
find that 15.4% of individuals self-identify as Hispanic or
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Latino [87]. Overall, the distribution of the majority of
racial groups in Santa Monica have a high concordance
with those reported in ATLAS (Additional file 2: Tables
S1, S2, S3). Since travel to treatment centers is often a
barrier to treatment [88], this might explain why the
ATLAS population mostly captures the demographics of
the nearby areas. Furthermore, previous work has shown
that referral rates for some types of procedures vary dis-
proportionately across race and ethnic groups [89-91].
As a tertiary and quaternary referral center, this pat-
tern could be reflected in the UCLA patient population.
In addition, this discrepancy could specifically reflect
the variations in patient participation rate across demo-
graphic groups. Previous studies have shown that trust
in the health system and medical community is a large
factor when patients consider whether to participate in
medical research [92—94]. Overall, there are a myriad of
factors that influence the population and health of a spe-
cific region such as socioeconomic status, political geog-
raphy, immigration, and historical events—the majority
of these not being race neutral. These observations sug-
gest that many of these analyses should be interpreted
with respect to the UCLA Health system specifically and
extrapolating results to larger geographic areas or groups
as a whole, should be done with caution.

Conclusions

In this work, we introduce the ATLAS Community
Health Initiative, a biobank embedded within the UCLA
Health medical system consisting of de-identified EHR-
linked genomic data from a diverse patient population.
The UCLA Health system serves Los Angeles County,
leading to a study population of great demographic,
genetic, and phenotypic diversity. We investigate ances-
try both on the continental as well as the subcontinen-
tal population level and find that genetic ancestry and
self-reported demographic information yield distinct
subpopulations in the ATLAS biobank. We present a
collection of results cataloging the associations between
genetically inferred ancestry and EHR-derived phe-
notypes where we find that disease status is not only
associated with continental genetic ancestry but also
associated with the specific admixture profile describ-
ing an individual. We use multi-ancestry pipelines to
recapitulate known associations for chronic nonalco-
holic liver disease at the 22q13.31 locus and perform
a PheWAS at the lead SNP, where we find associations
with neurologic and neoplastic phenotypes exclusively
in the HL GIA group. As the sample size increases,
the ATLAS Community Health Initiative will enable
rigorous genetic and epidemiological studies to fur-
ther understand the role of genetic ancestry in disease
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etiology, with a specific aim to accelerate genomic med-
icine in diverse populations. Already, the ATLAS
biobank accounted for 73.4% of the Admixed Ameri-
can samples utilized in the primary analysis from the
COVID-19 Host Genetics Initiative [95].

We conclude by discussing directions for future work.
Although we investigate admixed populations, such as
African American and Hispanic/Latino populations,
admixed individuals who do not fall under these groups
are excluded from downstream analyses due to con-
cerns over population structure. In the future, we hope
to incorporate methods and pipelines that properly
control for population structure in all types of admixed
populations. Additionally, we plan to compute poly-
genic risk scores (PRS) across all 5 continental ancestry
groups. PRS has already shown modest clinical utility
for diseases such as breast cancer [96] and cardiovas-
cular disease [97], but has proven difficult to perform
accurate predictions across populations [13]. The
genetic diversity within the ATLAS Community Health
Initiative biobank partnered with the longitudinal clini-
cal data provides a unique resource to further explore
the role of ancestry in PRS prediction. Furthermore, as
the size of the biobank grows and more data is collected
over time, we hope to explore even more individualized
health solutions and interventions.
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