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Abstract

The observation of genetic correlations between disparate human traits has been interpreted as
evidence of widespread pleiotropy. Here, we introduce cross-trait assortative mating (xAM) as
an alternative explanation. We observe that xAM affects many phenotypes and that phenotypic
cross-mate correlation estimates are strongly associated with genetic correlation estimates (R? =
74%). We demonstrate that existing XxAM plausibly accounts for substantial fractions of genetic
correlation estimates and that previously reported genetic correlation estimates between some
pairs of psychiatric disorders are congruent with xAM alone. Finally, we provide evidence for

a history of xAM at the genetic level using cross-trait even/odd chromosome polygenic score
correlations. Together, our results demonstrate that previous reports have likely overestimated the
true genetic similarity between many phenotypes.

One-Sentence Summary:

Statistical artifacts due to non-random mating, rather than shared biology, may explain reported
genetic correlations.

Methods that use summary statistics from genome-wide association studies (GWAS)

to investigate genetic overlap across phenotypes have become a fundamental statistical
tool across many domains of human complex trait genetics (1-5). The results of these
analyses have been striking: many trait pairs, even those with limited phenotypic similarity,
display nontrivial genetic correlations (for example, 0.209 [se=0.042] for attention-deficit
hyperactivity disorder [ADHD] and body mass index [BMI] in (1)). These findings have
been broadly interpreted as evidence for widespread pleiotropy across the phenome (6-8),
and, in the case of psychiatric disorders, have raised concerns about the suitability of the
existing nosology given evidence for shared genetic bases (1, 9).

Here, we consider an overlooked source of potential bias in these findings: cross-trait
assortative mating (xAM), the phenomenon whereby mates display cross-correlations across
distinct traits. There are several reasons to be concerned with this potential oversight:

First, the single-trait linear mixed model, which genetic correlation estimators generalize, is
misspecified under single-trait assortative mating (sAM) and overestimates SNP heritability
(10). Second, sAM is widespread across multiple domains for which substantial genetic
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correlations have been observed, including anthropometric, psychosocial, and disease traits
(1, 7, 8). Third, recent work has provided genetic-level evidence for a history of SAM with
respect to some of these same phenotypes (11). Fourth, xAM is known to generate spurious
results for other marker-based inference procedures, including Mendelian randomization
(12) and association studies (13).

We set out to systematically assess the impact of xAM on genetic correlation estimates,

first compiling a large atlas of cross-mate correlations across a broad array of previously-
studied phenotypes utilizing two large population-based samples (1=81,394; 1=746,566).
We find that these phenotypic cross-mate correlations explain a major portion of empirical
marker-based genetic correlation estimates for the same trait pairs (R2=74% across samples).
We next demonstrate that xAM biases genetic correlation estimates and yields non-trivial
estimates even among traits with uncorrelated genetic effects. We use a simulation-based
approach to evaluate the extent to which empirical levels of xAM alone might plausibly
explain genetic correlation estimates among previously-studied traits, finding that, for many
trait pairs, substantial fractions of empirical genetic correlation estimates are congruent
with expectations for etiologically independent traits subject to xAM. At the same time,

we observe that particular phenotype pairs, such as schizophrenia and bipolar disorders,
evidence substantially larger genetic correlation estimates than can be plausibly attributed to
xAM-induced artifact. Lastly, we utilize correlations between even versus odd chromosome-
specific polygenic scores (PGS) to detect genetic signatures of xAM, extending a previous
approach (11). We find that cross-trait even/odd PGS correlations mirror cross-mate
phenotypic correlation patterns and, through this association, explain substantial variation

in empirical genetic correlation estimates.

Genetic correlation estimates mirror cross-mate phenotypic correlations

We begin by quantifying the extent to which empirical genetic correlation estimates align
with cross-trait spousal correlations across a broad array of phenotypes: a set of 20
previously-studied traits measured in the UK Biobank (UKB) (14) and a collection of six
psychiatric disorder diagnoses ascertained from Danish civil registry data (15). We estimated
cross-mate correlations for 40,697 spousal pairs within the UKB sample and 373,283 mate
pairs randomly selected from the Danish population. For a pair of phenotypes Y and Z, there
are three cross-mate correlation parameters: 7y, and r,, the correlations between mates on
Yand Z, respectively, and 7y, the cross-mate cross-trait correlation; we generically denote
these quantities rjyate, and present these estimates in the diagonal and sub-diagonal entries
of Figs. 1A and 1B. We also compiled LD score regression (LDSC) genetic correlation
estimates, denoted p .1 psc, for each pair of phenotypes, which we present in the super-

diagonal entries of Figs. 1A and 1B. All pairwise estimates are provided in Table S1.

Cross-mate correlation structures were diverse across the trait pairs we examined (Fig.
S1). Whereas cross-mate single-trait and cross-mate cross-trait correlations were similar
for some trait pairs (for example, 7, = 0.26, 7 ;; = 0.20, and 7, = 0.20 for BMI and hip

circumferences), these quantities were of opposing signs for others (for example, 7y, = 0.33
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and 7, = 0.22 versus 7, = — 0.09 for years of education and regular smoking). In general,

cross-mate correlation structures were not consistent with SAM alone. When the cross-mate
correlation 7, for as secondary trait Zis fully mediated through sSAM on Y, we expect that

Foz R ?yyﬁz; this model fit the data poorly (Fig. S2).

Estimates of p 4,1 psc were strongly associated with 7y, estimates across both samples (Fig.

1C; meta-analytic R?=74.32%, 95% CI: 67.02%81.62% in a linear model; R?=76.69%,
95% CI: 73.94%—-79.45% in a Bayesian model accounting for heteroskedasticity and
estimation error). The regression slope did not significantly differ across the UKB

and psychiatric phenotypes in either model (for example, p=0.16 for a sample-by-riate
interaction term in the linear model). The strength of this association largely persisted when
excluding trait pairs with large genetic correlation estimates: considering only trait pairs
with estimated genetic correlations below 0.50 in magnitude yielded R2=70.94%; further
restricting to those below 0.30 in magnitude, yielded R>=67.88%. This suggests that the
observed association does not merely reflect sAM on genetically homogenous factors.

Defining genetic correlation

Having established that a large degree of the variance in genetic correlation estimates can
be predicted from phenotypic mating correlations, we now provide theoretical intuition as
to why this might occur (see Supplementary Text for further details; (16)). We start by
defining three distinct notions of genetic similarity between phenotypes. These definitions
are summarized in Table 1.

We consider a pair of phenotypes Y, Z, with heritable components fy, {, reflecting the
additive effects of m standardized haploid variants X, ... X, with phenotype-specific effect
vectors By, B,. For simplicity, we assume that causal variants are initially unlinked and

that both phenotypes have unit variance under random mating (panmixis), such that the

panmictic heritabilities are hf; pan = ﬂyTﬁy and h%; pan = ﬁZTﬂZ.

Pleiotropy is present when a locus influences two or more phenotypes. Thus, locus Xjis
pleiotropic with respect to Y'and Zwhen both By,;# 0 and ;% 0, though these effects
might differ substantially in magnitude or direction. On the other hand, the correlation
between effects, which we refer to as the effect correlation pg, indexes the similarity of
variant effects on two phenotypes:

pp = cor(By, Bz).

where the B vectors include all variants, causal or otherwise, and thus may contain elements
equal to zero. A value of pg> 0 implies both the existence of pleiotropic loci and that said
loci have similar effects on average, and we term a pair of traits genetically orthogonal when
pp= 0. Effect correlation is distinct from the classical definition of genetic correlation as

the correlation between the heritable components of two traits (17), which we refer to as the
score correlation:
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Py = cor( y, ?z ),

as it reflects the correlation between the true PGS.

Within the standard linear mixed model framework, ppand pg are equivalent and hence
seldom discussed as separate quantities (though genetic correlation estimates are commonly
interpreted as estimates of pg (4, 18, 19)). However, traits with uncorrelated effects

can unintuitively have correlated PGS. Under xAM, all causal variants affecting trait ¥
become correlated with all causal variants affecting trait Z, and these correlations are
directionally consistent with their respective effects (see Supplementary Text (16)). As we
will demonstrate in the following section, this results in non-zero score correlations in the
direction of the cross-mate cross-trait phenotypic correlation, even for genetically orthogonal
traits.

The impact of xAM in simulations

We ran a series of forward-time simulations using realistic genotype data to investigate the
impact of xAM on multiple measures of genetic correlation. At each generation, individuals
(consisting of a set of genotypes together with two phenotypes) were matched to achieve
target cross-mate correlation parameters, after which we estimated genetic correlations (5 )

using LDSC (denoted 54,1 psc; (6)), Haseman-Elston regression (HE, denoted 54, yg; (20)),
and residual maximum likelihood (REML; 5. Rgmr; (18)). We also computed true score

correlations (pp, which is possible when the true genetic effects are known. We performed
sensitivity analyses to confirm that our results did not depend on simulation parameters,
including the number of causal variants (Fig. S3), mate selection algorithm (Fig. S4),
recombination scheme (Fig. S5), and whether causal variants with orthogonal genetic effects
arose on overlapping loci (Fig. S6). We additionally investigated the impact of xAM on
GWAS effect estimates and GWAS-based methods for identifying pleiotropic SNPs (Figs.
S7 to S10), genetic correlation estimates for binary phenotypes subject to misdiagnosis (Fig.
S11), partitioned genetic correlation estimates (Fig. S12), and genetic covariance estimators
(Fig. S13).

xAM induces nonzero score correlations among genetically orthogonal traits
—We confirmed that xAM induces substantial score correlations across a broad array of
simulation parameters. This is perhaps most striking for traits with orthogonal effects: Fig.
2A demonstrates the increase in the true score correlation across multiple generations of

XAM for a pair of traits with pg= 0, fipae = 0.5, and hgan = 0. Across simulation replicates,

the average score correlation was 0.11 after a single generation of xAM, which increased to
0.24 after three generations.

Importantly, this increase in score correlation induced by xAM does not represent bias:

the population-level correlation between the heritable components of the phenotypes truly
does increase under xAM. On the other hand, as we demonstrate next, genetic correlation
estimators become misspecified under XxAM and yield biased estimates. Still, even unbiased
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estimates of score correlation can be driven by either shared biology, or xAM, or both,
further complicating interpretation (Table 1).

Effect correlation estimates are biased upwards—For genetically orthogonal traits,
after a single generation of xAM, the REML estimator yielded g = 0.15 and the HE and

LDSC estimators, which are closely related (21, 22), both yielded average estimates of
pp=10.21, all of which were greater than the true value of pg=0.00. After three generations of

xAM, this upward bias became more pronounced, with REML and LDSC yielding estimates
of pg=0.30 and py = 0.44, respectively.

The quantities p ¢, and ; are monotonically related to p g, r mate , and hfm
—Many trait pairs subject to xAM will truly have correlated genetic effects. Figure 2B
illustrates the relationship between pg, pp and 4 for two traits with hgan = 0.5. Excepting
the case of pg=1.0 (genetically identical phenotypes), results remained consistent with
the genetically orthogonal case: pg was lower than pg which was in turn lower than the
upwardly biased p estimates provided by REML, HE, and LDSC. For example, when

pp=0.25, LDSC yielded p 4 = 0.62 after three generations of xXAM. We note that whereas

the true effect correlation varies in Fig. 2B, the cross-mate correlations remain fixed,
demonstrating that the potential for xAM-induced bias is present even when cross-mate
cross-trait correlations partially reflect shared genetic bases. The impact of xAM on both
prand pg was greater for traits under stronger XAM (Fig. 2C) and for traits with greater

heritabilites (Fig. 2D).

xAM biases annotation- and locus-level analyses—Partitioned genetic correlation
estimators evidenced similar biases as genome-wide estimators under xAM, even when
supplied with annotations directly relevant to bivariate genetic architecture. Further, this bias
was greatest at regions relevant to only one of the two phenotypes (Fig. S12).

In association studies, GWAS effect estimates for SNPs causal for the focal trait were biased
upwards in magnitude whereas those causal for a secondary, unrelated trait under xAM
with the first were biased toward their effects on that trait (Figs. S7 to S9). These biases
were asymptotically non-negligible (Fig. S9). As a result, xAM increased the likelihood of
rejecting the null-hypothesis of no association at all SNPs causal for either trait, increasing
both statistical power and false positives rates (Fig. S10). Eventually, all variants affecting
a secondary phenotype subject to xAM with the GWAS phenotype will reach genome-wide
significance as sample size becomes large. However, spurious effect estimates will remain
attenuated (Figs. S7 to S9), implying that methods for identifying cross-trait heterogeneity
in GWAS estimates may have the potential to differentiate trait-specific signal from x AM-
induced artifacts.

xAM alone can plausibly explain substantial variance in empirical genetic
correlation estimates—We next sought to quantify the extent to which empirical pg

estimates for previously-studied trait pairs could be explained by xAM alone, assuming
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genetic orthogonality. We proceeded with a simulation-based approach, which we present
for the UKB and psychiatric phenotypes in turn.

Within each sample we identified mate pairs and estimated phenotypic cross-mate
correlations. We then used these estimates, together with empirical heritability estimates,
as inputs to a forward-time simulation where separate, non-overlapping collections of
causal variants were assigned to each phenotype, such that pg=0.0. At each generation,

we estimated the effect correlation, pg, using method-of-moments. These projected effect
correlation estimates, which we denote pyaM, can be interpreted as expected LDSC genetic

correlation estimates for genetically orthogonal traits under XAM consistent with empirical
spousal correlations.

We next compared py o to empirical LDSC estimates derived in real data, which we denote

Pemp- To simplify discussion, we define the ratio:

7= ﬁxAM/ﬁemp’

which measures the projected LDSC effect correlation estimate due to xAM-induced artifact
relative to the empirical LDSC effect correlation estimate for a given phenotype pair (Fig.
3A).

Expected effect correlation estimates for UKB phenotypes in the absence of
pleiotropy—We restricted our attention to 132 (of 190 possible) pairs of UKB phenotypes
with nominally significant (p < 0.05) LDSC genetic correlation estimates (Table S1). We
first obtained pedigree-based heritability estimates for each of the traits of interest from

the literature, using estimates derived in demographically-comparable (Table S2). Together
with the phenotypic mating correlations (Fig. 1A), these comprised inputs to forward time
simulations used to compute py am-

Across 132 trait pairs, 42 evidenced 7 values significantly greater than zero (their 95%
credible intervals did not include zero) after a single generation of xAM, which increased to
74 trait pairs after three generations. Across all trait pairs (including those not significantly
different from zero), the inverse variance weighted average 7 estimate was 0.25 (se=0.005).
Figure 3B presents the first 20 pairs in descending order of 7 and Fig. 3C presents the raw
projected and empirical effect correlation estimates across all 132 pairs (see Table S3 and
Figs. S14 to S15 for detailed results spanning five generations of xAM). Finally, Fig. 3D
displays average y values within and between qualitative phenotypic domains.

Expected effect correlation estimates among psychiatric disorders in the
absence of pleiotropy—We next estimated py v for a collection of six psychiatric
disorders, using correlations estimated in spousal pairs randomly selected from the Danish
population (Table S4). We then compared these projections to the LDSC genetic correlation
estimates reported by Grotzinger and colleagues (23).
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Across all pairwise combinations of disorders, we observed an average ratio of 7 = 0.29
(se=0.016; Figs. 4A and 4B) after five generations of XAM. Some trait pairs evidenced
considerably greater empirical genetic correlation estimates than might be explained by
xAM alone (for anxiety disorders and major depression, y = 0.21, 95% CI: 0.17-0.25),
whereas for other pairs this discrepancy was modest (for alcohol use disorder and
schizophrenia, 7 = 0.83, 95% CI: 0.59-1.24; see Table S5 and Fig. S16 for complete results).

xAM exacerbates bias due to misdiagnosis—A fter additional simulations
demonstrated that xAM and further inflates genetic correlation estimates in the context
diagnostic errors (Fig. S11), we extended our method for estimating p,aop to incorporate

misdiagnosis. Results were heterogenous across disorder pairs (Fig. S17). For example,
whereas moderate rates of diagnostic errors (5%) together with three generations of xAM
yielded genetic correlation estimates for ADHD and major depression on par with published
estimates (y = 0.97, 95% CI: 0.73—1.22), substantial diagnostic errors (15%) after five
generations of XxAM yielded estimates well below previously published estimates for bipolar
disorders and major depression (7 = 0.37, 95% CI: 0.12-0.62). Figure 4C highlights the
potential impacts of xAM and diagnostic errors on four selected trait pairs and Fig. S17
presents results for all pairs.

Genetic evidence for xAM recapitulates empirical cross-mate correlations

Cross-mate phenotypic correlation estimates (f,1e) €xplained substantial variance in the
cross-chromosome even/odd PGS correlations in a linear model (2. co; R2=47.66%; Fig.

5A). This association, which is congruent with expectations under phenotypically-mediated
xAM (Supplementary Text; (16)), persisted when accounting for measurement error and
heteroskedasticity, and across PGS p-value thresholds (Fig. S18).

Additionally, cross-trait even/odd chromosome PGS correlations were positively associated
with empirical LDSC genetic correlation estimates (g, .psc; R?>=34.81%; Fig. 5B). This

is consistent with the hypothesis that empirical effect correlation estimates are capturing
additional structure beyond the signatures of biological overlap. Further, regressing pg. 1 psc

On pyz. 0 and 7y, simultaneously revealed that the association between pg. 1 psc and pg; eo is
mediated via 7, (AR%<0.001; partial effect p=0.48 for P¢:eo versus p<5e-8 for ;). Thus,

alternative sources of structure independent from xAM do not appear to explain the positive
association between pz. ¢o and pp. 1 psc-

Discussion

Nonzero effect correlation estimates have been widely interpreted as evidence for
overlapping genetic bases. It is therefore surprising that substantial variation in genetic
correlation estimates can be explained by cross-mate phenotypic correlations. Given the
strength of this association, the consequences of the random mating assumption implicit in
all commonly used genetic correlation estimators warrant critical attention.
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Our results show that cross-mate phenotypic correlations among many pairs of phenotypes
are strong enough that one or more generations of xAM would substantially inflate genetic
correlation estimates. Further, the correlation structures of even/odd chromosome PGS
coincide with expectations after one or more generations of xAM. Wes conclude that xAM
comprises a source of systematic bias in the study of genetic similarity across complex traits,
one which subverts the widespread interpretation of genetic correlation as a direct index of
biological similarity.

Our findings mirror recent results regarding the potential impacts of assortative mating
across other areas of statistical genetics, including marker-based heritability estimation

(10), and Mendelian randomization (12). Our results also complicate the interpretation of

a number of multivariate analytic frameworks. For example, genomic structural equation
modeling (24), which takes marker-based genetic correlation estimates as inputs, will
propagate XxAM induced biases. This does not mean such methods are fundamentally flawed,
but instead demonstrates the importance of developing unbiased effect correlation estimators
given the centrality of genetic correlation estimates in modern statistical genetics.

With this in mind, we comment on potential approaches to disentangling true effect
correlation from xAM-induced artifact. First, family-based designs for addressing xAM
(25) are increasingly being applied to molecular genetic data with promising results (26).
Second, we conjecture that approaches aimed at characterizing effect heterogeneity across
multiple phenotypes may provide a viable means for identifying trait-specific loci: though
all trait-specific loci for either of two traits will achieve genome-wide significance in large
sample GWAS of either trait, effect estimates will remain substantially larger at causal loci.
Finally, we propose that directly modeling the dependence between genotypes and their
effects will allow the differentiation of effect correlations and score correlations in samples
of unrelated individuals.

There are several limitations to the current investigation. Foremost among these are the
numerous assumptions about population dynamics required to model xAM, including

but not limited to: panmictic heritabilities, stability of cross-mate phenotypic correlation
structures over succeeding generations, stability and transmissability of environmental
factors, and the extent to which mating patterns reflect social versus genetic homogamy. We
proceeded under the tractable dynamical framework of two additive phenotypes subject to
primary-phenotypic xAM with constant cross-mate correlations, stable non-heritable sources
of variation, and no vertical transmission. Though each of these assumptions is likely
untenable for particular trait pairs, thereby compromising the accuracy of our projections,
we hypothesize that the qualitative phenomenon whereby xAM inflates genetic correlation
estimates will persist for many traits. Nonetheless, we caution that these projections

are contingent upon multiple consequential decisions. Constructing a generative model

that reconciles the association between empirical mating patterns and genetic correlation
estimates is an ill-posed inverse problem for which there are multiple solutions, and of
which we have only explored a subset. At the same time, existing methods are only able to
sidestep these decisions by making the strong (and often incorrect) assumption that mating is
random.
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Lastly, we remark that xAM is, in essence, a form of population structure not captured by
conventional principal component or mixed-model based correction. Given the increasing
evidence that existing methods fail to completely address structural factors, even in
ostensibly ancestrally homogenous groups (27), a broader characterization of population
structure and methods for addressing such structure will likely be necessary to generate
results that are maximally clinically relevant and can be applied equitably.
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Fig. 1. Cross-mate phenotypic correlation and genetic correlation estimates.
(A) Correlations among previously-studied UK Biobank (UKB) phenotypes. Diagonal and

sub-diagonal heatmap entries correspond to cross-mate phenotype correlation estimates
derived from 40,697 putative spouse pairs in the UKB. Super-diagonal entries correspond
to empirical LD score regression (LDSC) correlation estimates among unrelated European
ancestry UKB participants. (B) Cross-mate correlation and genetic correlation estimates
for psychiatric disorders. Diagonal and sub-diagonal entries reflect cross-mate tetrachoric
correlations among 373,283 spousal pairs sampled from the Danish population, all of
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which were significantly greater than zero (maximum p=1.69¢-5). Super-diagonal entries
are previously-reported LDSC correlation estimates (23). (C) Association between empirical
cross-mate phenotypic correlation and genetic correlation estimates (meta-analytic R ~
74%). Error lines indicate 95% confidence intervals and the purple dashed line displays the
line of best fit across all points. All numbers have been rounded to two decimal places.

The model for bone mineral density (BMD) and subjective happiness failed to converge

and is omitted. ADHD: attention-deficit hyperactivity disorder; ALC: alcohol use disorders;
ANX: anxiety disorders; BIP: bipolar disorders; BMI: body mass index; HDL/LDL: high/
low-density lipoprotein; 1Q: intelligence quotient; MDD: major depressive disorder; SCZ:
schizophrenia.
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Fig. 2. Impact of xXAM on genetic correlation estimates in forward-time simulations.
Score correlation (pp and genetic correlation estimates (p ) for two phenotypes with true
effect correlation pg, panmictic heritabilities hgan, and all cross-mate correlations set to fiate.

(A) xAM increases the true score correlation among genetically orthogonal phenotypes. HE,
LDSC, and REML estimators all further overestimate pg and the magnitude of this bias
increases over subsequent generations. (B) After three generations of XAM, pg estimates are
upwardly biased for genetically distinct phenotypes. (C) The impact of three generations of
xAM increases with the cross-mate correlation. (D) The impact of three generations of xAM
increases with the panmictic heritabilities.
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Fig. 3. Empirical and expected genetic correlations among UK Biobank phenotypes.
(A) We computed the expected LD score regression (LDSC) genetic correlation estimate in
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variance weighted average 7 estimates within and between qualitatively similar phenotypic
domains. Error bars throughout represent 95% credible intervals.
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Fig. 4. Empirical and expected genetic correlations among psychiatric phenotypes.

(A) Ratios (7: = pxaM/Pemp) of projected LD score regression (LDSC) genetic correlation
estimates under xAM alone relative to empirical genetic correlation estimates (23) for six
psychiatric disorders with 95% credible intervals. (B) Projected versus empirical LDSC
estimates across psychiatric phenotype pairs. (C) The potential combined impacts of
bidirectional errors in diagnosis and xAM on genetic correlation estimates for selected
psychiatric disorder pairs. The red dashed line corresponds to ¥ = 1 across all panes.
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Fig. 5. Genetic level evidence consistent with xAM in the UK Biobank.
(A) Correlation between even and odd chromosome-specific polygenic scores (PGS) as a

function of the cross-mate phenotypic correlation. For a single trait, the vertical axis reflects

the correlation between even and odd chromosome SCores Zeyen, Zodq and the horizontal axis

reflects the cross-mate correlation. For a pair of traits Y, Z, the vertical axis reflects a single

parameter to which the correlations between ?y; evens ?Z; odd and between ?y; odds 22; even are

both constrained, and the horizontal axis reflects the cross-mate cross-trait correlation. (B)

Cross-trait even/odd PGS correlations as a function of empirical LD score regression genetic

correlation estimates.
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Table 1.

Notions of genetic similarity and their relationship to genetic correlation estimators.

Metric of genetic similarity

Relation to shared etiology and xAM

Pleiotropy is present at a particular locus when
it influences both phenotypes.

Reflects shared etiology. Substantial numbers of pleiotropic loci imply that overlapping
genetic variants affect both traits, though their effects may not be consistent.

Effect correlation (pp) refers to the correlation
between standardized genetic effects.

Reflects shared etiology. ps> 0 implies an overlapping set of variants (at pleiotropic loci)
influence both traits with similar effects on average.

Score correlation (o) refers to the correlation
between true polygenic scores.

Reflects shared etiology, or xAM-induced population structure, or both. Roughly equal to
pp under random mating but larger than pgunder xAM due to long-range sign-consistent
LD. p/> 0 does not necessarily imply biological similarity or even the existence of
pleiotropic loci.

~
Genetic correlation estimators (p 13)’ such as
bivariate LD score regression, are commonly

interpreted as estimates of the effect correlation.

Reflect shared etiology under random mating but produces estimates substantially greater
than both pgand paunder xAM, even when pg = 0 or in the complete absence of pleiotropy.

Under random mating, score correlations and effect correlations are equal in expectation, imply the existence of pleiotropic loci, and are

well-captured by widely-used genetic correlation estimators. Under xAM, however, substantial score correlations can arise in the absence of effect
correlation or even pleiotropy, and genetic correlation estimators overestimate both pgand p/
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