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Abstract9

Mendelian Randomization (MR) has emerged as a powerful approach to leverage genetic10

instruments to infer causality between pairs of traits in observational studies. However, the re-11

sults of such studies are susceptible to biases due to weak instruments as well as the confounding12

e↵ects of population stratification and horizontal pleiotropy. Here, we show that family data13

can be leveraged to design MR tests that are provably robust to confounding from population14

stratification, assortative mating, and dynastic e↵ects. We demonstrate in simulations that our15

approach, MR-Twin, is robust to confounding from population stratification and is not a↵ected16

by weak instrument bias, while standard MR methods yield inflated false positive rates. We17

then conduct an exploratory analysis of MR-Twin and other MR methods applied to 121 trait18

pairs in the UK Biobank dataset. Our results suggest that confounding from population strati-19

fication can lead to false positives for existing MR methods, while MR-Twin is immune to this20

type of confounding, and that MR-Twin can help assess whether traditional approaches may be21

inflated due to confounding from population stratification.22
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Introduction23

Mendelian Randomization (MR) is a widely-used analytical tool that uses genetic variants (“genetic24

instruments”) to determine whether one trait (the “exposure”) has a causal e↵ect on another (the25

“outcome”). With the availability of massive biobank datasets such as the UK Biobank (Bycroft26

et al., 2018), MR analyses have become increasingly powerful and have been used to identify27

causal relationships between numerous pairs of traits (Hemani et al., 2018; Wade et al., 2018;28

Lyall et al., 2017; Haycock et al., 2017; Haase et al., 2012). The validity of MR rests on three29

key assumptions (Lawlor et al., 2008): (i) that the genetic instrument is significantly associated30

with the exposure; (ii) that the genetic instrument is independent of confounders of the exposure-31

outcome relationship; (iii) that the genetic instrument a↵ects the outcome only through its e↵ect32

on the exposure.33

Unfortunately, the latter two assumptions are often violated in practice, due to several factors34

including horizontal pleiotropy, population stratification (and related phenomena such as assortative35

mating and dynastic e↵ects), and batch e↵ects. Even when these assumptions are met, the weak36

e↵ects of typical genetic instruments on the exposure coupled with spurious correlation between37

genetic instruments and confounders (Burgess et al., 2011) can bias the results of MR analyses38

(“weak instrument bias”). The problem of population stratification has been extensively studied in39

the Genome-Wide Association Study (GWAS) literature, and approaches for mitigating its e↵ects40

have been developed, including the usage of Principal Components Analysis (PCA) and Linear41

Mixed Models (LMMs) (Price et al., 2010). These approaches have generally been found to be42

e↵ective at reducing the confounding introduced by population stratification (Price et al., 2010).43

However, recent studies have demonstrated that, with sample sizes as large as those found in44

modern biobanks, even a small amount of residual population stratification can cause a considerable45

amount of bias (Cook et al., 2020; Brumpton et al., 2020; Berg et al., 2019; Haworth et al., 2019),46

and may even cause false positives in MR analysis (Haworth et al., 2019; Cinelli et al., 2022). In47

addition, while the confounding e↵ects of population stratification are well-known, less attention has48

been directed towards confounding from other phenomena such as (cross-trait) assortative mating49

and dynastic e↵ects, which can also cause MR false positives (Brumpton et al., 2020; Hartwig50

et al., 2018). Recent work has demonstrated that cross-trait assortative mating is widespread and51
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substantially inflates genetic correlation estimates between many trait pairs (Border et al., 2022).52

It has recently been proposed that family-based genetic datasets could be used in MR studies53

to avoid confounding from population stratification (Brumpton et al., 2020; Pingault et al., 2018).54

A recent suite of methods have been developed for this purpose, and were shown to reduce the55

bias from this type of confounding (Brumpton et al., 2020). However, like other MR methods,56

these methods are susceptible to weak instrument bias, which can be substantial for small family-57

based datasets (Brumpton et al., 2020). In this paper, we introduce MR-Twin, a test for causal58

e↵ects between pairs of traits that is able to leverage family-based genetic data to provably control59

for population stratification and utilize publicly-available summary statistics estimated in large60

biobank datasets to achieve power competitive with top existing methods for the same sample size.61

We develop versions of MR-Twin for trio, parent-child duo, and sibling data, evaluate MR-Twin’s62

ability to control false positives due to population stratification and weak instrument bias, and63

compare it with existing methods.64

Results65

Methods overview66

In a Mendelian Randomization (MR) analysis, we wish to determine whether one phenotype (the67

“exposure”) has a causal e↵ect on another phenotype (the “outcome”) using genetic instrumental68

variables, which can be either single nucleotide polymorphims (SNPs), a polygenic score, or other69

genetic features. Under the assumption that the genetic instruments are associated with the expo-70

sure and are independent of the outcome given the exposure, the MR e↵ect estimate of the exposure71

on the outcome will be valid even if there are unobserved confounders of the exposure-outcome re-72

lationship. The independence assumption, however, is often violated by population stratification73

(Figure 1A) or horizontal pleiotropy, as these phenomena cause the genetic instruments to be74

correlated with the outcome through pathways other than those through the exposure.75

MR-Twin is a method that uses family-based genetic data to construct a test for whether the76

exposure has an e↵ect on the outcome that is immune to confounding from population structure.77

It is based on the key idea that the genotypes of observed individuals are independent of popu-78

lation structure given the genotypes of the individuals’ parents, since the mechanisms by which79
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genetic information is passed from parents to o↵spring are known (Figure 1B). In other words, con-80

ditioned on the parental genotypes, population structure provides no additional information about81

the distribution of the o↵spring’s genotypes. Thus, by conditioning on the parental genotypes,82

confounding from population stratification can be avoided (Figure 1C), along with confounding83

from other phenomena such as cross-trait assortative mating and dynastic e↵ects which operate84

through the parental genotypes (see Figure 1 of (Brumpton et al., 2020)).85

We now outline the algorithm in the context of a trio design in which we have genetic data on86

the parents and the o↵spring. Let X and O denote the genotypes and outcome phenotype values87

respectively for some individual, and let (Xn;On)Nn=1, denote these across N trios. Also let P1 and88

P2 denote the genotypes of the parents of the individual with genotypes X, and let A := (P1,P2)89

refer to the set of parental genotypes. Let Z denote the set of external confounders measured on90

the same individual, which we define as the set of confounders that satisfy X ?? Z | A. Thus,91

population stratification is an external confounder (as are assortative mating and dynastic e↵ects)92

while horizontal pleiotropy is not. The key idea is that we can formulate a hypothesis test of a93

causal e↵ect conditional on the parental haplotypes A. Bates et al. (Bates et al., 2020) show that94

such a test is also a test of the stronger null hypothesis of a causal e↵ect conditional on (A,Z).95

The way that this is accomplished is through a conditional randomization test, similar to the96

Digital Twin Test proposed by Bates et al in the context of GWAS (Bates et al., 2020; Candes et al.,97

2018). The idea is to sample so-called “digital twins” X̃ from each set of parents A such that X̃ | A98

has the same distribution as X | A, which can easily be accomplished using the laws of Mendelian99

inheritance (Methods). We construct B such random samples across all trios, (X̃n, On)Nn=1, and for100

each set b of twins we compute a test statistic tb = t((X̃n;On)Nn=1; �̂) representing the strength of101

association between the genetically-predicted exposure and the outcome. We also compute a test102

statistic for the true o↵spring of the trios, t⇤ = t((Xn;On)Nn=1; �̂).103

We can then obtain a p-value for a non-zero causal e↵ect of the exposure on the outcome,104

p = 1+1{tb�t
⇤}

1+B
. The set of B statistics derived from the digital twins represents a null distribution105

conditioned on the parental genotypes. If there is a true nonzero e↵ect of the exposure on the106

outcome, we expect the statistic derived from the true o↵spring to be stronger than statistics107

derived from digital twins whose genotypes are randomly sampled from the parental genotypes.108

The test statistic and algorithm are explained in more detail in the Methods section.109
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MR-Twin controls for arbitrarily strong population stratification confounding in110

simulations111

Algorithm 1 Simulate genotypes under population structure

1: procedure SimGeno(FST , groups, N,M) . FST is the fixation index, groups is the number of
populations, N is number of samples, M is number of SNPs.

2: Initialize the average MAF f̄j
i.i.d.⇠ Unif(0.05, 0.5) for each SNP j.

3: for k  groups do
4: fk ⇠ Beta(f̄ (1�FST )

FST
, (1� f̄) (1�FST )

FST
)

5: Generate genotype matrix XXX(k) of population k such that xk
ij

⇠ Bin(2, fk
j
) for each

individual i and SNP j.
6: end for
7: XXX = [XXX(1); . . . ;XXX(groups)] . Stack the rows of each genotype matrix
8: return Genotype matrix XXX
9: end procedure

Algorithm 2 Simulate population-stratified phenotypes

1: procedure getPheno(XXX, U, h2, ↵E , �ue, �uo) . XXX is the normalized genotype matrix, U is
a vector with the fixed population label for each sample, h2 is heritability of exposure E, ↵E is
e↵ect of E on outcome O, �ue and �uo are fixed confounding e↵ects of U on E and O.

2: Generate genetic coe�cient ��� ⇠ N (0, h2IM )
3: Compute �2

✏e
= 1� h2, �2

✏o
= 1� ↵2

E

4: Simulate E =XXX��� + �ueU + ✏e where ✏e ⇠ N (0,�2
✏e
III)

5: Simulate O = ↵EE + �uoU + ✏o where ✏o ⇠ N (0,�2
✏o
III)

6: return (E,O)
7: end procedure

We compared the performance of MR-Twin to other MR methods via simulations consisting112

of two populations with allele frequency di↵erences modeled according to the standard Balding-113

Nichols model (Balding and Nichols, 1995), following previous works (Ochoa and Storey, 2021;114

Conomos et al., 2016; Chen et al., 2015; Hubisz et al., 2009; Price et al., 2006; Pritchard et al.,115

2000). The procedure for simulating the genotypes is outlined in Algorithm 1. We use this algorithm116

to simulate “external” samples (non-trio data, e.g. from a biobank), as well as the parents for the117

trios. The o↵spring genotypes for the trios can then be easily sampled given the parental genotypes118

(Methods). For each sample, we retain the population label, a binary variable indicating which119

population each sample belongs to. Unless otherwise specified, each simulation had 50,000 (false120

positive rate simulations) or 100,000 (power simulations) external samples and 1,000 trio samples121

evenly split between two populations with fixation index FST = 0.01 and 100 SNPs, 50 of which122
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were causal for the exposure trait. Unless otherwise specified, the heritability of the exposure trait123

was set to h2 = 0.2.124

Next, we simulate both the exposure and outcome phenotypes following a linear model, as125

outlined in Algorithm 2. This model allows the population labels from the first step to have an126

e↵ect on the exposure and outcome phenotypes, which models population stratification that violates127

the MR assumptions. We use this setting to assess the false positive rates (FPR) of methods under128

population stratification, allowing the e↵ects of the population labels on the exposure and outcome129

phenotypes to range from 0 (no confounding) to 0.8 (substantial confounding). In a separate set of130

simulations to assess power, we set the confounding e↵ect to 0 and varied the causal e↵ect.131

We performed 1000 simulation replicates under these settings, each time simulating a set of132

external and trio genotypes and phenotypes according to the chosen parameters, performing linear133

regression between each SNP and the exposure and outcome phenotypes, and using the resulting134

association statistics as input to each of the MR methods. We excluded SNPs with association135

p-values of above 0.05/M (M = 100) with the exposure phenotypes in the external data in order to136

limit weak instrument bias (Burgess et al., 2011). The methods we assessed include the trio mode137

of MR-Twin, standard inverse-variance weighted (IVW) MR (Burgess et al., 2013), MR-Egger138

(Bowden et al., 2015), the Weighted Median Estimator (Bowden et al., 2016), the Mode-Based139

Estimator (Hartwig et al., 2017), and a method introduced by Brumpton et al (Brumpton et al.,140

2020) to use family data to control for confounding due to population stratification and other141

population-related e↵ects. Brumpton et al provide a suite of methods for di↵erent family datasets,142

following previous work such as (Fulker et al., 1999); here we focus on the trio-based method they143

describe (Brumpton et al., 2020), and simply refer to that method as “Brumpton” below.144

The trio mode of MR-Twin maintained a calibrated FPR irrespective of the strength of con-145

founding (Figure 2A). Non-family-based methods such as IVW, Egger, Median, and Mode all146

displayed substantially inflated FPR in the face of confounding consistent with their sensitivity to147

potential residual population stratification. The Brumpton method also displayed slightly inflated148

FPR, which increased with the strength of the confounding e↵ect, likely due to weak instrument149

bias (Brumpton et al., 2020). To mitigate the impact of weak instrument bias, we applied a com-150

mon approach employed in MR studies (Burgess et al., 2011) that involves filtering out variants for151

which the F-statistic of the association signal is low (F < 10 following previous recommendations).152
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This rendered the FPR inflation negligible, but also rendered Brumpton substantially less powerful153

than MR-Twin, whereas the “unfiltered” mode had similar power to MR-Twin (Figure 2B). Results154

with confidence intervals are shown in Figure S10. We further investigated the weak instrument155

bias by running simulations with no SNP filtering based on external data and with increasing num-156

bers of SNPs – settings expected to generate large numbers of weak instruments – and confirmed157

that Brumpton had greater FPR inflation in these settings while MR-Twin remained calibrated158

(Figure S11) and did not lose power (Figure S12).159

The standard MR methods (IVW, Egger, Median, and Mode), when run on the external data,160

had substantially higher power than the family-based methods, MR-Twin and Brumpton (Figure161

2B). We performed additional simulations to understand if the lower power of MR-Twin was due to162

the smaller number of trios as opposed to methodological limitations. When applied to the o↵spring163

in each trio (Figure 3), the standard MR methods still had substantially inflated FPR (Figure 3A)164

but similar power to MR-Twin and Brumpton (Figure 3B). We also evaluated the FPR and power165

of these methods under varying number of trios (Figure S1). We observed that increasing number166

of trios increased power for all methods, as expected, suggesting that the family-based methods can167

be expected to obtain increased power as more genetic family data are ascertained in the future.168

The relative power of the methods remained roughly consistent across these experiments.169

We also evaluated the Area Under the Receiver Operating Characteristic Curve (AUC-ROC;170

Figures S5 and S6). Comparing the two main family-based approaches, MR-Twin generally had171

higher AUC than Brumpton (filtered). Predictably, the AUC of standard MR methods drops172

sharply when there is confounding, and MR-Twin outperforms these methods in most such cases,173

though Egger was a notable exception in our findings and remained competitive with family-based174

approaches even under confounded settings. Similarly to our findings in Figures 2 and 3, family-175

based methods are more competitive with standard MR methods when run on similar sample sizes.176

As an additional sensitivity analysis, we also assessed the FPR (Figure S7) and Power (Figure S8)177

of methods in settings where there are very few instruments or very low heritability. The trends178

were broadly similar to those seen in Figures 2 and 3. MR-Twin maintained a calibrated FPR in179

all settings, although it did su↵er a loss of power when heritability was very low (Figure S8B and180

S8D).181

We performed simulations increasing the magnitude of population structure as measured by182
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the FST (without necessarily increasing the confounding strength), and observed that increasing183

the population structure leads to further FPR inflation for standard MR methods (Figure S2). We184

observed inflated FPR for standard MR methods even when there is no confounding (stratification)185

for large values of FST (Figure S2) likely due to correlation or linkage disequilibrium among the186

genetic variants induced by population structure. The standard implementation of IVW and Egger187

(Yavorska and Burgess, 2017; Broadbent et al., 2020) allows the user to pass in a variant correlation188

matrix, which removed the FPR inflation with no stratification (Figure S2); other methods such189

as Median and Mode do not currently have this option.190

Next we assessed the runtime of methods run on the trio data (Figure S3). Brumpton, along191

with non-trio based methods (e.g., IVW), had similar run times (<1-5 seconds per simulation192

replicate); for succinctness, only Brumpton is shown. MR-Twin (with 100 simulated digital twins)193

took roughly one minute per simulation replicate under the simulation settings described above,194

with time increasing to up to four minutes if the number of families or SNPs was increased. The195

number of digital twins to simulate for MR-Twin involves a trade-o↵ between speed and stability of196

results. We assessed the stability of MR-Twin with di↵erent numbers of digital twins, with results197

shown in Figure S9. We interpreted these findings as indicating that 100 digital twins are likely198

stable enough for simulations for which many replicates are run and speed is a priority, but 1000199

or more digital twins is recommended for one-o↵ real data analysis. Therefore we simulated 100200

digital twins in our simulations and 1000 in our real data analysis. We note, however, that while the201

MR-Twin runtime increases linearly with the number of digital twins simulated, the generation and202

statistic computation for the digital twins can be done in parallel, so many twins can be simulated203

e�ciently given multiple compute cores or nodes. For clarity of results, we did not take advantage204

of this in our runtime assessment.205

Finally, MR-Twin also enables users to use parent-child duo or sibling datasets (Methods). We206

assessed the performance of these modes versus the trio mode of MR-Twin (Figure S4). We found207

that the duo and sibling modes, while having lower FPR than most standard MR methods, did208

not maintain a calibrated FPR at high levels of confounding, which is expected since the precise209

sampling of o↵spring genotypes from parents is not possible when either or both of the parental210

genotypes are not available.211
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Application to trio data in the UK Biobank212

In order to assess the results given by MR-Twin relative to other approaches in a real data context,213

we next applied MR-Twin and four other MR methods (IVW, Egger, Median, and the Brumpton et214

al. method (Brumpton et al., 2020)) to 144 real trait pairs in the UK Biobank (Bycroft et al., 2018).215

These consisted of all pairwise combinations of 12 metabolic, anthropometric, and socioeconomic216

traits that were widely measured among the UK Biobank participants (listed in Table S1). We217

isolated 955 White British genetic trios from the full UK Biobank dataset (Supplemental Materials)218

and used PLINK (Purcell et al., 2007) to run linear regression on the remaining unrelated White219

British individuals for these 12 traits, including the top 20 principal components (PCs), age, and220

sex as covariates. The genetic instruments selected for each analysis were the SNPs with genome-221

wide significant p-values (< 5.0 ⇥ 10�8) for the exposure trait, after linkage disequilibrium (LD)222

pruning was performed so that none of these instruments were in substantial LD with one another223

(Supplemental Materials). Ignoring the degenerate cases where the exposure and outcome were the224

same trait or where there were no significant SNPs for the exposure trait (as was the case for the225

Townsend Deprivation Index [TDI]), there were 121 usable trait pairs.226

Table 1 shows the results for six selected trait pairs (excluding Median for brevity because it gave227

similar results to IVW), while Supplemental Table S2 shows the full set of analyses. (Brumpton228

was run with several di↵erent variant filtering settings to assess the impact of potential weak229

instrument bias (Supplemental Materials); results for all runs are given in Supplemental Table S2.)230

For Table 1, we selected six analyses: two positive controls representing causal e↵ects that are true231

by definition (LDL Cholesterol ! Total Cholesterol and Weight ! Body Mass Index [BMI]), two232

negative controls that represent seemingly implausible e↵ects (Glucose ! TDI and Height ! Body233

Fat), and two trait pairs with unclear or conflicting evidence (BMI ! Diastolic Blood Pressure234

[DBP] and BMI ! TDI). In particular, previous studies have identified a significant e↵ect for BMI235

! DBP (Lyall et al., 2017) and for BMI ! TDI in women (Tyrrell et al., 2016) with IVW analysis,236

although Egger analysis did not replicate the significant findings in either case (Lyall et al., 2017;237

Tyrrell et al., 2016).238

All methods performed as expected on the controls, with highly significant p-values for positive239

controls and insignificant p-values for negative controls. For BMI ! DBP, IVW and Brumpton240
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yielded significant results while Egger and MR-Twin did not. For BMI ! TDI, IVW and Egger241

yielded significant results while Brumpton and MR-Twin did not. In general, IVW tended to yield242

much stronger p-values than other methods and the family-based methods (Brumpton and MR-243

Twin) tended to be conservative (Supplemental Table S2), in line with our simulation results. In244

particular, of the 121 usable trait pairs, IVW identified 78 as significant, Egger identified 56 as245

significant, Brumpton identified 20 as significant, and MR-Twin identified 19 as significant.246

Discussion247

We introduced MR-Twin, a method for testing causal e↵ects between pairs of traits within a248

Mendelian Randomization (MR) framework, which is provably robust to confounding of any strength249

resulting from population stratification. Our primary contributions are the following: (i) develop-250

ing a digital twin test, originally proposed by Bates et al (Bates et al., 2020) in the context of251

genetic association studies, for MR, coupled with a novel statistic for this test; (ii) demonstrating252

that, by leveraging trio data, our proposed framework is robust to confounding due to population253

stratification and to biases from the inclusion of genetic instruments with weak e↵ects; (iii) ex-254

tending our framework to the setting of sibling data, a setting not considered by Bates et al; (iv)255

conducting the first (to our knowledge) large-scale evaluation of the digital twin test framework in256

comparison with existing methods for MR. We demonstrated that existing MR methods, including257

those designed to correct for confounding resulting from horizontal pleiotropy, are prone to false258

positives when there is confounding from population stratification.259

While population stratification was the focus of this paper, the MR-Twin framework also pro-260

vides immunity to several other types of confounding e↵ects. Theory dictates that MR-Twin is261

immune to confounding from familial e↵ects such as assortative mating and dynastic e↵ects since262

these e↵ects operate through the parental genotypes (see Figure 1 of (Brumpton et al., 2020)),263

though we do not explicitly test this in this manuscript. As recently demonstrated, cross-trait264

assortative mating is pervasive and impacts many common genetic analyses (Border et al., 2022)265

including MR (Hartwig et al., 2018), so this represents another valuable aspect of MR-Twin even266

if population stratification is believed to be well-controlled in a particular study. In general, MR-267

Twin is immune to any confounder that is independent of the genotypes of o↵spring given the268
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genotypes of their parents. We note that when we refer to “immunity” we mean this in a theoreti-269

cal sense – for instance, under the assumption that the model for Mendelian inheritance is correct.270

In our particular implementation, we assume that the genetic instruments have been selected to be271

roughly independent and thus we can sample digital twin genotypes from the parental genotypes272

using a binomial model. In practice, of course, genetic variants on the same chromosome are never273

perfectly independent, though with appropriate caution the dependence is weak enough that the274

e↵ect on calibration should be negligible. More complex models of meiosis will also rely on other275

factors such as haplotype phasing accuracy.276

In addition to population and familial e↵ects, we highlight two under-appreciated sources of bias277

in MR studies, both of which MR-Twin avoids without requiring the user to modify any parameters278

or arguments. The first is weak instrument bias (Burgess et al., 2011), which can bias the e↵ect279

estimate of standard MR methods, including the Brumpton approach (Brumpton et al., 2020).280

This accounts for the Brumpton method yielding inflated FPRs when the confounding e↵ects were281

strong (Figure 2A). One of the most common ways to control for weak instrument bias is by filtering282

out variants with a weak association signal, often with a threshold of F < 10 for the association283

between a variant and the exposure trait. However, this procedure has been criticized (Burgess284

et al., 2011) and may not fully correct for weak instrument bias. Other MR methods may also285

be a↵ected by this bias. In two-sample study designs, the direction of the bias is towards the null286

rather than the confounded exposure-outcome association estimate (Lawlor, 2016), but the bias287

remains.288

Additionally, we found that standard MR methods (IVW, Egger, Median, Mode, etc) may289

have inflated FPR when there is population structure that induces correlation between variants,290

even in the absence of stratification (Figure S2). The reason for the induced correlation is that,291

even though the variants were simulated independently, they were correlated with one another292

through the population labels. For example, suppose we have two variants, X1 and X2 and a293

population label U . The causal diagram for these three variables is X1  U ! X2, so X1 and X2294

are correlated. Our findings corroborate earlier findings that correlation between SNPs can cause295

calibration issues in MR methods (Burgess et al., 2013). This phenomenon should be taken into296

account when performing MR simulations or when applying MR to real datasets where variants297

may be correlated. In the latter case, users should obtain SNP correlations from an appropriately298
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population-matched (Peterson et al., 2019) and su�ciently large (Benner et al., 2017) reference299

panel.300

MR-Twin avoids both of these issues, without requiring the user to specify a SNP correlation301

matrix or apply various approaches to mitigate weak instrument bias. First, both MR-Twin and302

Brumpton avoid the correlated-variant issue because they condition on parental genotypes, severing303

the link between the o↵spring genotypes and the population structure. Second, MR-Twin would not304

lose FPR calibration due to weak instrument bias, because this phenomenon has nothing to do with305

the aspects of the MR-Twin test that guarantee immunity from confounding due to population and306

familial e↵ects (sampling digital twin genotypes conditioned on parental genotypes). Theoretically,307

it is possible that the bias in the MR e↵ect estimate used in the MR-Twin statistic (Methods) could308

lower power, but because the MR e↵ect estimate equally a↵ects both the digital twin statistics and309

the true o↵spring statistics, a reduction in power seems unlikely and was not observed empirically310

(Figure S12).311

There is extensive literature on family-based methods for avoiding confounding due to popula-312

tion structure in genome-wide association studies or linkage analysis (Weiner et al., 2017; Laird and313

Lange, 2006; Abecasis et al., 2000; Fulker et al., 1999; Thomson, 1995; Spielman et al., 1993). One314

prominent example is the transmission disequilibrium test (TDT) (Spielman et al., 1993) and the315

more-recent polygenic TDT (pTDT) (Weiner et al., 2017). Bates et al (Bates et al., 2020) compare316

the digital twin test (DTT) to the TDT and show that the DTT is a generalization of the TDT317

and highlight some of its benefits. Because it is not immediately obvious how to adapt the TDT318

and pTDT to MR, we do not evaluate their potential use in this context.319

There are several considerations that come into play when applying the MR-Twin method, which320

we note here. First, the number of digital twins simulated involves a trade-o↵ between speed and321

precision (Figure S9). While MR-Twin was slower than competing MR methods (Figure S3), it still322

ran in a few minutes or less per run on both simulated and real data analyses, justifying the use of323

a fairly large number of digital twins if possible. Consequently, we recommend 1000 or more digital324

twins for real data analysis, which should be computationally feasible and precise (and, again,325

parallelization can make this quite e�cient). 100 digital twins is likely su�cient in simulations326

where there are many replicates and speed is the paramount concern. Second, the populations327

of the external and family datasets should be similar. This is natural for biobanks like the UK328
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Biobank, but can be more challenging when attempting to combine separate datasets. Third, care329

should be taken to ensure that the normalization method used and covariates controlled-for are330

similar in the external and trio datasets in order to avoid potential loss of power.331

While the genetic trio o↵spring used in our UK Biobank analysis were all adults (as all partic-332

ipants in this dataset were aged 40-69 at collection time (Bycroft et al., 2018)), other trio datasets333

may contain young children. This is a potential issue because some commonly-analyzed traits such334

as height and weight may not have the same relationship in youths or adolescents as they do in335

adults, and variants that a↵ect these traits may not yet have realized their full e↵ect in the chil-336

dren yet. Dealing with such time-varying exposures in the context of mendelian randomization is337

an area of ongoing research (Labrecque and Swanson, 2019), and it is not clear how this would338

impact MR-Twin results. Even when the o↵spring of the trios are all adults, it may be di�cult339

to adequately sample certain traits. For example, we were not able to perform MR analysis for340

complex traits such as heart disease, since none of the o↵spring in our sample had developed heart341

disease, largely because all o↵spring in our sample were aged 40-49.342

We note a few trends seen across many trait pairs in the real data results, reflecting some343

practical considerations. First, all standard MR methods identified substantially more trait pairs344

than did either family-based approach. Given our simulation results showing a large power di↵er-345

ence in the methods when run with di↵erent sample sizes (Figure 2) but similar power when run346

with the same sample size (Figure 3), along with the fact that the UK Biobank has many more347

unrelated individuals than trios, we believe that this di↵erence is largely due to the di↵erence in348

the available sample sizes between unrelated and trio data. The number of trios available as part349

of public datasets is currently relatively small, limiting the power of family- or trio-based methods,350

but future increases in the number of available trios will lead to increases in the power of MR-Twin351

and other family-based methods. Second, some traits pairs had quite di↵erent results when the352

exposure and outcome traits were switched. For example, none of the standard MR methods had353

significant p-values for DBP ! Weight, but all were significant for Weight ! DBP (Supplemental354

Table S2). This may be due to one causal direction being correct while the other is incorrect, but355

may also be a↵ected by factors such as di↵erences in the heritability and/or polygenicity between356

the two traits.357

Several extensions to the methods presented here are also possible. While we explored contin-358
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uous traits in this paper, further work needs to be done to apply MR-Twin to binary phenotypes359

such as disease labels. First, a di↵erent statistic such as binary cross entropy (rather than our360

negative squared loss statistic) may be more appropriate. Second, the use of the external e↵ect size361

estimates in the statistic may have to be modified, depending on the regression method used and362

the interpretation of the estimates. For example, it would be inappropriate to replace the e↵ect363

size estimates in our statistic with odds ratios produced by logistic regression. Even for linear364

data, it is possible that a di↵erent statistic than the one we proposed would be more powerful in365

some situations. Finding most-powerful statistics for a given significance threshold is a direction366

for future work. Future work could also improve upon the sibling mode of MR-Twin by using367

population-based priors to infer parental genotypes with a greater level of accuracy, thereby ob-368

taining superior control of false positives. This approach could in principle be developed for and369

applied to more extended pedigrees.370

In the Digital Twin Test paper (Bates et al., 2020), Bates et al propose using a Hidden Markov371

Model (HMM) to simulate digital twins from the parental haplotypes, the latter being generated by372

phasing the parental genotypes. For the simplicity of avoiding this phasing step and due to the fact373

that genetic instruments in MR studies are usually selected to be roughly independent (Burgess374

et al., 2013), we used a simpler method for simulating digital twins using binomial draws from the375

parental genotypes (Methods). However, the variants used may not be independent even if they376

appear to be (Burgess et al., 2013), or one may wish to include correlated variants to increase377

power. Extending MR-Twin to perform the HMM-based digital twin simulation could therefore378

increase power.379

Finally, a pre-print from Tudball et al. proposes a randomzation-based approach to MR (Tudball380

et al., 2022) that, while being conceptually similar, di↵ers from MR-Twin in a few practical aspects.381

First, Tudball et al. (Tudball et al., 2022) do not discuss the use of external summary statistics to382

increase power, whereas this is a core part of the MR-Twin approach (as well as in the Digital Twin383

Test of Bates et al. (Bates et al., 2020)). Second, Tudball et al. develop family-based propensity384

scores for individual SNPs and suggest aggregating them with Fisher’s method or another p-value385

aggregation method, which is substantially di↵erent from our proposed sum-of-squares statistic386

over all SNPs (Methods). Finally, Tudball et al. employ the HMM-based digital twin simulation387

model, while (as discussed above) we employ the simpler binomial model. Nevertheless, the broad388
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conceptual similarities between the two methods highlight the promise of randomization-based389

approaches to make MR findings more robust and the value of continued development to extend390

these approaches to more complex pedigrees.391

Methods392

The MR-Twin framework393

We first introduce the standard Mendelian Randomization (MR) model, without any confounding.394

Suppose that for a collection of N individuals we obtain their genotypes at M SNPs, and a phe-395

notypic measure for an exposure trait and an outcome trait. For a given individual n we denote396

the genotype vector as Xn, the genotype at some SNP j as Xnj , the exposure trait as En, and397

the outcome trait as On. Let (Xn, En, On)Nn=1 denote the collection of these genotypes and traits398

over all N individuals, where (Xn) is an (N ⇥M) matrix and (En) and (On) are (N ⇥ 1) vectors.399

Finally, let X, E, and O refer to the genotype vector, exposure trait, and outcome trait for a generic400

individual.401

MR uses the genetic “instruments” X to estimate the e↵ect of an “exposure” trait E on an402

“outcome” trait O. This estimate is valid regardless of any confounder U of the association between403

E and O, assuming that the following conditions hold (Lawlor et al., 2008):404

1. The genetic instrument X is significantly associated with the exposure trait E;405

2. The genetic instrument X is independent of any variables (such as those in U) that confound406

the relationship between E and the outcome trait O;407

3. The genetic instrument X is not associated with O except due to its association with E.408

The latter two criteria can be captured by the independence statement409

X ?? O | E (1)

Assuming these conditions hold, and assuming a linear model for the relationships between the410

genotypes and phenotypes (a typical assumption in MR analyses), we can test the null hypothesis411

that there is no direct causal e↵ect of E on O,412
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H0 : �EO = 0 (2)

where �EO is not obtained by direct regression but rather via instrumental variables estimators413

such as the ratio estimator �EO = �XO/�XE (when a single instrument is used) or by two stage414

least squares or inverse-variance weighting (when multiple instruments are used) (Burgess et al.,415

2013).416

However, in the case where we have residual population stratification, denoted Z (Figure 1A),417

this independence assumption is violated. This is because, using terminology from Pearl’s graphical418

formalism (Pearl, 1995), X  Z ! O is a backdoor path between X and O, so the two are not419

marginally independent. Conditioning on E fails to block this backdoor path (i.e. see Figure 1A).420

Residual population stratification generally cannot be controlled for directly, though approaches421

such as Principal Components Analysis (PCA) and Linear Mixed Models (LMMs) have been used422

to reduce its e↵ect (Price et al., 2010).423

MR-Twin (Figure 1C) is a method that uses family-based genetic data to avoid this confounding.424

Suppose that, corresponding to each individual’s genotypes X, we also observe the genotypes P1425

and P2 of their parents (we later relax the trio assumption to allow for parent-child duo or sibling426

data). Let A := (P1,P2). According to the graphical criteria for d-separation developed by Pearl427

(Pearl, 1995), A d-separates X from Z (Figure 1B):428

X ?? Z | A (3)

This means that, assuming X does not a↵ect some unmeasured variable which in turn a↵ects429

O (i.e. no horizontal pleiotropy),430

X ?? O | E,A (4)

thereby satisfying the MR conditions regardless of any residual population stratification.431

As shown by Bates et al (Bates et al., 2020), the Digital Twin Test framework outlined in432

Algorithm 3 can be used to perform a hypothesis test conditioned on A. The resulting test involves433

computing the test statistic t⇤ = t(Xn;On)Nn=1; �̂) (we give the statistic used in this paper in “MR-434

Twin Test Statistic Incorporating External Weights” below). To perform a test, we construct B435
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random samples (X̃n) where each X̃ is a random sample given A with the same distribution as436

X given A (such a sample can be easily constructed using Mendelian inheritance; see “Generating437

Digital Twins” below). We refer to these samples as “digital twins”. For each such sample b, we438

then compute tb = t((X̃n;On)Nn=1; �̂), representing a null distribution of genotypes conditioned439

on the parental genotypes. This, in turn, gives us a p-value for t⇤ = 1+1tb�t
⇤

1+B
, where B is the440

total number of permutations we perform. The MR-Twin test is therefore a kind of conditional441

randomization test (Bates et al., 2020; Candes et al., 2018).442

Importantly, the proposed algorithm can leverage e↵ect size estimates (�̂) from any external443

GWAS datasets (even GWAS datasets where such estimates might be biased due to population444

stratification) while providing valid tests. The proposed algorithm is robust to any external con-445

founder satisfying Equation 3, such as population stratification, assortative mating, and dynastic446

e↵ects.447

Algorithm 3 Outline of MR-Twin

1. Input: E↵ect sizes for SNPs: �̂, trio data {(Xn,An, On)
N
n=1}

2. Compute the MR-Twin test statistic t
⇤ = t((Xn;On)

N
n=1; �̂)

3. For b = 1 to B:

(a) Sample digital twins X̃n given their ancestors An.

(b) Compute the MR-Twin test statistic tb = t((X̃n;On)
N
n=1; �̂)

4. p = 1+1{tb�t⇤}
1+B

Output : p-value: p

Next, we detail the MR-Twin test statistic, digital twin generation algorithms, and formal448

proofs of the exchangeability of digital twins with each other and their real counterparts.449

Conditional randomization test for mendelian randomization450

The MR-Twin test is related to the digital twin test (Bates et al., 2020) and likewise is a kind of451

conditional randomization test (Candes et al., 2018). Like the digital twin test, MR-Twin leverages452

the fact that o↵spring genotypes are conditionally independent of “external” confounders such as453

population structure given the parental genotypes and uses a conditional randomization test to test454

the weaker, but equivalent, null hypothesis of no e↵ect conditioned upon the parental genotypes.455

Let X be a vector of o↵spring genotypes, and let A be the genotype vectors of the two parents456
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of the o↵spring. A may be directly observed, as in trio data, or inferred using parent-child duo457

or sibling data (see “Generating Digital Twins”). Let Z be one or more “external” confounders,458

defined (Bates et al., 2020) as459

X ?? Z | A (5)

Thus, population structure is an external confounder, while horizontal pleiotropic traits are not.460

We therefore have461

X|(Z,A)
d
= X|A (6)

Assuming that all confounders are external and that X is significantly associated with E, O is462

independent of X given A under the MR null hypothesis that E has no e↵ect on O. This is because463

X would not have any e↵ects on O mediated by E (since E does not a↵ect O under the MR null464

hypothesis), and all paths not through E are blocked by conditioning on A as shown in Equation465

6. We therefore want to test466

X ?? O | A (7)

If this holds, then we cannot rule out that either X has no e↵ect on E or E has no e↵ect on O.467

We test this null hypothesis via a conditional randomization test (Candes et al., 2018).468

In testing this null hypothesis, it is helpful to be able to leverage SNP e↵ect sizes estimated469

from large, external datasets (such as publicly released summary statistics for resources like the UK470

Biobank (Bycroft et al., 2018)), as this will often yield more statistically significant variants and471

better e↵ect size estimates than those generated using small genetic family datasets. We therefore472

note that the following property also holds:473

X ?? �̂ | A (8)

where we use the shorthand �̂ to refer to the estimated e↵ect sizes of each SNP on the exposure474

and outcome traits.475

We construct “digital twins” X̃ sampled from the parental genotypes via Mendelian inheritance476
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(see “Generating Digital Twins”) such that477

X̃|A d
= X|A (9)

Given equations 7, 8, and 9, we have the following under the null hypothesis:478

X|(A, �̂, O)
d
= X|A (10)

X̃|(A, �̂, O)
d
= X̃|A (11)

It follows from equations 9, 10, and 11 that the digital twins are exchangeable under the null479

hypothesis:480

X̃|(A, �̂, O)
d
= X|(A, �̂, O) (12)

Therefore, given some statistic T = t((Xn;On)Nn=1; �̂), where N is the number of families,481

T |(A, �̂, O)
d
= T̃ |(A, �̂, O) (13)

under the null, where T̃ = t((X̃n;On)Nn=1; �̂). We can then use the procedure outline in Algo-482

rithm 3 to obtain a p-value for this test statistic (Candes et al., 2018).483

MR-Twin test statistic incorporating external weights484

We construct a test statistic based on a negative sum of squares loss when using X to predict O485

via an MR estimate for the e↵ect of E on O. First, we leverage the e↵ect sizes from the external486

dataset of the genotype on the exposure trait �̂XE to obtain the genetically-predicted exposure487

trait values:488

Ên =
X

j

�̂XE,nXnj (14)

for each individual n and SNP j. We then compute the MR estimate for the e↵ect of the exposure489

trait on the outcome trait, �̂EO. This estimate may be a conventional Inverse Variance Weighted490
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(IVW) estimate (Burgess et al., 2013) or various statistics designed to be robust to pleiotropy such491

as the Egger-based statistic (Bowden et al., 2015), the weighted median statistic (Bowden et al.,492

2016), or others. We then predict the outcome trait for each individual n as Ôn = �̂EOÊn. Finally,493

we compute the negative squared error of these predictions �
P

n
(Ôn � On)2, summed across all494

individuals. The full statistic is then495

t((Xn;On)
N

n=1; �̂) = �
X

n

((�̂EO

X

j

(�̂XE,nXnj))�On)
2 (15)

Generating digital twins496

We have assumed that trio data is available thus far for simplicity. However, the MR-Twin frame-497

work can also be used when parent-child duo data or sibling data are available. Here we discuss498

the algorithms used to generate digital twins given trio, parent-child duo, or sibling data.499

Trio and duo modes500

We assume that the SNPs used in the MR instrument are independent, a common assumption when501

multi-SNP instruments are used in MR (Burgess et al., 2013). Therefore, we separately sample502

the genotype of each SNP of the digital twin given the parent and/or o↵spring genotypes at that503

SNP. Let (Dn) be the (N ⇥M) matrix of digital twin genotypes we will sample, corresponding to504

the true “o↵spring” genotypes in (Xn). Further, let n index some family and j index some SNP,505

such that P1nj (for example) is the genotype for one parent in family n at SNP j. If we have both506

parents available, sampling Dnj is straightforward. Because the SNPs are considered independent,507

we do not need to know the parental haplotypes. If a parental genotype P1nj is 0 or 2, respectively,508

then a 0 or 1, respectively, is inherited by Dnj . If the parent genotype is 1, then either 0 or 1 is509

inherited with 50% probability each. Dnj inherits alleles from the two parents independently. This510

can be summarized as511

Dnj ⇠ Bern(P1nj/2) +Bern(P2nj/2) (16)

where Bern stands for the Bernoulli distribution, for each family n and SNP j.512

If we only have one parent genotype available, then following Bates et al (Bates et al., 2020),513
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we fix the o↵spring’s haplotype from the unobserved parent and only simulate a random draw from514

the observed parent’s haplotype. If the observed parent is homozygous, then the allele inherited515

from that parent is fixed as well, so Dnj = Xnj . Otherwise, the allele inherited from this parent516

will be Bern(0.5). In principle, 0.5 could be replaced with some value based on population allele517

frequencies. Similarly to the above, the model for the allele from the other parent can be written518

as Bern(Xnj/2). Thus, if the parent is a heterozygote, we have519

Dnj ⇠ Bern(1/2) +Bern(Xnj/2) (17)

Sibling mode520

In the case where we observe sibling genotypes but not the genotypes of their parents, we assessed521

two potential approaches. In either case, the observed sibling information is used to infer the522

probabilities of digital twin genotypes based on the fact that the sibling genotypes give information523

about the probabilities of various parental genotypes. For instance, a child with a 2 genotype at a524

SNP guarantees that neither parent has a 0 genotype at that SNP, and makes it more likely that525

the parents have 2 genotypes than 1 genotypes. Most simply, if one sibling has a 2 genotype at a526

SNP and the other sibling has a 0, then the parents must both be heterozygotes. In all other cases,527

approximation is needed.528

The first approach is straightforward and involves randomly drawing two haplotypes from the529

observed sibling haplotypes to generate a digital twin. This shu✏ing approach gives a rough530

approximation of the likelihood of digital twin genotypes given the information the observed siblings531

provide. The second approach, described in the Supplemental Materials, involves using the sibling532

data to infer a distribution over the possible parents, then performing a weighted random draw of533

digital siblings based on those parents. In practice, we found that the shu✏ing approach was faster534

and yielded lower FPR than the probabilistic approach while achieving similar power, so we used535

the shu✏ing approach for the results in this paper.536

Software availability537

The code implementing the MR-Twin package can be found at: https://github.com/nlapier2/MR-538

Twin. Scripts and instructions for repeating the experiments in this paper can be found at:539
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https://github.com/nlapier2/MRTwin-replication. This code is also available in the Supplemen-540

tal Code files. Please note that UK Biobank genotypes are not publicly released, so those wishing to541

replicate the experiments will first have to get access to that data via https://www.ukbiobank.ac.uk/enable-542

your-research/apply-for-access.543
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Figure 1: Illustrations of Mendelian Randomization assumptions and the MR-Twin framework. (A)
Directed Acyclic Graph (DAG) depicting variables and their relationships in a typical Mendelian
Randomization (MR) study, where X is the genotypic instrument, E is the exposure trait, and O is
the outcome trait. An external confounder Z, such as population stratification, can cause violations
of the MR assumptions. (B) If we have the parental haplotypes A, then X is independent of Z
given A. (C) Illustration of the MR-Twin workflow. Digital twin genotypes are sampled from the
parental genotypes. MR-Twin is a conditional randomization test, conditioned on A and therefore
immune to confounding from Z, in which the p-value is computed based on the quantile of the true
o↵spring’s MR-Twin statistic compared to the digital twins’ statistics.
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Figure 2: False Positive Rate (FPR) and Power comparison between various methods run on sim-
ulated data. (A) False positive rate (y-axis) under varying levels of confounding due to population
stratification (PS), with the x-axis describing the magnitude of the confounding e↵ect of population
labels on the exposure and outcome trait. (B) Power (y-axis) as a function of the magnitude of
the causal e↵ect of the exposure on the outcome trait (x-axis) in a setting with no confounding.
Results are averaged over 1000 simulation replicates.
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Figure 3: False Positive Rate (FPR) and Power comparison between various methods run on
simulated trio data. This is similar to Figure 2 except that IVW, Egger, Median, and Mode
are run on the o↵springs of the trio dataset instead of the large “external” group of unrelated
individuals, such that all methods have the same sample size. (A) False positive rate (y-axis) under
varying levels of confounding due to population stratification (PS), with the x-axis describing the
magnitude of the e↵ect of the population labels on the exposure and outcome trait. (B) Power
(y-axis) as a function of the causal e↵ect size (x-axis). Results are averaged over 1000 simulation
replicates.



MR P-Values MR-Twin P-Value

Traits IVW Egger Brumpton MR-Twin

LDL Chol. ! Total Chol. < 10�300 < 10�300 1.64⇥ 10�11  9.99⇥ 10�4

Weight ! BMI < 10�300 < 10�300 4.80⇥ 10�6  9.99⇥ 10�4

BMI ! DBP 2.24⇥ 10�26 5.64⇥ 10�1 3.46⇥ 10�2 2.69⇥ 10�1

BMI ! TDI 1.18⇥ 10�19 7.53⇥ 10�3 9.99⇥ 10�2 8.79⇥ 10�2

Glucose ! TDI 1.54⇥ 10�1 2.09⇥ 10�1 6.61⇥ 10�1 1.91⇥ 10�1

Height ! Body Fat 9.55⇥ 10�1 9.83⇥ 10�2 6.73⇥ 10�1 5.09⇥ 10�1

Table 1: Traditional MR results and MR-Twin results on selected trait pairs from the UK Biobank.
Bold numbers are significant at p < 0.05. Note that 9.99⇥ 10�4 = 1/1001 is the minimum p-value
for MR-Twin in this expriment, as 1000 digital twins were generated. Chol. = Cholesterol; BMI
= Body Mass Index; DBP = Diastolic Blood Pressure; TDI = Townsend Deprivation Index.


