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Abstract

Mendelian Randomization (MR) has emerged as a powerful approach to leverage genetic
instruments to infer causality between pairs of traits in observational studies. However, the re-
sults of such studies are susceptible to biases due to weak instruments as well as the confounding
effects of population stratification and horizontal pleiotropy. Here, we show that family data
can be leveraged to design MR tests that are provably robust to confounding from population
stratification, assortative mating, and dynastic effects. We demonstrate in simulations that our
approach, MR-Twin, is robust to confounding from population stratification and is not affected
by weak instrument bias, while standard MR methods yield inflated false positive rates. We
then conduct an exploratory analysis of MR-Twin and other MR methods applied to 121 trait
pairs in the UK Biobank dataset. Our results suggest that confounding from population strati-
fication can lead to false positives for existing MR methods, while MR-Twin is immune to this
type of confounding, and that MR-Twin can help assess whether traditional approaches may be

inflated due to confounding from population stratification.
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Introduction

Mendelian Randomization (MR) is a widely-used analytical tool that uses genetic variants (“genetic
instruments”) to determine whether one trait (the “exposure”) has a causal effect on another (the
“outcome”). With the availability of massive biobank datasets such as the UK Biobank (Bycroft
et al., 2018), MR analyses have become increasingly powerful and have been used to identify
causal relationships between numerous pairs of traits (Hemani et al., 2018; Wade et al., 2018;
Lyall et al., 2017; Haycock et al., 2017; Haase et al., 2012). The validity of MR rests on three
key assumptions (Lawlor et al., 2008): (i) that the genetic instrument is significantly associated
with the exposure; (ii) that the genetic instrument is independent of confounders of the exposure-
outcome relationship; (iii) that the genetic instrument affects the outcome only through its effect
on the exposure.

Unfortunately, the latter two assumptions are often violated in practice, due to several factors
including horizontal pleiotropy, population stratification (and related phenomena such as assortative
mating and dynastic effects), and batch effects. Even when these assumptions are met, the weak
effects of typical genetic instruments on the exposure coupled with spurious correlation between
genetic instruments and confounders (Burgess et al., 2011) can bias the results of MR analyses
(“weak instrument bias”). The problem of population stratification has been extensively studied in
the Genome-Wide Association Study (GWAS) literature, and approaches for mitigating its effects
have been developed, including the usage of Principal Components Analysis (PCA) and Linear
Mixed Models (LMMs) (Price et al., 2010). These approaches have generally been found to be
effective at reducing the confounding introduced by population stratification (Price et al., 2010).

However, recent studies have demonstrated that, with sample sizes as large as those found in
modern biobanks, even a small amount of residual population stratification can cause a considerable
amount of bias (Cook et al., 2020; Brumpton et al., 2020; Berg et al., 2019; Haworth et al., 2019),
and may even cause false positives in MR analysis (Haworth et al., 2019; Cinelli et al., 2022). In
addition, while the confounding effects of population stratification are well-known, less attention has
been directed towards confounding from other phenomena such as (cross-trait) assortative mating
and dynastic effects, which can also cause MR false positives (Brumpton et al., 2020; Hartwig

et al., 2018). Recent work has demonstrated that cross-trait assortative mating is widespread and
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substantially inflates genetic correlation estimates between many trait pairs (Border et al., 2022).

It has recently been proposed that family-based genetic datasets could be used in MR studies
to avoid confounding from population stratification (Brumpton et al., 2020; Pingault et al., 2018).
A recent suite of methods have been developed for this purpose, and were shown to reduce the
bias from this type of confounding (Brumpton et al., 2020). However, like other MR methods,
these methods are susceptible to weak instrument bias, which can be substantial for small family-
based datasets (Brumpton et al., 2020). In this paper, we introduce MR-Twin, a test for causal
effects between pairs of traits that is able to leverage family-based genetic data to provably control
for population stratification and utilize publicly-available summary statistics estimated in large
biobank datasets to achieve power competitive with top existing methods for the same sample size.
We develop versions of MR-Twin for trio, parent-child duo, and sibling data, evaluate MR-Twin’s
ability to control false positives due to population stratification and weak instrument bias, and

compare it with existing methods.

Results

Methods overview

In a Mendelian Randomization (MR) analysis, we wish to determine whether one phenotype (the
“exposure”) has a causal effect on another phenotype (the “outcome”) using genetic instrumental
variables, which can be either single nucleotide polymorphims (SNPs), a polygenic score, or other
genetic features. Under the assumption that the genetic instruments are associated with the expo-
sure and are independent of the outcome given the exposure, the MR effect estimate of the exposure
on the outcome will be valid even if there are unobserved confounders of the exposure-outcome re-
lationship. The independence assumption, however, is often violated by population stratification
(Figure 1A) or horizontal pleiotropy, as these phenomena cause the genetic instruments to be
correlated with the outcome through pathways other than those through the exposure.

MR-Twin is a method that uses family-based genetic data to construct a test for whether the
exposure has an effect on the outcome that is immune to confounding from population structure.
It is based on the key idea that the genotypes of observed individuals are independent of popu-

lation structure given the genotypes of the individuals’ parents, since the mechanisms by which
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genetic information is passed from parents to offspring are known (Figure 1B). In other words, con-
ditioned on the parental genotypes, population structure provides no additional information about
the distribution of the offspring’s genotypes. Thus, by conditioning on the parental genotypes,
confounding from population stratification can be avoided (Figure 1C), along with confounding
from other phenomena such as cross-trait assortative mating and dynastic effects which operate
through the parental genotypes (see Figure 1 of (Brumpton et al., 2020)).

We now outline the algorithm in the context of a trio design in which we have genetic data on
the parents and the offspring. Let X and O denote the genotypes and outcome phenotype values
respectively for some individual, and let (X,,; On)ﬁyzl, denote these across N trios. Also let P1 and
P2 denote the genotypes of the parents of the individual with genotypes X, and let A := (P1,P2)
refer to the set of parental genotypes. Let Z denote the set of external confounders measured on
the same individual, which we define as the set of confounders that satisfy X 1 Z | A. Thus,
population stratification is an external confounder (as are assortative mating and dynastic effects)
while horizontal pleiotropy is not. The key idea is that we can formulate a hypothesis test of a
causal effect conditional on the parental haplotypes A. Bates et al. (Bates et al., 2020) show that
such a test is also a test of the stronger null hypothesis of a causal effect conditional on (A, Z).

The way that this is accomplished is through a conditional randomization test, similar to the
Digital Twin Test proposed by Bates et al in the context of GWAS (Bates et al., 2020; Candes et al.,
2018). The idea is to sample so-called “digital twins” X from each set of parents A such that X | A

has the same distribution as X | A, which can easily be accomplished using the laws of Mendelian

N

n—1, and for

inheritance (Methods). We construct B such random samples across all trios, (X, O,,)
each set b of twins we compute a test statistic t, = t((X p; On)N_1; ,@l) representing the strength of
association between the genetically-predicted exposure and the outcome. We also compute a test

statistic for the true offspring of the trios, t* = ¢((X,; On)_y; B)

We can then obtain a p-value for a non-zero causal effect of the exposure on the outcome,

1+1{t,>t*}

p= 5 — - Lhe set of B statistics derived from the digital twins represents a null distribution

conditioned on the parental genotypes. If there is a true nonzero effect of the exposure on the
outcome, we expect the statistic derived from the true offspring to be stronger than statistics
derived from digital twins whose genotypes are randomly sampled from the parental genotypes.

The test statistic and algorithm are explained in more detail in the Methods section.
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MR-Twin controls for arbitrarily strong population stratification confounding in

simulations

Algorithm 1 Simulate genotypes under population structure

1. procedure SIMGENO(Fsr, groups, N,M) > Fgr is the fixation index, groups is the number of
populations, N is number of samples, M is number of SNPs.

Initialize the average MAF f; "% Unif(0.05,0.5) for each SNP ;.

for k < groups do

£ ~ Beta(FUZ50) (1 — ) U Es))

s Fsr
Generate genotype matrix X (¥ of population k such that xf} ~ Bin(2,f]’-‘3) for each

individual ¢ and SNP j.
end for
X = [X(l); e ;X(g“’“ps)] > Stack the rows of each genotype matrix
return Genotype matrix X

end procedure

Algorithm 2 Simulate population-stratified phenotypes

1: procedure GETPHENO(X, U, h2, ag, Yue, Yuo) > X is the normalized genotype matrix, U is
a vector with the fixed population label for each sample, h? is heritability of exposure E, ag is
effect of E on outcome O, vy, and 7, are fixed confounding effects of U on E and O.
Generate genetic coefficient 8 ~ N(0, h2Iy;)
Compute 062E =1-h? 0620 =1-a%
Simulate F = X8 + YU + €. where ¢, ~ N (0, 06261)
Simulate O = apF + Y,,U + €, where ¢, ~ N (0, ‘7520[)
return (E,O)
end procedure

We compared the performance of MR-Twin to other MR methods via simulations consisting
of two populations with allele frequency differences modeled according to the standard Balding-
Nichols model (Balding and Nichols, 1995), following previous works (Ochoa and Storey, 2021;
Conomos et al., 2016; Chen et al., 2015; Hubisz et al., 2009; Price et al., 2006; Pritchard et al.,
2000). The procedure for simulating the genotypes is outlined in Algorithm 1. We use this algorithm
to simulate “external” samples (non-trio data, e.g. from a biobank), as well as the parents for the
trios. The offspring genotypes for the trios can then be easily sampled given the parental genotypes
(Methods). For each sample, we retain the population label, a binary variable indicating which
population each sample belongs to. Unless otherwise specified, each simulation had 50,000 (false
positive rate simulations) or 100,000 (power simulations) external samples and 1,000 trio samples

evenly split between two populations with fixation index Fgp = 0.01 and 100 SNPs, 50 of which
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were causal for the exposure trait. Unless otherwise specified, the heritability of the exposure trait
was set to h2 = 0.2.

Next, we simulate both the exposure and outcome phenotypes following a linear model, as
outlined in Algorithm 2. This model allows the population labels from the first step to have an
effect on the exposure and outcome phenotypes, which models population stratification that violates
the MR assumptions. We use this setting to assess the false positive rates (FPR) of methods under
population stratification, allowing the effects of the population labels on the exposure and outcome
phenotypes to range from 0 (no confounding) to 0.8 (substantial confounding). In a separate set of
simulations to assess power, we set the confounding effect to 0 and varied the causal effect.

We performed 1000 simulation replicates under these settings, each time simulating a set of
external and trio genotypes and phenotypes according to the chosen parameters, performing linear
regression between each SNP and the exposure and outcome phenotypes, and using the resulting
association statistics as input to each of the MR methods. We excluded SNPs with association
p-values of above 0.05/M (M = 100) with the exposure phenotypes in the external data in order to
limit weak instrument bias (Burgess et al., 2011). The methods we assessed include the trio mode
of MR-Twin, standard inverse-variance weighted (IVW) MR (Burgess et al., 2013), MR-Egger
(Bowden et al., 2015), the Weighted Median Estimator (Bowden et al., 2016), the Mode-Based
Estimator (Hartwig et al., 2017), and a method introduced by Brumpton et al (Brumpton et al.,
2020) to use family data to control for confounding due to population stratification and other
population-related effects. Brumpton et al provide a suite of methods for different family datasets,
following previous work such as (Fulker et al., 1999); here we focus on the trio-based method they
describe (Brumpton et al., 2020), and simply refer to that method as “Brumpton” below.

The trio mode of MR-Twin maintained a calibrated FPR irrespective of the strength of con-
founding (Figure 2A). Non-family-based methods such as IVW, Egger, Median, and Mode all
displayed substantially inflated FPR in the face of confounding consistent with their sensitivity to
potential residual population stratification. The Brumpton method also displayed slightly inflated
FPR, which increased with the strength of the confounding effect, likely due to weak instrument
bias (Brumpton et al., 2020). To mitigate the impact of weak instrument bias, we applied a com-
mon approach employed in MR studies (Burgess et al., 2011) that involves filtering out variants for

which the F-statistic of the association signal is low (F' < 10 following previous recommendations).
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This rendered the FPR inflation negligible, but also rendered Brumpton substantially less powerful
than MR-Twin, whereas the “unfiltered” mode had similar power to MR-Twin (Figure 2B). Results
with confidence intervals are shown in Figure S10. We further investigated the weak instrument
bias by running simulations with no SNP filtering based on external data and with increasing num-
bers of SNPs — settings expected to generate large numbers of weak instruments — and confirmed
that Brumpton had greater FPR inflation in these settings while MR-Twin remained calibrated
(Figure S11) and did not lose power (Figure S12).

The standard MR methods (IVW, Egger, Median, and Mode), when run on the external data,
had substantially higher power than the family-based methods, MR-Twin and Brumpton (Figure
2B). We performed additional simulations to understand if the lower power of MR-Twin was due to
the smaller number of trios as opposed to methodological limitations. When applied to the offspring
in each trio (Figure 3), the standard MR methods still had substantially inflated FPR (Figure 3A)
but similar power to MR-Twin and Brumpton (Figure 3B). We also evaluated the FPR and power
of these methods under varying number of trios (Figure S1). We observed that increasing number
of trios increased power for all methods, as expected, suggesting that the family-based methods can
be expected to obtain increased power as more genetic family data are ascertained in the future.
The relative power of the methods remained roughly consistent across these experiments.

We also evaluated the Area Under the Receiver Operating Characteristic Curve (AUC-ROC;
Figures S5 and S6). Comparing the two main family-based approaches, MR-Twin generally had
higher AUC than Brumpton (filtered). Predictably, the AUC of standard MR methods drops
sharply when there is confounding, and MR-Twin outperforms these methods in most such cases,
though Egger was a notable exception in our findings and remained competitive with family-based
approaches even under confounded settings. Similarly to our findings in Figures 2 and 3, family-
based methods are more competitive with standard MR methods when run on similar sample sizes.
As an additional sensitivity analysis, we also assessed the FPR (Figure S7) and Power (Figure S8)
of methods in settings where there are very few instruments or very low heritability. The trends
were broadly similar to those seen in Figures 2 and 3. MR-Twin maintained a calibrated FPR in
all settings, although it did suffer a loss of power when heritability was very low (Figure S8B and
S8D).

We performed simulations increasing the magnitude of population structure as measured by



183

184

185

186

187

188

189

190

191

192

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

the Fgr (without necessarily increasing the confounding strength), and observed that increasing
the population structure leads to further FPR inflation for standard MR methods (Figure S2). We
observed inflated FPR for standard MR methods even when there is no confounding (stratification)
for large values of Fgp (Figure S2) likely due to correlation or linkage disequilibrium among the
genetic variants induced by population structure. The standard implementation of IVW and Egger
(Yavorska and Burgess, 2017; Broadbent et al., 2020) allows the user to pass in a variant correlation
matrix, which removed the FPR inflation with no stratification (Figure S2); other methods such
as Median and Mode do not currently have this option.

Next we assessed the runtime of methods run on the trio data (Figure S3). Brumpton, along
with non-trio based methods (e.g., IVW), had similar run times (<1-5 seconds per simulation
replicate); for succinctness, only Brumpton is shown. MR-Twin (with 100 simulated digital twins)
took roughly one minute per simulation replicate under the simulation settings described above,
with time increasing to up to four minutes if the number of families or SNPs was increased. The
number of digital twins to simulate for MR-Twin involves a trade-off between speed and stability of
results. We assessed the stability of MR-Twin with different numbers of digital twins, with results
shown in Figure S9. We interpreted these findings as indicating that 100 digital twins are likely
stable enough for simulations for which many replicates are run and speed is a priority, but 1000
or more digital twins is recommended for one-off real data analysis. Therefore we simulated 100
digital twins in our simulations and 1000 in our real data analysis. We note, however, that while the
MR-Twin runtime increases linearly with the number of digital twins simulated, the generation and
statistic computation for the digital twins can be done in parallel, so many twins can be simulated
efficiently given multiple compute cores or nodes. For clarity of results, we did not take advantage
of this in our runtime assessment.

Finally, MR-Twin also enables users to use parent-child duo or sibling datasets (Methods). We
assessed the performance of these modes versus the trio mode of MR-Twin (Figure S4). We found
that the duo and sibling modes, while having lower FPR than most standard MR methods, did
not maintain a calibrated FPR at high levels of confounding, which is expected since the precise
sampling of offspring genotypes from parents is not possible when either or both of the parental

genotypes are not available.
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Application to trio data in the UK Biobank

In order to assess the results given by MR-Twin relative to other approaches in a real data context,
we next applied MR-Twin and four other MR methods (IVW, Egger, Median, and the Brumpton et
al. method (Brumpton et al., 2020)) to 144 real trait pairs in the UK Biobank (Bycroft et al., 2018).
These consisted of all pairwise combinations of 12 metabolic, anthropometric, and socioeconomic
traits that were widely measured among the UK Biobank participants (listed in Table S1). We
isolated 955 White British genetic trios from the full UK Biobank dataset (Supplemental Materials)
and used PLINK (Purcell et al., 2007) to run linear regression on the remaining unrelated White
British individuals for these 12 traits, including the top 20 principal components (PCs), age, and
sex as covariates. The genetic instruments selected for each analysis were the SNPs with genome-
wide significant p-values (< 5.0 x 10~%) for the exposure trait, after linkage disequilibrium (LD)
pruning was performed so that none of these instruments were in substantial LD with one another
(Supplemental Materials). Ignoring the degenerate cases where the exposure and outcome were the
same trait or where there were no significant SNPs for the exposure trait (as was the case for the
Townsend Deprivation Index [TDI]), there were 121 usable trait pairs.

Table 1 shows the results for six selected trait pairs (excluding Median for brevity because it gave
similar results to IVW), while Supplemental Table S2 shows the full set of analyses. (Brumpton
was run with several different variant filtering settings to assess the impact of potential weak
instrument bias (Supplemental Materials); results for all runs are given in Supplemental Table S2.)
For Table 1, we selected six analyses: two positive controls representing causal effects that are true
by definition (LDL Cholesterol — Total Cholesterol and Weight — Body Mass Index [BMI]), two
negative controls that represent seemingly implausible effects (Glucose — TDI and Height — Body
Fat), and two trait pairs with unclear or conflicting evidence (BMI — Diastolic Blood Pressure
[DBP] and BMI — TDI). In particular, previous studies have identified a significant effect for BMI
— DBP (Lyall et al., 2017) and for BMI — TDI in women (Tyrrell et al., 2016) with IVW analysis,
although Egger analysis did not replicate the significant findings in either case (Lyall et al., 2017;
Tyrrell et al., 2016).

All methods performed as expected on the controls, with highly significant p-values for positive

controls and insignificant p-values for negative controls. For BMI — DBP, IVW and Brumpton



241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

266

267

268

yielded significant results while Egger and MR-Twin did not. For BMI — TDI, IVW and Egger
yielded significant results while Brumpton and MR-Twin did not. In general, IVW tended to yield
much stronger p-values than other methods and the family-based methods (Brumpton and MR-
Twin) tended to be conservative (Supplemental Table S2), in line with our simulation results. In
particular, of the 121 usable trait pairs, IVW identified 78 as significant, Egger identified 56 as

significant, Brumpton identified 20 as significant, and MR-Twin identified 19 as significant.

Discussion

We introduced MR-Twin, a method for testing causal effects between pairs of traits within a
Mendelian Randomization (MR) framework, which is provably robust to confounding of any strength
resulting from population stratification. Our primary contributions are the following: (i) develop-
ing a digital twin test, originally proposed by Bates et al (Bates et al., 2020) in the context of
genetic association studies, for MR, coupled with a novel statistic for this test; (ii) demonstrating
that, by leveraging trio data, our proposed framework is robust to confounding due to population
stratification and to biases from the inclusion of genetic instruments with weak effects; (iii) ex-
tending our framework to the setting of sibling data, a setting not considered by Bates et al; (iv)
conducting the first (to our knowledge) large-scale evaluation of the digital twin test framework in
comparison with existing methods for MR. We demonstrated that existing MR methods, including
those designed to correct for confounding resulting from horizontal pleiotropy, are prone to false
positives when there is confounding from population stratification.

While population stratification was the focus of this paper, the MR-Twin framework also pro-
vides immunity to several other types of confounding effects. Theory dictates that MR-Twin is
immune to confounding from familial effects such as assortative mating and dynastic effects since
these effects operate through the parental genotypes (see Figure 1 of (Brumpton et al., 2020)),
though we do not explicitly test this in this manuscript. As recently demonstrated, cross-trait
assortative mating is pervasive and impacts many common genetic analyses (Border et al., 2022)
including MR (Hartwig et al., 2018), so this represents another valuable aspect of MR-Twin even
if population stratification is believed to be well-controlled in a particular study. In general, MR-

Twin is immune to any confounder that is independent of the genotypes of offspring given the
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genotypes of their parents. We note that when we refer to “immunity” we mean this in a theoreti-
cal sense — for instance, under the assumption that the model for Mendelian inheritance is correct.
In our particular implementation, we assume that the genetic instruments have been selected to be
roughly independent and thus we can sample digital twin genotypes from the parental genotypes
using a binomial model. In practice, of course, genetic variants on the same chromosome are never
perfectly independent, though with appropriate caution the dependence is weak enough that the
effect on calibration should be negligible. More complex models of meiosis will also rely on other
factors such as haplotype phasing accuracy.

In addition to population and familial effects, we highlight two under-appreciated sources of bias
in MR studies, both of which MR-Twin avoids without requiring the user to modify any parameters
or arguments. The first is weak instrument bias (Burgess et al., 2011), which can bias the effect
estimate of standard MR methods, including the Brumpton approach (Brumpton et al., 2020).
This accounts for the Brumpton method yielding inflated FPRs when the confounding effects were
strong (Figure 2A). One of the most common ways to control for weak instrument bias is by filtering
out variants with a weak association signal, often with a threshold of F' < 10 for the association
between a variant and the exposure trait. However, this procedure has been criticized (Burgess
et al., 2011) and may not fully correct for weak instrument bias. Other MR methods may also
be affected by this bias. In two-sample study designs, the direction of the bias is towards the null
rather than the confounded exposure-outcome association estimate (Lawlor, 2016), but the bias
remains.

Additionally, we found that standard MR methods (IVW, Egger, Median, Mode, etc) may
have inflated FPR when there is population structure that induces correlation between variants,
even in the absence of stratification (Figure S2). The reason for the induced correlation is that,
even though the variants were simulated independently, they were correlated with one another
through the population labels. For example, suppose we have two variants, X1 and X2 and a
population label U. The causal diagram for these three variables is X1 < U — X2, so X1 and X2
are correlated. Our findings corroborate earlier findings that correlation between SNPs can cause
calibration issues in MR methods (Burgess et al., 2013). This phenomenon should be taken into
account when performing MR simulations or when applying MR to real datasets where variants

may be correlated. In the latter case, users should obtain SNP correlations from an appropriately
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population-matched (Peterson et al., 2019) and sufficiently large (Benner et al., 2017) reference
panel.

MR-Twin avoids both of these issues, without requiring the user to specify a SNP correlation
matrix or apply various approaches to mitigate weak instrument bias. First, both MR-Twin and
Brumpton avoid the correlated-variant issue because they condition on parental genotypes, severing
the link between the offspring genotypes and the population structure. Second, MR-Twin would not
lose FPR calibration due to weak instrument bias, because this phenomenon has nothing to do with
the aspects of the MR-Twin test that guarantee immunity from confounding due to population and
familial effects (sampling digital twin genotypes conditioned on parental genotypes). Theoretically,
it is possible that the bias in the MR effect estimate used in the MR-Twin statistic (Methods) could
lower power, but because the MR effect estimate equally affects both the digital twin statistics and
the true offspring statistics, a reduction in power seems unlikely and was not observed empirically
(Figure S12).

There is extensive literature on family-based methods for avoiding confounding due to popula-
tion structure in genome-wide association studies or linkage analysis (Weiner et al., 2017; Laird and
Lange, 2006; Abecasis et al., 2000; Fulker et al., 1999; Thomson, 1995; Spielman et al., 1993). One
prominent example is the transmission disequilibrium test (TDT) (Spielman et al., 1993) and the
more-recent polygenic TDT (pTDT) (Weiner et al., 2017). Bates et al (Bates et al., 2020) compare
the digital twin test (DTT) to the TDT and show that the DTT is a generalization of the TDT
and highlight some of its benefits. Because it is not immediately obvious how to adapt the TDT
and pTDT to MR, we do not evaluate their potential use in this context.

There are several considerations that come into play when applying the MR-Twin method, which
we note here. First, the number of digital twins simulated involves a trade-off between speed and
precision (Figure S9). While MR-Twin was slower than competing MR methods (Figure S3), it still
ran in a few minutes or less per run on both simulated and real data analyses, justifying the use of
a fairly large number of digital twins if possible. Consequently, we recommend 1000 or more digital
twins for real data analysis, which should be computationally feasible and precise (and, again,
parallelization can make this quite efficient). 100 digital twins is likely sufficient in simulations
where there are many replicates and speed is the paramount concern. Second, the populations

of the external and family datasets should be similar. This is natural for biobanks like the UK
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Biobank, but can be more challenging when attempting to combine separate datasets. Third, care
should be taken to ensure that the normalization method used and covariates controlled-for are
similar in the external and trio datasets in order to avoid potential loss of power.

While the genetic trio offspring used in our UK Biobank analysis were all adults (as all partic-
ipants in this dataset were aged 40-69 at collection time (Bycroft et al., 2018)), other trio datasets
may contain young children. This is a potential issue because some commonly-analyzed traits such
as height and weight may not have the same relationship in youths or adolescents as they do in
adults, and variants that affect these traits may not yet have realized their full effect in the chil-
dren yet. Dealing with such time-varying exposures in the context of mendelian randomization is
an area of ongoing research (Labrecque and Swanson, 2019), and it is not clear how this would
impact MR-Twin results. Even when the offspring of the trios are all adults, it may be difficult
to adequately sample certain traits. For example, we were not able to perform MR analysis for
complex traits such as heart disease, since none of the offspring in our sample had developed heart
disease, largely because all offspring in our sample were aged 40-49.

We note a few trends seen across many trait pairs in the real data results, reflecting some
practical considerations. First, all standard MR methods identified substantially more trait pairs
than did either family-based approach. Given our simulation results showing a large power differ-
ence in the methods when run with different sample sizes (Figure 2) but similar power when run
with the same sample size (Figure 3), along with the fact that the UK Biobank has many more
unrelated individuals than trios, we believe that this difference is largely due to the difference in
the available sample sizes between unrelated and trio data. The number of trios available as part
of public datasets is currently relatively small, limiting the power of family- or trio-based methods,
but future increases in the number of available trios will lead to increases in the power of MR-Twin
and other family-based methods. Second, some traits pairs had quite different results when the
exposure and outcome traits were switched. For example, none of the standard MR methods had
significant p-values for DBP — Weight, but all were significant for Weight — DBP (Supplemental
Table S2). This may be due to one causal direction being correct while the other is incorrect, but
may also be affected by factors such as differences in the heritability and/or polygenicity between
the two traits.

Several extensions to the methods presented here are also possible. While we explored contin-
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uous traits in this paper, further work needs to be done to apply MR-Twin to binary phenotypes
such as disease labels. First, a different statistic such as binary cross entropy (rather than our
negative squared loss statistic) may be more appropriate. Second, the use of the external effect size
estimates in the statistic may have to be modified, depending on the regression method used and
the interpretation of the estimates. For example, it would be inappropriate to replace the effect
size estimates in our statistic with odds ratios produced by logistic regression. Even for linear
data, it is possible that a different statistic than the one we proposed would be more powerful in
some situations. Finding most-powerful statistics for a given significance threshold is a direction
for future work. Future work could also improve upon the sibling mode of MR-Twin by using
population-based priors to infer parental genotypes with a greater level of accuracy, thereby ob-
taining superior control of false positives. This approach could in principle be developed for and
applied to more extended pedigrees.

In the Digital Twin Test paper (Bates et al., 2020), Bates et al propose using a Hidden Markov
Model (HMM) to simulate digital twins from the parental haplotypes, the latter being generated by
phasing the parental genotypes. For the simplicity of avoiding this phasing step and due to the fact
that genetic instruments in MR studies are usually selected to be roughly independent (Burgess
et al., 2013), we used a simpler method for simulating digital twins using binomial draws from the
parental genotypes (Methods). However, the variants used may not be independent even if they
appear to be (Burgess et al., 2013), or one may wish to include correlated variants to increase
power. Extending MR-Twin to perform the HMM-based digital twin simulation could therefore
increase power.

Finally, a pre-print from Tudball et al. proposes a randomzation-based approach to MR (Tudball
et al., 2022) that, while being conceptually similar, differs from MR-Twin in a few practical aspects.
First, Tudball et al. (Tudball et al., 2022) do not discuss the use of external summary statistics to
increase power, whereas this is a core part of the MR-Twin approach (as well as in the Digital Twin
Test of Bates et al. (Bates et al., 2020)). Second, Tudball et al. develop family-based propensity
scores for individual SNPs and suggest aggregating them with Fisher’s method or another p-value
aggregation method, which is substantially different from our proposed sum-of-squares statistic
over all SNPs (Methods). Finally, Tudball et al. employ the HMM-based digital twin simulation

model, while (as discussed above) we employ the simpler binomial model. Nevertheless, the broad
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conceptual similarities between the two methods highlight the promise of randomization-based
approaches to make MR findings more robust and the value of continued development to extend

these approaches to more complex pedigrees.

Methods

The MR-Twin framework

We first introduce the standard Mendelian Randomization (MR) model, without any confounding.
Suppose that for a collection of N individuals we obtain their genotypes at M SNPs, and a phe-
notypic measure for an exposure trait and an outcome trait. For a given individual n we denote
the genotype vector as X,,, the genotype at some SNP j as X,,;, the exposure trait as E,, and
the outcome trait as O,. Let (X,,, E,, On)nN:1 denote the collection of these genotypes and traits
over all N individuals, where (X,,) is an (N x M) matrix and (E,) and (O,,) are (N x 1) vectors.
Finally, let X, E, and O refer to the genotype vector, exposure trait, and outcome trait for a generic
individual.

MR uses the genetic “instruments” X to estimate the effect of an “exposure” trait E on an
“outcome” trait O. This estimate is valid regardless of any confounder U of the association between

E and O, assuming that the following conditions hold (Lawlor et al., 2008):
1. The genetic instrument X is significantly associated with the exposure trait F;

2. The genetic instrument X is independent of any variables (such as those in U) that confound

the relationship between E and the outcome trait O;

3. The genetic instrument X is not associated with O except due to its association with F.

The latter two criteria can be captured by the independence statement

XUO|E (1)

Assuming these conditions hold, and assuming a linear model for the relationships between the
genotypes and phenotypes (a typical assumption in MR analyses), we can test the null hypothesis

that there is no direct causal effect of E on O,
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HO : 55‘0 = 0 (2)

where Sgo is not obtained by direct regression but rather via instrumental variables estimators
such as the ratio estimator Spo = fxo0/Bxe (when a single instrument is used) or by two stage
least squares or inverse-variance weighting (when multiple instruments are used) (Burgess et al.,
2013).

However, in the case where we have residual population stratification, denoted Z (Figure 1A),
this independence assumption is violated. This is because, using terminology from Pearl’s graphical
formalism (Pearl, 1995), X < Z — O is a backdoor path between X and O, so the two are not
marginally independent. Conditioning on E fails to block this backdoor path (i.e. see Figure 1A).
Residual population stratification generally cannot be controlled for directly, though approaches
such as Principal Components Analysis (PCA) and Linear Mixed Models (LMMs) have been used
to reduce its effect (Price et al., 2010).

MR-Twin (Figure 1C) is a method that uses family-based genetic data to avoid this confounding.
Suppose that, corresponding to each individual’s genotypes X, we also observe the genotypes P1
and P2 of their parents (we later relax the trio assumption to allow for parent-child duo or sibling
data). Let A := (P1,P2). According to the graphical criteria for d-separation developed by Pearl
(Pearl, 1995), A d-separates X from Z (Figure 1B):

X1UZ|A (3)

This means that, assuming X does not affect some unmeasured variable which in turn affects
O (i.e. no horizontal pleiotropy),
X1 O|EA (4)

thereby satisfying the MR conditions regardless of any residual population stratification.

As shown by Bates et al (Bates et al., 2020), the Digital Twin Test framework outlined in
Algorithm 3 can be used to perform a hypothesis test conditioned on A. The resulting test involves
computing the test statistic t* = t(X,; On)N_;; ,3) (we give the statistic used in this paper in “MR-

Twin Test Statistic Incorporating External Weights” below). To perform a test, we construct B
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random samples (Xn) where each X is a random sample given A with the same distribution as
X given A (such a sample can be easily constructed using Mendelian inheritance; see “Generating
Digital Twins” below). We refer to these samples as “digital twins”. For each such sample b, we
then compute t, = t((X n;On)ivzl;B), representing a null distribution of genotypes conditioned
on the parental genotypes. This, in turn, gives us a p-value for t* = Hlliiszt*, where B is the
total number of permutations we perform. The MR-Twin test is therefore a kind of conditional
randomization test (Bates et al., 2020; Candes et al., 2018).

Importantly, the proposed algorithm can leverage effect size estimates (B) from any external
GWAS datasets (even GWAS datasets where such estimates might be biased due to population
stratification) while providing valid tests. The proposed algorithm is robust to any external con-

founder satisfying Equation 3, such as population stratification, assortative mating, and dynastic

effects.

Algorithm 3 Outline of MR-Twin

1. Input: Effect sizes for SNPs: 3, trio data {(Xn, An,O)_1}
2. Compute the MR-Twin test statistic t* = t((Xn; On)A_1; B)
3. Forb=1 to B:
(a) Sample digital twins X, given their ancestors A,,.
(b) Compute the MR-Twin test statistic t, = t((Xn; On)R_1; B)

141{t,>¢"}

4 p="77%

Output: p-value: p

Next, we detail the MR-Twin test statistic, digital twin generation algorithms, and formal

proofs of the exchangeability of digital twins with each other and their real counterparts.

Conditional randomization test for mendelian randomization

The MR-Twin test is related to the digital twin test (Bates et al., 2020) and likewise is a kind of
conditional randomization test (Candes et al., 2018). Like the digital twin test, MR-Twin leverages
the fact that offspring genotypes are conditionally independent of “external” confounders such as
population structure given the parental genotypes and uses a conditional randomization test to test
the weaker, but equivalent, null hypothesis of no effect conditioned upon the parental genotypes.

Let X be a vector of offspring genotypes, and let A be the genotype vectors of the two parents
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of the offspring. A may be directly observed, as in trio data, or inferred using parent-child duo
or sibling data (see “Generating Digital Twins”). Let Z be one or more “external” confounders,

defined (Bates et al., 2020) as

X1 Z|A (5)

Thus, population structure is an external confounder, while horizontal pleiotropic traits are not.

We therefore have

X|(Z,A) £ X|A (6)

Assuming that all confounders are external and that X is significantly associated with E, O is
independent of X given A under the MR null hypothesis that E has no effect on O. This is because
X would not have any effects on O mediated by E (since E does not affect O under the MR null
hypothesis), and all paths not through E are blocked by conditioning on A as shown in Equation

6. We therefore want to test

X1UO|A (7)

If this holds, then we cannot rule out that either X has no effect on E or E has no effect on O.
We test this null hypothesis via a conditional randomization test (Candes et al., 2018).

In testing this null hypothesis, it is helpful to be able to leverage SNP effect sizes estimated
from large, external datasets (such as publicly released summary statistics for resources like the UK
Biobank (Bycroft et al., 2018)), as this will often yield more statistically significant variants and
better effect size estimates than those generated using small genetic family datasets. We therefore

note that the following property also holds:

X1BlA (8)

where we use the shorthand B to refer to the estimated effect sizes of each SNP on the exposure
and outcome traits.

We construct “digital twins” X sampled from the parental genotypes via Mendelian inheritance

18



477

478

479

480

481

482

483

484

485

486

487

488

489

490

(see “Generating Digital Twins”) such that

X|A £ X|A (9)

Given equations 7, 8, and 9, we have the following under the null hypothesis:

X|(A,3,0) £ X|A (10)

X|(A, 8,0) £ X|A (11)

It follows from equations 9, 10, and 11 that the digital twins are exchangeable under the null

hypothesis:

~ A d A~
X|[(A, 8,0) = X|[(A, 3,0) (12)
Therefore, given some statistic 7' = ¢((X,; On)_y; [3'), where N is the number of families,
~ d ~ A
T|(A,B,0) =TI|(A,B,0) (13)

under the null, where T = t((X; On)N_; B) We can then use the procedure outline in Algo-

rithm 3 to obtain a p-value for this test statistic (Candes et al., 2018).

MR-Twin test statistic incorporating external weights

We construct a test statistic based on a negative sum of squares loss when using X to predict O
via an MR estimate for the effect of £ on O. First, we leverage the effect sizes from the external
dataset of the genotype on the exposure trait 3 x e to obtain the genetically-predicted exposure

trait values:

En = Z BXE,anj (14)
J

for each individual n and SNP j. We then compute the MR estimate for the effect of the exposure

trait on the outcome trait, B ro. This estimate may be a conventional Inverse Variance Weighted
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(IVW) estimate (Burgess et al., 2013) or various statistics designed to be robust to pleiotropy such
as the Egger-based statistic (Bowden et al., 2015), the weighted median statistic (Bowden et al.,
2016), or others. We then predict the outcome trait for each individual n as O, = ﬁ 20 En. Finally,
we compute the negative squared error of these predictions — Zn(én — Oy)?, summed across all

individuals. The full statistic is then

H(Xn; On)iZ1: B) = = ((Bro Z(BXE,anj)) —Oy)? (15)

Generating digital twins

We have assumed that trio data is available thus far for simplicity. However, the MR-Twin frame-
work can also be used when parent-child duo data or sibling data are available. Here we discuss

the algorithms used to generate digital twins given trio, parent-child duo, or sibling data.

Trio and duo modes

We assume that the SNPs used in the MR instrument are independent, a common assumption when
multi-SNP instruments are used in MR (Burgess et al., 2013). Therefore, we separately sample
the genotype of each SNP of the digital twin given the parent and/or offspring genotypes at that
SNP. Let (D,,) be the (N x M) matrix of digital twin genotypes we will sample, corresponding to
the true “offspring” genotypes in (X,,). Further, let n index some family and j index some SNP,
such that P1,,; (for example) is the genotype for one parent in family n at SNP j. If we have both
parents available, sampling D,,; is straightforward. Because the SNPs are considered independent,
we do not need to know the parental haplotypes. If a parental genotype P1,; is 0 or 2, respectively,
then a 0 or 1, respectively, is inherited by D,;. If the parent genotype is 1, then either 0 or 1 is
inherited with 50% probability each. D,,; inherits alleles from the two parents independently. This

can be summarized as

D,,; ~ Bern(P1,;/2) + Bern(P2,;/2) (16)

where Bern stands for the Bernoulli distribution, for each family n and SNP j.

If we only have one parent genotype available, then following Bates et al (Bates et al., 2020),
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we fix the offspring’s haplotype from the unobserved parent and only simulate a random draw from
the observed parent’s haplotype. If the observed parent is homozygous, then the allele inherited
from that parent is fixed as well, so D,,; = X,,;. Otherwise, the allele inherited from this parent
will be Bern(0.5). In principle, 0.5 could be replaced with some value based on population allele
frequencies. Similarly to the above, the model for the allele from the other parent can be written

as Bern(X,,;/2). Thus, if the parent is a heterozygote, we have

D,; ~ Bern(1/2) 4+ Bern(X,;/2) (17)

Sibling mode

In the case where we observe sibling genotypes but not the genotypes of their parents, we assessed
two potential approaches. In either case, the observed sibling information is used to infer the
probabilities of digital twin genotypes based on the fact that the sibling genotypes give information
about the probabilities of various parental genotypes. For instance, a child with a 2 genotype at a
SNP guarantees that neither parent has a 0 genotype at that SNP, and makes it more likely that
the parents have 2 genotypes than 1 genotypes. Most simply, if one sibling has a 2 genotype at a
SNP and the other sibling has a 0, then the parents must both be heterozygotes. In all other cases,
approximation is needed.

The first approach is straightforward and involves randomly drawing two haplotypes from the
observed sibling haplotypes to generate a digital twin. This shuffling approach gives a rough
approximation of the likelihood of digital twin genotypes given the information the observed siblings
provide. The second approach, described in the Supplemental Materials, involves using the sibling
data to infer a distribution over the possible parents, then performing a weighted random draw of
digital siblings based on those parents. In practice, we found that the shuffling approach was faster
and yielded lower FPR than the probabilistic approach while achieving similar power, so we used

the shuffling approach for the results in this paper.

Software availability

The code implementing the MR-Twin package can be found at: https://github.com/nlapier2/MR-

Twin. Scripts and instructions for repeating the experiments in this paper can be found at:

21



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

https://github.com/nlapier2/MRTwin-replication. This code is also available in the Supplemen-

tal Code files. Please note that UK Biobank genotypes are not publicly released, so those wishing to

replicate the experiments will first have to get access to that data via https://www.ukbiobank.ac.uk/enable-

your-research /apply-for-access.
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Figure 1: Illustrations of Mendelian Randomization assumptions and the MR-Twin framework. (A)
Directed Acyclic Graph (DAG) depicting variables and their relationships in a typical Mendelian
Randomization (MR) study, where X is the genotypic instrument, F is the exposure trait, and O is
the outcome trait. An external confounder Z, such as population stratification, can cause violations
of the MR assumptions. (B) If we have the parental haplotypes A, then X is independent of Z
given A. (C) Ilustration of the MR-Twin workflow. Digital twin genotypes are sampled from the
parental genotypes. MR-Twin is a conditional randomization test, conditioned on A and therefore
immune to confounding from Z, in which the p-value is computed based on the quantile of the true
offspring’s MR-Twin statistic compared to the digital twins’ statistics.
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Figure 2: False Positive Rate (FPR) and Power comparison between various methods run on sim-
ulated data. (A) False positive rate (y-axis) under varying levels of confounding due to population
stratification (PS), with the x-axis describing the magnitude of the confounding effect of population
labels on the exposure and outcome trait. (B) Power (y-axis) as a function of the magnitude of
the causal effect of the exposure on the outcome trait (x-axis) in a setting with no confounding.
Results are averaged over 1000 simulation replicates.
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Figure 3: False Positive Rate (FPR) and Power comparison between various methods run on
simulated trio data. This is similar to Figure 2 except that IVW, Egger, Median, and Mode
are run on the offsprings of the trio dataset instead of the large “external” group of unrelated
individuals, such that all methods have the same sample size. (A) False positive rate (y-axis) under
varying levels of confounding due to population stratification (PS), with the x-axis describing the
magnitude of the effect of the population labels on the exposure and outcome trait. (B) Power
(y-axis) as a function of the causal effect size (x-axis). Results are averaged over 1000 simulation
replicates.



MR P-Values MR-Twin P-Value
Traits IVw Egger Brumpton MR-Twin
LDL Chol. — Total Chol. < 10300 < 107390 164 x 10711 <9.99 x 1074
Weight — BMI < 107300 <107300 480 x 1076 <9.99 x 1074
BMI — DBP 224 x10726 564 x107! 3.46 x 1072 2.69 x 107!
BMI — TDI 1.18 x 10712 753 x 103 9.99 x 1072 8.79 x 1072
Glucose — TDI 1.54 x 1071 2.09 x 10! 6.61 x 1071 1.91 x 1071
Height — Body Fat 9.55 x 1071 9.83 x 1072 6.73 x 107! 5.09 x 107!

Table 1: Traditional MR, results and MR-Twin results on selected trait pairs from the UK Biobank.
Bold numbers are significant at p < 0.05. Note that 9.99 x 10~* = 1/1001 is the minimum p-value
for MR-Twin in this expriment, as 1000 digital twins were generated. Chol. = Cholesterol; BMI
= Body Mass Index; DBP = Diastolic Blood Pressure; TDI = Townsend Deprivation Index.



