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Causal effects on complex traits are similar
for common variants across segments of
different continental ancestries within

admixed individuals
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Individuals of admixed ancestries (for example, African Americans) inherit
amosaic of ancestry segments (local ancestry) originating from multiple
continental ancestral populations. This offers the unique opportunity of
investigating the similarity of genetic effects on traits across ancestries
within the same population. Here we introduce an approach to estimate
correlation of causal genetic effects (r,4mi,) across local ancestries and
analyze 38 complex traits in African-European admixed individuals
(N=53,001) to observe very high correlations (meta-analysis 7,4, = 0.95,
95% credible interval 0.93-0.97), much higher than correlation of causal
effects across continental ancestries. We replicate our results using
regression-based methods from marginal genome-wide association
study summary statistics. We also report realistic scenarios where

regression-based methods yield inflated heterogeneity-by-ancestry due to
ancestry-specific tagging of causal effects, and/or polygenicity. Our results
motivate genetic analyses that assume minimal heterogeneity in causal
effects by ancestry, with implications for the inclusion of ancestry-diverse

individuals in studies.

Large-scale genotype-phenotype studies are increasingly analyzing
diverse sets of individuals of various continental and subcontinental
ancestries'*. Afundamental open questionin these studies is to what
extent the genetic basis of common human diseases and traits are
shared/distinct across different ancestry populations and its impact

to genetic discovery and prediction®’. For example, it is unclear how
much of the low polygenic score portability can be attributed to dif-
ferences in genetic causal effects across ancestries™'*", Hence, under-
standing the role of ancestry in variability of causal effect sizes has
tremendousimplications for understanding the genetic basis of disease
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Fig.1| Concepts of estimating similarity in the causal effects across local
ancestries. a, For agiven trait, with phased genotype (paternal haplotype at the
top and maternal haplotype at the bottom) and inferred local ancestry (denoted
by color), weinvestigate whether B ,¢ ~ B euracross each causal SNPs. b, We
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focus on estimating the genome-wide correlation of genetic effects across
ancestries rygmix = Cor[Basr, Beur ), Which is the regression slope (orange line) of
ancestry-specific causal effects. For reference, the gray dashed line corresponds

Batr = Beur-

and portability of genetic risk scores in personalized and equitable
genomic medicine'°™,

The standard approach to estimating similarity in causal effects
across ancestries has focused on cross-population analyses (typically
at continental level) in which effect sizes estimated by large-scale
genome-wide association studies (GWAS) are compared across
continental-level ancestry groups’ %, Such studies have found sig-
nificant differences, albeit with modest magnitude, of causal effects
in cross-continental comparisons. However, amain drawback of such
studies is the differences in definition of environment/phenotype
across such broad units of ancestry that can reduce the observed simi-
larity; for example, the low estimated similarity in causal genetic effects
for major depressive disorder across Europeans and East Asians may
beattributed to different diagnostic criteria in the two populations®'®.

As an alternative to studying populations across different conti-
nents, causal effects similarity by ancestry can also be studied within
recently admixed populations. Recently admixed individuals have the
unique feature of having their genomes as mosaic of ancestry segments
(localancestry) originating from the ancestral populations within the
past few dozen generations; for example, African American genomes
are composed of segments of African and European ancestries within
the past 5-15 generations”. Unfortunately, admixed populations are
vastly underrepresented in genomic studies'®, partly because of the lack
of understanding of how the genetic causal effects vary across ances-
tries'®”?22 For example, heterogeneity of marginal effects (which is
estimated in GWAS single variant scan and can tag effects from nearby
variants dueto linkage disequilibrium (LD)) for afew traitsand loci has
been reported®2¢, but it remains unknown whether this reflects true
difference in causal genetic effects or confounding due to different
allele frequencies and/or LD by ancestry. Recent work™ has reported
evidence of causal effect heterogeneity for single nucleotide polymor-
phisms (SNPs) inregions of European ancestries comparing individuals
of European versus African American ancestries; however, these studies
focused on cross-population comparisonsinstead of comparing effects
across local ancestries within admixed populations. Estimating the
magnitude of similarity in causal effects across ancestriesis important
forallgenotype-phenotype studiesinadmixed populations from map-
ping to polygenic prediction, particularly within methods that allow
for effects to vary across local ancestry segments' 2,

Inthis Article, we quantify the similarity in the causal effects (that
is, change in phenotype per allele substitution) across local ancestries
withinadmixed populations; such similarity can be defined as the cor-
relation of ancestral causal genetic effects r,qmix = Cor{Batr Beur]
across African (8,,) and European (8,,,) local ancestries. We develop a
method that leverages the polygenic architecture of complex traits to

model all variants (GWAS-significant and non-significant); this
approachis accurate and robust across a wide range of realistic simu-
lated genetic architectures. We also investigate regression-based
approaches that use marginal effects of SNPs prioritized in GWAS risk
regions. Through simulation studies, we find that regression-based
methods can yield deflated estimates of similarity (that is, inflated
heterogeneity) especially for highly polygenic traits.

We analyze complex traits in African-European admixed indi-
vidualsin Population Architecture using Genomics and Epidemiology
(PAGE)' (24 traits, average N=9,296), UK Biobank (UKBB)?* (26 traits,
average N=3,808),and All of Us (AoU)? (10 traits, average N = 20,496);
there are 38 unique traits in total. We find causal effects are largely
consistentacross local ancestries within admixed individuals (through
meta-analysis across 38 traits, estimated correlation of 7,4, = 0.95,
95% credible interval 0.93-0.97). In addition, we find that the hetero-
geneity inmarginal effects exhibited at several trait-locus pairs can be
explained by multiple nearby causal variants withinaregion, consistent
with our simulation studies. Our results suggest that the causal effects
arelargely consistent acrosslocal ancestries within African-European
admixed individuals, and this motivates future genetic analysis in
admixed populations that assume similar effects across ancestries
forimproved power.

Results

Overview

We start by describing the statistical model we use to relate genotype
to phenotypes in two-way admixed individuals; we focus on two-way
African-European admixture because their local ancestries can be
accurately inferred (Methods; for extension to other admixed popula-
tions, see Discussion). For agivenindividual, at each SNPs, we denote
number of minor alleles from maternal and paternal haplotypes
as xgu,Xsp €{0,1} and local ancestries as y . ¥sp € {afr, eur} .
Denoting I(-) as the indicator function, we define the local ancestry
dosage as allele counts from each of ancestries; for example,
&5 =1 (yspm = afr) + 1 (ys,p = afr) for African (similarly for European).
For modeling convenience, we use variables that encode the genotypes
conditional onlocal ancestries g ,¢r, 85 eur @S the allele counts specific
to each of local ancestries: g ¢ 1= X5l (Vsu = aft) + X pl(ys p = afr)
(similarly for g e,r). The phenotype of an admixed individual is mod-
eled as afunction of allelic effect sizes that are allowed to vary across
ancestries:

N
y= Zl (gs,afrﬁs,afr +gs,eurﬁs,eur) + cTa +€, (1)
s=
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Fig.2|Results of genetic correlation r,,,,;, estimationin genome-wide
simulations. Simulations were based on 17,299 PAGE individuals and 6.9 million
genome-wide imputed variants with MAF > 0.5% in both ancestries. We fixed the
proportion of causal variants P.,,s,1as 0.1% and varied genetic correlation

Famix = 0.90,0.95and 1.0. a, Impact of using HapMap3 or imputed variantsin
estimation. We varied simulated genome-wide heritability h; =0.1,0.25and
0.5.b, Impact of selecting common variants at different MAF thresholds in

admix

estimation. h; was fixed to 0.25, and imputed variants at different MAF
thresholds were used in estimation. ¢, Impact of prior assumption in estimation.
hé was fixed to 0.25, and imputed variants were used in estimation. For each
simulated genetic architecture, we plot the mode and 95% credible interval based
on the meta-analysis across 100 simulations (Methods). Numerical results are
reported in Supplementary Tables 1-4 (including results for other Pgyysars Fadmix)-

where B 4, Bs.eur are the causal effects at SNP s, S is the total number
of causal SNPsinthe genome, cand a are other covariates (for example,
age, sex and genome-wide ancestries) and their effects, and € is
the environmental noise. B; us, Bs.eur are usually referred as allelic
effects: changein phenotype with each additional allele. Thisis in con-
trast with standardized effects defined as change in phenotype per
standard deviationincrease of genotype where genotypes at each SNP
sarestandardized to have unit variance®”. We refrain from using stand-
ardized effectsin this work due to complexities arising from different
ancestriesyielding different ancestry-specific frequencies for the same
SNP° (Methods).

Our goal is to estimate the similarity in the causal effects across
local ancestries in admixed populations (Fig. 1); the similarity can be
evaluated across allgenome-wide causal SNPs that are common across
ancestries inaform of cross-ancestry genetic correlation*® (for consist-
ency with previous works we use ‘genetic correlation’ to refer to cor-
relation of genetic effects across ancestries): f; a¢, Bs eur are modeled
asrandom variables following a bivariate Gaussian distribution para-
metrized by oé, Py denoting the variance and covariance of the effects:

[ ﬁs,afr ] [ 0 ] 5
~N Tg e
ﬁs,eur 0

where 7, are variant-specific parameters determined by the genetic
architecture assumption (Methods). Under this model, the genome-
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wide causal effects correlation is defined as rygmix := ’;—g; Fagmix = 1
indicates same causal effects across local ancestries, while r,g.,, <1
indicates differences across ancestries. To estimate r,q.,i, given the
genotype and phenotype data for a trait, we calculate the profile like-
lihood curve of 1,4, Obtained by maximizing the likelihood of model
defined by equations (1) and (2) with regard to parameters aéand envi-
ronmental variance for each fixed r,qmix € [0,1]. We assume r,g4,; > 0
a priori both because causal effects are unlikely to be negatively cor-
related across ancestries and to reduce r, i Search space for reducing
computational cost; we have also performed real data analyses to
verify this assumption (see below). We obtain the point estimate, cred-
ibleinterval and perform hypothesis testing Hy : r,qmix = 1either for
eachindividual trait using the trait-specific profile likelihood curve,
or for meta-analysis across multiple traits using the multiplication of
the likelihood curves across multiple traits (analogous to inverse
variance weighted meta-analysis; Methods).

We organize next sections as follows. First, we show that our pro-
posed approach provides accurate estimation of r,q,;, in extensive
simulations. Second, we show r,q,;, is very close to 1in real data of
African-European admixed individuals from PAGE, UKBB and AoU.
Third, we replicate our findings using methods that use GWAS sum-
mary data (marginal SNP effects at GWAS significant loci). Finally, we
investigate pitfalls of methods*'*'>® that use marginal SNP effects
showinginflated heterogeneity; we find that Deming regression is the
only approach robust enough to quantify r, 4., from marginal GWAS
effectsin admixed individuals.

Polygenic method for r,q4.,;, is accurate in simulations

We performed simulations to evaluate our proposed polygenic method
using real genome-wide genotypes. We simulated phenotypes using
genotypes andinferred local ancestries with N =17,299 individuals and
S=6.9 million SNPs (with MAF >0.5% in both ancestries in PAGE dataset;
we omitted population-specific rare SNPs to reduce estimation vari-
ance; Methods). Phenotypes were simulated under a range of genetic
architectures with a frequency-dependent causal effects distribu-
tion?”*°, and varying proportion of causal variants P,,,,, heritability
héz, and true r,4i (Methods). We used P, = 0.1% in our main simula-
tions (to simulate a typical polygenic complex trait®). When estimating
Iamix We €ither used all SNPs in the imputed genotypes that were used
to simulate phenotypes, or restricted to HapMap3 (HM3) SNPs* to
simulate scenarios where causal variants are not perfectly typed in the
data (Methods).

Our method produced accurate point estimates and
well-calibrated credible intervals of r,q.; across a range of simulation
settings (Fig.2a and Supplementary Tables1and 2). We first evaluated
our method in simulations with a realistic range of hé =0.1,0.25and
0.5 and r,gmix = 0.9, 0.95 and 1.0. When using the imputed SNPs for
estimation, results were approximately unbiased (average and maximal
relative biases across simulationsettings were —0.42% and —1.8% respec-
tively). Credible intervals of r,q,,, meta-analyzed across simulations
approximately cover true r,q.;,: for the most biased setting (h;, =0.1
Peausat = 0.1%, Fagmix = 0.95), 95% credible interval 0.915-0.948. When
using the HM3 SNPs for estimation, there was a consistent but small
downward bias (Fig. 2a; average and maximal relative biases were -1.0%
and -2.0%, respectively). This small downward bias was due to imper-
fecttagging that some of the causal SNPs were notincluded inthe HM3
SNPs. Nonetheless, the magnitude of bias using eitherimputed or HM3
SNPs was small, indicating our method was accurate and robust to
imperfect tagging. We next performed simulations to investigate the
potential bias in estimating r,4..;, due to omitting population-specific
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Fig. 3| Similarity of causal effects and marginal effects across local ancestries
meta-analyzed across PAGE, UKBB and AoU. a, We plot the trait-specific
estimated r,q,,; for 16 traits. For each trait, dots denote the estimation modes;
bold lines and thin lines denote 50%/95% highest density credible intervals,
respectively. Traits are ordered according to total number of individualsincluded
inthe estimation (shown in parentheses). These traits are selected to be
displayed either because they have the largest total sample sizes, or because

the associated SNPs of these traits exhibit heterogeneity in marginal effects

(see the panel on the right). We also display the meta-analysis results across 60
study-trait pairs (38 unique traits). Numerical results are provided in Table 1.

b, Comparison of 1,4 (n = 38 traits) to meta-analysis results from
transcontinental genetic correlation of African versus European (n = 26 traits)
and East Asian versus European (n = 31 traits). Point estimates and 95%
confidence intervals are denoted using triangles and lines. ¢, We plot the
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ancestry-specific marginal effects for 217 GWAS significant clumped trait-SNP
pairs across 60 study-trait pairs. Trait-SNP pairs with significant heterogeneity
inmarginal effects by ancestry (p,r < 0.05/217 viaHET test) are denoted in color
(non-significant trait-SNP pairs denoted as black dots; some black dots with
large differences across ancestries were not significant because of the large
standard errors in estimated effects). Numerical results are reported in
Supplementary Table 11. Point estimates and 95% confidence intervals for

Deming regression slopes of/z§':3, ~ ,Bg':g[ are provided either for all 217 SNPs

(red), or for 193 SNPs after excluding 24 MCH-associated SNPs (blue). RBC, red
blood cell; CRP, C-reactive protein; LDL, low-density lipoprotein cholesterol;
HDL, high-density lipoprotein cholesterol; TC, total cholesterol; BMI, body mass
index; WHR, waist-to-hip ratio.

rare variants. We re-applied our methods using SNPs with MAF >1% and
MAF >5% inboth populations (in addition to the default MAF >0.5%) to
the same simulated data. We observed downward bias in estimated
I'.amix @S More stringent MAF threshold was used and more SNPs were
filtered out in estimation procedure. For example, the mode of the
estimation was 0.966 when methods were applied with MAF >5% in
simulation of r,4.;x = 1.0 (Fig. 2b and Supplementary Table 3). This
indicates omitting population-specific rare variants can lead to down-
ward bias (Discussion). We also investigated the impact of prior
assumption of r, ;- we applied arevised methodology that allows for
—1 < rygmix <1 and we found that estimated r,q,ix Were highly
consistent when assuming O < rygmix < 1 (default method) versus
when assuming —1 < rygmix < 1(Fig. 2c).

We performed several secondary analyses. We determined our
method remained accurate at other simulated P, (Supplementary
Table 2; P, ranging from 0.001% to 1%) and broader range of simu-
lated r,4mix (Supplementary Table 4; r, 4, ranging from—0.5to 1). In null
simulations (r,4mix = 1), Wwe determined the false positive rate of hypoth-
esistest Hy : rygmix = 1was properly controlled for most simulation
settings, and was only slightly inflated when HM3 SNPs were used, and/
or extremely low P, was simulated. In simulations with r 4 <1,
power to detect r,q,; < 1increased with increasing h; and decreasing
Iamix (Supplementary Tables1and 2). In addition, we found heritability

can be accurately estimated in these simulations (Supplementary
Tables 5and 6, and Methods). In summary, our method can be reliably
used to estimate .

Causal effects are similar across local ancestries

We applied our polygenic method to estimate r,ym;, within
African-European admixed individuals in PAGE' (24 traits, average
N=9,296, average fraction of African ancestries 78%), UKBB? (26 traits,
average N = 3,808, average fraction of African ancestries 59%) and AoU*
(10 traits, average N = 20,496, average fraction of African ancestries
74%) (Methods). Meta-analyzing across 38 traits from PAGE, UKBB and
AoU (60 study-trait pairs), we observed a high similarity in causal
effectsacross ancestries (7,qmix= 0.95,95% credible interval 0.93-0.97).
Results were highly consistent across datasets despite different ances-
try compositions (PAGE: 7,qmix = 0.90, 0.85-0.94; UKBB: #,gmix = 0.98,
0.91-1; AoU: Fogmix = 0.97, 0.94-1) as well as across traits (Fig. 3a,
Tableland Supplementary Table 7). Height was the only trait that had
significant 7,qmix <1 (after Bonferroni correction; nominal
P=43x10"* < 0.05/38 ; meta-analyzed across three datasets;
Table1) albeit with highestimated 7,4mix = 0.936,0.89-0.97. Estimates
ofthe same traits across datasets were only weakly correlated (Extended
DataFig.1), suggesting similar causal effects by ancestry consistently
across traits (true rygmix ~ 1forall traits).
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Table 1| Genome-wide genetic correlation across 38 complex traits for African-European admixed individuals in PAGE,

UKBB and AoU
Trait N Fadmixmode 95% credible interval(s) Pvalue ”15
BMD 1,668 0.000 0.00-0.78 0.012 0.34+0.16
Neuroticism 3,044 1.000 0.36-1.00 1 0.36x0.11
Education years 3,324 0.000 0.00-0.94 0.4 0.055+0.075
MCHC 3,650 0.228 0.00-0.87 0.061 0.21£0.092
Type 1diabetes 3,767 0.381 0.00-0.95 0.77 -0.033+0.016
HLR count 3,852 1.000 0.07-1.00 1 0.12+0.086
RBC distribution width 3,925 1.000 0.27-1.00 1 0.28+0.087
Lymphocyte count 3,935 1.000 0.00-0.60, 0.66-1.00 1 0.13+0.086
Monocyte count 3,935 0.972 0.26-1.00 0.82 0.3+0.087
MCH 3,948 0.829 0.07-1.00 0.36 0.2+0.076
RBC count 3,948 1.000 0.37-1.00 1 0.31+0.09
Hypothyroidism 4,063 1.000 0.05-1.00 1 0.046+0.07
PR interval 4,071 0.844 0.08-1.00 0.36 0.22+0.084
QRS interval 4,078 1.000 0.07-1.00 1 0.12+0.082
Asthma 4,079 1.000 0.15-1.00 1 0.21+0.087
Ever smoked 4,083 0.764 0.04-0.98 0.31 0.17+0.082
QT interval 4,089 0.920 0.07-1.00 0.69 0.16+0.083
HbAlc 5,353 0.954 0.08-1.00 0.77 0.19+0.078
Cigarettes per day 6,995 0.999 0.08-1.00 1 0.097+0.047
Fasting insulin 7,753 1.000 0.21-1.00 1 0.13+0.044
eGFR 7978 0.805 0.16-1.00 0.09 0.19+0.046
C-reactive protein 8,321 0.995 0.82-1.00 0.94 0.28+0.046
Fasting glucose 9,646 0.695 0.00-0.93 0.27 0.064+0.035
Coffee consumption 11,587 0.982 0.10-1.00 0.9 0.074+0.03
Platelet count 12,545 0.783 0.20-0.98 0.025 0.19+0.038
White blood cell count 12,755 0.931 0.70-1.00 0.26 0.23+0.036
Type 2 diabetes 18,630 0.897 0.49-1.00 0.23 012+0.024
Hypertension 20,744 0.929 0.30-1.00 0.45 0.08+0.027
LDL 21,979 0.958 0.70-1.00 0.55 0.14+0.046
HDL 22,039 0.961 0.82-1.00 0.46 0.22+0.057
Triglycerides 22,494 0.843 0.54-0.98 0.012 0.18+0.027
Total cholesterol 22,555 0.818 0.50-0.97 0.007 0.18+0.039
Heart rate 28,764 0.980 0.82-1.00 0.74 0.099+0.015
WHR 36,756 0.973 0.86-1.00 0.55 0.12+0.015
Diastolic blood pressure 43,787 1.000 0.90-1.00 1 0.077+0.024
Systolic blood pressure 43,788 1.000 0.88-1.00 1 0.071+£0.013
BMI 49,521 0.974 0.92-1.00 0.33 0.22+0.02
Height 49,605 0.936 0.89-0.97 0.00043 0.4+0.014
Meta-analysis 0.947 0.93-0.97 87x107

For each trait, we report number of individuals, posterior mode and 95% credible interval(s) for estimated r,q.;, Nominal one-sided P value for rejecting the null hypothesis of Hy:rgmix=1
(unadjusted for multiple testing; Methods), and estimated heritability and standard error. Meta-analysis results performed across 38 traits are shown in the last row. Traits are ordered according
to number of individuals. For each trait, we perform meta-analysis across studies if the trait is in multiple studies (Methods). Lymphocyte count has two credible intervals because of the
non-concave profile likelihood curve, as a result of small sample size. BMD, bone mineral density; HLR, high light scattering reticulocytes; MCHC, mean corpuscular hemoglobin concentration.

We performed several secondary analyses. Similar to previous
simulation studies, we determined prior assumption of r, ., had mini-
mal impact to results: estimated r,4; Of 24 traits in PAGE were highly
consistentwhenassuming 0 < rygmix < 1(default method) versus when
assuming —1 < rgmix < 1 (Extended Data Fig. 2). Such consistency
between the two methods againindicates similar genetic causal effects

across local ancestries (r,gmix ~ 1) and that estimation is robust to
choices of statistical prior on r,q,,. Our results were robust to different
assumption of effects distribution (Extended Data Fig. 3 and Supple-
mentary Table 8), consistent with previous work™. Results were also
robust to the SNP set used in the estimation (Extended Data Fig. 3 and
Supplementary Table 8), and criterion of the included admixed
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ancestries, and the estimated marginal effects at causal SNP will be also very
similar with sufficient sample size. However, because of differential tagging

across local ancestries, the estimated marginal effects evaluated at the tag SNP
are different. ¢, Example of multiple causal SNPs with no heterogeneity. Causal
effects for both SNPs are the same across local ancestries. In this example, the
correlation between the two causal variants is higher for genotypes in African
local ancestries than those in European local ancestries. Therefore, African
ancestry-specific genotypes tag more effects, creating different ancestry-
specific marginal effects at each causal SNP.

individuals (Extended DataFig.4). Additionally, an alternative formula-
tion of method assuming different variance component by ancestry
did not outperform our default method assuming same variance com-
ponent by ancestry (Extended Data Fig. 5, Supplementary Table 9 and
Supplementary Note).

Next, we contrasted r,q;, to transcontinental genetic correlations
of (1) European versus African and (2) European versus East Asian
(Fig. 3b and Methods). We determine a much higher similarity across
local ancestries within admixed populations (#,qmix= 0.95,95% credible
interval 0.93-0.97) as compared with transcontinental correlations of
African versus European within UKBB (7¢,,_a = 0.50, meta-analysis
across 26 traits, 95% confidence interval 0.43-0.56) and East Asian
(BiobankJapan) versus European (UKBB)® (Fyr_eqs= 0.85, meta-analysis
across 31 traits, 95% confidence interval 0.83-0.87) (Supplementary
Table 10). Overall, our results are consistent with r, .., being less sus-
ceptible to heterogeneity due to differencesin phenotyping/environ-
mentin transcontinental comparisons.

We sought to replicate high r,q,;, using regression-based meth-
ods that leverage estimated ancestry-specific marginal effects at
GWAS loci (Methods). Specifically, we used the following marginal
regression equation (restricting equation (1) to each GWAS SNP s):
=28 eurﬁs eur T8 afr.Bir:gr
B from causal effects B; Methods). Across 60 study-trait pairs, we
detected 217 GWAS significant clumped trait-SNP pairs and we esti-
mated the ancestry-specific marginal effects for each SNP (Fig. 3c
and Supplementary Table 11). We determined the estimated marginal
effects are largely consistent by local ancestry at these GWAS clumped
SNPs via Deming regression slope** of 0.82 (standard error 0.06)

(applied to ﬁgzl)u ﬂi';’?r

uncertainty inboth dependent and independent variables; Methods).
Mean corpuscular hemoglobin (MCH)-associated SNPs at 16p13.3
drove most of the differences by ancestry: Deming regression slope
was 0.93 (standard error 0.04) on the rest of 193 SNPs after exclud-
ing 24 MCH-associated SNPs; MCH-associated SNPs also have the
strongest heterogeneity in marginal effects by ancestry (using het-
erogeneity score test (HET) for testing effects heterogeneity at each

c'a + € (we distinguish marginal effects

Deming regression properly accounts for

SNP*; Supplementary Table 11 and Methods). By performing statisti-
cal fine-mapping analysis, we found there are multiple conditionally
independentassociation signals at MCH-associated and other loci with
heterogeneity by ancestry (Extended Data Fig. 6 and Supplementary
Note). In fact, the MCH-associated loci locate at a region harboring
alpha-globin gene cluster (HBZ-HBM-HBA2-HBA1-HBQI) known to
containmultiple causal variants®. These results suggest that, similar to
causal effects, marginal effects at GWAS loci are also largely consistent
by local ancestry across multiple traits, with the exception of 16p13.3
loci for MCH in our study, where multiple large-effect causal variants
drive some extent of heterogeneity by ancestry in marginal effects.

Pitfalls of using marginal effects to estimate heterogeneity
Next, we focused on thoroughly evaluating methods that use marginal
effects at GWAS significant variants to estimate heterogeneity. Marginal
effects are frequently used to compare effect sizes across populations
or across studies**>? and enjoy popularity for their simplicity and
requirement of only GWAS summary statistics (estimated effect sizes
and standard errors).

We first note that heterogeneities in marginal effects can be
induced due to different LD patterns across ancestries even when
the underlying causal effects are identical, especially when multiple
causal variants are nearby in the same LD block (Fig. 4). We inves-
tigate the extent of heterogeneity by ancestry that can be induced
in simulations with identical causal effects across ancestries, due
to (1) local ancestry adjustment; (2) unknown causal variants cou-
pled with ancestry-specific LD patterns; (3) highly polygenic genetic
architectures with multiple causal SNPs within the same LD block; (4)
standard errors in estimated marginal effects across ancestries. Our
following simulations were based on real imputed genotypes from
African-Europeanindividualsin PAGE data (17,299 individuals, average
fraction of African ancestries 78%).

Regressing out local ancestry can deflate the observed similarity
in causal effects across ancestries. We first discuss the use of local
ancestryin the heterogeneity estimation, whichisaunique andimpor-
tantcomponent to consider when studying admixed populations. We
used simulations to investigate the role of local ancestry adjustment
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Fig. 5| Pitfalls of including local ancestry in estimating heterogeneity. In each
simulation, we selected a single causal variant and simulated quantitative
phenotypes where these causal variants explain heritability hé =0.6%; we also
varied ratios of effects across ancestries Se, : Bas- @, False positive ratein null
simulation Bey, : Barr = 1.0.b, Power to detect Be,, # Bar;in power simulations
with Beyr : Barr > 1. We did notinclude ‘lanc regressed’ because it is not well-
calibrated in null simulations. We plot the mean and 95% confidence intervals,
calculated via 100 random subsamplings with each sample consisting of 500
SNPs (Methods). Numerical results are reported in Supplementary Table 12.

using three main approaches: (1) ignoring local ancestry altogether
(‘w/0’); (2) including local ancestry as covariate in the model
(‘lanc-included’); (3) regressing out the local ancestry from phenotype
followed by heterogeneity estimation on residuals (‘lanc-regressed’)
(Methods).First, in null simulations with identical causal effects (ratio
of Beur © Barr = D, weobserved thatignoringlocal ancestry orincluding
local ancestry as covariate yielded well-calibrated HET tests; in con-
trast, regressing out the local ancestry effectinduced inflated HET test
statistics (Fig. 5 and Supplementary Table 12). Next, in power simula-
tions with varying amount of heterogeneity (defined as ratio of
Beur : Barr), including local ancestry in the covariate significantly
reduced the power of HET test of up to 50% at high magnitude of het-
erogeneity (Fig. 5 and Supplementary Table 12) (see more details in
Supplementary Note). Thus, withrespect tolocal ancestry, we recom-
mend either notusingitorincludingitasacovariateinthe model and
not regressing out its effect before heterogeneity estimation as that
will bias heterogeneity estimation.

Havinginvestigated the role of local ancestry adjustment, we next
turnto heterogeneity estimation for GWAS SNPs. We focused oninves-
tigating properties of HET test and Deming regression in null simula-
tions with identical causal effects across ancestries (Beyr : Barr = 1)-
Since the true causal variants are usually uncertain, we investigated
each method either at the true simulated causal variants or at the
LD-clumped variants (Methods).

Uncertainty in which variants are causal can deflate the observed
similarity in effects by ancestry. Wefirst performed simulations with
single causal variant: we randomly selected one SNP as causal in each
simulation. Evaluated at the causal SNPs (Methods), we found that HET
testand Deming slope were well-calibrated (Fig. 6a—c, Extended Data
Fig.7 and Supplementary Table 13). However, evaluated at the clumped
variants, asamorerealistic setting (because causal variants need to be
inferred), we found HET test became increasingly miscalibrated with
increased hé, while Deming slope remained relatively robust (with an
upward but not statistically significant trend withincreasing héz,). Ordi-
nary least squares (OLS) slope had bias even when evaluated at causal
variants because of itsignorance of the standard errorsin the estimated
effects (Methods and Supplementary Note); such biasbecame smaller
withincreased h;.

High polygenicity can deflate the observed similarity in effects by
ancestry. Next, we performed simulations where multiple causal

variants locate nearby within the same LD block (typical for polygenic
complex traits**%; Methods). In this scenario, marginal GWAS effects
could tag multiple causal effects, thus potentially inflating the observed
heterogeneity (Fig.4c).Insimulations, we varied the number of causal
SNPs from 0.25t0 4.0 per Mb to span most polygenic architectures. In
contrast to simulations with a single causal variant, all three methods
(HET test, Deming slope and OLS slope) were biased in the presence of
multiple nearby causal variants; the miscalibration/bias increased with
number of causal variants per region, and LD clumping did not alleviate
the miscalibration/bias (Fig. 6d-f). Such miscalibrations occurred
irrespective of sample size (Extended Data Fig. 8), or simulated herit-
ability 3 (Supplementary Table 14).

Insummary, we find that methods for heterogeneity-by-ancestry
estimation based on marginal GWAS SNP effects are susceptible to
inflated estimates of heterogeneity. HET test is susceptible to false
positives when causal variants are unknown. Deming regression was
robust in scenarios with low polygenicity, but was still susceptible to
inflated estimates of heterogeneity for highly polygenic traits; the
inflated estimates can be explained by differential tagging of causal
effects across ancestries among causal SNPs. OLS slope had bias
becauseit did notaccount for uncertainty in estimated effects. We also
performed additional simulations with less than identical causal effects
(Beur : Barr #1) and broader range of per-SNP hﬁ and we determined
Deming regression was robust to quantify the heterogeneity level at
the marginal effectsin simulations of different Sey : Bafo hé(Extended
DataFig. 9 and Supplementary Table 15).

Discussion

Inthis work, we developed a polygenic method that model genome-wide
causal effects to complex traits of admixed individuals. We determined
causal effects are largely similar across local ancestries in analysis of
53,001 African-European admixed individuals across 38 complex traits
in PAGE, UKBB and AoU. Inadditionto causal effects, we also replicated
such consistency-by-ancestry for marginal effects at GWAS loci. We
highlighted realistic simulation scenarios where regression-based
methods using marginal effects can report false heterogeneity when
causal effects are identical across ancestries.

Our study has several implications for future genetic study of
admixed populations, and more broadly of ancestrally diverse indi-
viduals. First, reduced accuracy of polygenic score has been observed
in African-European admixed populations with increasing proportion
of non-European ancestries®; our results suggest the causal effects
difference haslimited contribution tosuchreduced accuracy. Second,
there hasbeenrecentworkonincorporatinglocal ancestry in statisti-
cal modeling of admixed populations, for example, in association
testing'’ and polygenic score”??, based on the hypothesis that effects
may differ across ancestries. Our results indicate the largely consist-
ent causal effects across local ancestries (and also marginal effects at
most GWAS loci). The robustness of our results to imperfect tagging
also suggests that imperfect tagging induce limited effects hetero-
geneity across local ancestries, once SNPs are properly modeled in a
polygenic model. The small heterogeneity-by-ancestry at causal effects
or marginal effects suggest that association tests that do not model
heterogeneity-by-ancestry should be preferred in most cases'*° for
improved statistical power for association. On the other hand, includ-
ing local ancestry in association models could be useful in correcting
for LD induced by admixture® and lead to improved causal effect esti-
mation. Full consideration of incorporating local ancestry in statistical
models should also take into account the extent of confounding and
heterogeneity in the data*’. Third, our study further motivates studies
of ancestrally diverse individuals to identify population-specific risk
variants that cannotbeinvestigated due tobeingrarein Europeanindi-
viduals; for example, inclusion of individuals with diverse populations
could further disentangle causal from tagging effects, thusincreasing
the power of heterogeneity-by-ancestry estimation. More importantly,
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Fig. 6 | Miscalibration of HET test/Deming regression/OLS regressionin
simulations with r,q,, = 1.a-c, Simulations with single causal variant. Each
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variant explained a fixed amount of heritability (0.2%, 0.6% and 1.0%): false
positive rate (FPR) of HET test (a); Deming regression slope (b) and of OLS
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regressionslope (c) of S ~ /ig'f?). Numerical results are reported in

Supplementary Table 13. d-f, Simulation with multiple causal variants, where we
simulated different levels of polygenicity, such that on average there were
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approximately 0.25,0.5,1.0, 2.0 and 4.0 causal variants per Mb; causal variants
had the same causal effects across local ancestries, and the heritability explained
by all causal variants was fixed at hé = 10%: FPR of HET test (d); Deming

regression slope (e) and OLS regression slope (f) of ,Bg'l:',) ~ ﬁg'f';). The 95%
confidence intervals were based on 100 random subsamplings with each sample
consisting of 1,000 SNPs (Methods). Results for other number of SNPs used for
subsampling are shown in Extended Data Fig. 8. Numerical results are reported in
Supplementary Table 14.

larger and robust trans-ancestry studies may allow for the examination
of differential causal effects onalocus-by-locus basis, in additionto the
genome-wide approach as presented in this work.

Our results add to the existing literature to further delineate
sources of causal effects differences. Previous works have shown
moderate causal effects differences across transcontinental popula-
tions**%?%, with part of differences being induced by heterogeneity in
the definition of environment/phenotype across continental ances-
tries. Similarly, arecent work” concluded differences between causal
effectsin Europeanlocal ancestries within African American admixed
individuals and that in European American individuals. Our results
showcase that, if environments are well controlled (as is the case for
genetic variants across local ancestries withinadmixed populations),
causal effects are highly similar across genetic ancestries, agreeing with
arecentstudy finding similar effects across ancestries at level of gene
expression in controlled environments*. Moreover, our results sug-
gest thatlocal epistaticinteraction, if any, does notlead to large causal
effects differences across genetic ancestries. By contrasting the high
genetic correlation within admixed populations and the low genetic
correlation across continental populations, our results support the
hypothesis that different environments modify the genetic effects to
complex traits (gene-by-environmentinteraction) across populations.

We note several limitations and future directions of our work. First,
we have analyzed SNPs with MAF >0.5% in both ancestries. We excluded
population-specific SNPs (with MAF <0.5% in one of the ancestries)
because these SNPs provide little information for estimating r,gmi,, since
effects for these SNPs are estimated with large noises. We used simula-
tions to show that omitting these rare variants could lead to downward
bias in r,4mi €stimation because of population-specific tagging of
shared causal variants (Supplementary Note). However, it remains pos-
sible that causal variants themselves are rare and population-specific,

and upward bias in the estimation of r, 4, may be present. While in this
work we focused on estimating r,4..x for common variants, future work
with larger sample sizesis needed to further investigate theimpact of
population-specific causal SNPs to r, . €stimation. Second, we have
considered two-way African-European admixed individuals. Several
practical considerations remain before applying this method to other
admixed populations such as three-way admixture: local ancestries are
typically inferred with larger errors*?, and this should be accounted
for in statistical modeling (it may be possible to incorporate poste-
rior probabilities in estimated local ancestries to obtain calibrated
estimates); additional parameters need to be estimated (for example,
three pairwise correlation parameters across ancestries for three-way
admixture populations). We note that our methods can be readily
applied to these populations when reliable local ancestry calls can be
obtained. Third, our modeling can be extended to estimate correlations
in causal effects stratified by functional annotation categories and
we leave that as future work. Fourth, our polygenic method requires
individual-level genotype and phenotype; if not available, we found
Deming regression may be applied to evaluate heterogeneity with
caution: in our simulation, Deming regression was the only method
robust to most scenarios except for high polygenicity. In our analysis
of marginal effects, we found LD clumping can produce cluster of SNPs
that were nearby and probably dependent with each other, as a com-
bined result of multiple causal variants within aregion and long-range
LD in admixed populations. Such dependence may induce bias for
methods like Deming regression, highlighting the need for improved
methods of identifying conditionally independent SNPs in admixed
populations. Fifth, we have meta-analyzed three publicly available
studies of PAGE, UKBB and AoU with large cohort of African-European
admixed individuals. Such meta-analysis with greatly increased total
sample size enabled us to derive the conclusion of the high similarity
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in causal effects by local ancestry across a broad range of traits. How-
ever, our estimates for each individual trait were still associated with
large standard errors and can be further improved by analyzing more
individuals. Additional limitations are discussed in Supplementary
Note. Despite these limitations, our study has shown that causal effects
to complex traits are highly similar across local ancestries, and this
knowledge can be used to guide future genetic studies of ancestrally
diverse populations.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41588-023-01338-6.
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Methods

Ethical approval

Thisresearch complies with all relevant ethical regulations. Ethics com-
mittee/institutional review board (IRB) of PAGE gave ethical approval
for collection of PAGE data. Ethics committee/IRB of UKBB gave ethical
approval for collection of UKBB data (https://www.ukbiobank.ac.uk/
learn-more-about-uk-biobank/about-us/ethics). Approval to use UKBB
individual level in this work was obtained under application 33297 at
http://www.ukbiobank.ac.uk. Ethics committee/IRB of AoU gave ethi-
calapprovalfor collection of AoU data (https://allofus.nih.gov/about/
who-we-are/institutional-review-board-irb-of-all-of-us-research-
program). Approval to use AoU controlled tier data in this work was
obtained through application at https://www.researchallofus.org.

Statistical model of phenotype for admixed individuals
Forindividual i=1,...,N and SNP s =1,...,S, we denote x;.X;sp as
number of minor alleles at maternal and paternal haplotypes, respec-
tively. We denote corresponding local ancestries as y; sy, Visp € {1,2}
(we focus on two-way admixture here, for example, ‘1’ and ‘2’ denote
African and European ancestries for African-European admixture).
Then we use g;,,.8;,to encode allele counts that are specific to each
local ancestry:

8is1 i= Xl Visp = 1) + Xispl (Visp = 1)

Gis2 1= Xpsml (Vs = 2) + Xispl (Visp = 2),

wherel(-)denotes the indicator function. Denoting causal allelic effects
as B;, B, € RSfortwo ancestries, we model the phenotype of each indi-
vidual y;as

N
YVi=¢]a+ Y (8is1Bs1 + 8is2Bsp) + €ni=1,....N

s=1

where ¢; € R, a € R¢ denote C covariates (including all ‘1" intercepts)
and their effects. ¢;denotes environmental noise. By further aggregat-
ing g1, 85 .intomatrices G, € {0,1,2/"**and G, € {0,1,2}"**for ancestry
land2,and ¢;into C € RM<¢, equation (1) becomes

y=Ca+GB +G,B,+¢ 3)

We pose the following distribution assumptions B,, ,and e
2
R i
Bs2 0 PglS 031S

where o} denotes variance of effects for both populations, p, denotes
covariance for similarity of effect sizes by ancestry, and g?denotes the
variance for environments. 7, denote SNP-specific parameters (fixed
apriori) for effect sizes distribution (see ‘Specifying r,under different
heritability models’ below). We define correlation of causal genetic

),s:l,...,S,ei ~N(0,0),i=1,..,N

@)

effectsas rygmix = ’%. aamix = Lindicates B = B forallvariantss=1, ...,
g

thatis, causal effects are the same across ancestries; r,4mix < 1indicates
differences in causal effects across ancestries.

Calculating and filtering by ancestry-specific allele frequencies.
N
Foreach SNP s, we calculated MAF as f; := w We also calcu-

Z:V:l 8i,s,1 Z,NZI 8is,2
T 10 =D)+risp=1)] " Ti, [1(ism=2)+1(Visp=2)]

lated ancestry-specific MAF as

forancestryland2.ForaSNPswith close-to-zero frequency for either
of the ancestry, its effect B, will be estimated with very large noise.
Therefore, we used SNPs with MAF >0.5% in both ancestries in
analyses.

Specifying 7, under different heritability models. 7, parameters
model the coupling of SNP effects variance with MAF, local LD or other
functional annotations. Commonly used heritability models include
GCTA®, frequency-dependent®°, LDAK** and S-LDSC* models. While
heritability modelis important to estimate heritability and functional
enrichment of heritability®****, genetic correlation estimation, the
mainfocus of this study, has shownto be robust to different heritability
models®.In thiswork, we mainly used the frequency-dependent model
for both simulations and real dataanalyses (where 72  [f, (1 - £,)] ;£ is
the MAF of the SNPsand a = —0.38 is estimated in a meta-analysis across
25UKBB complex traits®). For real data analysis, we additionally used
GCTA modelfor estimation and found results are robust to heritability
models (Extended Data Fig. 3).

Alternative choice of genotype normalization by ancestry. We

discuss analternative choice of normalization by ancestry, inwhich we

have two parameters 7,;and 7,,separately for two ancestries for each

SNP. For example, 72, « 2 parametrizing effects
T2 - 02/S ToyTsy-PglS

1 1
7, %
— ’7s,2 (1=,
distribution Fuali) falt~ha)
.85,1 0 s,1
~N s ,s=1..,8
B 0 | 71Tz -pg/S T2,-04/S
Thisimplies that effects per genotype standard deviationisbeing
modeled (ref. ° termed this as correlation of allelic impact). While
genetic correlation estimation is robust to genotype standardization

(Supplementary Table 8; refs. >**), we recommend modeling allelic
effects via same 7,across ancestries (as used in our default method).

Evaluation of genome-wide genetic effects consistency

We discuss parameter estimation and hypothesis testing in
equations (3) and (4). Marginalizing over random effects B, and B, in
equation (3), the distribution of y is

GTG +G,TG]  G,TG) +G,TG,
3 *Pe 3

)’~N<C«,o§ +o§l).

where T is a diagonal matrix with (T), =12 By denoting
K, = STt0T% g, - GT%YOT8 and p, = 02 - rgmiv the distribution of

yis simplified as

Y~ N(Ca, 0% (Ky + FagmixKy) + 021). )

The maximum likelihood estimates of (a, 67, raamix, 02)can be found
by directly maximizing the corresponding likelihood function
L (a, 0z, Fadmixs ag) .However, the constraint that the correlation param-
eter r,qmix Should be small than 1 cannot be easily incorporated here.

Instead, we use the profilelikelihood L, (admix) : = (mza;g) L (@, G2, Fadmix- 02
2,02

and perform grid search of r,q,,; to maximize profile likelihood (similar
toref.*°): for each candidate r, g, we compute K; + rygmixK, and solve
(a, 03, a3)for the single variance component model in equation (5) using
GCTA% (v1.94.0beta). In practice, we calculate profile likelihood
L, (raami) for apredefined set of rygmix = 0.00,0.05, ..., 1.00(Fygmix € [0,1]
is a reasonable prior assumption here; we alternatively used an
extended range of rygmix = —1,—0.95, ...,0.95,1.0 in simulation studies
(Supplementary Table 4) and real data analyses (Extended Data
Fig. 2)). We use natural cubic spline to interpolate pairs of
(ragmix» Lp (Faamix)) to get a likelihood curve of 1,4, Then we obtain the
estimated 7,4mix Using the value that maximize the likelihood curve,
and credibleinterval by combiningthe likelihood curve with auniform
prior of rygmix ~ Uniform[0,1] and calculating the highest posterior
density interval as credible interval. To perform the meta-analysis
acrossindependent estimates, we obtain the joint likelihood by calcu-
lating the product of likelihood curves across estimates (or
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equivalently, the sum of log-likelihood curves), and similarly calculate
the estimate and credible interval.

Evaluation of genetic effects consistency at individual variant
with marginal effects

Parameter estimation and hypothesis testing. We use a model
between individual SNP and phenotype by restricting equation (1) to
the SNP of interest s, as

Vi=cla+ (8Bl +8isaBly) +€ni=1..,N,
orinvector form,
y=Co+g Bl + gy +€ (6)

where C,g;,,g;,. € contain ¢;, g;51.8;5.,. € for all individuals i = 1, ..., N,
respectively. We distinguish marginal effects 7, 87 in equation (6)
from causal effects S, B;,in Eq. (1): marginal effects tag effects from
nearby causal SNPs with taggability as a function of ancestry-specific
correlation between the focal SNP and nearby causal SNPs. Therefore,
heterogeneity in marginal effects by local ancestry can be induced even
if causal effects are the same (see extensive simulations in Results and
more detailsin Supplementary Note). We estimate /3('") li('")using least
squares (jointly for /3("” ,B('")) and perform hypotheSIs testing of

o : B =B witha likelihood ratio test by comparing Eq. (6) to a
restncted model where the allelic effects are the same g™ = B = By:

y=Co+ (g +82) B +€ @

Marginal effects-based methods for estimating heterogeneity. We
describe details of marginal effects-based methods to estimate het-

erogeneity with input from aset of estimated effect sizes ﬁ(”‘) ﬁ('")and

corresponding estimated standard errors se(ﬁ"")) se(ﬂ(’")) for a set of
SNPs.

* Pearson correlation: by calculating the Pearson correlation of
B, B™ across SNPs. Pearson correlation does not model errors
in estimated effects, therefore is expected be smaller than1and
decreases with increasing error magnitude

+ OLSregression slope: by regressing ﬂ(’") (’")( ('") as depend-

ent variable, /3('" asindependent variable) or ﬁ(’") ﬁ(';”. It does
not model errors in independent variable. Moreover, it assumes
homogeneous errors in dependent variable across SNPs.
Therefore, itis susceptible to these error terms and notably
results can vary when one exchange the regression orders*®
( ,8('") ,8(”” versus ,[3(’") /3”’” for example, ,B(”” and ,8(’") are
associated with different standard errors when being estimated
in an admixed population with different ancestry proportion).

. Deming regression slope: obtained with Deming regression34 of

ﬂi’f),ﬂg and estimated standard errors se(ﬂ(’")) se(ﬂ‘”')) Deming
regression models heterogeneous error termsin both independ-
ent and dependent variables, therefore is more robust than
Pearson correlation and OLS regression. Specifically, given a set
of data and estimated standard errors (x;,y;,0y;,0,;),i=1,...,n
(we use a different set of notations for simplicity), Deming
regression optimizes the following objective function to obtain
estimated intercept & and slope f:

subjectto : y;+€; =a+B(x;+6;),i=1..,n

Standard errors of «, f can be obtained with bootstrapping. Nota-

bly, Demingregression slope produce symmetric results with different

regressionorders (the obtained slope Swill bereciprocalto each other).

However, Deming regression canstill produce biased results when the

standard errors oy, 0,;are misspecified**.

« False positive rate of the HET test, as described above in ‘Param-
eter estimation and hypothesis testing’. It is expected to be well
calibrated under the null, because its derivation as a likelihood
ratio test. Similar to Deming regression, HET test properly mod-
els heterogeneous standard errors.

Genotype data processing

PAGE genotype. We analyzed 17,299 genotyped individuals
self-identified as African American in PAGE study’. These individuals
were from three studies: Women'’s Health Initiative (N = 6,820), Multi-
ethnic Cohort (N=5,325) and the Icahn School of Medicine at Mount
Sinai BioMe biobank in New York City (BioMe) (N =5,154). See more
detailsinref.'. The genotypes were imputed to the TOPMed reference
panel and we retained well-imputed SNPs with imputation R*> 0.8
and MAF >0.5%. We further retained variants with ancestry-specific
MAF > 0.5% in both ancestries. This resulted in ~6.9 million variants
and 17,299 individuals in our analysis.

UKBB genotype. We analyzed individuals with African-European
admixed ancestries in UKBB. We first inferred the proportion of ances-
tries for each individual in UKBB using SCOPE* (https://github.com/
sriramlab/SCOPE; version 6 December 2021) supervised using 1,000
Genomes Phase 3 allele frequencies (AFR, EUR, EAS and SAS). We
retained 4,327 African-European admixed individuals with more than
5%of both AFRand EUR ancestries, and withless than 5% of both EAS and
SAS ancestries. Weretained well-imputed SNPs withimputation R?> 0.8
and MAF >0.5%. We further retained variants with ancestry-specific
MAF >0.5% inboth ancestries. Thisresulted in ~6.6 million variants and
4,327 individuals in our analysis.

AoU genotype. We analyzed individuals with African-European
admixed ancestries in AoU. We first performed principal component
analysis of all 165,208 individuals in AoU microarray data (release v5)
jointwith1,000 Genomes Phase 3 reference panel. Then we identified
31,375 individuals with African-European admixed ancestries (with at
leastboth10% European ancestries and 10% African ancestries, and who
was within 2x normalized distance from the line connecting individu-
als of European ancestries and African ancestries in 1,000 Genomes
reference panel; Supplementary Note). For these individuals, we per-
formed quality control using PLINK2 (ref. *°) (v2.0a3) with - -geno
0.05 --max-alleles 2 --maf 0.001,andstatistical phasingusing
Eagle2 (ref.”") (v2.4.1) with default settings. We retained variants with
ancestry-specific MAF >0.5% in both ancestries. This resulted in -0.65
million variants and 31,375 individuals in our analysis. For AoU, we
chose to use microarray data instead of whole genome sequencing
databecause microarray data of AoU contained more individuals and
analyzing microarray data reduced the computational cost.

Local ancestry inference. We performed local ancestry inference
using RFMix** (https://github.com/slowkoni/rfmix; v2) with default
parameters (eight generations since admixture). We used 99 CEUin-
dividuals (Utah residents with Northern and Western European
ancestry) and 108 YRIindividuals (individuals from Yorubain Ibadan,
Nigeria) fromunrelated individualsin1,000 Genome Project Phase 3
(ref.*®) as our reference populations, similar to previous works™**. We
used HapMap3 SNPs* ininference, and theninterpolated the inferred
local ancestry results to other variants in both PAGE and UKBB data
sets. The accuracy of RFMix for local ancestry inference has been
validated for African-European admixed individuals® (for example,

Nature Genetics


http://www.nature.com/naturegenetics
https://github.com/sriramlab/SCOPE
https://github.com/sriramlab/SCOPE
https://github.com/slowkoni/rfmix

Article

https://doi.org/10.1038/s41588-023-01338-6

~98% accuracy for simulations with a realistic demographic model
for African Americanindividuals). We performed additional analyses
using PAGE African Americanindividuals to assess the robustness of
local ancestry inference using an alternative set of reference data. We
used all European and Africanindividualsin1,000 Genomes project
(excluding African Caribbean in Barbados and African Ancestry in SW
USAbecause they were admixed). We determined a high consistency
0f 98.9% for the inferred local ancestry using reference data of CEU/
YRI or all European/African individuals. We used the inferred local
ancestry for both simulation study and real data analysis described
below.

Simulation study
We describe methods for simulations that corresponds to each sec-
tion of Results.

Pitfalls of including local ancestry in estimating heterogeneity.
We first describe strategies of including local ancestry in estimating
heterogeneity.

« For‘lancincluded’, we follow common practices**** to use a
local ancestry term ¢, (defined above) in equation (1):

y=eBl0 + 8By + 828 +cTa+e,

where g _denotes the effect of local ancestry.

s,lan ) o

«  For‘lancregressed, weuse y = ¢,8" +g " + g8 +e.We

first estimate g inthe regressionof y ~ ¢, ,andthen

s,lal

estimate B, 87 in regression of (y - é’sﬁ(sﬁnc) ~ Zo1BY + 8oLy

Toassess theimpact of including local ancestry term when apply-
ing HET test, werandomly selected 1,000 SNPs on chromosome 1from
PAGE genotype. We simulated traits with single causal SNP. For each
SNP, we simulated quantitative trait with the given single causal SNP
with varying B.. : B = 1.0,1.05,1.1,1.15,1.2. We scaled B.., 8. such
that the causal SNP explained the given amount of k;. For each SNP,
simulations of B.., B, and environmental noises were repeated 30
times. We then applied different strategies of including local ancestry
tothese simulations and obtained p-value of HET testing Hy : Beur = Bate
We additionally included the top principal component as a covariate
throughout. We evaluated the distribution of FPR or power of HET test
by subsampling without replacement: we drew 100 random samples,
eachsample consisted of 500 SNPs, randomly drawn from the pool of
1,000 SNPs and 30 simulations; such sampling accounts for the ran-
domness from both the environmental noises and SNP MAF. We calcu-
lated FPR or power for each sample of 500 SNPs, obtained empirical
distributions of FPR or power (100 points each), and then calculated
the mean and SE (using empirical standard deviation) from the empiri-
cal distribution.

Simulations with single causal variant. We performed simulations
with single causal variant to assess the properties of methods based
onestimated marginal effects. We randomly selected 100 regions each
spanning 20 Mb on chromosome 1 (approximately 120,000 SNPs per
region on average, standard deviation 6,000). For each region, the
causal variant located at the middle of the region; it had same causal
effects across local ancestries and was expected to explain a fixed
amount of heritability (0.2%, 0.6% and 1.0%); the sign of the causal effect
and environmental noises were randomly drawn 100 times. We evalu-
ated four metrics at both causal variants and clumped variants;
clumped variants were obtained with regular LD clumping (index
P<5x1078, r*=0.1, window size 10 Mb) using PLINK (v1.90b6.24):
--clump --clump-pl 5e-8 --clump-p2 le-4 --clump-r2 0.1
--clump-kb 10000. We used a 10 Mb clumping window to account
forthelarger LD window withinadmixed individuals; other parameters

were adopted from ref. °°. We found that, when the simulated 12 was
large, LD clumping canresult in multiple SNPs because the secondary
SNPs can reach P <5 x 108 when we applied acommonly-used = 0.1
threshold. Therefore, for eachregion, we either retained only the SNP
with strongest association (matching the simulation setup of a single
simulated causal variant), or retained all the SNPs from clumping
results. Similar as above, we evaluated the distribution of four metrics
by subsampling without replacement: we drew 100 random samples,
eachsample consisted of 500 regions (each region has one causal SNP),
randomly drawn from the pool of 100 regions and 100 simulations;
such sampling accounted for the randomness from both the environ-
mental noises and SNP MAF. We then calculated the mean and SE from
the100 random samples.

Simulation with multiple causal variants. We performed simulations
with multiple causal variants. We simulated multiple causal variants
randomly distributed on chromosome 1 (515,087 SNPs). We drew
Nequsa = 62,125,250,500 and 1,000 causal variants to simulate different
levels of polygenicity, such that on average there were approximately
0.25,0.5,1.0,2.0and 4.0 causal variants per Mb. We fixed the heritability
explained by all variants on chromosome 1as hZ =2.5%, 5%, 10% and
20%. We performed subsampling without replacement to estimate the
average and standard errors of four metrics (each sample consisted of
1,000 SNPs, randomly drawn from SNPs across 500 simulations). We
found that when the simulated hZ was small (1 = 2.5%, 5%), because of
thelimited sample sizein our data (n =17,299) for PAGE data, very few
SNPsreach P< 5 x10"%inthese simulations and consequently standard
errorsarevery large and results cannot be reliably reported. Therefore,
we chose toreportresults only from A2 =10%and 20%in Supplementary
Table 14.

Genome-wide simulation for evaluating our polygenic method. We
performed simulations to evaluate our polygenic method in terms of
parameter estimation of r,q.,;, and hypothesis testing Hy : rygmix = 1
using real genome-wide genotypes. We simulated quantitative pheno-
typesusing genotypes and inferred local ancestries from PAGE dataset.
The phenotypes were simulated under a wide range of genetic archi-
tectures varying proportion of causal variants P, heritability #2and
true correlation r,q,;,, and afrequency-dependent effects distribution
for causal variants: in each simulation, we randomly drew P, propor-
tion of causal variants. Given the set of causal variants, we simulated
quantitative phenotypes on the basis of equations (3) and (4). The
environmental noises were then simulated according to the desired
heritability AZ.

Real data analysis

Phenotype processing. For PAGE, we analyzed 24 heritable traits in
PAGE based on ref. . For UKBB, we analyzed 26 heritable traits based
on heritability and number of individuals with non-missing pheno-
type values, following ref.*”. For AoU, we analyzed ten heritable traits,
including physical measurement and lipid phenotypes, which were
straightforward to phenotype and have large sample sizes. Physical
measurement phenotypes were extracted from Participant Provided
Information in AoU dataset. Lipid phenotypes (including LDL, HDL,
TC and TG) were extracted following https://github.com/all-of-us/
ukb-cross-analysis-demo-project/tree/main/aou_workbench_siloed_
analyses, including extracting most recent measurements per person,
and correcting value with statin usage. These traits included both
quantitative and binary traits and it was previously shown that genetic
correlation methodology canbe directly applied to binary traits*®. For
each trait, we quantile normalized phenotype values. We included
age, sex, age*sex and top ten in-sample principal components (and
‘study center’ for PAGE) as covariates. We quantile normalized each
covariate and used the average of each covariate to imputed missing
valuesin covariates.
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Genome-wide genetic correlation estimation. We calculated K, K,
matrices in equation (5) using eitherimputed SNPs and HapMap3 SNPs
(for PAGE and UKBB), or microarray SNPs (for AoU). We used either
frequency-dependent or GCTA heritability models via specifying 72.
K,, K, matrices were separately calculated for individuals within PAGE,
UKBB and AoU studies. For each given r,qm,i,, we used GCTA”
(v1.94.0beta) to fit a single variance component model with the cal-
culated K; + rogmixK,usinggcta64 --reml --reml-no-constrain.
We additionally included the causal signals at Duffy SNP (rs2814778)
in 1g23.2 as covariates for analysis of white blood cell count and
C-reactive protein because of the known strong admixture peak®°.
Specifically, we used the local ancestries of SNP closest to Duffy SNP
in our data as proxies for Duffy SNP (Duffy SNP itself is not typed or
imputed in our data). The local ancestries are valid proxies of Duffy
SNP because Duffy SNP is known to be highly differentiated across
ancestries (alternate allele frequency is 0.006 versus 0.964 in ref. *°)
and therefore local ancestries are highly correlated with the Duffy
SNP. We excluded closely related individuals in the analysis
(<3rd-degree relatives; using ref. ® with plink2 --king-cutoff
0.0884). We note that our meta-analysis credible interval across traits
can be anti-conservative (that is, the actual coverage probability is
less than the nominal coverage probability) because we did not
account for the genetic correlation across traits.

Individual trait-SNP analysis. We evaluated effects consistency at
individual SNPs that were significantly associated with each trait.
First, we performed GWAS and LD clumping with the same param-
eters described above. Even though LD clumping was performed
using stringent parameters, we found cluster of clumped SNPs that
were probably dependent with each other as a combined result of
multiple causal variants withinaregion the long-range LD in admixed
populations (Supplementary Table 11 and Discussion). For each
clumped trait-SNP pair, we estimated ancestry-specific effects and
standard errors.

Statistical fine-mapping analysis. We performed fine-mapping analy-
sis to each trait-SNP pair with significant heterogeneity by ancestry
using SuSiE®* (v0.12) (for PAGE and UKBB, for which we used genotype
datawith high SNP density). For each trait-SNP, weincluded allimputed
SNPsin a3 Mbwindow. We ran SuSiE with individual-level genotype and
phenotype (covariates were regressed out of genotype and phenotype),
using default settings with maximum number of ten non-zero effects.
We obtained posterior inclusion probability and credible sets.

Statistics and reproducibility

We analyzed three publicly available datasets of PAGE, UKBB and AoU,
and sample sizes were determined in these studies. We did not use
randomization or blinding. We focused on analyzing individuals with
admixed African-European ancestries, and individuals with other
genetic ancestries were not included in analyses of this work. We rep-
licate our findings across these three independent datasets.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

PAGE individual-level genotype and phenotype data are available
through dbGaP https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000356.v2.p1. UKBBindividual-level genotype
and phenotype dataare available through application at https://www.
ukbiobank.ac.uk/. AoU individual-level genotype and phenotype are
available through application at https://www.researchallofus.org/.
The set of preprocessed HapMap3 variants used in this manuscript
isretrieved from https://ndownloader.figshare.com/files/25503788.

Code availability

Software implementing genome-wide genetic correlation estimation
method: https://github.com/kangchenghou/admix-kit (ref. https://
doi.org/10.5281/ZENODO.7482679) Code for replicating analyses:
https://github.com/kangchenghou/admix-genet-cor (ref. https://doi.
org/10.5281/ZENODO.7482683).
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Extended Data Fig. 1| Consistency of r, ., for shared traits across studies. We
compared estimated r,4;, for shared traits across studies. We compared both
Fadmix (@-¢) and — log,, (p) (for one-sided test of Hy : rygmix = 1; Methods) (d-f).
Three traits (Height, Triglycerides, Total cholesterol) with the most significant
p-valuesfor Hy : rygmix = 1were annotated. Number of common traits shared

—logio(p) (UKBB)

—logio(p) (PAGE)

across studies (n.,mmon) and Spearman correlation p-value were shown in the title
for each panel. Overall, there were weak consistency of estimated 7,gmix for
shared traits across studies (although p-values for Hy : rogmix = 1were consistent
significantly). Numerical results are reported in Supplementary Table 7.
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setting (using frequency-dependent genetic architecture and imputed SNPs;
Table 1) to those obtained using GCTA genetic architecture and imputed SNPs (a),
and to those obtained using frequency-dependent genetic architecture and HM3
SNPs (b). Numerical results are reported in Supplementary Table 8.

Extended Data Fig. 3 | 7,qmix €Stimation is robust to genetic architecture and
SNP set. We performed r, 4, €stimation under the assumption of alternative
genetic architecture and SNP set on real trait analysis across PAGE and UKBB.
We compared p-values (for one-sided test of Hy : ryqmix = 1) of our default
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(i) Results for causal variants
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Additional results for simulations with single causal
variant with varying S...:B.. and hé. Simulations were based on 100 regions
each spanning 20 Mb on chromosome 1from 17299 PAGE individuals. In each
simulation, we randomly selected single causal variant and simulated
quantitative phenotypes where these causal variants had varying causal effects
across ancestries and each causal variant was expected to explain a fixed amount
of heritability (0.2%, 0.6%,1.0%, 2.0%, 5.0%). We provide results for both causal

variants and LD-clumped variants. We separate results into two rows for better
visualization: upper row (a-c): Beu:B.r = 0.9,1.0,1.1; lower row (d-f): Bey:B. = 0.0,
0.5,1.0. We show results for False positive rate (FPR) of HET test, Deming
regression slope with ., ~ ., and OLS regression slope with B, ~ B.q- 95%
confidence intervals were based on 100 random sub-samplings with each sample
consisted of 500 SNPs (Methods). Numerical results and further discussions are
provided in Supplementary Table 15.
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this manuscript is retrieved from https://ndownloader.figshare.com/files/25503788.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender We used biological sex as covariates in statistical modeling to model possible differences of phenotype mean across sex (for
example, height). We used the sex attribute provided by UK Biobank (Bycroft et al. Nature 2018), PAGE (Wojcik et al. Nature
2019), and used "Sex at Birth" provided in All of Us dataset (https://aousupporthelp.zendesk.com/hc/en-us/
articles/360039728751-Sex-gender-and-sexual-orientation-generalizations)

Population characteristics Population characteristics can be found in UK Biobank, PAGE, All of Us studies.
Recruitment Participants were not recruited in this study. Details can be found in UK Biobank, PAGE, All of Us studies.
Ethics oversight No new data is collected in this work.

Ethics committee/IRB of Population Architecture using Genomics and Epidemiology (PAGE) gave ethical approval for
collection of PAGE data (described in Wojcik et al. 2019). PAGE data are available through dbGaP (phs000356.v2.p1).

Ethics committee/IRB of UK Biobank gave ethical approval for collection of UK Biobank data (https://www.ukbiobank.ac.uk/
learn-more-about-uk-biobank/about-us/ethics). Approval to use UK Biobank individual-level in this work was obtained under
application 33297 at http://www.ukbiobank.ac.uk.

Ethics committee/IRB of All of Us gave ethical approval for collection of All of Us data (https://allofus.nih.gov/about/who-we-
are/institutional-review-board-irb-of-all-of-us-research-program). Approval to use All of Us controlled tier data in this work
was obtained through application at https://www.researchallofus.org.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We did not collect new data and sample size corresponds to the those from existing datasets. These three datasets are used because they are
the largest publicly available datasets for genotypes and phenotypes from African-European admixed individuals. We determine these
datasets provide sufficient power for our analysis through simulation studies.

Data exclusions  We focused on analyzing individuals with admixed African-European ancestries and individuals with other genetic ancestries were not
included in analyses of this work.

Replication We replicate our findings across three large-scale datasets: PAGE, UK Biobank, All of Us.
Randomization  Randomization is not relevant for this study as we did not perform randomization for individuals.

Blinding The investigators are blinded to group allocation.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems

Methods
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