

1 **Bottom-up synthesis of mesoscale nanomeshes of graphene** 2 **nanoribbons on germanium**

3
4 Vivek Saraswat¹, Austin J. Way¹, Xiaoqi Zheng¹, Robert M. Jacobberger¹, Sebastian Manzo¹,
5 Nikhil Tiwale², Jonathan H. Dwyer¹, Jason K. Kawasaki¹, Chang-Yong Nam², Padma Gopalan¹,
6 and Michael S. Arnold^{1*}

7
8 1. Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison,
9 Wisconsin 53706, United States

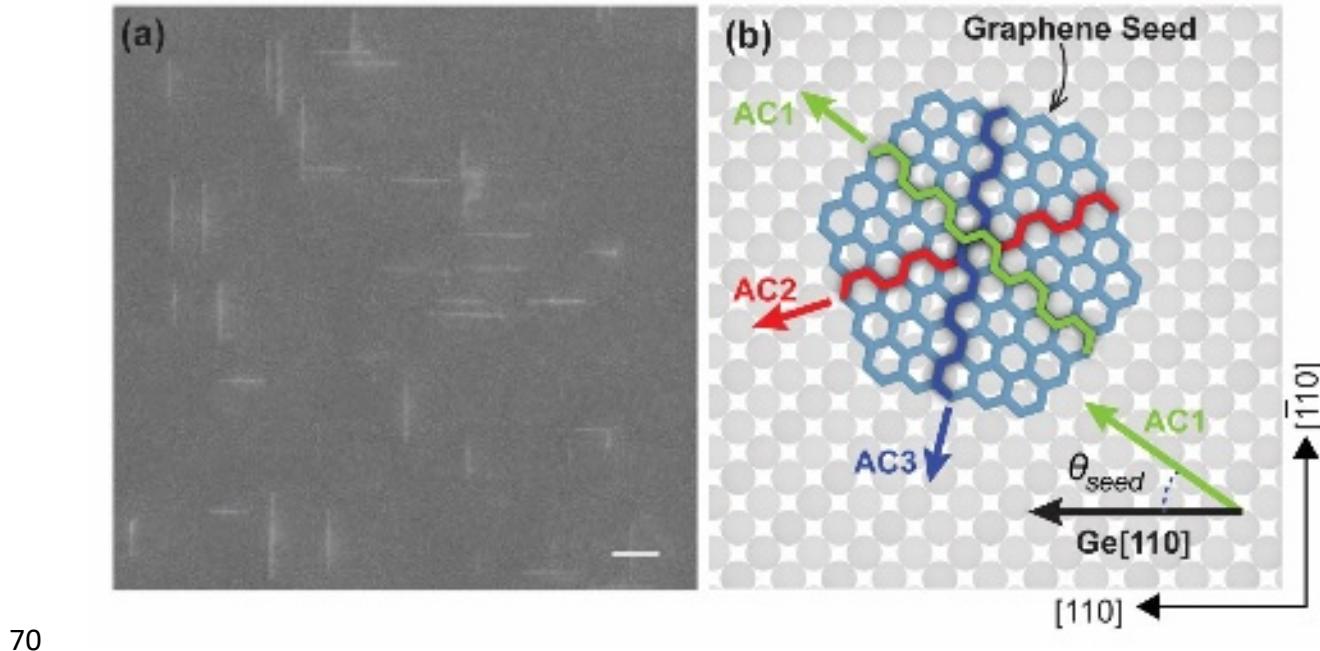
10 2. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, 11973,
11 USA

12 * Author to whom correspondence should be addressed: michael.arnold@wisc.edu

13 **Abstract**

14 The synthesis of functional graphene nanostructures on Ge(001) provides an attractive route
15 toward integrating graphene-based electronic devices onto complementary metal oxide
16 semiconductor (CMOS)-compatible platforms. In this study, we leverage the phenomenon of the
17 anisotropic growth of graphene nanoribbons from rationally placed graphene nanoseeds and their
18 rotational self-alignment during chemical vapor deposition to synthesize mesoscale graphene
19 nanomeshes over areas spanning several hundred square micrometers. Lithographically patterned
20 nanoseeds are defined on a Ge(001) surface at pitches ranging from 50 to 100 nm, which serve as
21 starting sites for subsequent nanoribbon growth. Rotational self-alignment of the nanoseeds
22 followed by anisotropic growth kinetics cause the resulting nanoribbons to be oriented along each
23 of the equivalent, orthogonal Ge<110> directions with equal probability. As the nanoribbons grow,
24 they fuse, creating a continuous nanomesh. In contrast to nanomesh synthesis *via* top-down
25 approaches, this technique yields nanomeshes with atomically faceted edges and covalently-
26 bonded junctions, important for maximizing charge transport properties. Additionally, we simulate
27 the electrical characteristics of nanomeshes synthesized from different initial nanoseed-sizes, size-

30 polydispersities, pitches, and device channel lengths to identify a parameter-space for acceptable
31 on/off ratios and on-conductance in semiconductor electronics. The simulations show that
32 decreasing seed diameter and pitch are critical to increasing nanomesh on/off ratio and on-
33 conductance, respectively. With further refinements in lithography, nanomeshes obtained *via*
34 seeded synthesis and anisotropic growth are likely to have superior electronic properties with
35 tremendous potential in a multitude of applications such as radio frequency communications,
36 sensing, thin-film electronics, and plasmonics.


37 **Introduction**

38 The synthesis of sub-10 nm wide armchair graphene nanoribbons on Ge(001) using chemical vapor
39 deposition (CVD) provides a metal-free, industry-compatible route toward fabricating
40 semiconducting graphene nanoribbon devices.^{1,2} Previous work has demonstrated that at
41 temperatures ~ 900 °C, the pyrolysis of hydrocarbon precursors (*e.g.* CH₄, C₂H₄) on the Ge(001)
42 surface leads to the anisotropic growth of armchair graphene nanoribbons that self-align along one
43 of the equivalent, orthogonal Ge<110> directions and that can be as narrow as 1.7 nm.³ The devices
44 fabricated from such CVD-synthesized graphene nanoribbons have yielded promising
45 characteristics – on-conductance (G_{on}) = 5 μ S and on/off ratio (G_{on}/G_{off}) = 2×10^4 .^{4,5} However, the
46 spontaneous (or unseeded) growth of graphene nanoribbons that occurs during CVD causes
47 polydispersity in nanoribbon length and width, presumably due to polydispersity in the size of
48 nucleation sites that are formed from carbon-based surface residual adsorbates, unsynchronized
49 nucleation that can occur over the duration of the CVD growth, and/or minor site-to-site variation
50 in growth rates. Furthermore, spontaneous nucleation leads to nanoribbons that are randomly
51 oriented toward one of the two Ge<110> directions. Moreover, such a growth offers no control

52 over the placement and orientation of the nanoribbons since nanoribbons tend to nucleate at
53 arbitrary locations on the surface.⁶

54 These drawbacks must be overcome to incorporate graphene nanoribbons into integrated circuits,
55 wherein the precise location of each transistor is pre-determined in order to register the contacts
56 and subsequent interconnect layers. Furthermore, in order to be competitive with existing
57 technologies, each nanoribbon field-effect transistor (FET) would need to be comprised of several
58 nanoribbons in order to deliver a high drive current – necessitating the parallel alignment of
59 individual nanoribbons.⁷ In order to overcome these drawbacks, it has been suggested that the
60 growth and alignment of graphene nanoribbons on Ge(001) during the CVD process can be
61 manipulated by initiating synthesis from rationally placed graphene nuclei or nanoseeds and tuning
62 the initial size and crystallographic orientation of the nanoseed-lattice on the Ge(001) surface.^{8,9}

63 For instance, we previously reported that a graphene nanoseed with a diameter *larger* than a critical
64 size (~18 nm), that has its lattice's armchair direction oriented within 3° of one of the equivalent
65 Ge<110> directions (*i.e.* $0^\circ \leq |\theta_{seed}| \leq 3^\circ$, in Figure 1), upon CVD growth, results in an
66 anisotropic armchair graphene nanoribbon whose long axis (or armchair direction) is aligned
67 toward that particular Ge<110> direction. On the contrary, if a graphene nanoseed has its armchair
68 direction misaligned with its nearest Ge<110> direction (*i.e.* $7^\circ \leq |\theta_{seed}| \leq 23^\circ$), the CVD growth
69 yields low aspect, parallelogram-like graphene crystals (see SI Figure 1).^{8,9}

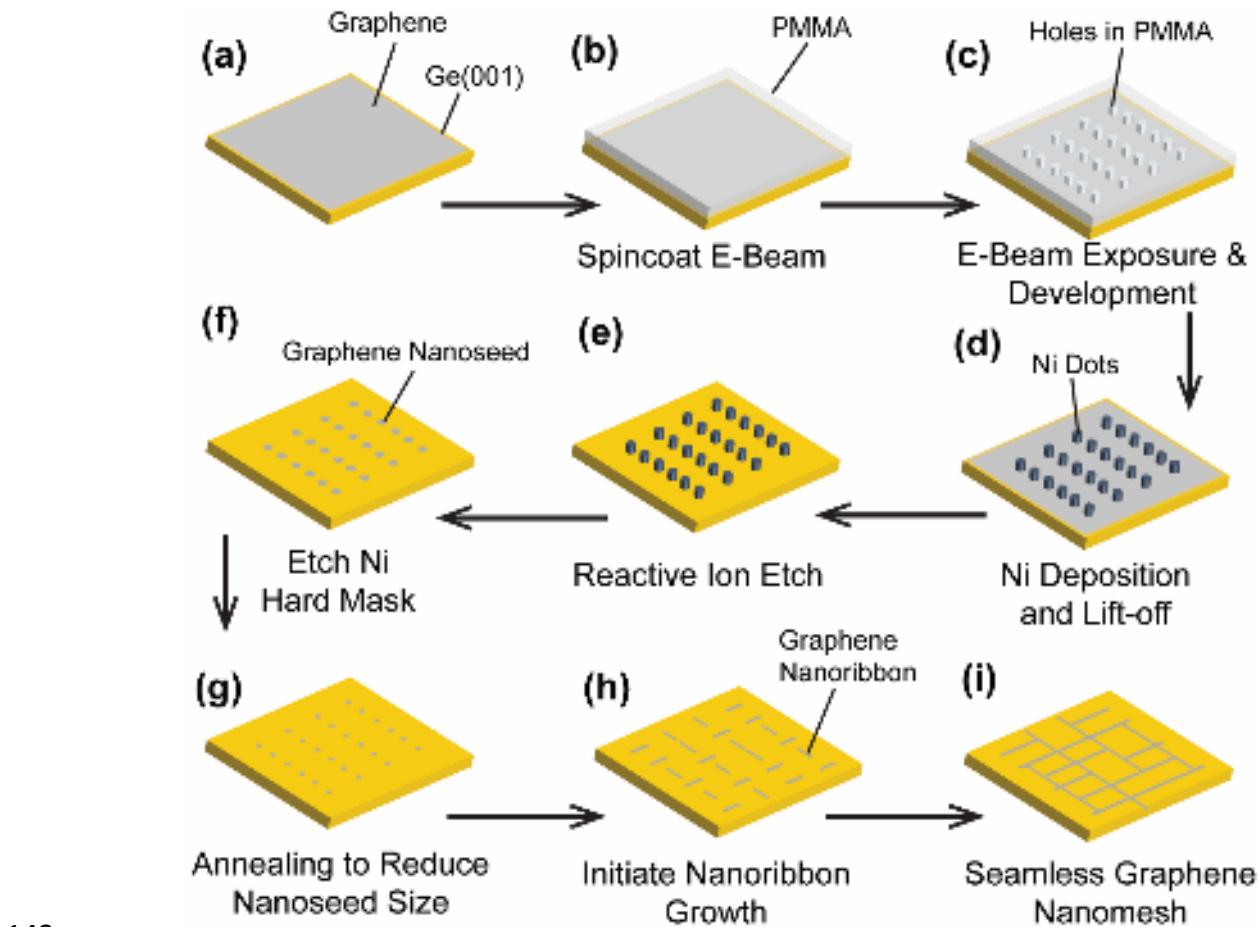
70

71 **Figure 1:** (a) A representative scanning electron microscopy (SEM) image of an unseeded
72 graphene nanoribbon growth on Ge(001) via CVD. (b) Schematic of a graphene nanoseed on
73 Ge(001). The three possible armchair directions of the nanoseed-lattice are highlighted in different
74 colors (denoted as AC1, AC2, and AC3). Scale bar in (a) is 200 nm.

75 In the same work, we also reported that upon reducing its initial diameter to < 18 nm, the nanoseed,
76 regardless of its initial orientation on the Ge(001) surface, is able to rotate and self-align its
77 armchair direction with either of the equivalent Ge $\langle 110 \rangle$ directions, resulting in a 50-50 split of
78 nanoribbons oriented orthogonally with each other.¹⁰ Although the driving factors dictating the
79 seed-rotation are not yet clear, it is believed that seed rotation occurs because alignment of the
80 armchair direction of the nanoseed parallel to Ge $\langle 110 \rangle$ leads to an energetically stable orientation.

81 ¹¹ When the nanoseed sizes are reduced, the kinetic barrier associated with nanoseed-rotation also
82 decreases, allowing the nanoseeds to rotate relatively freely and thus enabling the self-alignment
83 of the armchair direction of nanoseeds with any one of the two Ge $\langle 110 \rangle$ directions.¹⁰

84 Whereas use of graphene nanoribbons in high-performance logic and radio frequency (RF) devices
85 is likely to require sub-5 nm widths with short channel lengths,⁷ there are a plethora of applications
86 wherein the semiconducting nature of graphene nanoribbons might be harnessed at longer channel
87 lengths ($L_{ch} > 1 \mu\text{m}$); e.g., thin-film electronics, flexible electronics, biosensors, and plasmonics.¹²
88 While aggregates of surface-synthesized^{13,14} and films of solution processed nanoribbons^{15,16} have
89 been considered as promising candidates in this realm of applications because of their ease of
90 synthesis and deposition, the lack of covalent bonding between the constituent nanoribbons
91 degrades the charge transport mobility because of the large resistance associated with inter-ribbon
92 hopping. Here, a graphene nanomesh with covalently bonded junctions might be a better
93 alternative for achieving high mobility, on-current, and on/off ratios.^{17–21} In the literature, several
94 techniques to synthesize graphene nanomeshes have been demonstrated such as block copolymer
95 lithography,²² bottom-up polymerization,^{23,24} and barrier-guided CVD.²⁵
96 In this study, we build upon our previous work that demonstrated the phenomenon of graphene
97 nanoseed self-rotation on Ge(001) to synthesize orthogonally oriented graphene nanoribbons that
98 merge together into a seamless interconnected mesh. Although a similar concept has been recently
99 demonstrated using organic seeds as initiating sites for nanoribbon synthesis,²⁶ we utilize graphene
100 nanoseeds patterned at regular, rationally controlled, and tunable pitch using electron-beam
101 lithography to obtain nanomeshes with well-defined nanoribbon periodicity, leading to better
102 control and consistency over the resulting structure. We demonstrate that the interconnected
103 regions of the nanomesh can provide a percolating pathway for charge carriers over lengths > 20
104 μm and in principle, can be scaled over an entire 300 mm wafer. Furthermore, in order to identify
105 future avenues for improving the synthesis and semiconducting properties of the nanomesh, we
106 simulate charge transport through the nanomeshes fabricated with nanoseeds of different sizes,


107 polydispersities, pitches, and arrangements and reveal reasonable pitches/seed-sizes necessary to
108 obtain sufficiently large on/off conductance modulation and on-state conductance for different
109 applications. Through these simulations, we reveal that nanoseed pitches < 50 nm are crucial to
110 obtain on/off conductance modulation > 100 . Surprisingly, even a substantial polydispersity in
111 nanoseed-size does not significantly affect the on/off conductance modulation. Even higher on/off
112 conductance modulation using smaller seeds based on organic molecules such as pentacene, C₆₀,
113 and other polycyclic aromatic hydrocarbons might be possible, provided that viable methods to
114 rationally place these molecules on Ge(001) are developed. Overall, we demonstrate a proof-of-
115 concept technique for synthesizing a graphene nanomesh on a technologically relevant Ge(001)
116 wafer using CVD. Nanomeshes synthesized by this approach possesses atomically faceted edges,
117 which is a pre-requisite to achieve superior charge transport properties and can be readily scaled
118 for wafer-scale integration into semiconductor electronics.^{27,28}

119 **Results and Discussion**

120 **Nanofabrication of graphene nanoseeds**

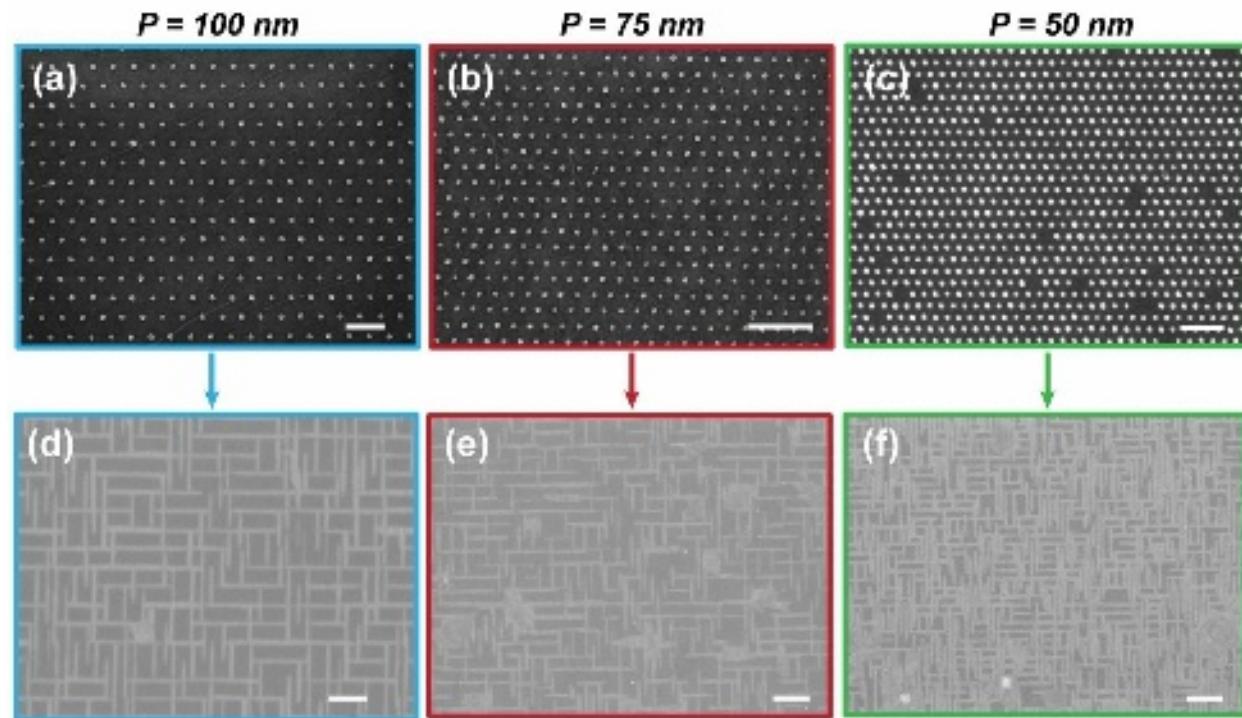
121 Figure 2 shows an overview of the nanofabrication process to create graphene nanoseed arrays on
122 Ge(001). To describe briefly, monolayer graphene grown on Cu foil at 1050 °C is wet-transferred
123 to a Ge(001) wafer piece using a sacrificial polymer layer (polymethyl methacrylate (PMMA) in
124 chlorobenzene) as a support membrane. Thereafter, PMMA is removed with acetone and acetic
125 acid in order to obtain a relatively residue-free, pristine graphene layer on Ge(001). Next, 1%
126 PMMA (molecular weight of 950 kg mol⁻¹) in chlorobenzene is spin-coated on graphene/Ge(001)
127 at 4000 rpm, yielding a 50 nm thick PMMA layer which is used as an electron-beam resist. Prior
128 to electron-beam exposure, the sample is baked at 185 °C for 90 s to remove residual solvent. The
129 patterns used in this study are comprised of an array of nanoseeds at pitch, *P*, of 50, 75 and 100

130 nm, in which alternate rows are displaced by $0.5 \times P$. While theoretically the extent of these patterns
131 can be scaled over areas of several mm^2 or more, depending on electron-beam write speed, here
132 we limited the field area of the patterns to be $30 \mu\text{m} \times 30 \mu\text{m}$ as a proof of concept. These patterns
133 are then developed in an isopropyl alcohol:methyl isobutyl ketone (3:1 ratio) solution at 0°C for
134 70 s. The development process removes the regions of PMMA exposed by the electron-beam,
135 creating an array of holes in PMMA, commensurate with the desired pattern. After the
136 development, 10 nm of Ni is evaporated in these holes at a background pressure of $< 2 \mu\text{Torr}$ using
137 an electron-beam evaporator. Liftoff is then carried out by soaking the samples in hot acetone (\sim
138 60°C) for 1 h followed by mild sonication, yielding Ni dots on graphene, which serve as etch
139 masks (Figure 2d). Regions of graphene unprotected by Ni dots are then removed using an O_2
140 reactive ion etch (RIE), at 50 W for 30 s. Lastly, Ni dots are etched in a dilute aqua regia solution
141 (3 parts HCl : 2 parts deionized H_2O : 1 part HNO_3) for 135 s followed by three sequential
142 deionized water rinses, exposing the underlying graphene nanoseeds.

143

144 **Figure 2:** Schematic of nanofabrication of graphene nanoseeds on Ge(001) and subsequent CVD
145 synthesis of graphene nanomesh.

146 **CVD synthesis of graphene nanomesh**


147 In order to synthesize nanomeshes from these nanoseed arrays, samples are first annealed in an
148 Ar/H₂ atmosphere at 910 °C for ~ 30 min in a tube furnace of inner diameter 34 mm. Annealing
149 not only removes residual adsorbates on the Ge(001) surface, necessary for high-quality
150 anisotropic nanoribbon growth,²⁹ but also concomitantly etches and desirably decreases the
151 diameter of the graphene nanoseeds.³⁰ Before annealing, the nanoseed diameter is approximately
152 30 nm, as analyzed from the data shown in Figure 3a-c). After 30 min of annealing, the diameter
153 is reduced to approximately 12 nm, based on a measured diametric etch rate of 0.6 nm min⁻¹

154 reported previously.⁹, below the threshold of 18 nm needed for self-rotation of the seeds.
155 Subsequently, nanoribbon growth is initiated by flowing 2 sccm of CH₄ (purity of 99.999%). The
156 nanoribbon growth rates in the length and width directions at this CH₄ flow rate are estimated to
157 be 17 and 0.8 nm h⁻¹, respectively. From Raman characterization of CVD-synthesized nanoribbons
158 on Ge(001) initiated both with³¹ and without¹ seeds, it is known that these nanoribbons are
159 graphene. Furthermore, in our previous works^{1,6,31} we have demonstrated that these nanoribbons
160 have smooth, faceted armchair edges and are semiconducting in nature. A nanoribbon growth
161 duration of 180 min is used for $P = 100$ nm and 150 min for $P = 50$ and 75 nm samples, which is
162 sufficiently long for the nanoribbons to interconnect. The covalent bonding of the nanoribbon
163 junctions (as opposed to van der Waals contact) is expected in these syntheses since graphene
164 islands nucleated on all germanium facets (*i.e.*, Ge(001),^{32,33} Ge(110),^{34,35} and Ge(111)³⁶) are
165 proven to seamlessly grow into a monolayer with atomically continuous grain boundaries upon a
166 sufficiently long CVD growth.

167 Figures 3 d-f show nanomeshes synthesized by CVD initiated from the nanoseed arrays shown in
168 Figure 3 a-c, respectively. As expected, we see that (i) the seeds primarily evolve into high-aspect
169 ratio nanoribbons (as opposed to low-aspect ratio parallelograms) and (ii) the nanoribbon
170 orientations are evenly split among each of the equivalent Ge<110> directions. Both observations
171 (i) and (ii) verify the nanoseed rotation. Moreover, a continuous percolating path is observed at all
172 pitches, consistent with covalent bonding at the junctions and confirming the validity of our
173 approach.

174 In some instances, we see Ni nanodots are missing – presumably due to imperfect liftoff and poor
175 adhesion of metals with graphene;³⁷ however, the overall yield is high enough to not lead to any
176 major discontinuities in the nanomeshes. Graphene islands observed in some cases are likely due

177 to nanoseeds larger than the critical size of 18 nm (which do not rotate and rather evolve into
178 isotropic crystals⁸), or in some cases due to lateral nanoribbons merging into each other; the latter
179 being more profound in dense nanomeshes with $P = 50$ nm.
180

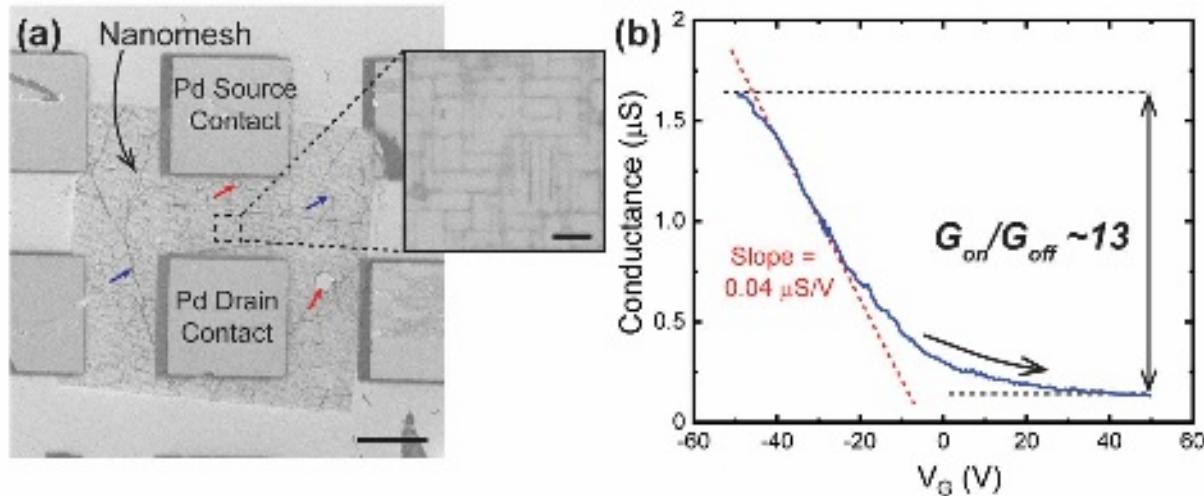
181
182 **Figure 3:** CVD of graphene nanoribbons from nanoseeds fabricated using Ni etch masks at
183 different pitches (P). The anneal duration is 30 min, while the growth duration is 180 min for a,d
184 and 150 min for b, c, e, f. All scale bars are 200 nm.

185 The initial nanoseed-size can also be manipulated to yield nanomeshes with varying degrees of
186 nanoseed-rotation and nanoribbon widths. SI Figure 2 shows how increasing nanoseed size leads
187 to fewer nanoseeds rotating, ultimately yielding just parallel stipes of graphene that form because
188 the nanoseeds do not rotate when they are large (as discussed in SI Figure 1). Such size-tunable
189 control over nanoseed rotation might offer promising avenues toward fabricating aligned

190 nanoribbon arrays and nanomeshes on a single substrate. For instance, aligned arrays of wide
191 nanoribbons might be used as interconnects for power delivery in electronic devices.

192 **Fabrication and measurement of nanomesh devices**

193 In order to confirm that these nanomeshes indeed form a continuous percolating network for
194 charge carriers and to further understand their electronic properties, we measured charge transport
195 characteristics by fabricating long channel transistors. Nanomeshes synthesized by CVD on
196 Ge(001) are wet-transferred to a SiO₂/Si substrate using PMMA-GMA (poly-(methyl
197 methacrylate)- glycidyl methacrylate) copolymer as a support membrane. The details of the
198 transfer process are described elsewhere.³¹ Subsequently, we fabricated contacts by depositing 20
199 nm Pd using a transmission electron microscopy (TEM) grid (mesh 400) as a shadow mask. A
200 representative image of the transferred nanomesh on 90 nm SiO₂/Si and an array of Pd contacts is
201 shown in Figure 4a. As expected, the transfer process occasionally introduces wrinkles and tears
202 in the nanomesh (indicated by blue and red arrows, respectively). Wrinkles may also form in the
203 nanomesh when it is cooled from synthesis temperature (910 °C) to room temperature after growth,
204 due to the differences in thermal expansion coefficients between Ge and graphene.^{38,39} We do not
205 expect the tears to significantly degrade the on-conductance of nanomeshes because they are
206 sparse. With future optimization of transfer protocols, it should be viable to transfer the
207 nanomeshes with near-perfect fidelity.
208 Note that nanoribbons are not clearly resolved on SiO₂ because of surface charging during SEM.
209 Figure 4b shows the transfer characteristics of a representative nanomesh device with $P = 100$ nm,
210 channel length (L_{ch}) = 25 μm and channel width (W_{ch}) = 36 μm at source-drain voltage (V_{DS}) = -
211 0.1 V. For a gate voltage (V_G) sweep between -50 and 50 V, an on/off ratio of 13 is measured,
212 which is comparable to the on/off ratio ~ 10 seen in nanomeshes synthesized by molecule initiated


213 bottom-up CVD on Ge(001).²⁶ Furthermore, we observe an on-state conductance (G_{on}) of 1.6 μ S,
214 indicating that our nanomeshes are continuous and can be utilized in long-channel charge transport
215 applications. As a first approximation, the lower limit of field-effect mobility (μ) of our nanomesh
216 can be estimated using a simple parallel plate capacitor model,

217

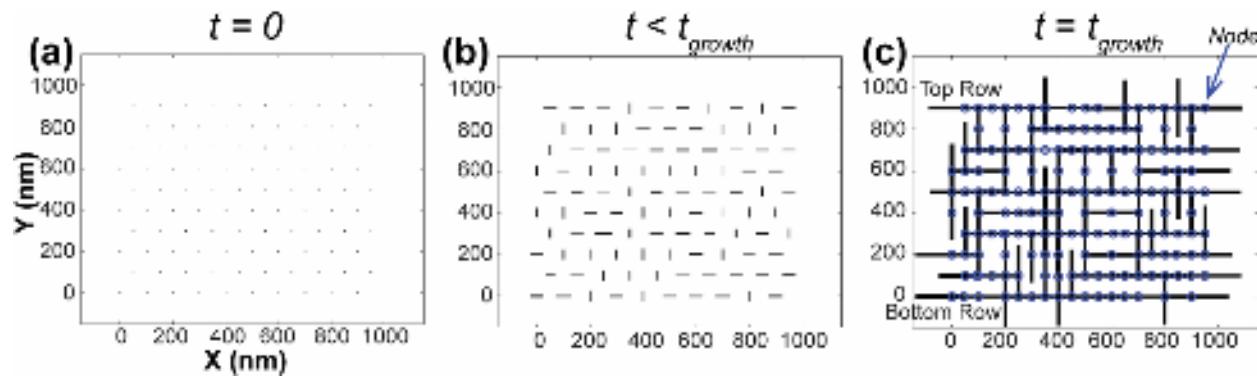
$$\mu = \frac{1}{C_{ox}/A} \times \frac{L_{ch}}{W_{ch}} \times \frac{dG_{DS}}{dV_G}$$

218 Where C_{ox} is the oxide capacitance, G_{DS} channel conductance at given V_G , and $\frac{dG_{DS}}{dV_G}$ the slope of
219 the linear region in Figure 4b ($\sim 0.04 \mu$ S V⁻¹). Based on this model, we estimate the lower bound
220 on μ as $0.7 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, which is comparable to or better than other nanoribbon thin-film transistors
221 synthesized by bottom-up CVD or polymerization^{13,14,26,40}. Nanomeshes synthesized with longer
222 growth duration, which lead to wider nanoribbons, improve the μ by over an order of magnitude
223 to $\sim 12 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, but lead to degraded on/off ratio ~ 6 (SI Figure 3). While the primary objective
224 of this paper is to demonstrate proof-of-concept synthesis of CVD nanomeshes, we anticipate that
225 the electronic properties can be vastly improved by further refining of synthesis and device
226 integration.

227

228

229 **Figure 4:** (a) SEM image of a $90 \mu\text{m} \times 90 \mu\text{m}$ graphene nanoribbon mesh transferred on SiO_2/Si
230 substrate with an array of Pd grids deposited on top. A magnified image of the nanomesh is shown
231 in the inset. (b) Forward sweep transfer characteristics of a representative nanomesh with $P = 100$
232 nm. The scale bars in (a) and (a, inset) are $20 \mu\text{m}$ and 200 nm , respectively.


233 **Simulation of charge transport through graphene nanomesh**

234 To motivate research toward further improving the electronic performance of such nanomeshes,
235 we perform simulations of charge transport through nanomeshes fabricated from nanoseeds of
236 different sizes, polydispersities, pitches, and architectures. Additionally, the effect of FET channel
237 length on on/off ratio (G_{on}/G_{off}) and G_{on} is investigated. Different electronic applications demand
238 considerably different G_{on} and G_{on}/G_{off} . Therefore, it will be crucial to tune nanoseed sizes and
239 pitches depending on the desired application.

240 In our model, nanoseeds are placed in a regular array and are randomly assigned a growth direction
241 along one of the two orthogonal $\text{Ge}(110)$ directions, with equal weighting. To capture a broad
242 range of possibilities, we simulate nanomeshes with mean nanoseed sizes (μ_{seed}) and

243 polydispersities (σ_{seed}) ranging from 1 – 9 nm and 0 – 4 nm, respectively. For a given combination
244 of μ_{seed} and σ_{seed} , nanoseeds are generated using a normal distribution, $\sim N(\mu_{seed}, \sigma_{seed})$, in which
245 negative seed sizes are assumed to be overetched and thus disappear from an array. Furthermore,
246 we assume mean nanoribbon length-growth rate (μ_l) and width-growth rate (μ_w) as 18.2 and 0.81
247 nm h⁻¹, respectively, in accordance with experimentally measured data.⁹ Next, we estimate the
248 polydispersity in nanoribbon length- and width-growth rates from experimentally measured
249 polydispersity in growth rates of nanoribbons initiated from organic molecules such as polycyclic
250 aromatic hydrocarbons (*i.e.*, monodisperse nanoseeds).³¹ This is conceivable because in the case
251 of nanoribbons initiated from monodisperse, organic molecules, the measured polydispersity in
252 growth rates is only due to the underlying mechanisms of nanoribbon growth (*e.g.*, nanoribbon-
253 Ge surface interactions, surface roughness, presence of steps, and nanofaceting), in which the
254 length and width of the nanoribbons are not perturbed by polydispersity in the size of the nanoseeds
255 themselves. These normalized polydispersity values, σ_l and σ_w , are estimated to be 1.65 and 0.17
256 nm h⁻¹, respectively. Consequently, in our model, nanoseeds are randomly assigned growth rates
257 in the length (R_l) and width (R_w) direction with normally distributed probabilities with parameters
258 (18.2, 1.65) nm h⁻¹ and (0.81, 0.17) nm h⁻¹, respectively. The nanoribbons grow along the length
259 direction until they meet another nanoribbon and grow along the width direction for the entire
260 duration of the growth (t_{growth}). In the model, t_{growth} depends on the pitch (P) and is given as t_{growth}
261 = 0.0375 × P h-nm⁻¹. This dependence has been optimized so that the entire nanomesh forms a
262 continuous percolating network without discontinuities. The point where nanoribbons meet is
263 labeled as a node. Figure 5Figure shows different stages of nanoribbon evolution and nanomesh
264 formation in the model, with nodes highlighted in blue.

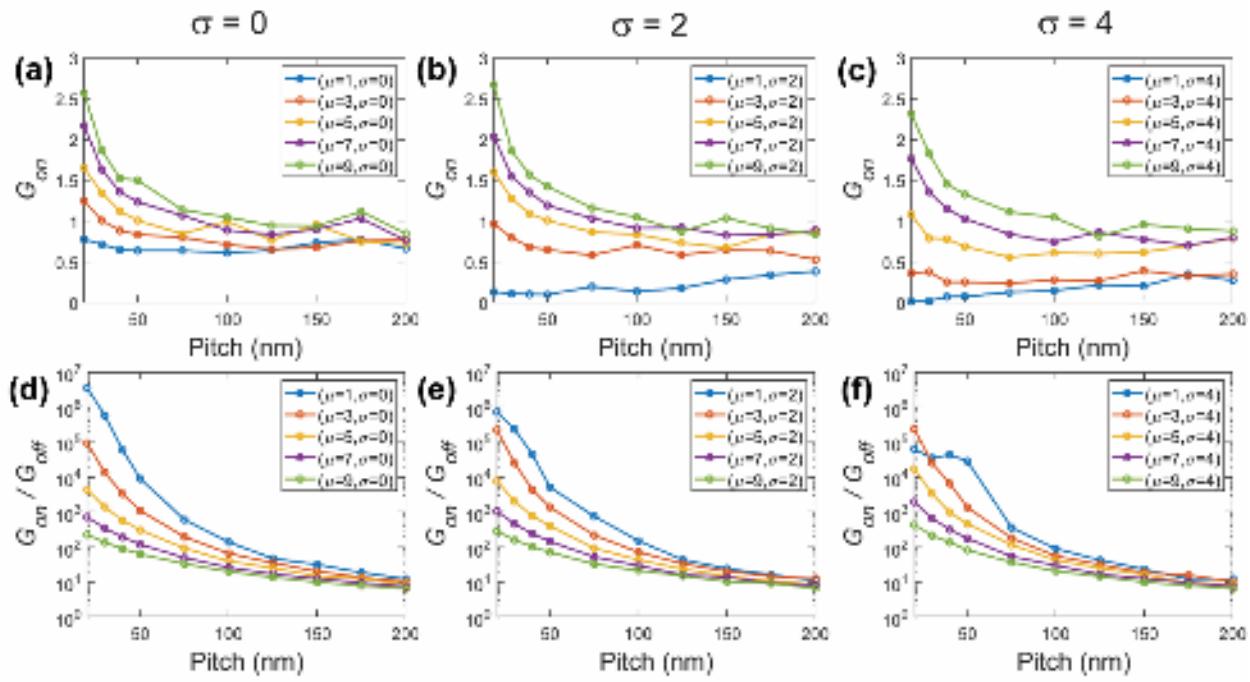
265

266 **Figure 5:** Different stages of nanoribbon evolution and nanomesh formation for $\mu_{seed} = 5$ nm, σ_{seed}
267 = 2 nm, and $P = 100$ nm. The blue circles in (c) indicate nodes where two nanoribbons meet and
268 fuse.

269 To model the charge transport properties of the nanomeshes, we develop a node-branch resistor
270 network model in which (1) the branches are the nanoribbon segments connecting the nodes in
271 Figure 5c and (2) the on- and off- states are treated separately. In the on-state, the conductance of
272 each branch is scaled by the length (L) and width (w) of the connecting nanoribbon segment as
273 $G_{on}^{segment} = 1 \frac{w}{L}$, where 1 is the normalized sheet conductance of the nanoribbon in the on-state.

274 For a FET at small source-drain bias and in the long-channel regime (channel resistance \gg
275 contact resistance), the on-off conductance modulation ratio will scale exponentially with the
276 bandgap, E_g , such that $G_{on}^{segment} / G_{off}^{segment} = \exp(\frac{E_g}{2kT})$, where k is Boltzmann's constant and T
277 is temperature, which is designated as 300 K. Empirically, it has been found that E_g varies
278 inversely with nanoribbon width (w) as $E_g \approx \frac{\alpha}{w}$, where α is a constant equal to 3.2 eV nm.^{4,41}

279 Thus, in the off-state, the conductance of each segment is set as $G_{off}^{segment} = \exp(\frac{-\alpha}{2wkT}) \frac{w}{L}$.


280 Kirchoff's current equations are formulated for the entire network and solved separately in the
281 on- and off-states to calculate the small-bias on-conductance of the nanomesh (G_{on}^{mesh}) and the
282 off-conductance of the nanomesh (G_{off}^{mesh}) between the top and bottom rows of nodes. Each

283 instance of nanomesh growth for a given set of conditions is simulated ten times, and median
284 G_{on}^{mesh} and $G_{on}^{mesh}/G_{off}^{mesh}$ values are plotted in the subsequent sections.

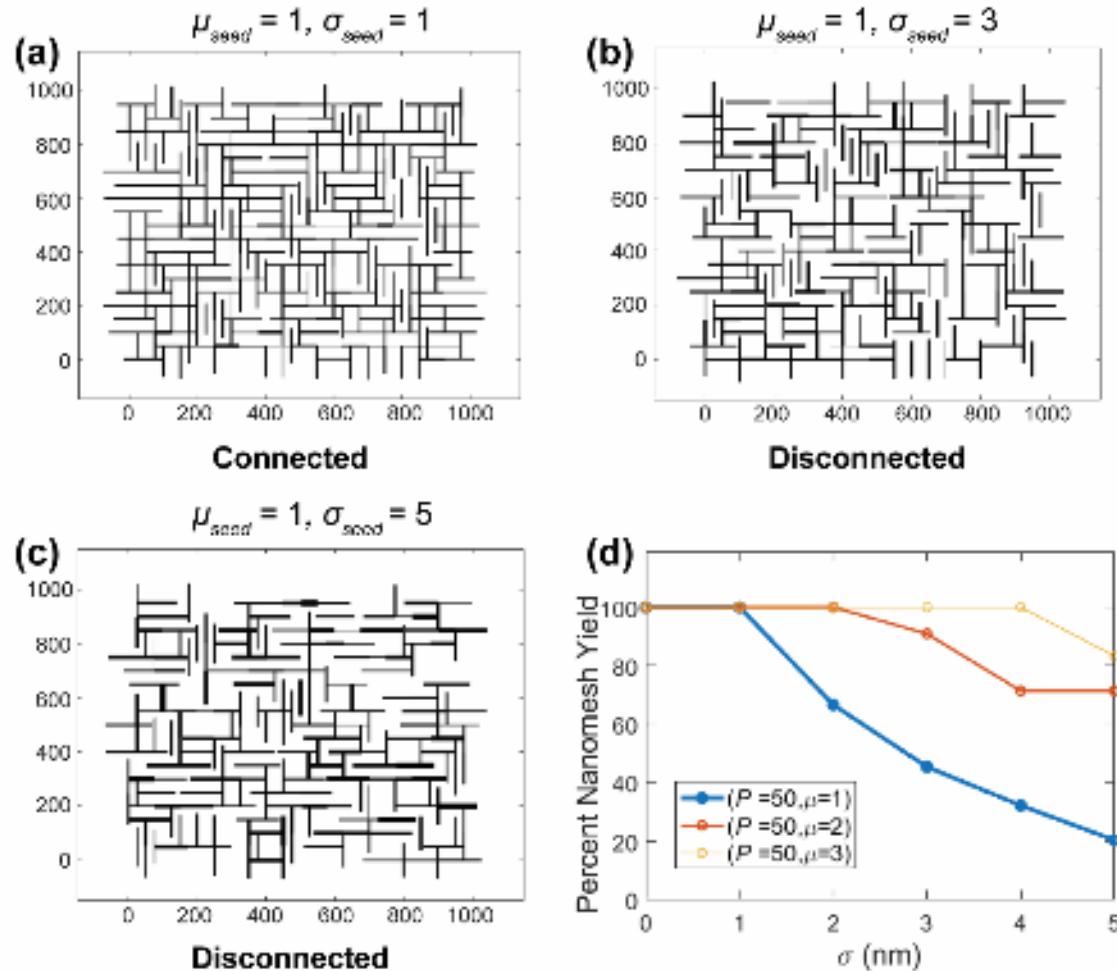
285 **Effect of varying nanoseed pitch and size at a fixed nanoseed polydispersity and**
286 **fixed channel length**

287 Figure 6 shows the effect of varying the P at a fixed σ_{seed} and fixed channel length and channel
288 width ($L_{ch} = W_{ch} = 1000$ nm) on G_{on}^{mesh} and $G_{on}^{mesh}/G_{off}^{mesh}$. Here, P is varied from 20 nm to 200 nm.
289 As P increases, both G_{on}^{mesh} and $G_{on}^{mesh}/G_{off}^{mesh}$ decrease. While the former decreases because of a
290 reduction in the number of parallel conduction pathways at longer P , the latter decreases because
291 of the necessity of longer t_{growth} at higher P in order to form an interconnected pathway, which
292 leads to wider nanoribbons with smaller bandgaps and therefore lower $G_{on}^{mesh}/G_{off}^{mesh}$. A notable
293 exception to this trend is observed for G_{on} at $\mu_{seed} = 1$ nm and $\mu_{seed} = 3$ nm, where the G_{on} increases
294 or stays nearly constant with increasing pitch (Figure 6 b,c). This may be explained by the fact that
295 although the number of parallel conduction pathways increase at smaller pitches, for $\mu_{seed} = 1$ or 3
296 nm, the conductance of the individual nanoribbon segments is also small because the nanoribbon
297 width upon termination of the growth is still very narrow when P is small (and $G_{on}^{segment}$ scales
298 with w/L). Interestingly, when plotted differently, these data also reveal that substantial
299 polydispersity in nanoseed sizes (σ_{seed}) do not have a significantly adverse effect on G_{on}^{mesh} and
300 $G_{on}^{mesh}/G_{off}^{mesh}$. Specifically, SI Figure 4 shows that for $\mu_{seed} > 3$ nm, both G_{on} and G_{on}/G_{off} remain
301 largely invariant of σ_{seed} at a given P . We also investigate the channel length dependence on G_{on}^{mesh}
302 and $G_{on}^{mesh}/G_{off}^{mesh}$ and show that while G_{on}^{mesh} decays inversely with channel length, $G_{on}^{mesh}/G_{off}^{mesh}$
303 remains largely invariant (SI Figure 5).

305

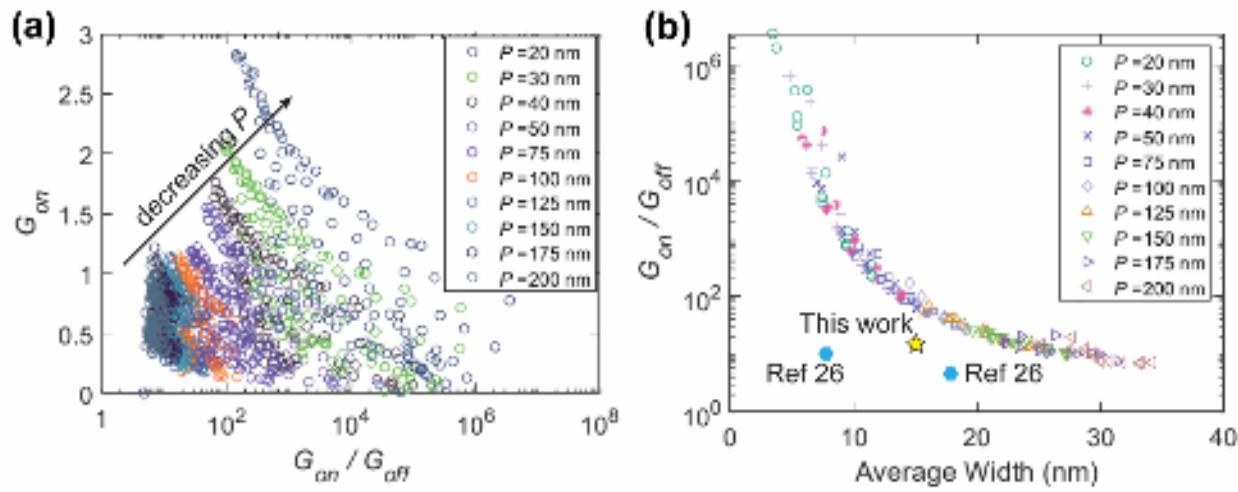
306

307 **Figure 6:** Plots of on-state conductance (G_{on}) and on-off ratio (G_{on}/G_{off}) at $1 \text{ nm} \leq \mu_{seed} \leq 9 \text{ nm}$
308 at a fixed $\sigma_{seed} = 0, 2$, and 4 nm for (a,d), (b,e), and (c,f) respectively. G_{on} quantified with respect
309 to the normalized sheet conductance of a single nanoribbon in the on-state.


310

Variables affecting the yield of an interconnected nanomesh

311


312 While factors governing the electrical performance of the nanomesh have been evaluated, yield is
313 a crucial aspect that needs to be investigated. For instance, if polydispersity in the nanoseed size
314 (σ_{seed}/μ_{seed}) is too large then a significant fraction of starting nanoseeds might be missing (because
315 of overetching during annealing) leading to a disconnected nanomesh (Figure 7b,c). Other
316 parameters that may influence a continuous path through a nanomesh are P and channel length.
317 To this end, in Figure 7d and SI Figure 6 we plot calculate nanomesh yield *versus* σ_{seed} , P , and L_{ch} .
318 For these plots, the nanomesh yield, Y , is calculated as $Y = c / T$ where c is the number of trials in

319 which a random simulation yields a continuous nanomesh (*i.e.* there is at least one continuous path
320 for charge transport) and T is the total number of random trials performed.
321

322
323 **Figure 7:** Deteriorating effect of nanoseed polydispersity on nanomesh yield. (a-c) Depiction of
324 three representative nanomeshes where, $\mu_{seed} = 1$ nm, $P = 50$ nm, $L_{ch} = 1000$ nm, and $t_{growth} = 3.75$
325 h and $\sigma_{seed} = 1, 3$, and 5 nm for (a), (b), and (c), respectively. Only (a) leads to a connected
326 nanomesh, while (b) and (c) lead to disconnected nanomeshes. (d) Quantitative summary of
327 percent nanomesh yield as a function of nanoseed polydispersity for different seed sizes and fixed
328 $P = 50$ nm. 10 random meshes are simulated at each condition.

329 In Figure 7d, Y is plotted against σ_{seed} at a fixed $P = 50$ nm and $L_{ch} = 1000$ nm and different μ_{seed} .
330 These data indicate that larger σ_{seed}/μ_{seed} is deleterious to yield and therefore, future nanomesh
331 designs likely need to consider relative polydispersity in starting seed-sizes. Similar analyses done
332 in SI Figure 6a,b indicate that Y deteriorates with increasing P and L_{ch} when σ_{seed}/μ_{seed} is large.
333 Although σ_{seed}/μ_{seed} can be reduced by increasing the μ_{seed} , larger μ_{seed} also leads to wider
334 nanoribbon segments and thus poorer G_{on}/G_{off} (see Figure d-f). Therefore a better way to reduce
335 σ_{seed}/μ_{seed} is to reduce σ_{seed} by using lithography techniques with higher resolution or by utilizing
336 organic molecules (e.g. pentacene, PTCDA, C_60 etc.) as nanoseeds because of their
337 monodispersity. For comparison, we also simulated nanomesh growth initiated by organic
338 molecules deposited randomly, similar to that demonstrated in a previous report.²⁶ These data are
339 shown in SI Figure 7.
340

341
342 **Figure 8:** (a) Cumulative plot of on-state conductance (G_{on}) versus on-off conductance
343 modulation (G_{on}/G_{off}) for all possible combinations of μ_{seed} and σ_{seed} at different pitches (P). G_{on}
344 quantified with respect to the normalized sheet conductance of a single nanoribbon in the on-
345 state. (b) Cumulative plot of G_{on}/G_{off} versus final average nanoribbon width in the nanomesh for

346 different pitches. L_{ch} is held constant at 1000 nm. Experimental data from our nanomesh device
347 and ref 26 is indicated for comparison.

348 **Discussion**

349 We analyze the aggregated simulation data at all possible combinations of P , μ_{seed} , and σ_{seed} in
350 Figure 8 (note that $L_{ch} = 1000$ nm for all the data shown in this plot). Figure 8a highlights an
351 inevitable trade-off between G_{on} and G_{on}/G_{off} —both cannot be maximized simultaneously at a fixed
352 P . This compromise is understood by considering that higher G_{on}/G_{off} is only observed in
353 nanomeshes comprised of narrow nanoribbons (*i.e.*, small μ_{seed}), whereas high G_{on} is only observed
354 in nanomeshes comprised of wide nanoribbons (*i.e.*, large μ_{seed}). Figure 8a shows however that the
355 trade-off between G_{on} and G_{on}/G_{off} can be ameliorated by minimizing P . The dataset corresponding
356 to larger P is confined to the bottom left region of the graph, which is always undesirable since
357 both G_{on} and G_{on}/G_{off} are minimized. In contrast, as P decreases, the data move toward the more
358 desirable upper-right corner of Figure 8a in which both G_{on}^{mesh} and $G_{on}^{mesh}/G_{off}^{mesh}$ increase. For a
359 given G_{on} , a higher G_{on}/G_{off} is always observed with decreasing P . Thus, the importance of
360 achieving smaller P is clearly visible from these data. Consequently, depending on the desired
361 application (*e.g.*, high-performance versus low-power), an appropriate P and μ_{seed} will need to be
362 selected.

363 Similar insight can be derived from Figure 8b wherein $G_{on}^{mesh}/G_{off}^{mesh}$ is plotted against average
364 nanoribbon width in the nanomeshes at different P . These data clearly show how the $G_{on}^{mesh}/G_{off}^{mesh}$
365 is dictated by $G_{on}^{segment}/G_{off}^{segment}$ and thus the width of each segment.

366 We compare our experimental results from Figure 4 to our simulations in Figures 6f and 8b. For
367 the nanomesh characterized in Figure 5, the average nanoribbon width is ~ 15 nm, which should

368 exhibit $G_{on}^{mesh}/G_{off}^{mesh}$ of $\sim 20 - 30$. Our experimentally observed $G_{on}^{mesh}/G_{off}^{mesh}$ of 13 is on the same
369 order of magnitude but somewhat smaller than what would be theoretically expected. This
370 discrepancy, could be explained by several factors including a failure to fully turn-on the
371 nanoribbon segments because of relatively thick gate-oxide or a poor description of the $G_{on}^{segment}$
372 / $G_{off}^{segment}$ ratio by $\exp\left(\frac{\alpha}{2w kT}\right) \frac{w}{L}$ for $w > 10$ nm, among other possibilities. Similar discrepancies
373 between simulated and experimental G_{on}/G_{off} for nanomeshes have been observed previously,²⁶
374 indicating that there might be several unanswered questions with regards to the bandgap (and
375 therefore, G_{on}/G_{off}) of super-10 nm wide nanoribbons.

376 Regardless, the broader conclusions from our simulations are still applicable for the design and
377 synthesis of high-performance nanomeshes. As evident from Figure 8, it is critical to reduce the
378 nanoseed pitch (P) to < 50 nm and nanoseed size (μ_{seed}) to < 5 nm in order to obtain a nanomesh
379 with an appreciable G_{on}/G_{off} relevant for most semiconductor applications. While, in this study we
380 are limited by the resolution of our electron-beam tool, recent advances in lithography for instance
381 *via* using negative-tone resists such as HSQ or SU-8 or using multi-layer resists have made it
382 possible to achieve much tighter pitches. Alternatively, block copolymer lithography can be used
383 to fabricate wafer scale arrays of relatively monodisperse nanoseeds at sub-50 nm pitches.⁴²⁻⁴⁴
384 These simulations provide ample motivation toward exploration of these techniques for fabrication
385 of nanomeshes with improved charge transport properties. Additionally, in order to isolate the
386 properties of the meshes from those of the Ge, we opted to transfer the nanomeshes onto SiO₂/Si
387 substrates for our electrical measurements. However, it may be possible to create graphene
388 nanomesh devices directly on Ge in the future if a stable oxide or insulator can be grown between
389 the mesh and the Ge after the nanomesh synthesis.⁴⁵ In addition, hybrid graphene nanomesh-Ge

390 devices are also a promising option to explore in order to fully realize the potential of these
391 nanomeshes.

392 **Conclusion**

393 To conclude, we demonstrate the bottom-up synthesis of graphene nanomeshes on technologically
394 relevant Ge(001) with the potential to be adapted to a Si(001) platform.⁶ We exploit the phenomena
395 of anisotropic CVD and rotational self-alignment of graphene nanoseeds on Ge(001) to achieve a
396 nearly even split of armchair nanoribbon directions oriented along the two perpendicular Ge<110>
397 directions. We fabricate ordered arrays of graphene nanoseeds on Ge(001) with different sizes and
398 pitches using electron-beam lithography. Upon initiating CVD growth from these nanoseeds, the
399 resulting nanoribbons grow orthogonally, fusing into each other, and forming an interconnected
400 nanomesh spanning large areas with the potential to be scaled to any area across which seeds can
401 be lithographically fabricated (*e.g.*, 300 mm wafer scales or larger). We characterize the charge
402 transport properties of these nanomeshes and demonstrate an on/off ratio ~ 13 and field effect
403 mobility $\sim 0.7 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, which is competitive with other long channel nanoribbon mesh devices
404 reported in the literature. Using simulations, we demonstrate that charge transport properties are
405 tunable depending on nanoseed-size, -polydispersity, and -pitch and that there is an inevitable
406 tradeoff between achieving high on/off ratios and high on-current. Generally, however, smaller
407 pitches ($<50 \text{ nm}$) and smaller nanoseeds with reduced polydispersity alleviate this trade-off and
408 result in superior charge transport characteristics and high yielding nanomeshes. Future work will
409 be aimed at utilizing improved lithographic techniques to further enhance the electrical
410 characteristics of these nanomeshes.

411 **Supplementary Material**

412 Please refer to the supplementary material for SEM images displaying nanomeshes with different
413 degrees of nanoseed rotation, additional device electrical data related to nanomeshes, and further
414 simulation analyses.

415 **Data Availability**

416 The data that support the findings of this study are available from the corresponding author upon
417 reasonable request.

418 **Acknowledgements**

419 Nanomesh CVD conception, synthesis, device measurements, and simulations (M.S.A, V.S., and
420 A.J.W) and nanomesh transfer and device fabrication (X.Z. and R.M.J.) were supported by U.S.
421 Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-
422 SC0016007. This research used Materials Synthesis and Characterization, and Nanofabrication
423 Facilities of the Center for Functional Nanomaterials (CFN), which is a U.S. Department of Energy
424 Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-
425 SC0012704. S.M and J.K.K. aided with the deposition of Ni nanoseeds, supported by the National
426 Science Foundation award number DMR-1752797 (JKK). J.H.D. and P.G. performed nanomesh
427 transfer using PMMA/GMA supported by the U.S. Defense Advanced Research Projects Agency
428 (DARPA) Grant No. D18AP00043. The authors gratefully acknowledge use of facilities and
429 instrumentation supported by NSF through the University of Wisconsin Materials Research
430 Science and Engineering Center (DMR-1121288, 0079983, and 0520057) and through the
431 University of Wisconsin Nanoscale Science and Engineering Center (DMR-0832760 and
432 0425880).

433

434 **References**

435 ¹ R.M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P.L. Levesque, K.M. McElhinny, G.J.
436 Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M.G. Lagally, P.G. Evans, P. Desjardins,
437 R. Martel, M.C. Hersam, N.P. Guisinger, and M.S. Arnold, *Nat Commun* **6**, 8006 (2015).

438 ² M. Lukosius, J. Dabrowski, J. Kitzmann, O. Fursenko, F. Akhtar, M. Lisker, G. Lippert, S.
439 Schulze, Y. Yamamoto, M.A. Schubert, H.M. Krause, A. Wolff, A. Mai, T. Schroeder, and G.
440 Lupina, *ACS Appl Mater Interfaces* **8**, 33786 (2016).

441 ³ B. Kiraly, A.J. Mannix, R.M. Jacobberger, B.L. Fisher, M.S. Arnold, M.C. Hersam, and N.P.
442 Guisinger, *Appl Phys Lett* **108**, 213101 (2016).

443 ⁴ R.M. Jacobberger and M.S. Arnold, *ACS Nano* **11**, 9 (2017).

444 ⁵ R.M. Jacobberger, E.A. Murray, M. Fortin-Deschênes, F. Göltl, W.A. Behn, Z.J. Krebs, P.L.
445 Levesque, D.E. Savage, C. Smoot, M.G. Lagally, P. Desjardins, R. Martel, V. Brar, O.
446 Moutanabbir, M. Mavrikakis, and M.S. Arnold, *Nanoscale* **11**, 11 (2019).

447 ⁶ V. Saraswat, Y. Yamamoto, H.J. Kim, R.M. Jacobberger, K.R. Jinkins, A.J. Way, N.P.
448 Guisinger, and M.S. Arnold, *Journal of Physical Chemistry C* **123**, 30 (2019).

449 ⁷ V. Saraswat, R.M. Jacobberger, and M.S. Arnold, *ACS Nano* **15**, 3 (2021).

450 ⁸ A.J. Way, R.M. Jacobberger, and M.S. Arnold, *Nano Lett* **18**, 2 (2018).

451 ⁹ A.J. Way, E.A. Murray, F. Göltl, V. Saraswat, R.M. Jacobberger, M. Mavrikakis, and M.S.
452 Arnold, *Journal of Physical Chemistry Letters* **10**, 15 (2019).

453 ¹⁰ A.J. Way, V. Saraswat, R.M. Jacobberger, and M.S. Arnold, *APL Mater* **8**, 091104 (2020).

454 ¹¹ F. Göltl, E.A. Murray, B.W.J. Chen, R.M. Jacobberger, M.S. Arnold, and M. Mavrikakis,
455 *Appl Surf Sci* **527**, 146784 (2020).

456 ¹² A.D. Franklin, *Science* **349**, 6249 (2015)

457 ¹³ N. Richter, Z. Chen, A. Tries, T. Prechtl, A. Narita, K. Müllen, K. Asadi, M. Bonn, and M.
458 Kläui, *Sci Rep* **10**, 1988 (2020).

459 ¹⁴ Z. Chen, W. Zhang, C.A. Palma, A. Lodi Rizzini, B. Liu, A. Abbas, N. Richter, L. Martini,
460 X.Y. Wang, N. Cavani, H. Lu, N. Mishra, C. Coletti, R. Berger, F. Klappenberger, M. Kläui, A.
461 Candini, M. Affronte, C. Zhou, V. de Renzi, U. del Pennino, J. v. Barth, H.J. Räder, A. Narita,
462 X. Feng, and K. Müllen, *J Am Chem Soc* **138**, 47 (2016).

463 ¹⁵ Y. Huang, Y. Mai, U. Beser, J. Teyssandier, G. Velpula, H. van Gorp, L.A. Straasø, M.R.
464 Hansen, D. Rizzo, C. Casiraghi, R. Yang, G. Zhang, D. Wu, F. Zhang, D. Yan, S. de Feyter, K.
465 Müllen, and X. Feng, *J Am Chem Soc* **138**, 32 (2016).

466 ¹⁶ M. Shekhirev, T.H. Vo, M.M. Pour, A. Sinitskii, S. Munukutla, and J.W. Lyding, *ACS Appl
467 Mater Interfaces* **9**, 1 (2017).

468 ¹⁷ Z. Geng, H. Bernd, R. Granzner, M. Auge, A.A. Lebedev, V.Y. Davydov, and M. Kittler,
469 *Annalen der Physik* **529**, 11 (2017).

470 ¹⁸ J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, *Nat Nanotechnol* **5**, (2010).

471 ¹⁹ Y. Lin, Y. Liao, Z. Chen, and J.W. Connell, *Mater Res Lett* **5**, 4 (2017).

472 ²⁰ M. Wang, L. Fu, L. Gan, C. Zhang, M. Rümmeli, A. Bachmatiuk, K. Huang, Y. Fang, and Z.
473 Liu, *Sci Rep* **3**, 1238 (2013).

474 ²¹ J. Yang, M. Ma, L. Li, Y. Zhang, W. Huang, and X. Dong, *Nanoscale* **6**, 22 (2014).

475 ²² M. Kim, N.S. Safron, E. Han, M.S. Arnold, and P. Gopalan, *Nano Lett* **10**, 4 (2010).

476 ²³ C. Moreno, M. Vilas-Varela, B. Kretz, A. Garcia-Lekue, M. v. Costache, M. Paradinas, M.

477 Panighel, G. Ceballos, S.O. Valenzuela, D. Peña, and A. Mugarza, *Science* **360**, 6385 (2018).

478 ²⁴ Z. Mutlu, P.H. Jacobse, R.D. McCurdy, J.P. Llinas, Y. Lin, G.C. Veber, F.R. Fischer, M.F.

479 Crommie, and J. Bokor, *Adv Funct Mater* **31**, 47 (2021).

480 ²⁵ N.S. Safron, M. Kim, P. Gopalan, and M.S. Arnold, *Advanced Materials* **24**, 1041 (2012).

481 ²⁶ N. Kim, S. Choi, S.J. Yang, J. Park, J.H. Park, N.N. Nguyen, K. Park, S. Ryu, K. Cho, and C.J.

482 Kim, *ACS Appl Mater Interfaces* **13**, 24 (2021).

483 ²⁷ T. Fang, A. Konar, H. Xing, and D. Jena, *Phys Rev B Condens Matter Mater Phys* **78**, 205403

484 (2008).

485 ²⁸ D. Basu, M.J. Gilbert, L.F. Register, S.K. Banerjee, and A.H. MacDonald, *Appl Phys Lett* **92**,

486 042114 (2008).

487 ²⁹ R.M. Jacobberger, A.J. Way, V. Saraswat, and M.S. Arnold, *ECS Trans* **93**, 129 (2019).

488 ³⁰ A.J. Way, E. Murray, R.M. Jacobberger, V. Saraswat, F. Goeltl, M. Mavrikakis, and M.S.

489 Arnold, *ECS Trans* **93**, 121 (2019).

490 ³¹ A.J. Way, R.M. Jacobberger, N.P. Guisinger, V. Saraswat, X. Zheng, A. Suresh, J.H. Dwyer,

491 P. Gopalan, and M.S. Arnold, *Nat Commun* **13**, 2992 (2022).

492 ³² A.M. Scaparro, V. Miseikis, C. Coletti, A. Notargiacomo, M. Pea, M. de Seta, and L. di
493 Gaspare **8**, 48 (2016).

494 ³³ D. Akinwande, N. Petrone, and J. Hone, Nat Commun **5**, 5678 (2014).

495 ³⁴ J.H. Lee, E.K. Lee, W.J. Joo, Y. Jang, B.S. Kim, J.Y. Lim, S.H. Choi, S.J. Ahn, J.R. Ahn,
496 M.H. Park, C.W. Yang, B.L. Choi, S.W. Hwang, and D. Whang, Science **344**, 6181 (2014).

497 ³⁵ H.W. Kim, W. Ko, W.J. Joo, Y. Cho, Y. Oh, J. Ku, I. Jeon, S. Park, and S.W. Hwang, Journal
498 of Physical Chemistry Letters **9**, 24 (2018).

499 ³⁶ B. Kiraly, R.M. Jacobberger, A.J. Mannix, G.P. Campbell, M.J. Bedzyk, M.S. Arnold, M.C.
500 Hersam, and N.P. Guisinger, Nano Lett **15**, 11 (2015).

501 ³⁷ D.S. Schulman, A.J. Arnold, and S. Das, Chem Soc Rev **47**, 9 (2018).

502 ³⁸ G. Wang, M. Zhang, Y. Zhu, G. Ding, D. Jiang, Q. Guo, S. Liu, X. Xie, P.K. Chu, Z. Di, and
503 X. Wang, Sci Rep **3**, 2465 (2013).

504

505 ³⁹ L. Persichetti, M. de Seta, A.M. Scaparro, V. Miseikis, A. Notargiacomo, A. Ruocco, A.
506 Sgarlata, M. Fanfoni, F. Fabbri, C. Coletti, and L. di Gaspare, Appl Surf Sci **499**, 143923 (2020).

507 ⁴⁰ V. Passi, A. Gahoi, B. V. Senkovskiy, D. Haberer, F.R. Fischer, A. Grüneis, and M.C. Lemme,
508 ACS Appl Mater Interfaces **10**, 12 (2018).

509 ⁴¹ X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, **319**, 5867 (2008).

510 ⁴² G.G. Yang, H.J. Choi, K.H. Han, J.H. Kim, C.W. Lee, E.I. Jung, H.M. Jin, and S.O. Kim, ACS
511 Appl Mater Interfaces **14**, 10 (2022).

512 ⁴³ S.M. Lewis, M.S. Hunt, G.A. Derose, H.R. Alty, J. Li, A. Wertheim, L. de Rose, G.A. Timco,
513 A. Scherer, S.G. Yeates, and R.E.P. Winpenny, *Nano Lett* **19**, 9 (2019).

514 ⁴⁴ A.E. Grigorescu and C.W. Hagen, *Nanotechnology* **20**, 292001 (2009)

515 ⁴⁵ P. Braeuninger-Weimer, O. Burton, R.S. Weatherup, R. Wang, P. Dudin, B. Brennan, A.J.
516 Pollard, B.C. Bayer, V.P. Veigang-Radulescu, J.C. Meyer, B.J. Murdoch, P.J. Cumpson, and S.
517 Hofmann, *APL Mater* **7**, 071107 (2019).