

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

1 Perspective: strain and strain gradient engineering in membranes of quantum 2 materials

3 Dongxue Du,¹ Jiamian Hu,¹ and Jason K. Kawasaki^{1,*}

4 ¹*Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States of America*
5 (Dated: April 10, 2023)

Strain is powerful for discovery and manipulation of new phases of matter; however, the elastic strains accessible to epitaxial films and bulk crystals are typically limited to small (< 2%), uniform, and often discrete values. This Perspective highlights emerging directions for strain and strain gradient engineering in free-standing single crystalline membranes of quantum materials. Membranes enable large (~ 10%), continuously tunable strains and strain gradients via bending and rippling. Moreover, strain gradients break inversion symmetry to activate polar distortions, ferroelectricity, chiral spin textures, superconductivity, and topological states. Recent advances in membrane synthesis by remote epitaxy and sacrificial etch layers enable extreme strains in transition metal oxides, intermetallics, and Heusler compounds, expanding beyond the natively van der Waals (vdW) materials like graphene. We highlight emerging opportunities and challenges for strain and strain gradient engineering in membranes of non-vdW materials.

6 I. INTRODUCTION

7 The properties of quantum materials with highly localized *d* and *f* orbitals can be highly sensitive to changes in
8 bond lengths, bond angles, local coordination, and symmetry. Strain is a powerful knob for tuning these parameters, with striking examples including strain-induced
12 superconductivity in epitaxial RuO₂ films [1], strain-induced ferroelectricity in SrTiO₃ [2], and strain-induced
14 changes in magnetic ordering in magnetic shape memory
15 alloys [3]. However, the strains accessible to bulk materials and epitaxial films are typically limited to < 2%
17 before relaxation via dislocations [4–6]. In epitaxial films
18 the strain is static and discrete, based on the lattice mismatch between particular film and substrate combinations. This also limits the critical thickness of a strained
21 epitaxial film before the relaxation via dislocations, e.g.
22 for Si/SiGe, the critical thickness is ~ 10 nm for 1% lattice mismatch ~ 4 nm for 2% lattice mismatch [5]. As a
24 result, many quantum properties remain out of reach.

25 This Perspective highlights emerging opportunities for
26 strain and strain gradient engineering in single crystalline membranes of quantum materials, beyond natively
27 vdW materials. Free-standing membranes enable two
29 regimes that are inaccessible in films and bulk crystals
30 (Fig. 1). First, membranes and other free-standing
31 nanostructures can sustain much larger elastic strains
32 (8% in (La,Ca)MnO₃ membranes [7] and 10% in BaTiO₃
33 [8]), compared to the ~ 2% limit for films and bulk
34 crystals. Second, membranes enable controlled strain
35 gradients via bending and rippling [9]. Whereas uniform
36 strain breaks rotational and translational symmetries (Fig. 1(a)), strain gradients break inversion symmetry, in addition to rotation and translation. Inversion
38 breaking is the necessary ingredient for ferroelectric polar
39

40 distortions, nonlinear optical responses, Dzyaloshinskii-Moriya interaction (DMI)-induced chiral spin textures, and Rashba splitting (Fig. 1(b)).

43 Recent advances in remote epitaxy [9–13] and etch release layers [7, 14] enable the synthesis of ultrathin membranes of quantum materials, including Heusler compounds and transition metal oxides. These synthesis advancements enable extreme strain to be applied to expanded classes of ultrathin membranes, which until recently were mainly limited to easily exfoliable van der Waals (vdW) materials like graphene and transition metal dichalcogenides [15, 16]. We highlight opportunities for discovery of hidden properties via large strains and strain gradients in these materials (Section II). Realization of these properties relies on emerging approaches for single crystalline membrane synthesis, understanding and controlling their extreme mechanical properties, and feedback from computational modelling (Section III). We conclude with an outlook on static and nonequilibrium stains (Section IV).

60 II. OPPORTUNITIES

61 A. Magnetism, flexomagnetism, and skyrmions

62 Homogeneous strains couple strongly to magnetism via
63 piezomagnetism ($M \propto \epsilon$) and magnetostriction ($M^2 \propto \epsilon$). Microscopically, strain tunes magnetic exchange via
64 the bond lengths and bond angles, and tunes the band degeneracies and occupancies via change in symmetry [17].
65 Many intermetallic compounds and transition metal oxides have rich magnetic properties [18–20], and the membrane form factor allows the strain to be tuned continuously and magnetic response measured in-situ. Continuously tunable homogeneous strains up to 0.3% have been demonstrated to tune the spacing of skyrmions in 150 nm thick FeGe platelets fabricated by ion milling, and measured by in-situ Lorentz transmission electron microscopy

* Authors to whom correspondence should be addressed: Jiamian Hu, jhu238@wisc.edu; Jason Kawasaki, jkawasaki@wisc.edu

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

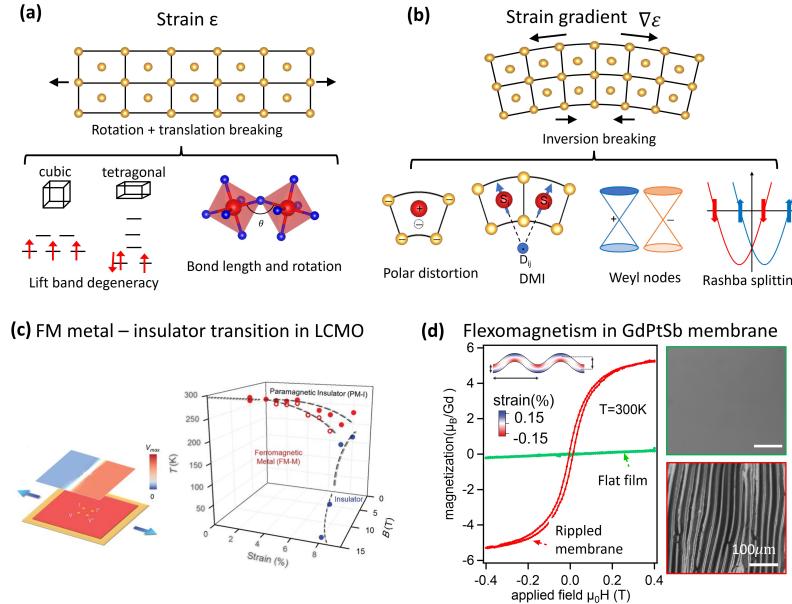


FIG. 1. Symmetry breaking and properties induced by large strains and strain gradients. (a) Homogeneous strain breaks rotational and translational symmetry, to lift band degeneracies and tune bond lengths and angles. These parameters can tune magnetic exchange and electron correlations. (b) Strain gradients break inversion, providing access to polar distortions, tunable Dzialoshinskii-Moriya interaction (DMI), tunable Weyl nodes, and Rashba splitting. (c) Extremely large strain induced Metal to Insulator transition and magnetic phase transition in $\text{La}_{0.7}\text{Ca}_{0.3}\text{MnO}_3$ membrane. From Hong, et. al. Science 368, 71 (2020) (Ref [7]). Reprinted with permission from AAAS. (d) Flexomagnetism induced by strain gradients in rippled GdPtSb membranes. Reproduced from Du et. al. Nature Communications, 12, 2494 (2021) (Ref [9]), under Creative Commons licence.

75 (TEM) [21]. Magnetic domain rotation has been imaged
76 in 0.3% strained 45 nm thick $(\text{La},\text{Sr})\text{MnO}_3$ membranes
77 using X-ray magnetic circular dichroism photoemission
78 electron microscopy (XMCD-PEEM) [22]. Larger strain
79 in few nanometer thick membranes have the potential to
80 tune magnetic properties more substantially. As an ex-
81 ample, > 5% strains in $(\text{La},\text{Ca})\text{MnO}_3$ membranes (< 10
82 nm thickness) induce a ferromagnetic metal to insulator
83 transition [7] (Fig. 1(c)).

84 Magnetism can also couple strongly to strain gra-
85 dients, which is termed flexomagnetism ($M \propto \nabla\epsilon$)
86 [23–25]. Whereas strain gradients are difficult to con-
87 trol in bulk crystals and epitaxially clamped films,
88 we recently demonstrated an antiferromagnetic to
89 ferro/ferrimagnetic transition upon rippling in GdPtSb
90 membranes, in the first experimental example of flex-
91 omagnetism [9] (Fig. 1d). Although the microscopic
92 mechanism is not well understood, we speculate that
93 strain gradients enhance the DMI, leading to canted fer-
94 rimagnetism in the rippled GdPtSb membranes. Micro-
95 scopic measurements and theory are required to under-
96 stand the flexomagnetic response.

97 Inversion-breaking strain gradients can also tune or
98 induce chiral spin textures such as skyrmions, via tun-
99 ing the DMI. As proof of concept, recent experiments
100 on partially relaxed $(\text{La},\text{Sr})\text{MnO}_3$ (LSMO) films show
101 signatures of skyrmions by magnetic force microscopy
102 and topological hall effect, induced by inversion-breaking
103 strain gradients along the growth direction [26]. We
104 anticipate even greater control of skyrmions in bent
105 LSMO membranes, which allow the strain gradient to
106 be tuned more precisely and continuously rather spon-
107 tanuously strain relaxation in LSMO films.

108 Theory predicts skyrmions in other bent systems.
109 Mesoscale calculations predict highly tunable skyrmions
110 in bent membranes heterostructures of simple metals and
111 a flexo-Hall effect induced by bending [27]. More com-
112 plex cyclical states are predicted for curved nanotubes
113 of CrI_3 , due to periodic boundary conditions along the
114 circumference of the nanotube [28]. Strain gradients are
115 also predicted to control skyrmion motion [29–31], which
116 could be controlled dynamically on a flexible membrane
117 platform. We anticipate these concepts to apply broadly
118 to membranes of non vdW materials, e.g. rare earth

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

¹¹⁹ Heusler compounds, magnetic oxides, and chiral inter-
¹²⁰ mettalic.

¹²¹ **B. Ferroelectricity, flexoelectricity, and polar**
¹²² **metals**

¹²³ Ferroelectricity requires crystals with broken inversion
¹²⁴ symmetry that have a unique polar axis. Although homo-
¹²⁵ geneous strain alone does not break inversion, it can tune
¹²⁶ ferroelectricity in systems that are already ferroelectric or
¹²⁷ induce ferroelectricity in materials on the verge of being
¹²⁸ ferroelectric. For example, uniaxial tensile strain induces
¹²⁹ ferroelectricity in membranes of the quantum paraelec-
¹³⁰ tric SrTiO_3 , by suppressing quantum fluctuations [32].
¹³¹ The absence of strain (clamping) in membranes can also
¹³² be important: free-standing BaTiO_3 membranes display
¹³³ faster switching than epitaxial BaTiO_3 films, due to the
¹³⁴ release from substrate clamping effects [33].

¹³⁵ Strain gradients, which break inversion, are even more
¹³⁶ powerful because they can induce polar distortions in ma-
¹³⁷ terials that were originally centrosymmetric. The general
¹³⁸ coupling between ferroelectricity and strain gradients is
¹³⁹ termed flexoelectricity [34–37]. It is defined in the ex-
¹⁴⁰ pansion of electric polarization on strain,

$$P_i = e_{ijk}\epsilon_{jk} + \mu_{ijkl}\frac{\partial\epsilon_{kl}}{\partial x_j}, \quad (1)$$

¹⁴¹ where P_i is the electric polarization component, ϵ_{jk} is
¹⁴² the strain component, e_{ijk} is the third rank piezoelec-
¹⁴³ tric tensor, and μ_{ijkl} is the fourth rank flexoelectric ten-
¹⁴⁴ sor [35, 38]. Early experiments quantified the flexoelec-
¹⁴⁵ tric coefficients for few millimeter thick cantilevers of
¹⁴⁶ lead magnesium niobate [39] and lead zirconate titanate
¹⁴⁷ (PZT) [40]. More recent experiments suggest that 10 nm
¹⁴⁸ thick BaTiO_3 membranes released from graphene/Ge dis-
¹⁴⁹ play an enhanced flexoelectric response compared to bulk
¹⁵⁰ [14]. We anticipate broader opportunities for flexoelec-
¹⁵¹ tricity in ultrathin membranes, where the enhanced elas-
¹⁵² ticity in the ultrathin limit provides access to expanded
¹⁵³ regimes for large strains and strain gradients.

¹⁵⁴ Flexoelectric coupling may also enable the switching
¹⁵⁵ of polar metals. Unlike ferroelectric insulators, in which
¹⁵⁶ the electric polarization can be switched via an applied
¹⁵⁷ electric field, in polar metals the electric field is screened
¹⁵⁸ out by free carriers. Bending-induced strain gradients
¹⁵⁹ provides a means of switching a polar metal without
¹⁶⁰ application of an electric field [41]. First-principles cal-
¹⁶¹ culations identified LiOsO_3 as a promising material for
¹⁶² switching via strain gradients [41]. Other materials, in-
¹⁶³ cluding the high conductivity polar metals LaAuGe and
¹⁶⁴ GdAuGe [12, 42], may also be good candidates.

¹⁶⁵ Finally, ultrathin ferroelectric membranes provide op-
¹⁶⁶ portunities for mechanically active materials, due to their
¹⁶⁷ extreme superelastic responses, large strains, and 180 de-
¹⁶⁸ gree bending. For BiFeO_3 membranes, 180 degree bend-
¹⁶⁹ ing with 1 micron radius of curvature and reversible elas-
¹⁷⁰ tic strains up to 5.4% are accommodated by a reversible

¹⁷¹ rhombohedral-tetragonal phase transformations [43]. For
¹⁷² BaTiO_3 membranes, large bending strains of 10 percent
¹⁷³ are reported, which are enabled by continuous dipole ro-
¹⁷⁴ tations of ferroelectric domains [8]. Similar arguments
¹⁷⁵ based on phase transformations and domain reorienta-
¹⁷⁶ tions may apply for membranes of martensitic materials
¹⁷⁷ like shape memory alloys. These materials provide op-
¹⁷⁸ portunities for tuning stimuli-responsive materials that
¹⁷⁹ undergo large ferroelectric and ferroelastic phase transi-
¹⁸⁰ tions.

¹⁸¹ **C. Superconductivity.**

¹⁸² Strain and strain gradients in membranes provide op-
¹⁸³ portunities to enhance the critical temperature T_c and
¹⁸⁴ critical fields of known superconductors, induce super-
¹⁸⁵ conductivity in materials that are originally nonsuper-
¹⁸⁶ conducting, and tune the pairing symmetry and coupling
¹⁸⁷ to other electronic states such as topological states and
¹⁸⁸ ferroelectricity.

¹⁸⁹ Strain can enhance the T_c of known superconductors
¹⁹⁰ including iron based superconductors and cuprates [44].
¹⁹¹ For example, epitaxial strain enhances the upper critical
¹⁹² field of Fe based superconductors [45]. In this family of
¹⁹³ materials, the strength of electronic correlations and T_c
¹⁹⁴ are highly dependent on the X-Fe-X bond angle (X =
¹⁹⁵ pnictogen or chalcogen), with a maximum T_c when the
¹⁹⁶ bond angle is near 109 degrees [46, 47]. This bond angle is
¹⁹⁷ typically tuned by alloying, doping, or intercalation [46],
¹⁹⁸ which introduces disorder. Freestanding membranes pro-
¹⁹⁹ vide a path to cleanly and continuously tune the X-Fe-X
²⁰⁰ bond angle via strain and bending-induced strain gradi-
²⁰¹ ents. Decoupling a monolayer FeSe film from a SrTiO_3
²⁰² substrate also enables the specific effects of interfacial
²⁰³ enhanced superconductivity to be tested [48–50].

²⁰⁴ Strained membranes may provide similar opportuni-
²⁰⁵ ties for cuprates and other superconducting oxides. In
²⁰⁶ cuprates, 0.5 % compressive epitaxial strain nearly dou-
²⁰⁷ bles the T_c of $(\text{La},\text{Sr})\text{CuO}_4$ films from 25 K to 49 K [51].
²⁰⁸ One challenge for cuprates is that the T_c is also highly
²⁰⁹ sensitive to oxygen stoichiometry [52], making it chal-
²¹⁰ lenging to compare across separate samples. Membranes
²¹¹ provide a possible solution for deconvolving stoichiome-
²¹² try from strain effects by allowing continuous tuning of
²¹³ strain on the same sample. Moreover, membranes enable
²¹⁴ larger strains and strain gradients.

²¹⁵ The large strains and strain gradients in membranes
²¹⁶ also provide opportunities to induce superconductiv-
²¹⁷ ity in materials that are originally nonsuperconducting.
²¹⁸ Anisotropic strain induces superconductivity in RuO_2
²¹⁹ films grown on TiO_2 (110) [1]. Membranes provide fur-
²²⁰ ther tunability for anisotropic strain, since the strain is
²²¹ not limited to particular film-substrate combinations and
²²² the strain in different crystallographic directions can be
²²³ tuned independently. Inversion-breaking strain gradients
²²⁴ may also be an important tool: for SrTiO_3 , ferroelectric po-
²²⁵ lar distortions are thought to stabilize superconductivity

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

[53], and strain has been shown to tune the T_c [54]. Tunable inversion breaking in membranes allows this idea to be tested in other classes of materials, beyond the few existing quantum paraelectrics [55, 56].

Finally, inversion breaking strain gradients may find use for tuning the superconducting pairing symmetry [57]. In noncentrosymmetric superconductors, mixtures of spin-singlet and spin-triplet pairing are allowed [58], and interesting topological and magnetoelectric properties are expected [57]. Membranes provide a means to continuously tune the crystalline symmetry of a superconducting material, to distinguish effects strain from disorder.

239 D. Topological states.

240 Membranes provide an opportunity to tune topological band inversion and band gaps via large strains that are 241 difficult to access in bulk materials or films. For example, $\text{FeSe}_x\text{Te}_{1-x}$ is suggested by ARPES and STM to be 242 a topological superconductor for $x = 0.45$ [59–61], due to 243 the strong spin-orbit coupling of Te and $p-d$ hybridization 244 [62, 63]. Large strains in $\text{Fe}(\text{Se},\text{Te})$ membranes 245 may provide extended control of the band inversion and 246 $p-d$ hybridization beyond what can be achieved by Te- 247 alloying alone. As another example, whereas many rare 248 earth half Heusler compounds are topological semimetals 249 with overlapping valence and conduction bands [64– 250 67], it would be more attractive to have a material with 251 a bulk bandgap. DFT calculations for LaPtBi suggest 252 that a very large strain of 7% is required to open a bulk 253 band between overlapping $\Gamma_8 - \Gamma_6$ band while preserving 254 the band inversion [68, 69]. This magnitude of strain 255 is not possible in epitaxial films, which typically relax 256 below 2% strain, but may be accessible in free-standing 257 membranes.

260 Strain gradient in membranes can also tune topological 261 strains via pseudo magnetic fields. While homogeneous 262 strains have zero gauge field, spatially varying strains 263 in materials produce a pseudo magnetic field $\mathbf{B} = \nabla \times \mathbf{A}$ 264 [70, 71]. A previous study showed that the pseudo field 265 created by dislocation arrays can flatten the bands near 266 the Dirac points to create helical surface states [72]. 267 Membranes provide an alternative path to more controllably 268 create inhomogeneous strain fields and their associated 269 pseudo magnetic fields, borrowing techniques 270 that have been developed for inducing pseudo B fields 271 in graphene [70, 71]. The pseudo magnetic fields are also 272 powerful for tuning the k-space spacing between Weyl 273 nodes [73], which act as sources and sinks of Berry 274 curvature.

275 III. WHY NOW?

276 The emerging science and strain engineering of single 277 crystalline membranes is driven by recent advances

278 in membrane synthesis, demonstrations of extreme and 279 tunable strains, and integrated computational modelling 280 from atomistic to mesoscale.

A. Membrane synthesis

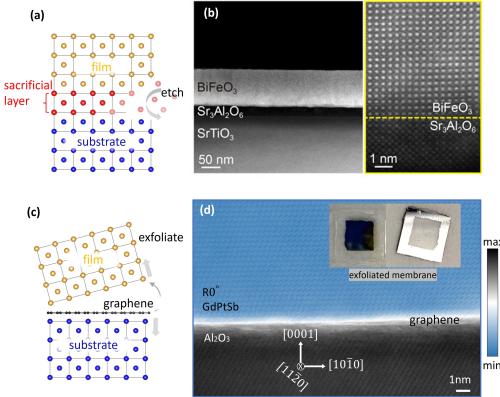


FIG. 2. Synthesis of single-crystalline membranes. (a) Epitaxial etch release. (b) Transmission electron microscopy (TEM) image of a BiFeO_3 (BFO) film grown on a $\text{Sr}_3\text{Al}_2\text{O}_6$ (SAO) sacrificial etch layer. From Peng et. al., *Sci. Adv.*, 6, aba5847 (2020) (Ref. [43]). Reproduced with permission from AAAS under Creative Commons License. (c) Remote epitaxy and exfoliation from graphene. (d) Epitaxy of GdPtSb on graphene/ $\text{Al}_2\text{O}_3(0001)$, reproduced under Creative Commons License from Ref. [9]. Inset photos show the GdPtSb membrane and the graphene/ Al_2O_3 substrate after exfoliation.

282 Epitaxial growth and release from a sacrificial etch 283 layer is a leading membrane synthesis strategy (Fig. 2a,b). This approach was first developed for semiconductor 284 membranes, including SiGe membranes by etching the 285 oxide from silicon on insulator (SOI) [74], and 286 GaAs/AlAs membranes by selective etches for GaAs or 287 AlAs layers [75]. It has been extended to other materials 288 that lattice match to semiconductors, including the shape 289 memory alloy Ni_2MnGa fabricated via epitaxial growth 290 on AlGaAs and subsequent etching [76].

292 Epitaxial water soluble oxide layers enable the release 293 of free-standing perovskite transition metal oxide mem- 294 branes. These release layers include $(\text{Ca},\text{Sr},\text{Ba})_3\text{Al}_2\text{O}_6$, 295 which allows the lattice parameter to be tuned from 3.819 296 \AA to 4.124 \AA [7, 77, 78], SrVO_3 [79], and BaO [80]. 297 These layers are typically grown by pulsed laser deposi- 298 tion (PLD)[7] or molecular beam epitaxy (MBE) [77]. A 299 significant challenge for epitaxial etch release is that not 300 all materials combinations have selective etch chemistries 301 that can etch the lattice matched release layer without 302 damaging the membrane layer.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

303 Remote epitaxy and exfoliation provide an etch-free
 304 alternative (Fig. 2c,d). In this approach, an epitaxial
 305 film is grown on a graphene (or other 2D material)
 306 covered substrate [10]. Epitaxial registry between film
 307 and substrate is thought to occur via remote interac-
 308 tions that permeate through graphene [10, 81], although
 309 a pinhole-seeded mechanism can also produce exfoliat-
 310 able membranes [82]. The weak van der Waals inter-
 311 actions of graphene allow film exfoliation to produce a
 312 freestanding membrane, similar to exfoliation of vdW
 313 materials like graphene and transition metal dichalco-
 314 genides. First demonstrated for the compound semicon-
 315 ductors [10], growth and exfoliation from graphene has
 316 been demonstrated for transition metal oxides [11, 13],
 317 halide perovskites [83], simple metals [84], and Heusler
 318 compounds [9, 12].

319 Several challenges exist for remote epitaxy. First, the
 320 quality of remote epitaxial film growth and ability to ex-
 321 foliate depend on the quality of the starting 2D mate-
 322 rial covered substrate. In most cases, this starting sur-
 323 face is prepared by layer transfer because graphene and
 324 other 2D materials cannot be grown directly on arbitrary
 325 substrates. This transfer can introduce wrinkles, tears,
 326 and interfacial contaminants that introduce defects in the
 327 subsequent membrane growth [82], and in extreme cases
 328 can affect the ability to exfoliate [85, 86]. A cleaner alter-
 329 native strategy is to use graphene directly grown on the
 330 substrate of interest. Recently, epitaxial BaTiO₃ mem-
 331 branes were grown on graphene/Ge (110) [14], where the
 332 graphene was grown directly on Ge. Further advance-
 333 ments in remote epitaxy may require the development
 334 of graphene growth directly on epi-ready substrates of
 335 interest.

336 A second challenge is that the atomic-scale mech-
 337 anisms for remote epitaxy remain unclear. Clear experi-
 338 mental evidence for a remote mechanism remains elusive.
 339 In most experiments, the primary evidence for a remote
 340 mechanism is that the films are epitaxial to the underly-
 341 ing substrate (rather than to graphene) and can be ex-
 342 foliated. Recent in-situ surface science measurements,
 343 however, demonstrate that a pinhole-seeded lateral epi-
 344 taxy mechanism can also produce epitaxial, exfoliable
 345 membranes [82]. In this growth mode, few nanometer
 346 diameter pinholes in the graphene serve as sites for se-
 347 lective nucleation at the substrate, followed by lateral
 348 overgrowth and coalescence of a continuous film. Since
 349 the pinholes are small and sparse, membranes can still be
 350 exfoliated. Moreover, the pinholes are easy to overlook
 351 because they do not appear after the graphene transfer
 352 step. Instead they only appear immediately prior to film
 353 growth because they are created by interfacial oxide des-
 354 orption at pre-growth sample annealing temperatures.

355 Careful microscopic measurements at multiple steps
 356 during the growth process are required to understand
 357 the growth mechanisms on graphene. The development
 358 of graphene grown directly on substrates of interest, e.g.
 359 graphene on Ge, avoids the interfacial oxide-induced pin-
 360 holes and may allow the intrinsic mechanisms for remote

361 epitaxy to be tested. Alternative forms of evidence may
 362 also shed light on the mechanisms: for GdPtSb films
 363 grown on graphene/Al₂O₃ (0001), a 30° rotated super-
 364 structure forms that cannot be explained by pinholes [12].
 365 Is this superstructure evidence for an intrinsic remote
 366 epitaxy mechanism? A microscopic understanding of the
 367 mechanisms, whether intrinsic remote epitaxy or extrin-
 368 sic pinholes, is required to understand the limits and ap-
 369 plications for epitaxy and exfoliation from graphene.

B. Extreme strain manipulation

370 371 Released membranes enable the application of extreme
 372 strains. To date, strain is typically applied via top-down
 373 methods. Using micropositioners, strains of 8% have
 374 been demonstrated in few nanometer thick (La,Ca)MnO₃
 375 membranes in tension [7], and 5.4% for BiFeO₃ [43] and
 376 ~ 10% for BaTiO₃ membranes [8] in bending. A flex-
 377 ible polymer handle can aide in the handling of ultra-
 378 thin membranes, and the use of polymers handles cooled
 379 below the glass transition temperature can lock in the
 380 desired strain state [7]. Dynamic or cyclic strains are
 381 also possible in membranes. Periodic cycling tests show
 382 that Y-stabilized zirconia membranes can undergo 800
 383 cycles of bending to 10 mm radius, with less than 10%
 384 change in ionic conductivity [90]. Further experiments
 385 are required to understand mechanical fatigue in other
 386 ultrathin membrane materials.

387 388 Strain gradients can be produced by bending and rip-
 389 pling. Methods include local bending using a scanning
 390 probe or micropositioners [87, 91], Fig. 3 (a,b), rippling
 391 via lateral compression on a polymer handle [9, 92], and
 392 transferring membranes to a patterned surface [71], Fig.
 393 3 (d,e). Local bending by micropositioners have demon-
 394 strated elastic recoverable 180 degree bends with 1 micron
 395 radius of curvature, as is shown in Fig. 3 (a) [43].

396 397 Bottom-up strategies provide opportunities for fine
 398 strain gradient control. Strain sharing bilayers, in which
 399 one layer is compressive and the other is tensile, sponta-
 400 neously roll up into nanotubes upon release. This strat-
 401 egy has been implemented to make semiconductor nan-
 402 otubes [93, 94] and curved oxide membranes [88] (Fig. 3
 403 (c)). Another strategy is spontaneous rippling in lattice-
 404 mismatched lateral heterostructures. First implemented
 405 for WS₂/WSe₂ heterostructures, these materials relax via
 406 rippling out of plane due to the weak van der Waals in-
 407 teraction with the substrate [89], as is shown in Fig. 3
 408 (f). We envision similar lateral heterostructures of non-
 409 vdW membranes, grown by remote epitaxy on graphene,
 410 may experience out of plane rippling.

C. Why can membranes sustain much larger strains than clamped films or bulk materials?

411 412 We offer several possible reasons, based on surface sci-
 413 ence [95] and the mechanics of 1D metallic whiskers [96–

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

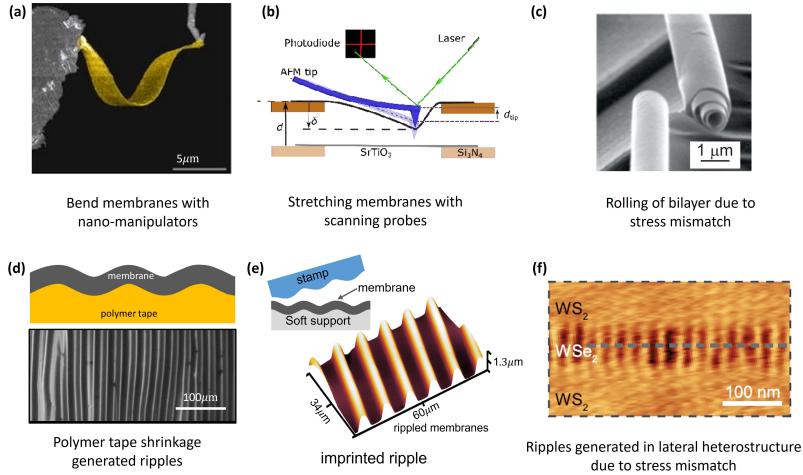


FIG. 3. Methods of generating strain gradients. (a) Bending membrane ribbons with nano-manipulators. From Peng, et. al. Science Advances 6, eaba5847 (2020) (Ref. [43]). Reprinted under Creative Commons License. (b) Stretching membranes by AFM tips. Reprinted (adapted) with permission from V. Harbola et. al., Nano Lett. 21, 6, 2470–2475 (2021) (Ref. [87]). Copyright 2021 American Chemical Society. (c) Rolling up of $\text{SrTiO}_3/\text{Si}/\text{SiGe}$ membrane via strain relaxation. From Prakash, et. al., Small 18, 2105424 (2022) (Ref. [88]). Reprinted with permission from WILEY. (d) Transferring membranes to pre-strained polymer tape and generating ripples by expanding and shrinking of the tape. (e) Rippling membranes by transferring them to soft support and imprinting patterns to membranes with stamps. (f) Generating ripples in in-plane heterostructures via strain relaxation. From Xie, et. al., Science 359, 1131 (2018) (Ref. [89]). Reprinted with permission from AAAS.

98] and semiconductor and metallic nanowires [99–103]. 413 First, membranes are not clamped to a rigid substrate. 414 In epitaxial films, dislocations form when the strain 415 energy exceeds the energy cost to form a misfit dislocation 416 at the film/substrate interface. This criterion, which can 417 be expressed in terms of an energy balance (People and 418 Bean [5], van der Merwe [6]) or a force balance (Matthews 419 and Blakeslee [4]), typically limits strains to $\sim 2\%$. Other- 420 wise, film relaxes at a critical thickness below one unit 421 cell. For a free-standing membrane, there is no interfacial 422 bonding between film and substrate to create a misfit dis- 423 location. Thus dislocations must nucleate from the bulk 424 or from the top or bottom surface.

Second, ultrathin membranes are dominated by their 426 surfaces. At surface, atoms have decreased local co- 427 ordination and increased degrees of freedom for relax- 428 ation compared to bulk. In response to external stresses, 429 surface atoms can relax out-of-plane or reconstruct in- 430 plane. Surface contributions [104, 105] are invoked to ex- 431 plain the elasticity of few nanometer diameter nanowires, 432 which can also sustain elastic strains of order $\sim 10\%$ [99– 433 101]. Similar arguments may explain why a 6 nm thick 434 $(\text{La},\text{Ca})\text{MnO}_3$ membranes can sustain 8% elastic strain, 435 whereas thicker membranes (> 20 nm) undergo fracture 436 below 2% strain [7].

Interestingly, phase transitions and domain reorienta- 437 tions have been observed by transmission electron mi- 438

croscopy in bent ultrathin membranes of the ferroelectric 440 materials BaTiO_3 [8] and BiFeO_3 [43], and a continuous 441 face centered cubic to body centered tetragonal transi- 442 tion has been detected in few nanometer diameter Cu 443 nanowires [106]. These studies indicate that elastic de- 444 formations within the *interior* of a thin membrane, and 445 not just within the few surface layers, can be different 446 than the bulk. Further microscopic studies are needed 447 in order to understand the relaxations and reconstruc- 448 tions at the surface and near surface region of strained 449 ultrathin membranes.

Third, the mechanisms for generation, motion, and 450 pinning of defects are length scale dependent [107]. Ac- 451 tivation and suppression of these mechanisms has been 452 invoked to explain the size-dependent elastic properties 453 of few micron diameter metallic whiskers [96–98] and mi- 454 cropillars [107]. Similar arguments may describe the me- 455 chanics of membranes at intermediate thicknesses of tens 456 to hundreds of nanometers.

D. Developments and challenges in modeling.

An accurate modeling and prediction of the physical 460 properties of strained membranes requires theory and 461 computation at multiple scales. Of central importance 462 is the accurate treatment of the spatially inhomogeneous 463

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

464 strain (e.g., strain gradient), which has been challenging 465 to address through first-principles density functional 466 theories (DFT) calculations. This is because inhomogeneous 467 strain often creates non-periodic crystal structure (incommensurate lattice distortion) yet the supercell used in DFT calculation often needs to be periodic. 468 Thanks to the recent advances in the density-functional 469 perturbation theory (DFPT), it is now possible to accurately 470 compute the microscopic response (both linear and non-linear) of a system to an arbitrary inhomogeneous strain. Perhaps the most prominent example is 471 the development of first-principles theory of flexoelectricity 472 [108] and its application to compute the flexoelectric tensor 473 [109–113], which can then be utilized to inform 474 the mesoscale/continuum materials modeling [112].

475 Despite these exciting developments, significant challenges 476 still remain. For example, the properties of 477 strained membrane, like most practical materials, depend 478 on the formation and evolution of mesoscale patterns 479 (e.g., magnetic/ferroelectric/ferroelastic domains, 480 electronic phase separation) at finite temperature, which go 481 beyond the capability of conventional DFT calculations.

482 However, research into the prediction of mesoscale pattern 483 formation under extreme strain condition is still at 484 its early stage, with many open questions remain. Take 485 the ferroelectrics as an example, large bending can significantly 486 change the bandgap of the domain wall [114] and 487 hence lead to redistribution of the ionic and electronic 488 defects and even an insulator-to-metal transition [115]. 489 How does the strain-induced ionic/electronic defect 490 redistribution interact with the domain structure evolution 491 under extreme strain condition [103]? How does the 492 defect distribution influence the strain-induced ferroelectric/ferroelastic 493 phase transition? How to disentangle 494 the contribution of flexoelectricity, piezoelectricity, and 495 electrostriction to the mesoscale pattern formation? In 496 addition to these fundamental challenges, there also exist 497 technical challenges in different computational methods.

498 Modern atomistic methods such as effective 499 Hamiltonian-based methods[116–119] and second-principles 500 calculations [120–122] can predict the 501 mesoscale pattern formation with atom-resolved spatial 502 resolution, and permits taking input directly from 503 DFT calculations without the need of parameterization. 504 However, it is still challenging to consider the realistic 505 mechanical boundary conditions for the application of 506 strain and strain gradient (Fig. 3) and their application 507 to practical-sized (e.g., hundreds of micrometers to 508 millimeters) materials systems currently would consume 509 too much computational resources to be realistic.

510 Mesoscale materials modeling methods such as phase-field 511 modeling cannot predict pattern formation and evolution 512 at the scale below one unit cell, but can conveniently 513 consider the complexity arising from the actual 514 mechanical boundary condition upon the application of 515 strain (gradient) [8, 43, 102, 103, 123], and incorporate 516 the role of 0D (point defects such as oxygen vacancies 517 [103]), 1D (dislocations [124]), 2D (grain

518 boundaries [125–127]), and 3D (e.g., precipitates [128] and cracks [129]). In particular, the phase-field model has 519 the additional versatility of modeling the formation and 520 co-evolution of different types of coupled patterns, for 521 example, the coupled magnetic and structural domains 522 [130–132]. With input from ab initio and/or experimental 523 measurements, the predicted mesoscale patterns can 524 often be utilized for a side-by-side comparison to experiments 525 for not only understanding and interpreting the 526 results, but also provide insights into how to access these 527 patterns and manipulate them for realizing exotic phenomena 528 or enhanced responses [133–135].

529 IV. OUTLOOK: BEYOND STATIC STRAINS

530 Large strains and strain gradients provide unique opportunities 531 for inducing hidden properties in membranes 532 of quantum materials. This Perspective highlighted 533 static strain tuning of magnetism, superconductivity, ferroelectricity, and topological states.

534 Exciting opportunities also lie in dynamic and nonequilibrium 535 properties. Nonlinear phononics, in which ultrafast 536 optical pulses resonantly excite phonon modes, is 537 a powerful approach for revealing nonequilibrium properties 538 that arise from enhanced photon-phonon-spin or 539 photon-phonon-electron couplings under resonant conditions. Examples include ultrafast antiferromagnetic- 540 ferrimagnetic switching [136], metastable ferroelectricity [137], and possible nonequilibrium superconductivity 541 [138]. The general applicability of nonlinear phononics, 542 however, is limited since these complex couplings are often 543 weak, difficult to tune, and difficult to apply beyond a 544 narrow set of materials that obey the required symmetry 545 constraints. We anticipate the strong symmetry-breaking 546 strains and strain gradients in membranes may solve this 547 challenge, by enhancing the frequency-dependent quasi- 548 particle coupling strengths via strain, and breaking symmetries 549 to activate new phonon modes for resonant excitation. The absence of substrate clamping is also beneficial 550 since larger amplitude lattice vibrations can be accessed. Strain and strain gradients, both in static and 551 dynamic forms, provide power tuning knobs for unleashing 552 hidden properties in quantum materials membranes.

553 V. ACKNOWLEDGEMENTS

554 We thank Cyrus Dreyer, Jun Xiao, Daniel Rhodes, 555 Ying Wang, and Uwe Bergmann for discussions. JKK 556 and DD acknowledge the Air Force Office of Scientific Research 557 (FA9550-21-0127) and the National Science Foundation 558 (DMR-1752797). All authors acknowledge the 559 National Science Foundation through the University of 560 Wisconsin Materials Research Science and Engineering 561 Center (MRSEC) Grant No. DMR-1720415.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

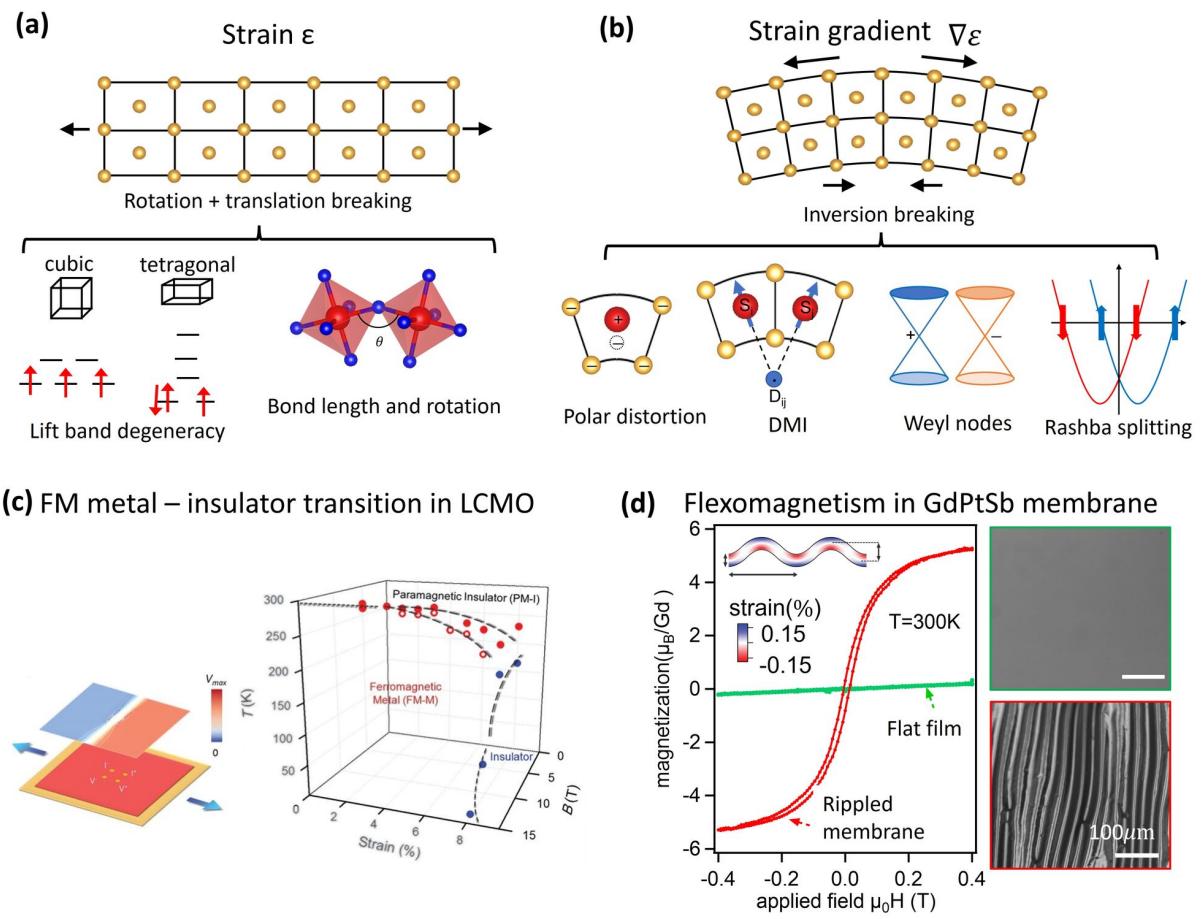
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

- [1] J. P. Ruf, H. Paik, N. J. Schreiber, H. P. Nair, L. Miao, J. K. Kawasaki, J. N. Nelson, B. D. Faeth, Y. Lee, B. H. Goodge, et al., *Nature Communications* **12**, 1 (2021).
- [2] D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, *Annual Review of Materials Research* **37**, 589 (2007).
- [3] X. Song, C. Xiong, F. Zhang, Y. Nie, and Y. Li, *Materials Letters* **259**, 126914 (2020).
- [4] J. Matthews and A. Blakeslee, *Journal of Crystal growth* **27**, 118 (1974).
- [5] R. People and J. Bean, *Applied Physics Letters* **47**, 322 (1985).
- [6] J. H. Van Der Merwe, *Journal of Applied Physics* **34**, 123 (1963).
- [7] S. S. Hong, M. Gu, M. Verma, V. Harbola, B. Y. Wang, D. Lu, A. Vailionis, Y. Hikita, R. Pentcheva, J. M. Rondinelli, et al., *Science* **368**, 71 (2020).
- [8] G. Dong, S. Li, M. Yao, Z. Zhou, Y.-Q. Zhang, X. Han, Z. Luo, J. Yao, B. Peng, Z. Hu, et al., *Science* **366**, 475 (2019).
- [9] D. Du, S. Manzo, C. Zhang, V. Saraswat, K. T. Gensler, K. M. Rabe, P. M. Voyles, M. S. Arnold, and J. K. Kawasaki, *Nature communications* **12**, 1 (2021).
- [10] Y. Kim, S. S. Cruz, K. Lee, B. O. Alawode, C. Choi, Y. Song, J. M. Johnson, C. Heidelberger, W. Kong, S. Choi, et al., *Nature* **544**, 340 (2017).
- [11] H. S. Kum, H. Lee, S. Kim, S. Lindemann, W. Kong, K. Qiao, P. Chen, J. Irwin, J. H. Lee, S. Xie, et al., *Nature* **578**, 75 (2020).
- [12] D. Du, T. Jung, S. Manzo, Z. LaDuca, X. Zheng, K. Su, V. Saraswat, J. McChesney, M. S. Arnold, and J. K. Kawasaki, *Nano Letters* **22**, 8647 (2022).
- [13] H. Yoon, T. K. Truttmann, F. Liu, B. E. Matthews, M. E. Bowden, et al., *arXiv preprint arXiv:2206.09094* (2022).
- [14] L. Dai, J. Zhao, J. Li, B. Chen, S. Zhai, Z. Xue, Z. Di, B. Feng, Y. Sun, Y. Luo, et al., *Nature Communications* **13**, 1 (2022).
- [15] C. Si, Z. Sun, and F. Liu, *Nanoscale* **8**, 3207 (2016).
- [16] Z. Peng, X. Chen, Y. Fan, D. J. Srolovitz, and D. Lei, *Light: Science & Applications* **9**, 1 (2020).
- [17] J. Zhang, C. Ji, Y. Shangguan, B. Guo, J. Wang, F. Huang, X. Lu, and J. Zhu, *Physical Review B* **98**, 195133 (2018).
- [18] F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, *Semiconductor Science and Technology* **27**, 063001 (2012).
- [19] M. Bibes and A. Barthélémy, *IEEE transactions on electron devices* **54**, 1003 (2007).
- [20] M. Bibes, J. E. Villegas, and A. Barthélémy, *Advances in Physics* **60**, 5 (2011).
- [21] K. Shibata, J. Iwasaki, N. Kanazawa, S. Aizawa, T. Tanigaki, M. Shirai, T. Nakajima, M. Kubota, M. Kawasaki, H. Park, et al., *Nature nanotechnology* **10**, 589 (2015).
- [22] D. Pesquera, E. Khestanova, M. Ghidini, S. Zhang, A. P. Rooney, F. Maccherozzi, P. Riego, S. Farokhipoor, J. Kim, X. Moya, et al., *Nature Communications* **11**, 3190 (2020).
- [23] E. A. Eliseev, M. Glinchuk, V. Khist, V. Skorokhod, R. Blinc, and A. Morozovska, *Physical Review B* **84**, 174112 (2011).
- [24] P. Lukashev and R. F. Sabirianov, *Physical Review B* **82**, 094417 (2010).
- [25] E. A. Eliseev, A. N. Morozovska, M. D. Glinchuk, and R. Blinc, *Physical Review B* **79**, 165433 (2009).
- [26] Y. Zhang, J. Liu, Y. Dong, S. Wu, J. Zhang, J. Wang, J. Lu, A. Rückriegel, H. Wang, R. Duine, et al., *Physical Review Letters* **127**, 117204 (2021).
- [27] L. Liu, W. Chen, and Y. Zheng, *Physical Review Letters* **128**, 257201 (2022).
- [28] A. Edström, D. Amoroso, S. Picozzi, P. Barone, and M. Stengel, *Physical Review Letters* **128**, 177202 (2022).
- [29] R. Yanes, F. Garcia-Sanchez, R. Luis, E. Martinez, V. Raposo, L. Torres, and L. Lopez-Diaz, *Applied Physics Letters* **115**, 132401 (2019).
- [30] Y. Liu, X. Huo, S. Xuan, and H. Yan, *Journal of Magnetism and Magnetic Materials* **492**, 165659 (2019).
- [31] I. O. Gorshkov, R. V. Gorev, M. V. Sapozhnikov, and O. G. Udalov, *ACS Applied Electronic Materials* **4**, 3205 (2022).
- [32] R. Xu, J. Huang, E. S. Barnard, S. S. Hong, P. Singh, E. K. Wong, T. Jansen, V. Harbola, J. Xiao, B. Y. Wang, et al., *Nature communications* **11**, 1 (2020).
- [33] D. Pesquera, E. Parsonnet, A. Qualls, R. Xu, A. J. Gubser, J. Kim, Y. Jiang, G. Velarde, Y.-L. Huang, H. Y. Hwang, et al., *Advanced Materials* **32**, 2003780 (2020).
- [34] S. M. Kogan, *Soviet Physics-Solid State* **5**, 2063 (1964).
- [35] P. Zubko, G. Catalan, and A. K. Tagantsev (2013).
- [36] L. E. Cross, *Journal of Materials Science* **41**, 53 (2006).
- [37] V. Indenbom, E. Loginov, and M. Osipov, *Kristallografiya* **26**, 1157 (1981).
- [38] B. Wang, Y. Gu, S. Zhang, and L.-Q. Chen, *Progress in Materials Science* **106**, 100570 (2019).
- [39] W. Ma and L. E. Cross, *Applied Physics Letters* **78**, 2920 (2001).
- [40] W. Ma and L. E. Cross, *Applied Physics Letters* **86**, 072905 (2005).
- [41] A. Zabalo and M. Stengel, *Physical Review Letters* **126**, 127601 (2021).
- [42] D. Du, A. Lim, C. Zhang, P. J. Strohbeen, E. H. Shourov, F. Rodolakis, J. L. McChesney, P. Voyles, D. C. Fredrickson, and J. K. Kawasaki, *APL Materials* **7**, 121107 (2019).
- [43] B. Peng, R.-C. Peng, Y.-Q. Zhang, G. Dong, Z. Zhou, Y. Zhou, T. Li, Z. Liu, Z. Luo, S. Wang, et al., *Science advances* **6**, eaba5847 (2020).
- [44] J. Engelmann, V. Grinenko, P. Chekhanin, W. Skrotzki, D. Efremov, S. Oswald, K. Iida, R. Hühne, J. Hänisch, M. Hoffmann, et al., *Nature communications* **4**, 1 (2013).
- [45] C. Tarantini, A. Gurevich, J. Jaroszynski, F. Balakirev, E. Bellingeri, I. Pallecchi, C. Ferdeghini, B. Shen, H. Wen, and D. Larbalestier, *Physical Review B* **84**, 184522 (2011).
- [46] H. Okabe, N. Takeshita, K. Horigane, T. Muranaka, and J. Akimitsu, *Physical Review B* **81**, 205119 (2010).
- [47] S. Mandal, P. Zhang, S. Ismail-Beigi, and K. Haule, *Physical review letters* **119**, 067004 (2017).

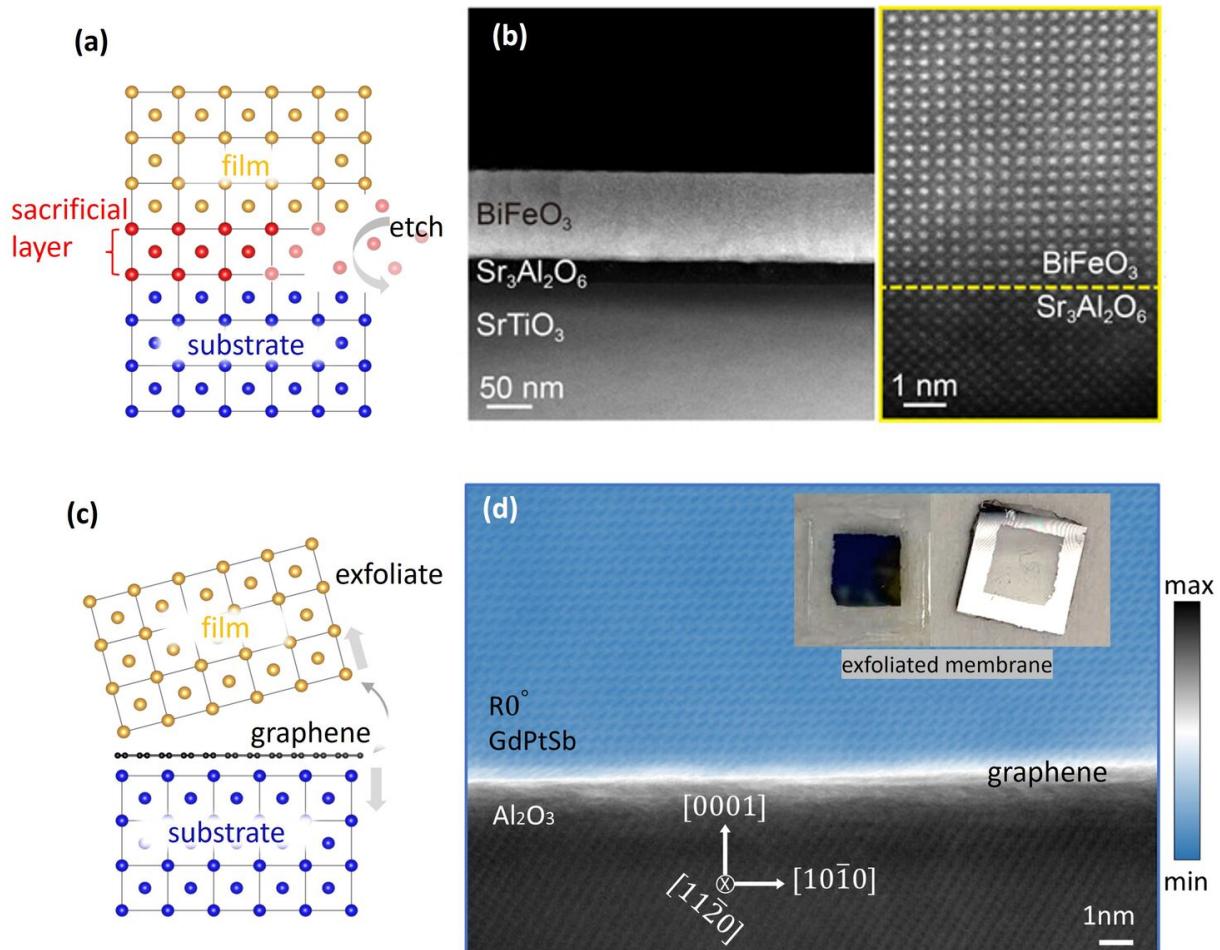
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

- 693 [48] Q.-Y. Wang, Z. Li, W.-H. Zhang, Z.-C. Zhang, J.-S. 757
694 Zhang, W. Li, H. Ding, Y.-B. Ou, P. Deng, K. Chang, 758
695 et al., Chinese Physics Letters **29**, 037402 (2012). 759
- 696 [49] J. Lee, F. Schmitt, R. Moore, S. Johnston, Y.-T. Cui, 760
697 W. Li, M. Yi, Z. Liu, M. Hashimoto, Y. Zhang, et al., 761
698 Nature **515**, 245 (2014). 762
- 699 [50] S. Tan, Y. Zhang, M. Xia, Z. Ye, F. Chen, X. Xie, 763
700 R. Peng, D. Xu, Q. Fan, H. Xu, et al., Nature materials 764
701 **12**, 634 (2013). 765
- 702 [51] J.-P. Locquet, J. Perret, J. Fompeyrine, E. Mächler, 766
703 J. W. Seo, and G. Van Tendeloo, Nature **394**, 453 767
704 (1998). 768
- 705 [52] I. Bozovic, G. Logvenov, I. Belca, B. Narimbetov, and 769
706 I. Svetko, Physical review letters **89**, 107001 (2002). 770
- 707 [53] J. M. Edge, Y. Kedem, U. Aschauer, N. A. Spaldin, and 771
708 A. V. Balatsky, Physical Review Letters **115**, 247002 772
709 (2015). 773
- 710 [54] K. Ahadi, L. Galletti, Y. Li, S. Salmani-Rezaie, W. Wu, 774
711 and S. Stemmer, Science advances **5**, eaaw0120 (2019). 775
- 712 [55] K. A. Müller and H. Burkard, Physical Review B **19**, 776
713 3593 (1979). 777
- 714 [56] D. Rytz, U. Höchli, and H. Bilz, Physical Review B **22**, 778
715 359 (1980). 779
- 716 [57] S. Yip, Annu. Rev. Condens. Matter Phys. **5**, 15 (2014). 780
- 717 [58] L. P. Gor'kov and E. I. Rashba, Physical Review Letters **87**, 037004 (2001). 781
- 718 [59] P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, 782
719 K. Okazaki, Z. Wang, J. Wen, G. Gu, H. Ding, et al., 783
720 Science **360**, 182 (2018). 784
- 721 [60] D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, 785
722 L. Cao, Y. Sun, S. Du, J. Schneeloch, et al., Science **362**, 786
723 333 (2018). 787
- 724 [61] T. Machida, Y. Sun, S. Pyon, S. Takeda, Y. Kohsaka, 788
725 T. Hanaguri, T. Sasagawa, and T. Tamegai, Nature materials **18**, 811 (2019). 789
- 726 [62] H. Lohani, T. Hazra, A. Ribak, Y. Nitzav, H. Fu, 790
727 B. Yan, M. Randeria, and A. Kanigel, Physical Review B **101**, 245146 (2020). 791
- 728 [63] Z. Wang, P. Zhang, G. Xu, L. Zeng, H. Miao, X. Xu, 792
729 T. Qian, H. Weng, P. Richard, A. V. Fedorov, et al., 793
730 Physical Review B **92**, 115119 (2015). 794
- 731 [64] H. Lin, L. A. Wray, Y. Xia, S. Xu, S. Jia, R. J. Cava, 795
732 A. Bansil, and M. Z. Hasan, Nature materials **9**, 546 796
733 (2010). 797
- 734 [65] S. Chadov, X. Qi, J. Kübler, G. H. Fecher, C. Felser, 798
735 and S. C. Zhang, Nature materials **9**, 541 (2010). 799
- 736 [66] Y. Nakajima, R. Hu, K. Kirschbaum, A. Hughes, 800
737 P. Syers, X. Wang, K. Wang, R. Wang, S. R. Saha, 801
738 D. Pratt, et al., Science advances **1**, e1500242 (2015). 802
- 739 [67] A. K. Singh, S. Ramarao, and S. C. Peter, APL Materials **8**, 060903 (2020). 803
- 740 [68] W. Al-Sawai, H. Lin, R. Markiewicz, L. Wray, Y. Xia, 804
741 S.-Y. Xu, M. Hasan, and A. Bansil, Physical Review B **82**, 125208 (2010). 805
- 742 [69] D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X.-Q. Chen, 806
743 G. M. Stocks, and Z. Zhang, Physical review letters **105**, 807
744 096404 (2010). 808
- 745 [70] Y. Jiang, J. Mao, J. Duan, X. Lai, K. Watanabe, 809
746 T. Taniguchi, and E. Y. Andrei, Nano letters **17**, 2839 810
747 (2017). 811
- 748 [71] D.-H. Kang, H. Sun, M. Luo, K. Lu, M. Chen, Y. Kim, 812
749 Y. Jung, X. Gao, S. J. Parlulutan, J. Ge, et al., Nature 813
750 Communications **12**, 1 (2021). 814
- 751 [72] E. Tang and L. Fu, Nature Physics **10**, 964 (2014). 815
- 752 [73] N. Armitage, E. Mele, and A. Vishwanath, Reviews of 816
753 Modern Physics **90**, 015001 (2018). 817
- 754 [74] M. M. Roberts, L. J. Klein, D. E. Savage, K. A. Slinker, 818
755 M. Friesen, G. Celler, M. A. Eriksson, and M. G. Lagally, 819
756 Nature materials **5**, 388 (2006). 820
- 757 [75] C.-W. Cheng, K.-T. Shiu, N. Li, S.-J. Han, L. Shi, and 821
758 D. K. Sadana, Nature communications **4**, 1 (2013). 822
- 759 [76] J. Dong, J. Xie, J. Lu, C. Adelmann, C. Palmström, 823
760 J. Cui, Q. Pan, T. Shield, R. James, and S. McKernan, 824
761 Journal of applied physics **95**, 2593 (2004). 825
- 762 [77] D. Ji, S. Cai, T. R. Paudel, H. Sun, C. Zhang, L. Han, 826
763 Y. Wei, Y. Zang, M. Gu, Y. Zhang, et al., Nature **570**, 827
764 87 (2019). 828
- 765 [78] F. M. Chiabrera, S. Yun, Y. Li, R. T. Dahm, H. Zhang, 829
766 C. K. Kirchert, D. V. Christensen, F. Trier, T. S. Jespersen, 830
767 and N. Pryds, Annalen der Physik **534**, 2200084 831
768 (2022). 832
- 769 [79] Y. Bourlier, B. Berini, M. Frégnaux, A. Fouchet, D. Aureau, 833
770 and Y. Dumont, ACS applied materials & interfaces **12**, 8466 (2020). 834
- 771 [80] R. Takahashi and M. Lippmaa, ACS applied materials & interfaces **12**, 25042 (2020). 835
- 772 [81] W. Kong, H. Li, K. Qiao, Y. Kim, K. Lee, Y. Nie, 836
773 D. Lee, T. Osadchy, R. J. Molnar, D. K. Gaskill, et al., 837
774 Nature materials **17**, 999 (2018). 838
- 775 [82] S. Manzo, P. J. Strohbeen, Z. H. Lim, V. Saraswat, 839
776 D. Du, S. Xu, N. Pokharel, L. J. Mawst, M. S. Arnold, 840
777 and J. K. Kawasaki, Nature communications **13**, 1 841
778 (2022). 842
- 779 [83] J. Jiang, X. Sun, X. Chen, B. Wang, Z. Chen, Y. Hu, 843
780 Y. Guo, L. Zhang, Y. Ma, L. Gao, et al., Nature communications **10**, 1 (2019). 844
- 781 [84] Z. Lu, X. Sun, W. Xie, A. Littlejohn, G.-C. Wang, 845
782 S. Zhang, M. A. Washington, and T.-M. Lu, Nanotechnology **29**, 445702 (2018). 846
- 783 [85] H. Kim, J. C. Kim, Y. Jeong, J. Yu, K. Lu, D. Lee, 847
784 N. Kim, H. Y. Jeong, J. Kim, and S. Kim, Journal of 848
785 Applied Physics **130**, 174901 (2021). 849
- 786 [86] H. Kim, K. Lu, Y. Liu, H. S. Kum, K. S. Kim, K. Qiao, 850
787 S.-H. Bae, S. Lee, Y. J. Ji, K. H. Kim, et al., ACS nano **15**, 10587 (2021). 851
- 788 [87] V. Harbola, S. Crossley, S. S. Hong, D. Lu, Y. A. 852
789 Birkholzer, Y. Hikita, and H. Y. Hwang, Nano letters **21**, 2470 (2021). 853
- 790 [88] D. J. Prakash, Y. Chen, M. L. Debasu, D. E. Savage, 854
791 C. Tangpatjaroen, C. Deneke, A. Malachias, A. D. Alfieri, 855
792 O. Elleuch, K. Lekhal, et al., Small **18**, 2105424 (2022). 856
- 793 [89] S. Xie, L. Tu, Y. Han, L. Huang, K. Kang, K. U. Lao, 857
794 P. Poddar, C. Park, D. A. Muller, R. A. DiStasio Jr, 858
795 et al., Science **359**, 1131 (2018). 859
- 796 [90] P.-C. Wu, Y.-P. Lin, Y.-H. Juan, Y.-M. Wang, D. Thi- 860
797 Hien, H.-Y. Chang, and Y.-H. Chu, ACS Applied Nano Materials **1**, 6890 (2018). 861
- 798 [91] D. Lee, APL Materials **8**, 090901 (2020). 862
- 799 [92] S. Cai, Y. Lun, D. Ji, P. Lv, L. Han, C. Guo, Y. Zang, 863
800 S. Gao, Y. Wei, M. Gu, et al. (2022). 864
- 801 [93] O. G. Schmidt and K. Eberl, Nature **410**, 168 (2001). 865
- 802 [94] M. Huang, C. Boone, M. Roberts, D. E. Savage, M. G. 866
803 Lagally, N. Shaji, H. Qin, R. Blick, J. A. Nairn, and F. Liu, Advanced Materials **17**, 2860 (2005). 867
- 804 [95] A. Zangwill, *Physics at surfaces* (Cambridge university press, 1988).

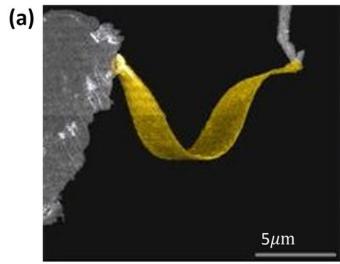

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

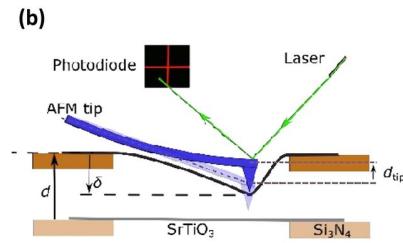

- 820 [96] G. Sears, A. Gatti, and R. Fullman, *Acta Metallurgica* 875 [119] Y. Nahas, S. Prokhorenko, J. Fischer, B. Xu,
821 **2**, 727 (1954). 876 C. Carrétéro, S. Prosandeev, M. Bibes, S. Fusil,
822 [97] C. Herring and J. Galt, *Physical Review* 85, 1060 877 B. Dkhil, V. Garcia, et al., *Nature* **577**, 47 (2020).
823 (1952). 878 [120] J. C. Wojdel, P. Hermet, M. P. Ljungberg, P. Ghosez,
824 [98] S. S. Brenner, *Journal of applied physics* **27**, 1484 879 and J. Iniguez, *Journal of Physics: Condensed Matter*
825 (1956). 880 **25**, 305401 (2013).
826 [99] Y.-B. Wang, L.-F. Wang, H. J. Joyce, Q. Gao, X.-Z. 881 [121] J. C. Wojdel and J. Iniguez, *Physical Review Letters*
827 Liao, Y.-W. Mai, H. H. Tan, J. Zou, S. P. Ringer, H.-J. 882 **112**, 247603 (2014).
828 Gao, et al., *Advanced Materials* **23**, 1356 (2011). 883 [122] P. Garcia-Fernandez, J. C. Wojdel, J. Iniguez, and
829 [100] S. Wang, Z. Shan, and H. Huang, *Advanced Science* **4**, 884 J. Junquera, *Physical Review B* **93**, 195137 (2016).
830 1600332 (2017). 885 [123] S. Park, B. Wang, T. Yang, J. Kim, S. Saremi, W. Zhao,
831 [101] Y. Yue, P. Liu, Z. Zhang, X. Han, and E. Ma, *Nano 886 B. Guzelturk, A. Sood, C. Nyby, M. Zajac, et al., *Nano*
832 letters* **11**, 3151 (2011). 887 Letters (2022).
833 [102] Y. Li, K. Chu, C. Liu, P. Jiang, K. Qu, P. Gao, J. Wang, 888 [124] F. Zhuo, X. Zhou, S. Gao, M. Höfling, F. Dietrich, P. B.
834 F. Ren, Q. Sun, L. Chen, et al., *Proceedings of the 889 Groszewicz, L. Fulanović, P. Breckner, A. Wohmsland,
835 National Academy of Sciences* **118**, e2025255118 (2021). 890 B.-X. Xu, et al., *Nature communications* **13**, 1 (2022).
836 [103] Y. Deng, C. Gammer, J. Ciston, P. Ercius, C. Ophus, 891 [125] M. Dai, M. F. Demirel, Y. Liang, and J.-M. Hu, *npj
837 K. Bustillo, C. Song, R. Zhang, D. Wu, Y. Du, et al., 892 Computational Materials* **7**, 1 (2021).
838 *Acta Materialia* **181**, 501 (2019). 893 [126] S. Choudhury, Y. Li, C. Krill III, and L. Chen, *Acta
839 [104] P. Müller and A. Saúl, *Surface Science Reports* **54**, 157 894 materialia* **55**, 1415 (2007).
840 (2004). 895 [127] C.-C. Hu, Z. Zhang, T.-N. Yang, Y.-G. Shi, X.-X.
841 [105] X. Liu, J. Li, Z. Zhou, L. Yang, Z. Ma, G. Xie, Y. Pan, 896 Cheng, J.-J. Ni, J.-G. Hao, W.-F. Rao, and L.-Q. Chen,
842 and C. Q. Sun, *Applied Physics Letters* **94**, 131902 897 *Applied physics letters* **115**, 162402 (2019).
843 (2009). 898 [128] C. Zhao, S. Gao, T. Yang, M. Scherer, J. Schultheiß,
844 [106] L. Wang, P. Liu, P. Guan, M. Yang, J. Sun, Y. Cheng, 899 D. Meier, X. Tan, H.-J. Kleebe, L.-Q. Chen, J. Koruza,
845 A. Hirata, Z. Zhang, E. Ma, M. Chen, et al., *Nature 900 et al., *Advanced Materials* **33**, 2102421 (2021).
846 communications* **4**, 1 (2013). 901 [129] Z. Liu, J. Liu, M. D. Biegalski, J.-M. Hu, S. Shang,
847 [107] M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. 902 Y. Ji, J. Wang, S. Hsu, A. Wong, M. Cordill, et al.,
848 Nix, *Science* **305**, 986 (2004). 903 *Nature communications* **9**, 1 (2018).
849 [108] M. Stengel and D. Vanderbilt, in *Flexoelectricity In 904 [130] D. Ohmer, M. Yi, O. Gutfleisch, and B.-X. Xu, *International
850 Solids: From Theory To Applications* (World Scientific, 905 Journal of Solids and Structures* **238**, 111365
851 2017), pp. 31–110. 906 (2022).
852 [109] C. E. Dreyer, M. Stengel, and D. Vanderbilt, *Physical 907 [131] H. Huang, X. Ma, J. Wang, Z. Liu, W. He, and L. Chen,
853 Review B* **98**, 075153 (2018). 908 *Acta Materialia* **83**, 333 (2015).
854 [110] A. Schiaffino, C. E. Dreyer, D. Vanderbilt, and M. Sten- 909 [132] P. Wu, X. Ma, J. Zhang, and L. Chen, *Philosophical
855 gel, *Physical Review B* **99**, 085107 (2019). 910 Magazine* **91**, 2102 (2011).
856 [111] M. Royo and M. Stengel, *Physical Review X* **9**, 021050 911 [133] C. Qiu, B. Wang, N. Zhang, S. Zhang, J. Liu, D. Walker,
857 (2019). 912 Y. Wang, H. Tian, T. R. Shrout, Z. Xu, et al., *Nature
858 [112] M. Springolo, M. Royo, and M. Stengel, *Physical 913 577*, 350 (2020).
859 review letters* **127**, 216801 (2021). 914 [134] H. Pan, F. Li, Y. Liu, Q. Zhang, M. Wang, S. Lan,
860 [113] M. Royo and M. Stengel, *Physical Review B* **105**, 915 Y. Zheng, J. Ma, L. Gu, Y. Shen, et al., *Science* **365**,
861 064101 (2022). 916 578 (2019).
862 [114] E. A. Eliseev, A. N. Morozovska, Y. Gu, A. Y. Borise- 917 [135] H. Pan, S. Lan, S. Xu, Q. Zhang, H. Yao, Y. Liu,
863 vich, L.-Q. Chen, V. Gopalan, and S. V. Kalinin, *Phys- 918 F. Meng, E.-J. Guo, L. Gu, D. Yi, et al., *Science* **374**,
864 ical Review B* **86**, 085416 (2012). 919 100 (2021).
865 [115] I. Stolichnov, L. Feigl, L. J. McGilly, T. Sluka, X.-K. 920 [136] A. S. Disa, M. Fechner, T. F. Nova, B. Liu, M. Först,
866 Wei, E. Colla, A. Crassous, K. Shapovalov, P. Yudin, 921 D. Prabhakaran, P. G. Radelli, and A. Cavalleri, *Nature
867 A. K. Tagantsev, et al., *Nano Letters* **15**, 8049 (2015). 922 Physics **16**, 937 (2020).
868 [116] W. Zhong, D. Vanderbilt, and K. Rabe, *Physical Review 923 [137] T. Nova, A. Disa, M. Fechner, and A. Cavalleri, *Science*
869 Letters* **73**, 1861 (1994). 924 **364**, 1075 (2019).
870 [117] L. Bellaiche, A. Garcia, and D. Vanderbilt, *Physical 925 [138] M. Budden, T. Gebert, M. Buzzi, G. Jotzu, E. Wang,
871 Review Letters* **84**, 5427 (2000). 926 T. Matsuyama, G. Meier, Y. Laplace, D. Pontiroli,
872 [118] B.-K. Lai, I. Ponomareva, I. Naumov, I. Kornev, H. Fu, 927 M. Riccò, et al., *Nature Physics* **17**, 611 (2021).
873 L. Bellaiche, and G. Salamo, *Physical review letters* **96**, 928*

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

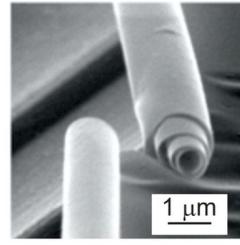
PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

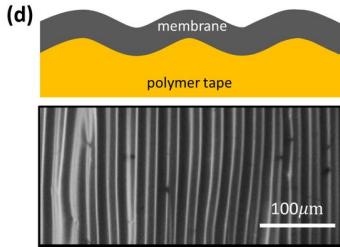


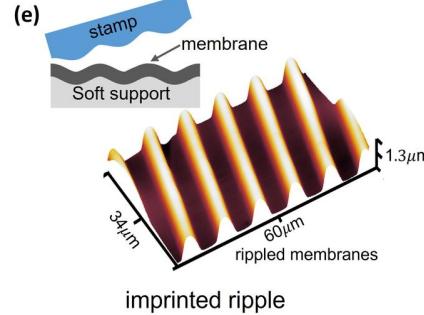
This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
 PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553

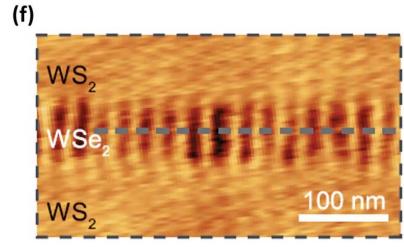


This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.


PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0146553


Bend membranes with nano-manipulators


Stretching membranes with scanning probes


Rolling of bilayer due to stress mismatch

Polymer tape shrinkage generated ripples

imprinted ripple

Ripples generated in lateral heterostructure due to stress mismatch