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Abstract

The first part of the paper studies the boundary behavior of holomorphic isometric
mappings F' = (Fy,---, Fy,) from the complex unit ball B”, n > 2, to a bounded
symmetric domain Q = Qq x --- x Q,, up to constant conformal factors, where (2s are
irreducible factors of 2. We prove every non-constant component F; must map generic
boundary points of B™ to the boundary of ;. In the second part of the paper, we
establish a rigidity result for local holomorphic isometric maps from the unit ball to a
product of unit balls and Lie balls.
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1 Introduction

The study of the rigidity and extension problem for holomorphic isometric maps goes back to
the classical work of Calabi [Cal. In 2003, motivated by problems in algebraic number theory,
Clozel-Ullmo [CU] considered a local holomorphic isometric map from the Poincaré disk A
into the polydisk AP (each factor A is equipped with the Poincaré metric), and they proved
that such a map must extend to a totally geodesic map providing the image is invariant
under certain automorphisms of the target AP. On the other hand, Mok [M3] shows the
invariance assumption on the image of the map cannot be removed in this assertion. More
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precisely, Mok [M3] constructed a non-totally geodesic holomorphic isometric map, called
the p-th root embedding, from the Poincaré disk A into the polydisk A?. Furthermore, Mok
initiated the systematic study of the local isometric mapping problems between bounded
symmetric domains. See [M2], [M3], [M4] and references therein. In the following context,
we write ds% for the Bergman metric of a bounded symmetric domain D. Let Dy, Dy be two
bounded symmetric domains and V' C D; be an open connected set. Let F': V — Dy be a
holomorphic isometric map in the sense that F*(ds},)) = Ads7,, for some positive constant
A. Mok [M3] proves that F' extends to a holomorphic proper and isometric immersion from
Dy to Dy. Mok [M3] also proves F' must be totally geodesic if D; is irreducible and has rank
at least two.

Much less is known when the rank of D; equals one, i.e., Dy is the complex unit ball B"
in C™ for some n > 1. It is natural to first study the local holomorphic isometric mappings
from the unit ball B™ into the product of unit balls. The problem of holomorphic isometric
maps from the Poincaré disk into polydisks were intensively studied by many authors. The
readers are referred to Mok [M3], Ng [Ngl], Chan [Chl, Ch2], Chan-Yuan [CY], Chan-Xiao-
Yuan [CXY] and references therein. The current article will concentrate on the case n > 2.
The problem in this case was studied by Mok [M2], Ng [Ng2] and Yuan-Zhang [YZ]. Let

F = (Fy,---, F,) be a holomorphic map from an open connected set V' C B" n > 2, to the
product of unit balls (B, \yds2y, ) x - -+ x (BV™, X, dsz,, ) satisfying the metric-preserving

property that dsg., = Y., \F;(dsziy,) on V. Here \;’s are positive constants. It follows
from Yuan-Zhang [YZ] that the non-constant components F; of F' must extend to a totally
geodesic map from B" to BY: (The paper [YZ] indeed deals with a very general case where
the \;’s are allowed to be positive smooth Nash algebraic functions).

When D; is the unit ball and D, has an irreducible factor of rank at least two, the
total geodesy rigidity of F fails dramatically. Mok [M4] constructed a non-totally geodesic
holomorphic isometric map from B” to a higher rank irreducible bounded symmetric domain
D, of sufficiently large dimension (see also [XY1] for explicit examples of this kind). After
the work of Mok [M4], many authors took the study of holomorphic isometric or proper
maps from the unit ball to bounded symmetric domains of higher rank. See the work of
Chan-Mok [CM], Xiao-Yuan [XY1, XY2|, Upmeier-Wang-Zhang [UWZ], Chan [Ch3], etc.
For more related study on metric-preserving or measure-preserving mappings, the readers
are referred to [MN], [HY], [Y1, Y2], [FHX] and references therein.

Although the strong rigidity of total geodesy fails when D, has an irreducible factor of
higher rank, it is believed by researchers that some weaker rigidity can still be expected. An
explicit conjecture of this weaker rigidity was formulated by Yuan [Y2] which asserts that
if F = (Fy,--+,F,) is a holomorphic isometric map from (B", ds3,),n > 2, to a reducible
bounded symmetric domain (Qy, A\dsg )X+ - - X (Qy, Amdsg, ) for some positive constants As,
then the non-constant components F; of F' must be isometric (see more details in Problem
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5.2, [Y2]). Although some partial results were proved when the dimension of €2; is not too
much larger than n (cf. [XY2]), very little was known in the general case. The first step
toward understanding the map F' is to study its boundary behavior. We carry this out in
Theorem 1.1. Then in Theorem 1.3 we confirm the weaker rigidity conjecture when the €2;’s
are either the unit ball or the type IV classical domain. To the best of our knowledge, this
is the first theorem on this weaker rigidity conjecture that allows the dimension of €2; to be
arbitrarily larger than n.

To introduce our theorems, we first recall some definitions and notations. We start with
the notion of generic norms. Let D be an irreducible bounded symmetric domain and denote
by Kp(Z,Z) its Bergman kernel. Then there is a Hermitian polynomial Qp(Z, Z) such that
Kp(Z,2) = m Moreover, Qp(Z,Z) = App(Z, Z)", where Ap is a positive constant, n
is a positive integer both depending on D. Moreover, p(Z, W) is an irreducible holomorphic
polynomial satisfying p(Z,Z) > 0 in D and p(Z,Z) = 0 on the boundary 0D, as well as
p(0,0) = 1. In addition, the expansion of p(Z, Z) — 1 at Z = 0 has no pure terms. See [M1],
[FK], [Lo] for more details on Kp and p. The function p is called the generic norm of D.

Throughout the paper, for an irreducible bounded symmetric domain D in some com-
plex Euclidean space, we write gp for the canonical complete Kahler-Einstein metric on D
normalized so that the minimal disks are of constant Gaussian curvature —2. We denote
by wp the corresponding Kahler form. Let €2 be a bounded symmetric domain and write
Q=0 x---x€Q,,. Here €;,1 <17 < m, is an irreducible bounded symmetric domain in some
CNi. Denote by (2, & Niga,) = (21, A\190,) X =+ X (2, Amga,,) the bounded symmetric
domain €2 equipped with the metric ®*; \;gq,, where \;s are positive constants.

Let V' be an open connected subset of the n—dimensional complex unit ball B". Let
F = (Fy,---, Fy,) be a holomorphic map from V to Q@ = Qy x - -- x Q,,, where each F; maps
V to Q;. We say F' is a holomorphic isometric map from V' to (Q, &%, \;gq,) if F' preserves
the metric in the following sense:

gan = Y AiF(go,) in V. (1.1)
i=1

By Mok [M3] and Chan-Xiao-Yuan [CXY] (see Theorem 2.1.2 in [M3] and Theorem 4.25
in [CXY]), such a holomorphic isometric map F on V must be algebraic and extends to a
holomorphic proper and isometric immersion from B™ to €2. Thus it suffices to study global
holomorphic isometric maps from B"™ to €2, and we can just assume V = B"™. Recall F' is
called algebraic if each component f;; of every F; satisfies P;(z, fi;(2)) = 0 in V for some

(nontrivial) irreducible polynomial P;(z, X) in (z, X) € C" x C.
In this paper, we say F' (which is defined on B") extends holomorphically to (or, can be
holomorphically continued to) some p € 9B, if there exist a domain U containing B™ U {p},



and a holomorphic map FonlU satisfying F =F on B". By the algebraicity of F', there is
a complex hypervariety E in C" such that F' can be holomorphically continued along every
path v C C™\ E with its initial point in B™. In particular, F' extends holomorphically to every
point p € 9B™ \ E. Our first theorem describes the boundary behavior of each component
F;. Here for a nonzero real analytic function h(z,%) defined on an open set W C C", we
say h(z,Z) has vanishing order k > 0 at ¢ € W if the lowest nonzero term(s) in the Taylor

expansion of & at ¢ is of the form 7, 5 cas(z — q)%(z — q)ﬁ.

Theorem 1.1. Let ; € CVi,;1 < i < m, be an irreducible bounded symmetric domain.
Let F = (Fy,--- , F,,) be a holomorphic isometric map from (B™, ggn) to (1, \1ga,) X « -+ X
(i, Amga,,) satisfying gan =Y oy NiFF(go,) in B™. Here X;s are positive constants. Write
S for the set of points p € OB" to which F' extends holomorphically. (Then S is open in OB"
and by the above discussion, there is complex hypervariety E in C™ satisfying OB"\ E C S.)
Assume n > 2 and every F; is non-constant. Then the following two conclusions hold:

(a). For every p € S, the holomorphic continuation of each F; to p, which is still denoted
by F;, must map p to 0%);.

(b). Denote by p; the generic norm of Q;. For each 1 < i < m, there exists some integer
k; > 1, such that the vanishing order of p;(F;, F;) at every p € S equals k;. Moreover,
it holds that > | ki i = 1.

Remark 1.2. Note Theorem 1.1 is optimal in the sense that the assumption of n > 2 cannot
be removed. Indeed, with p > 2, Mok’s p-th root map (see page 1648, [M3]) gives an example
of holomorphic isometric embedding F' = (F,--- ,F,) from the Poincaré disk A into the
polydisk AP, where for every 1 < i < p, the holomorphic continuation of F; maps some open
piece of OA to A. Hence the assertion in Theorem 1.1 fails when n = 1.

We will give in Section 2 a refined version of Theorem 1.1 for the case when (2 is a product
of Cartan’s classical domains (see Theorem 2.3). Theorem 1.1 makes it possible to apply
machinery from CR geometry to study holomorphic isometric maps from the unit ball to
bounded symmetric domains. In particular, we will apply Theorem 1.1, as well as recently
developed techniques in CR geometry, to study isometric maps from the unit ball to the
product of unit balls and Lie balls. Recall the type IV classical domain DY in CN(N > 2),
also called the Lie ball, is defined by

_ —t 1
DY ={Z=(z, ,2n)€CN 27 <2and 1 — 27 + ZﬂZZtP > 0}.
The Kahler form w pLv associated to the Kahler-Einstein metric ¢ piy is given by

— — 1
wpry = —V/=100log(1 — ZZ' + 1122'P). (1.2)
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In the second part of the paper, we will establish the following rigidity result.

Theorem 1.3. Let Q;,1 < i < m, be either the complex unit ball BY: for some N; > 1
or the Lie ball D]IV‘Z/ for some N; > 2. Let F = (Fy,---,F,) be a holomorphic isometric
map from an open connected set V. C B" to (21, A190,) X -+ X (Qn, Amga,,) satisfying
(1.1), where N.s are positive constants. Assume n > 4 and each F; is non-constant. Then
every F;,;1 < i < m, extends to a holomorphic isometric embedding from B"™ to €; with
F*(gq,) = gmn. Furthermore, > " | A; = 1.

One key idea to prove Theorem 1.3 is to realize D} as an isometric submanifold in
the indefinite hyperbolic space BY ™ (see Section 3 for the definition of the latter). With
the help of Theorem 1.1, we will show each F; naturally induces a local holomorphic map
that sends an open piece of OB to OB}*', and F induces an isometric map from B” to
a product of indefinite hyperbolic spaces. To study the induced maps, we apply recently
developed ideas and methods in CR, geometry. Especially the work in [HLTX1] will play a
fundamental role in the proof. We also borrow ideas from the work of Yuan-Zhang [YZ]. We
should mention that, in Theorem 1.3 when €2 is just a single copy of a Lie ball, classification
and characterization results of the map were established in [CM], [XY2] and [UWZ]. In
particular, by combining the results in [CM] and [XY2], we see any holomorphic isometric
map H : B® — DIV, N > n > 2, can be decomposed into the form H = ¢ o foroioo. Here
o, T, are automorphisms of B", BN~! DIV respectively. The map i is the standard linear
embedding from B" to BY~!. And f is either of the two maps from BY~! to D as defined
in Theorem 1.2 of [XY2], one of which is rational and the other irrational.

The paper is organized as follows. Section 2 is devoted to establishing Theorem 1.1.
In Section 3, as a preparation for the proof of Theorem 1.3, we study local holomorphic
isometric maps from the unit ball to the product of indefinite hyperbolic spaces under some
boundary conditions. In Section 4, we use Theorem 1.1 and results in Section 3 to prove
Theorem 1.3.

Acknowledgments. The author thanks Yuan Yuan for helpful comments. The author
is grateful to the anonymous referees for valuable comments that help improve the exposition
of the paper.

2 Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1. Given p € §, we fix a small ball O in C”
centered at p such that F' extends holomorphically to O (note dB™ N O is connected). We
still denote the extension by F' = (Fi,--- , F,).



Write Z; for the coordinates of CVi. By the definition of the metric gg, on the irreducible
bounded symmetric domain €; C CV:, the corresponding Kahler form is given by:

wa;, = —V —10510gpz-(Zi,Z)-

Here p; denotes the generic norm of €2;. By composing F' with automorphisms of € if nec-
essary, we can assume F'(0) = 0. Write | - | for the Euclidean norm. By using the metric
preserving assumption (1.1), properties of p;, and a standard reduction (see for example

[M3], [HY]), we have

1|2 = T] (ps(F0. F))™ on B™. (2.1)
i=1
Letting z € B" — 0B" N O in (2.1) (or by the properness of F'), we see there exists some
1 <@ < m, such that p;(F;(2), F;(z)) = 0 on 9B" N O, or equivalently, F;(0B" N O) C 9
(here we have used the fact that F; is real analytic on 0B"NO and that 0B"NO is connected).
The following lemma shows it is indeed the case for all F;.

Proposition 2.1. Under the assumptions of Theorem 1.1 and the above notations, for every
1 <i<m, F; maps OB" N O to 09;.

Proof of Proposition 2.1: First by the preceding discussion, there is at least one ¢
such that F; maps 0B" N O to 0€);. Then after re-ordering F}s and (s, we can find some
1 <ig < m such that the following two conditions hold:

(I). For every 1 < i < iy, we have F;(0B" N O) C 09,.

(IT). There is a smaller ball OcCOin C" centered at some ¢ € OB" near p such that, for
every 7o + 1 <1 < m, F; maps every ¢q € O to ;. Consequently, pz-(Fi(z), F,(z)) > 01in O.

To establish Proposition 2.1, it suffices to show ig = m. Seeking a contradiction, we
suppose 7o < m. We first note for each 1 <1 < ig, there exists an integer k; > 1 and a real
analytic function v; in O such that ¥; Z 0 on OB™ N O, and

pi(Fi(2), Fi(2)) = (1 — |2[)"4i(2,2) in O, 1< <. (2.2)

By further shrinking O to a smaller ball centered at some § € 9B™ near § if necessary, we can
assume ;(z,%Z) # 0 everywhere in O for every 1 < i < iy. Furthermore, since 1 — |22 > 0
and p;(F;(2), Fi(z)) > 0 on B" N O, it follows that for 1 < i < iy, ¥;(2,%) is everywhere
positive in B" N O, and thus also positive in O. Next by (2.1) and (2.2), we have

10 m

1= o2 = T = 12" (a2 2) ™ TT (0i(Fil2). Fi2)))™ in BN O. (2.3)

=1 i=i9+1
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Note in O,@bi(z,?) > 0 for all 1 < i < ip; and pZ(F,(z),Fz(z)) >0 forallig+1<i<m.
Letting z € B"NO — dB"NO in (2.3) and comparing the vanishing order of both sides, we
see that

10
> kidi=1 (2.4)
=1

Then (2.3) is reduced to
20 m

= H (@bz‘(%z))Ai H (pk(FIka)))\k in B"NO. (2.5)

i=1 k=ig+1

Note for any A > 0, the function h(y) = ¢ is real analytic on (0, 00). By the positivity and
real analycity of ¥;,1 < i < ig, and pg (Fk, Fk) 1o+ 1 < k < m, on the ball O, we see the
right hand side of (2.5) is real analytic in O. Consequently, (2.5) indeed holds in O

T[0T (T O, 26)

Next we define 74(Z;, Z;) := (—=1)kip;(Z;, Z;) for 1 < i < ig. It then follows from (2.2) that

ri(Fi(2), Fi(2)) = (2] = 1)*¢;(2, %) in O, in particular in 0, 1<i<i. (2.7)
The above implies r; (Fj(z), Fi(z)) > 0 in O\B" for 1 < i < 4. Moreover, by (2.6) and (2.7),

0 (T;‘fﬁf)> 1 (o(FoF)™ in O\ B, 2.8)

i=1 k=ig+1

Equivalently, we have

221 =T (B F))™ TT (on(Fo )™ in O\ B (2.9)
i=1 k=ig+1

Recall F'; which is in particular holomorphic in O, extends holomorphically along any path
v in C™ \ E for some complex hypervariety F in C". (For convenience, by further shrinking
O if necessary, we can assume ONE = 0. ) We will still denote the holomorphic continuation
of F; along v by F;,1 < i < m. We have the following lemma regarding the continuation.
To simplify the notations, we write I' for the set of all paths 7 : [0,1] — C"\ (B" U E) with
7v(0) € O \ B". When we say v € I, we always assume ~ is parameterized over the interval

[0,1].



Lemma 2.2. (1). For every path vy € T, and every 1 < i < m, we have p;(F;, F;) is nonzero
along v :

pi(Ei(y(1)), Fi(y(#))) # 0, for 0 <t <1.

(2). Fiz any io+ 1 < k < m. Then for every path v € I, we have Fy(y(t)) € Qx holds
fort € [0,1]. In particular, there is a positive constant My (only depending on €y ) such that
|Fi(2)] < My, along every v € T.

Proof of Lemma 2.2: We prove part (1) of the lemma by contradiction. Suppose not.
Then there is a path v € I" such that when F' is continued holomorphically along v, we have

HpZ(FZ,E) = 0 at the point z = y(1).
i=1

This yields that

20 m

Hri (FZ’E) H Pk(Fk,E) = 0 at the point z = ~(1).

i=1 k=ip+1

Recall that we have TZ(E(Z),E(Z)) >0in O \ B" for 1 < i < ig; and pk(Fk,E) >0in O
for 70 + 1 < k < m. Now set

10
tozsup{t>0:Hrj(E,F H Dk Fk,Fk) > 0 along ([0, t))}
=1

= k= 10+1

It is clear that 0 < t; < 1. And Hl 1TZ(FZ-,E) HZ;OH pk(Fk,E) =0 at z = 7(to).
Moreover, o
ri(Fi, Fz) > 0 along v([0,t0)) for 1 < i < ig;

pi(Fi, Fi;) > 0 along ([0, t)) for ig+1 < k < m.

Note (n(FZ,E))/\ is real analytic wherever r; (FZ,E) is a positive real analytic function.

Likewise for (px (Fk,E))Ak. It then follows from the analyticity that (2.9) holds along
7([0,%9)). That is, for 0 < t < ¢y,

10
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=1 k=ip+1




Letting t — to— on both sides of (2.10), we have the limit of the left hand side is positive
as v C C"\ (B"U E), while the limit of the right hand side equals 0. This is a contradiction.
Part (1) of Lemma 2.2 is thus proved.

We also prove part (2) of Lemma 2.2 by contradiction. Fix ig + 1 < k < m. Suppose
the first assertion of part (2) does not hold. Then there exists a path v € T such that the
holomorphic continuation of Fj, along v, which is still denoted by Fj, satisfies

We recall Fj(z) € Q; for all z € O, in particular Fj,(7(0)) € Q. Since 9%, separates the
two connected open subsets €, and CV* \Q_k in C¢, there exists some 0 < t* < 1 such that
Fi(y(t*)) € 0S%. But this implies py(Fy, F;) = 0 at the point (¢*), a plain contradiction
to part (1) of Lemma 2.2. This proves the first assertion in part (2). The second assertion
in part (2) then immediately follows from the boundedness of Q. Hence part (2) of Lemma
2.2 is also established. W

We continue to prove Proposition 2.1. For iy +1 < k < m, write Fi, = (fi1, -, fon)s
which is in particular a holomorphic map from O to CM:. For any fixed ig +1 < k£ <
m,1 <1< Nyand ¢ € C*\ (B" U E), write {(fr1)jq}7= for all possible (distinct) germs
of holomorphic functions at ¢ that can be obtained by applying holomorphic continuation
to fr; along paths v € I'. Let 7 > 1 and oy, be the fundamental symmetric function of
{(fra)jqti2y of degree 7. Then oy, is a well-defined holomorphic function in C™\ (B"UE).
Moreover, for each ig+1 <k <m,1 <[ < Ny and 7 > 1, 0y~ is bounded over (C”\(IB%_”U E)
by part (2) of Lemma 2.2. Thus by Riemann’s removable singularity theorem, oy, extends
to a bounded holomorphic function in C™\ B". Then by Hartogs’s extension theorem (recall
n > 2), og,r extends to a bounded holomorphic function in C", which must be constant
by Liouville’s theorem. Finally, since every oy, is constant, we have fi; must be constant
function and therefore Fj is a constant map for every ig +1 < k < m,1 <[ < Nj. This
contradicts the assumption of Theorem 1.1 if i < m. Hence we must have 7o = m and this
finishes the proof of Proposition 2.1. &

We should remark that the above idea of applying Hartogs’s extension theorem and
Liouville’s theorem to study the extension of isometric maps shares the same spirit as that
of [Ng2] and [YZ]. We are now at the position to prove Theorem 1.1.

Proof of part (a) in Theorem 1.1: It’s clear that part (a) of Theorem 1.1 follows
from Proposition 2.1 as O can be a small ball centered at an arbitrary point p € S. i

Proof of part (b) in Theorem 1.1: To prove part (b) of Theorem 1.1, we first note
(2.3) is now reduced to the following (recall we have proved ig = m):



1— |27 = T — 12" (i(2,2))™ on B" N O; (2.11)
i=1
where we recall ¢/s are real analytic functions on O. Similarly, (2.4) is reduced to > " | k;\; =
1. Combining this with (2.11), we have

1= (wi(z,z)))‘i on B"NO. (2.12)

i=1

Here we recall by (2.2), ¥(2,Z) > 0 on B*"NO. Fix any ¢ € 0B"NO. Let z € B"NO — ¢, we
get ¥;(q,q) # 0. By using (2.2) and checking the Taylor expansion of the right hand side of
(2.2) at g, we see the vanishing order of p;(F}, F}) at q equals k; for every ¢ € OB" N O. Thus
the vanishing order of p;(F}, F}) is locally constant on S. Note OB" N E is of real dimension
at most 2n — 3. Consequently, 0B"™ \ E is connected. So is S. Hence the vanishing order of
pi(F;, F;) is constant on S (and equals k;). This proves part (b) of Theorem 1.1. B

At the end of this section, we provide a refined version of Theorem 1.1 in the case when
Q) is a product of Cartan’s classical domains. For that, we first recall some preliminary
about the boundary structure of an irreducible bounded symmetric domain D. By Borel
embedding (cf. [M1]), D can be canonically embedded into its dual Hermitian symmetric
manifolds X of compact type. Under the embedding, every automorphism g € Aut(D)
extends to an automorphism of X and D becomes an open orbit under the action of Aut(D)
on X. Moreover, denoting the rank of D by r, the topological boundary 0D of D decomposes
into exactly r orbits under the action of the identity component Auty(D) of Aut(D) : 9D =
Ui_; Ej, where Ej lies in the closure of Ej if k£ > [. Moreover, Ej, is the set of smooth points
of the semi-analytic variety U_, E; (see the proof of Lemma 2.2.3 in [MN]). In particular,
E consists of the smooth points of dD.

Let ©;,1 < i < m, be an (irreducible) Cartan’s classical domain. By the above discussion,
we can write the stratification of the boundary of €; as

8QZ = U;ilEi,l with r; = rank(Qi). (213)

Here the £ ;s are the orbits under the action of Auto(€2;) as described in the above, satisfying
that B, C E;, for k > [,

Theorem 2.3. Let ; € CVi;1 < i < m, be an (irreducible) Cartan’s classical domain
with rank(Q2;) = r; and with the boundary stratification (2.13). Let F = (Fy,---,F,) be
a holomorphic isometric map from B" to Q = (Q1,A\190,) X -+ X (Qm, Anga,,) satisfying
ggn = Z;n:l NiF7(gq;) in B". Here s are positive constants. Let S be as defined in
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Theorem 1.1. Assume n > 2 and every F; is non-constant. Then for each 1 <1 < m, there
exists some integer 1 < k; < r; such that for every p € S, the holomorphic continuation of
F; to p maps p to B, 1,. Moreover, 2111 kM = 1.

Proof of Theorem 2.3: Fix 1 <7 < m. By Theorem 1.1, the holomorphic extension of
F; to p € § must map p to 0€2;. Furthermore, still denoting the extension by F;, there exists
some k; > 1, such that the vanishing order of p;(F;, F;) at p equals k; for some k; independent
of the choice of p. Moreover, > " k;A\; = 1. By Theorem 1 in [X1], F; maps the point p € S
to E;; if and only if the vanishing order of p; (£}, E) at p equals [. Consequently, 1 < k; < r;.
The other assertions in Theorem 2.3 follows as well. B

3 Isometric maps into the product of indefinite hyper-
bolic spaces

In this section, as a preparation for the proof of Theorem 1.3, we study local holomorphic
isometric mappings from the unit ball (the hyperbolic space) to the product of indefinite
hyperbolic spaces. In §3.1, we first recall some basic definitions and preliminaries about
indefinite hyperbolic spaces. The section §3.2 proves a couple of algebraic lemmas which
will be used in the later proof. In §3.3, we prove a rigidity result for local holomorphic
isometric mappings from the unit ball to the product of indefinite hyperbolic spaces. The
rigidity result will be fundamentally used in the proof of Theorem 1.3.

3.1 Some preliminary of indefinite hyperbolic spaces

Let n, ¢ be integers such that n > 2 and 0 < ¢ < n — 1. The generalized complex unit ball
is defined as the following domain in P :

v = {[z0, .-y 2n] €P": |zo\2 + ...+ ]zAQ > ]ng]Q + ...+ \zn|2}.

In the special case of ¢ = 0, By is reduced to the standard unit ball B" (embedded in P™).
The generalized ball B} carries a canonical (pseudo-Kéhler) metric gg that is invariant
under the action of its automorphism group PSU (¢ + 1,n + 1), where the latter means the
projectivization of SU(¢ + 1,n + 1). The corresponding Kéhler form wgy of ggp is given by

J4 n
wap = —V=100log(>_ |zi]> = > |z]*). (3.1)
=0

j=t+1
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Note the (pseudo-Kihler) metric ggy is indefinite if and only if £ > 1. In this case, the
generalized ball equipped with the metric wgy is called the indefinite hyperbolic space form.
In the case ¢ = 0, it is reduced to the standard hyperbolic space form (up to a normalization).
To better perform the local CR differential analysis on the boundary, we also often work
with a different realization of B}, which is known as (generalized) Siegel upper-half space.
To introduce the latter, we first fix some notations that will be used throughout Section 3.

Given a fixed ¢ > 0, we denote by ¢;, the symbol which takes value —1 when 1 < j </
and 1 otherwise. If [ = 0, 6, is identically one for all j > 1. For fixed integers ¢' > ¢ > 1
and n > 1, we denote by ;¢ , the symbol which takes value -1 when 1 < j </lorn <j <
n+{ —¢—1, and 1 otherwise. When ¢' = ¢, ,, is the same as §;,. Let m > 1. For two m-
tuples © = (x1, -+, Tm), y = (Y1, -+, Ym) of complex numbers, we write (x, y), = Z;nzl 0;.0%5Y;,
and [z]] = (v,Z),. Also write (2,y)ron = D 5o 000 nty; and |27, , = (2, %) . For
0 < /¢ <n-—1, we define the generalized Siegel upper-half space

S} ={(z,w) € C" ' x C: Im(w) > |2[7}.

When [ = 0, it is reduced to the standard Siegel upper-half space. The topological boundary
H} of S}, called the generalized Heisenberg hypersurfaces, is defined by the equation Im(w) =
|2]2. Now for (2,w) = (21, -, 2n_1,w) € C"" X C, let ¥,,(z,w) = [i+w,2z,i—w] € P". Then
U, is the Cayley transformation which biholomorphically maps the generalized Siegel upper-
half space S} and its boundary H} onto B} \ {[{o, -+, &n] : o +&. = 0} and OB} \ {[&o, -+, &)
& + &, = 0}, respectively.

We also define for Y <n—1,{ <V <N—-1land N>n+{ —¢,
St ={(z,w) € CN' x C: Im(w) > |27, ,.}-

Note Sy, is identical to Sy if £ = ¢. When ¢’ > { , S, is holomorphically equivalent
to Sp' by a permutation P of coordinates in CY. We will more often work with S, ,
instead of S, as it makes notations simpler. The topological boundary Hé\,[e',n of Sé\[’é,’n is
defined by the equation Im(w) = |z[7, ,,. Writing Wy for the Cayley transformation which
biholomorphically maps Sy onto By \ {[€o, - - -, &n] : &0+ &n = 0}, the map ¥}, | := ¥y oP
biholomorphically maps Sé\k,,n and its boundary Hé\,@,m onto BY \ {[¢0, -+, &én] 1 &0+ & = 0}
and OBy \ {[&o, -+, En] - &o+En = 0}, respectively. We will call ¥}, . the generalized Cayley
transformation.

Note the pull back of ggy by W,, gives a canonical indefinite metric gsp = V7 (ggp) on Sy.
Writing (21, , 2n_1,w) € C"! x C for the coordinates of C", the corresponding Kéhler
form wsp of gsp is given by —v/—=100log (Im(w) — |2|7). We in particular recall here the

12



explicit formula of gsp when ¢ = 0. In this case, the metric gsp is indeed the normalized
Bergman metric of the standard Siegel upper-half space Sf.

S (Im(w) — |2]?) + 2,2 dw ® dw
P R Lo Rk YO -
1<jk<n—1 (Im(w) — |z ) 4(Im(w) — |2] )
zdej & d@ Z Zjd'lU & dZ]

1<j<n—1 Qi(Im(w) - |Z|2)2 1<j<n—1 Qi(Im(w) - |Z|2)2'

(3.2)

Similarly, the pull back of 9By by \I/éV’ZW gives a canonical indefinite metric gsv, =
(U )" gsy on St - A direct computation yields an explicit formula of gsv, and the cor-
responding Kéhler form WeN - Writing (Zy, -+, Zn_1, W) € CN~1 x C for the coordinates

of CV, we have

wey, = —V/—1991og (Im(W) — | Z|} ) (3.3)
81 k0k 0000 (Im(W) — | Z12 ) + 000 Ok 00 nZ 5 Zxc —
gSéVZ,n = Z ( LY, )2 5 dZ; Q@ dZ g
o 1<JK<N-1 (Im(W) - ’Z|E,Z’,n)
dW @ dW Py SqownZ A7y @ dW Ssp0nZydW @ dZ ;
2 . 2 . 2°

4(Im(W) - |Z’%7K’,n) 1<J<N-1 QZ(Im<W) - ’Z’?,E’,n) 1<J<N 2z(Im(W) - ‘Zﬁ,ecn)

(3.4)

The CR manifold 0B} or H} (or Hévwn) is a fundamental object in CR geometry, serving
as the basic model for Levi-nondegenerate hypersurfaces (see [BH]). There are extensive
study on the mappings between boundaries of generalized balls. See [BH, BEH, HLTXI,
HLTX2, X2, GN] and references therein.

We next recall some preliminary about holomorphic maps between (generalized) Heisen-
berg hypersurfaces from CR geometry (see [BH|, [BEH], [HLTX1]). In this section, we let
F=(f9)=(f0.9) = (f1, - fac1, b1, - s dn-n, g) be a holomorphic map from a neigh-
borhood U of py € H} into CV, satistying F(U N'S}) C S}y, and F(U NHy) C Hy,,,. We
additionally assume M; := U NH} is connected and F'is CR transversal on M.

In the following, we denote by (z,w) = (21, , zn_1, w) the coordinates of C* = C"~! x
C. Letting ¢ = (20, w0) € C"" x C be a point on H}, we write 00 (z,w) = (z + 2o, w + wo +
2i(z, Zy)¢) for the (generalized) Heisenberg translation. Then ¢? is an automorphism of S},

and in particular, o)) is a self-isometry of (S}, gsp). We write Aut™(Hy, ) for the group of
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side-preserving meromorphic automorphisms of Hé\féhn' Equivalently, it is the set of rational
maps R such that away from the set of indeterminacy I, R locally biholomorphically maps
HYy ,, to itself. In addition, R gives a holomorphic isometric map from (Sp),,, \ I, 9sn, ) to

(SwfmgSéVl, n)

We will need a normalization lemma from [BH|. To introduce the lemma, we first recall
some notations (from [Hul, Hu2] and [BH]) for functions of weighted degree that will be
used in the remaining context of the paper. We parameterize H}' by (z,Z,u) through the
map (2,7, u) = (z,u+iy 5" 054121, Under the parametrization, we assign the weight of
z to be 1, and assign the welght of u and w to be 2. We say a smooth function h(z, z,u) on

tztztu

U NHY} is of quantity O, (s) for s € N, if is bounded for (z,u) on any compact

subset of U NH} and ¢ close to 0. Similarly, we say h is of quantity o,(s) for s € N, if

w converges to 0 uniformly for (z,u) on any compact subset of UNH} as t goes to 0.

In general, for a smooth function h(z, Z, u) on UNHY, we denote h*) (2, 2, u) the sum of terms
of weighted degree k in the Taylor expansion of h at 0. Sometimes h*)(z, z,u) also denotes
a weighted homogeneous polynomial of degree k, if h is not specified. When h*)(z, z,u)
extends to a holomorphic polynomial of weighted degree k, we write it as h®*)(z,w) or
h*)(2) if it depends only on z.

Lemma 3.1. Let F' be as above. For each p € My, there is an element 3 € Aut™(Hp) )
such that the map F;* = foFoo) satisfies the normalization conditions (3.5) and (3.6) when
we write Fr* = (f;*, L gy). Here fi* = ((f;*)l, e ,(f;*)n,l) has (n — 1) components,
¢5" has N —n components and g,* is a scalar function.

==z + ‘/T **(1)(2)10 + Ouwe(4)
gp =w + Owt(S),

with
(2,05 ()l 2l = oD ()2, 7=0 1. (3.6)

Remark 3.2. If we write a)’V(z) = zA(p) for some (n — 1) x (n — 1) matriz A(p) =
(ajk)1<jk<n—1, then (f3")u(z,w) = 21, + FZ 1 ajpziw + Oy (4) for 1 <k <n—1. By
[HLTX1], the geometric rank of F' at p is deﬁned as the rank of the matriz A(p). See more

details of the definition in [HLTX1].
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3.2 An algebraic proposition

We first recall the definition of Hermitian rank of a real polynomial. Let R(z,Z) be a real
polynomial in C". Then R(2,%) can be written as R(z,Z) = >0 [fi(2)]* — 227_; [g;(2)[?
for some p,q € Z=°, where f/s and gjs are holomorphic polynomials in C". Moreover
fiooo- o fpag1,- -+, gq are linearly independent over C. Then r = p+q is called the (Hermitian)
rank of R(z,Z%), and the pair (p, q) is called the signature of R(z,Z). We remark that the rank
and signature of R(z,%) are independent of the choices of f/s and g}s. The real polynomial
R(z,Z%) has rank zero (equivalently, it has signature (0, 0)), if and only if R(z,Z) is identically
zZero.

We recall the following well-known simple fact about the signature of real polynomials.
For the convenience of the readers, we sketch a proof here.

Lemma 3.3. Let R(z, %) be a real polynomial. Assume R(z,Z) =Y ._, |¢i(z)|2—2321 10 (2) 3,
where vt € Z=°; ¢ls and 1/1;5 are some holomorphic polynomials (they are not necessarily
linearly independent over C). Then the signature (p,q) of R(z,Z) satisfies p <r,q <.

Proof. We can assume R(z,Z) is not identically zero, for otherwise the conclusion is trivial.
Since R(z,Zz) has signature (p, q), R(z,Z) can be written as

R(22) = Y1) = Y Lo

Here {fi, -, fp. 91, -+ , g4} is a set of linearly independent holomorphic polynomials over
C. We first prove p < r. Seeking a contradiction, suppose p > r. Note by assumption we

have
SIAEE+ R = Y I6EE+ 3 g

By a lemma of D’Angelo (see [D]), for each 1 < i < p, we can find an (r 4+ ¢)—dimensional
vector v; with complex entries such that f; = (¢1,--- ,ér, 01, ,gq)vi for 1 < i < p.
Consequently, since p > r, there exist constants Ay, --- , A\,, which are not all zero, such that
P Aifi can be written as a linear combination of g;’s. This contradicts with the linear

independence of f;’s and g;’s. Hence we must have p < r. Similarly one can prove ¢ < t.
]

We next prove the following algebraic lemma, which will be applied in §3.3. For two m-

tuples £ = (§1,-++ ,&m), 1 = (1, -+ ,m) of complex numbers, we write (§,1) = 37", §;n;.
Write Tr for the matrix trace operator.
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Proposition 3.4. Let m > 3 and z = (21, -+ , zm) be the coordinates of C™. Let A be an
m x m Hermitian matriz such that R(z,Z) = (zA,Z)|z|* has signature (p,q) with 0 < g < 1.
Then we have the following two conclusions hold.

(1). Tr(A) > 0.
(2). Tr(A) =0 if and only if A is the zero matrix.

Proof of Proposition 3.4: By assumption, we can write
q
R(2,7) = (24,7} 3 = Z R =3 o) (37)
j=1

for some linearly independent holomorphic polynomials fi,---, f,, 91, -, g, Let U be an
m X m unitary matrix such that A= UAT = diag(A1, -+, Am), where Ay > -+ > A,
Replacing z by zU in (3.7), we get

(zA,Z)|2|? = Z|f1 (zU)] Z]gj (zU)| (3.8)

Therefore the real polynomial R(z,%) := (2A,Z)|z|? also has signature (p, q). We next prove
the following claim:

Claim 1: One of the following two mutually exlcusive conditions must hold:
(A). Forall 1 <j <m,\; >0.

(B). The last eigenvalue \,, < 0, and A,,_; > —\,,. Consequently, A\; > 0 for every
1<j<m-—1land Tr(4)=>" X\ >0.

_ Proof of Claim 1: If A,, > 0, then (A) holds. We will thus assume A, < 0. We restrict
R(2,%) to the complex 2—plane H := {(0, - ,0,2zm—1,2m) : Zm-1,2m € C}. Write R|p for
the function obtained by this restriction. By the form of A and the definition of R, we have

R|H = ()‘m—1|zm—1|2 + >‘m|zm|2)<|zm—l|2 + |Zm|2)

(3.9)
- /\m—1|zm—1|4 + <>\m—1 + >\m)|2m—12m|2 + >\m|Zm|4

Write (p*, ¢*) for the signature of R|;. By restricting (3.8) to H and using Lemma 3.3, we
have ¢gx < ¢ < 1.

Suppose A,—1 + A < 0. Note the functions 22|, z,,_12m, 22, are linearly independent
over C. Then by (3.9), we have (p*,¢*) = (1,2) if Au—1 > 0;(p*, ¢*) = (0,2) if A,y = 0;
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and (p*,¢*) = (0,3) if \,,-1 < 0. In any case, it contradicts the preceding conclusion
that ¢x < ¢ < 1. Hence we must have \,,_; > —\,, > 0. Consequently, \; > 0 for all
1 < j < m — 1. Finally since m > 3, we have Z;n:l Aj > 0. This finishes the proof of the
claim. W

We continue to prove Proposition 3.4. Note part (1) of Proposition 3.4 follows imme-
diately from Claim 1. To prove part (2), we only need to show that if Tr(A) = 0, then A
is zero. For that, we note when Tr(A) = 0, we must have case (A) holds in Claim 1. In
this case, the trace free condition immediately yields that all the eigenvalues A; = 0, and
therefore A is the zero matrix. Proposition 3.4 is thus established. R

Remark 3.5. In the case m = 2, part (1) of Proposition 3.4 still holds, while part (2)
fails. For example, write z = (21, 23) for the coordinates of C?, and let the 2 x 2 matriz
A = diag(A, =) for some positive number \. Then it is clear that the real polynomial
(zA,2)|2]? = MJ21|* — |22|*) has signature (1,1). The trace of A is zero, while A is not zero.

3.3 Rigidity of isometric maps into products of indefinite hyper-
bolic spaces

We will prove a rigidity theorem for holomorphic isometric maps into a product of indefinite
hyperbolic spaces based on the setup and results from §3.1 and §3.2. The proof uses some
recently developed machinery in CR geometry ([HLTX1]), as well as ideas from the work of
Yuan-Zhang [YZ].

We consider local holomorphic map sending a piece of Hj to Hé\fg,vn with / =0 and ¢/ = 1.
More precisely, let N >n > landlet F = (f,9) = (f,6,9) = (f1i, - fa_1, ®1, s ON—n, g) be
a holomorphic map from a neighborhood U of py = 0 € H into CV, satisfying F(UNSE) C
S0, and F(UNHE) C HY, ,,. Assume F(0) = 0 and F is CR transversal at 0. Then there
exists a positive-valued real analytic function h in a small neighborhood of 0 such that

m(g) = [ /15,1, = (Im(w) —[2*) .

Consequently, X := gsp — I""(gsy, ) extends to a well-defined real analytic Hermitian sym-
metric (1,1)—tensor in some neighborhood V of 0. Similarly as in [YZ], the value of X
along HI} gives an intrinsic CR invariant that is associated with the map F' near 0. We will
follow the idea in [YZ] to make connection of X with the CR second fundamental form of
the map F. For that, we normalize F' and compute X under the normalization. First note
by Lemma 3.1, we can compose F' with some 8 € Aut®(H}, ), such that the new map

Bo F, still denoted by F = (f, g) = (f, ¢, g), satisfies the following normalization (3.10) and
(3.11). Here (z,w) = (21, - , 2n_1,w) denotes the coordinates of C* = C"~! x C.
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f=2+SLaW (2w + O(4)

¢ = ¢ (2) + Ou(3) (3.10)
g =w—+ Ou(5),
with
(z,aV(2)2* = [P (7)1}, (3.11)

Here a!)(2) = 2.A for some (n — 1) x (n — 1) matrix A = (a;1)1<jr<n_1- By (3.11), A is a
Hermitian matrix.

Write H := Im(g) — |f 6,1, Which is a real analytic function on U. We next follow the
method of Lemma 2.4 and Proposition 2.5 in [YZ] to study the asymptotic behavior of H
and the boundary value of X. To make the computation simpler, we will carry it out in a
slightly different way from that in [YZ].

Write w = s+ it, where s,t are real and imaginary parts of w. Write L for a small piece
of real line segment passing through 0 along the normal direction % of Hf at 0. That is, L
is the following real line segment for some small € > 0 :

L={(z,w) e C":z2=0,w=1it with t € R, |t| < ¢}.

We restrict H on L to obtain H|y. Since H(0) = 0, by the Taylor expansion of H|, at ¢t =0
we have,

oH 10°H
Hult) = ¢ O+ 55

Here O(k) denotes a real analytic function on L at 0 whose vanishing order at ¢ = 0 is at
least k. We furthermore have the following lemma.

Lemma 3.6. Let F' be as above and in particular satisfies (3.10) and (3.11). Then H|,
satisfies the following expansion att =0 :

H|p(t) =t+ O(3).

Proof of Lemma 3.6: The proof is basically the same as that of Lemma 2.4 in [YZ]. We
sketch a proof here. For a function 1 of t, we write ¥, = %. For a vector-valued function

(0)t* + O(3). (3.12)

U = (Y1, ,%n), we write ¥, = (%, e ,a(;p—wm), and g, V5 are understood similarly.
Note % = ia% — ia%. We thus have

oH 1 . L

57 (0) = iy —ily = 5(90(0) +9u(0)) +i(f(0), fu(0))o1n = i(fu(0), f(0))o1n = 1. (3.13)
The last equality follows from (3.10). One can verify that %27?(0) = 0 by using (3.10) in a

similar manner. Then the lemma follows from the above calculation and (3.12). B
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Proposition 3.7. Let F' be as Lemma 3.6 and X be as defined above. Write
X= > Xpdzedi+ Y Xpdyodot+ Y Xydw® dz; + Xopdw ® di.

1<j,k<n—1 1<j<n—1 1<j<n—1

Then we have for 1 < j,k <n—1,

Xjk(O) = -2

Here (ajx)1<jr<n_1 is the coefficient matriz of a)(2) in (5.11).

Proof of Proposition 3.7: The proof is very similar to that of Proposition 2.5 in [YZ].
Although X (as well as X}, X,,; and X,,,) are real analytic in a neighborhood of 0, we
will however carry out a calculation of H2X ), instead of X, as in [YZ]. This will make the
computation easier: In the definition of X, gs» and F* (gSév,l,n) both have a singularity at 0,

and the multiplication of H? annihilates the singularity.

Note H2X is a real analytic (1,1)—tensor near 0 and its coefficient along the direction
dz; @ dzy, 1 < j,k < n —1, equals H?*X ;. We restrict H*X;, to L, and write hj, for the
function obtained by the restriction. Then by Lemma 3.6,

hje = (H|L)*(Xjel2) = X (0)t* + O(3). (3.14)

On the other hand, we can use the explicit formula X := ggn — F*(gsév1 ) to compute

H?X and hjj,. We first consider H?gsy. Take the coefficient of H?gsp along dz; ® dzy,1 <
J,k <n—1, and restrict it to L. Denoting by 1, the function obtained by this restriction,
we have by Lemma 3.6 and (3.2),

Uy = (H1L PO peg) = Dt + O(3). (315)

Write I, IT, IIT, IV for the four tensors on the right hand side of (3.4), respectively. Then
we have

H?F*(I) = Z (0sx0k010H + 6501 00x010f 1K) dfs ® d .
1<JK<N-1

Collect the coefficient of the above tensor along the direction dz; ® dz,1 < j,k <n —1
and restrict it to L. Write 77;4,g for the function obtained by the restriction. Note by (3.10),

(f)|L(t) = O(2) for any 1 < J < N — 1. Consequently,

nh = Z 6K01H(H|L)(afK)|L<afK)|L+O(4):(H|L)<f2j7f~_zk>0,1,n+0(4)‘ (3.16)

BEn
1<K<N-1
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Note (¢1).,|r = O(1), for 1 <I < N —n,1 < j <n — 1. By the first equation of (3.10), we
have

(fi1)z; = 651+ %aﬂw +0,(3), 1<i<n-1.

Using the above and Lemma 3.6, we see (3.16) is reduced to

_ 1 1
Mie =t |, fo ) + O(3) = (85, — 5Tkt = 5axt) + O(3). (3.17)
Since A = (a;k)1<jk<n—1 is a Hermitian matrix, we have @y; = a;;. Thus the above equation
is reduced to
T]Jlk = (Sjkt — ajktz + O(B) (318)

Similarly, we collect respectively the coefficient of the tensors H2F*(I1), H*F*(II1), H*F*(IV)
along the direction dz; ® dz,1 < j,k < n — 1, and restrict them to L. Write the func-

tions obtained by the restriction as 77]],5 ,nf,gl and nﬁ/ , respectively. Note again by (3.10),

9:1c(t) = 0(2),1 < j <n-—1, and (f)|L(®) = O(2),1 < J < N — 1. One can therefore
verify directly that nj{,n/{" and 0} are all of order O(4). Putting this together with (3.15)
and (3.18), we obtain

hjk = Uik — (Ml + ik + 0t + 0l ) = agt® + O(3). (3.19)

Finally we establish Proposition 3.7 by comparing (3.14) and (3.19).

We are now ready to formulate and prove a rigidity result about local holomorphic
isometric map from the unit ball to a product of generalized balls.

Theorem 3.8. Let n > 4 and m > 1. Let U be an open subset in C™ containing some
p € OB" such that U N B" is connected. Let G = (Gy,---,Gp) be a holomorphic map
from U to PM x ... x PNm where all N; > 2. Assume each G;,1 < i < m, satisfies
G:(UNB") C BY and G;(U N OB"™) C 9B Assume G is a local isometric embedding in
the sense that ggn =Y ., )\in(gIBf’i) on UNB", where N.s are all positive constants. Then

each G; is an isometric map from (U NB"™, ggn) to (IB%{V",QBNZ-) satisfying G (gg~;) = gun on
1 1

UNB". Consequently, Y ;" N\ = 1.

Remark 3.9. In the setting of Theorem 3.8, since 1 <n — 1, we can apply Lemma 4.1 in

[BH] (or Theorem 1.1 in [BER]) to see that each G;, as a holomorphic map sending U NOB™

to 8]13311\[", is CR transversal at a generic point on OB™. It then follows that N; > n + 1 for
each i(cf. [BH]).
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Proof of Theorem 3.8: Recall there is a Cayley transformation W, that biholo-
morphically maps S and its boundary Hf onto B" and 9B™ \ {(0,—1)}, respectively.
By composing G with some automorphism of B", we can assume p, = ¥, (0). Further-
more, recall there is some generalized Cayley transformation \I/év’lyn that biholomorphi-
cally maps S{;,, and its boundary H{, , onto B \ V and 9B{ \ V, respectively. Here
V = {[20, - ,2n] € PV : 2y + 2y = 0}. By composing each G, with some automorphism of
IB%;Vj, we can assume G;(pg) = \I/év’ln(O) for every 1 <1i < m. Now set

F;, = (\Ifé\f"ljn)*l oGioV,,1<i<m.

By the assumption on G;, each Fj is a well-defined holomorphic map from some neighborhood
W of 0 in C" to CYi with ¥,(W) C U (By shrinking W, we assume W NS} is connected).
Moreover, for each ¢ we have, F;(W NSf) C Sé\ﬁm and F;(W NHp) C Hévln Furthermore,
by the metric preserving condition of G and the definitions of gsp and i 5 We have

F:=(Fy,---, F,) preserves the metric in the sense that
gsp = Z )\iFi*(gSévil ) on W NSL. (3.20)
i=1 o

The argument in Remark 3.9 shows that F;, as a holomorphic map sending W N Hf to
Hé\f’im, is CR transversal at a generic point on W N Hf. By shrinking W to a small ball
centered at some ¢ € Hf, we can assume F; is CR transversal along W N Hy for every
1 <7 < m. By composing F' with 02, we can further assume ¢ = 0. Furthermore, by
Lemma 3.1, composing each F; with some element in Aut*(HéVj,n) if necessary, we can
assume F; satisfies the normalization condition (3.10) and (3.11). Following the notation at
the beginning of this section, we write X (F;) := gsp — Fi*(gSévg n). By the previous discussion,
X (F;) extends to a real analytic (1,1)—tensor in some small neighborhood of 0, which can
be indeed taken to be W. We rewrite (3.20) into the following equation:

m m m

(14> A)gsp = > Nilgsy — F(ggn, ) = > ANX(F) on WNSy. (3.21)

=1 =1 =1

Note the right hand side of (3.21) extends real analytically across W N Hg, while gs» is
singular at every point on Hf. Hence we must have > 7" A, = 1. Consequently, (3.21) is

reduced to
m

> AX(F) =0on WNSy. (3.22)

i=1
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Collecting the (dz; ®dZ))—component of (3.22), 1 < j, k < n—1, and then letting z € WNSf

go to 0, we obtain

D N (X(F)),,(0) =0. (3.23)

i=1
Here (X(E))]k is (dz; ® dZ,)—component of X (F;). By Proposition 3.7, for each 1 <1i <m,
(X(E-))jk(()) = aly,, where A" = (a};)i<jr<n—1 is the matrix associated with F; in the
expansion of F; at 0 as in (3.10) and (3.11) (see also Lemma 3.1 and Remark 3.2). Recall
by (3.11), A’ is a Hermitian matrix. Moreover, by Lemma 3.3 and (3.11), (2.A%,Z)|z|*> has
signature (p, q) with 0 < ¢ < 1. Since n — 1 > 3, by part (1) of Proposition 3.4, Tr(.A%) > 0.
But (3.23) means > ;" N\ A" = 0, which implies " \;Tr(A") = 0. Hence we must have
Tr(A") = 0 for each 7. We then apply part (2) of Proposition 3.4 to conclude that A" = 0
for every i. It follows that the geometric rank of each F; at 0 equals 0 (see Remark 3.2).

Next for each p € W N Hy near 0, let 3; € Aut*(]HIé\ﬁ’n) (depending on p) be such that
(i) = BZ'OE‘OUS, 1 < < m, satisfies the normalization as in Lemma 3.1 with £ = 0,/ = 1

(or the normalization similar to (3.10) and (3.11)). In particular, each (F;);* maps 0 to 0.

Moreover, F, := ((F1)prs -5 (Fn)yr) still satisfies the metric preserving condition as in
(3.20). Then we can apply the preceding argument to Fp and conclude the geometric rank
of each (F;);* at 0 equals 0. This is equivalent to that F; has the geometric rank 0 at p (see
Proposition 3.4 in [HLTX1]). Since p is an arbitrary point on Hf} near 0, it follows that each
F; has geometric rank 0 at every point on Hljj near 0. By the relation of F; and G;, and the
definition of geometric rank (see page 14 [HLTX1]), we see each G; is CR transversal and
has geometric rank zero along some open piece of 0B" N U. Finally we apply Theorem 1 in

[HLTX1] to conclude that every G; is an isometric map from (U N B”, ggn) to (B2, ngll\fi)
with G7(gg~;) = g on U NB". Theorem 3.8 is thus established. B
1

Corollary 3.10. Let n > 4 and m > 1. Let U be an open subset in C™ containing some
p € OB™ such that U NB™ is connected. Let G = (Gy,--- ,Gp) be a holomorphic map from
U to PM1 x ... x PMm_ where all M; > 2. Let D; C PMi 1 < i < m, be either the unit ball
BM: c CMi C PMi or the generalized ball ]B%i”i C PM:. Assume each Gy, 1 < i < m, satisfies
Gi(UNB") C D; and G;(U N OB™) C 0D;. Assume G is a local isometric embedding in the
sense that ggn =Y .-y \;Gi(gp,) on UNB", where X;s are all positive constants. Then each
F; is an isometric map from (U NB", ggn) to (D;, gp,) satisfying G¥(gp,) = gan on U N B".
Consequently, > N\ = 1.

Proof of Corollary 3.10: Write Ty, for the standard embedding from C¥ to PM+!
given by
Ty (Zl,"' ,ZM) € (CM — [1,0,21,"' ,ZM] GPM+1.
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Note T} gives a canonical holomorphic isometric embedding from (BM, ggar) to (B 1, ggrr+1)
Tj\‘/[(gBin) = ggu. In particular, Th; maps OB to OB+

We define a new map é (Gy,--+ ,Gy) in terms of G as follows. For 1 <i < m, if D;
is the generalized ball B ‘. then we set N; = M; and D D;, and set G G;. If D; is the
unit ball BM: then we set N; = M; + 1 and D; —]B%iv, and set G =Ty 0Gi 2 U — PN,
Then G is a holomorphlc map from U to PN x --- x PN satisfying G; (UNB") C BY and
G,(U N dB™) C dBY:. Moreover, G is isometric in the sense that gg. = S, \G (g]Bli).

Hence by Theorem 3.8, each C~¥, is an isometric map with ggn = éf (ggni)- Note in the case
1

D; = BM: we have
gan = Gi(ggn.) = Gi (Tir(ggm)) = Gi(gam) on UNB".
This proves Corollary 3.10. B

Remark 3.11. In the setting of Corollary 3.10, from the proof and Remark 3.9, we see for
each 1 <i < m, if D; = B then we must have M; > n. If D; = IB%lei, then we must have

4 Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. Let F' be as in the theorem. First, as
discussed in Section 1, by [M3] and [CXY], F' extends to a holomorphic proper and isometric
immersion from B"™ to 2. We can thus just assume V' = B". Before starting the proof, we
remark that in the setting of Theorem 1.3, DIV cannot appear as one of the Qs. Indeed,
suppose Q; = DIV for some i. Since DIV is biholomorphic to the bidisc A%, it follows
from Theorem 1.1 that a generic point on JB"™ is mapped to the unit circle A by some
non-constant holomorphic map. This is a contradiction since n > 4 (cf. [BX]). Hence if
Q;, = D]IV‘;, then we must have N; > 3. Consequently, each §2; is an irreducible bounded
symmetric domain. We also remark that once Theorem 1.3 is established, then by the
existence of an isometric map from B" to ; we must have N; > n when Q; = B"; and
N; > n+1 when Q; = D/ (see [M4] or [XY1]. The same conclusion can also be derived
by merely applying Theorem 1.1 which yields the existence of a non-constant holomorphic
map sending a piece of IB" to 0€2;).

Proof of Theorem 1.3: Denote by Ly the following embedding from CV to PN*! :

1
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Then by (1.2) and (3.1), Ly gives a canonical holomorphic isometric map from (DY, g p1v)
to (BN pivi1) + Ly (ggn+1) = gpiy. In particular, we have Ly (9DY) € OBY*!. Note by
Theorem 1.1, there exists a small ball U centered at some py € 0B™ (in particular U NB" is
connected) such that F' extends holomorphically to U. Moreover, still denoting the extension
by F, for each 1 < i < m, F(U NoB") C 0 (and trivially F(U NB™) C ;). Then we
define a new map G = (Gy, -+ ,G,,) on U in terms of F' as follows. For each 1 <1i < m, if
Q; = BYi, then we just define M; = N; and D; = BM: and define G; = F,on U. If Q; = D]Iv‘i/7
then we define M; = N; +1 and D; = Bi\/[i, and define G; = Ly, o F; on U. Here Ly, is the
aforementioned embedding from CVi to P that gives a canonical holomorphic isometric
map from (DY, gprv) to (B%,QE%). One can easily verify that G; maps U to PMi and
satisfies G;(U N IB%”)ZQ D; and G;(U N 0OB") C 0D;. In this way, G = (Gy,--- ,Gp,) is a
local holomorphic map from U to PMt x ... x PM= Moreover, by the definition of G as well
as the metric-preserving property of F' and Ly,, we have ggn = > ", NG} (gp,) on U N B™.
Consequently, G satisfies the assumptions in Corollary 3.10. Hence by the conclusion of
Corollary 3.10, each G;,1 < i < m, is an isometric map from U NB" to D; : gg» = G} (gp,)
on U NDB".

Now for each i, by the construction of G, if D; equals B¢, then so does §; and F; = G;.
Therefore Fj is a local holomorphic isometric map from UNB" to €; = B¢, and thus extends
to a totally geodesic embedding to B" to BY:. If D, = IB%{W", then ), = D]IV‘Z/ with M; = N;+1,
and G; = Ly, o F;. It then follows that

gpn = (LN—L o Fl)*(gBin+1) = F’z* (L*NZ (gEiVi+1)) = F’z*(gD]IVV) on UNB".

Hence for every 1 < i < m, F; is a local holomorphic isometric map from (U N B", ggn) to
(94, ga,). Finally since F' is holomorphic on B" (see the discussion at the beginning of this
section), by the analyticity we see every F; is holomorphic isometric map from B™ to ;.
This finishes the proof of Theorem 1.3. B

We finally remark that, in the proofs of Theorem 3.8 and Theorem 1.3, the assumption
n > 4 is essentially used to apply Proposition 3.4, which yields the vanishing of the geometric
rank. When n = 2, 3, it seems the behavior of the geometric rank can be more complicated
and in particular, Proposition 3.4 fails when m = 1,2 (see Remark 3.5). We however expect
the conclusion of Theorem 1.3 to still hold in these lower dimensional cases.
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