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Abstract—This paper considers the detection of change points
in parallel data streams, a problem widely encountered when
analyzing large-scale real-time streaming data. Each stream may
have its own change point, at which its data has a distributional
change. With sequentially observed data, a decision maker needs
to declare whether changes have already occurred to the streams
at each time point. Once a stream is declared to have changed, it
is deactivated permanently so that its future data will no longer
be collected. This is a compound decision problem in the sense
that the decision maker may want to optimize certain compound
performance metrics that concern all the streams as a whole.
Thus, the decisions are not independent for different streams. Our
contribution is three-fold. First, we propose a general framework
for compound performance metrics that includes the ones con-
sidered in the existing works as special cases and introduces new
ones that connect closely with the performance metrics for single-
stream sequential change detection and large-scale hypothesis
testing. Second, data-driven decision procedures are developed
under this framework. Finally, optimality results are established
for the proposed decision procedures. The proposed methods and
theory are evaluated by simulation studies and a case study.

Index Terms—Large-scale inference, multiple change detection,
sequential analysis, multiple hypothesis testing

I. INTRODUCTION

Sequential change detection aims to detect distributional
changes in sequentially observed data. Classical methods
focusing on change detection in a single data stream have re-
ceived wide applications in various fields, including engineer-
ing, education, medical diagnostics and finance [1–4]. Several
metrics have been proposed for evaluating their performance,
under which optimality theory has been established [5–8]; see
[9–11] for a review.

The emergence of large-scale real-time streaming data has
motivated multi-stream sequential change detection. Different
settings have been considered in the literature, largely mo-
tivated by surveillance applications, where each data stream
corresponds to a sensor, and the change point is caused by a
failure in one or multiple sensors. For example, [12] consider
one change point which occurs to one and only one of multiple
streams. [13] and [14] consider a setting where all the streams
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change at the same time. More generally, [15–22] consider
settings where a common change occurs to all or a subset
of streams. There are also settings under which data streams
are gradually affected after some propagation time. For these
settings, a change can appear at a predetermined stream [23]
or at any stream [24], but eventually all the streams will
change. A related problem, which has received much attention
recently and will be the focus of the current work, considers
a setting where each stream has its own change point [25–
28], where the stream-specific change points have independent
causes. Real-world applications of such a setting will be
discussed in the sequel. A decision maker needs to declare
whether a change has already occurred for each stream at each
time point. Once a stream is declared to have changed, it is
deactivated permanently so that its data is no longer collected.
This problem will be referred to as a parallel sequential change
detection problem.

The parallel sequential change detection problem is widely
encountered in the real world. For example, [25, 29] consider
an application to a multichannel dynamic spectrum access
problem for cognitive radios. Each cognitive radio channel
corresponds to a data stream, and the change corresponds to
the time at which the primary user of the channel starts to
transmit signals. A false discovery rate (FDR) is proposed
to measure the proportion of false discoveries (i.e., unused
channels) among the ones detected as occupied by primary
users. [26, 27] consider monitoring an item pool for stan-
dardized educational testing. In this application, each stream
corresponds to a test item that is reused in multiple test
administrations, and the change point corresponds to the time
at which the item is leaked to the public. A certain false non-
discovery rate (FNR) is proposed to measure the proportion
of leaked items among the non-detections (i.e., items that are
not detected as having leaked). There are many other potential
applications, such as the detection of credit card fraud [30],
for which each stream corresponds to a credit card account,
and the change point corresponds to a fraud event.

We note that it is often not a good idea to run a single-
stream change detection procedure independently on individ-
ual streams. This is because the decision maker may want
to control a certain compound risk that concerns all the
streams as a whole, such as the FDR and FNR measures.
Consequently, each decision at one time point requires all
the up-to-date information from all the streams, making the
parallel sequential change detection a challenge.

Several methods have been proposed in [25–27] to control
the above compound risk measures in parallel sequential
change detection problems. However, these methods, along
with their theoretical properties, are established under rel-
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atively restrictive model assumptions and for specific risk
measures. Specifically, [25] proposes a method based on
the Benjamini-Hochberg method [31] for FDR control and
establishes its asymptotic results. However, no results are given
on the method’s optimality. Under a Bayesian setting, [26] and
[27] propose methods for controlling a certain FNR measure at
all time points. As shown in [26], under a geometric change
point model and assuming the same pre- and post- change
distribution for all the streams, this method maximizes the
expected number of remaining streams at all time points while
controlling the FNR to be no greater than a pre-specified
tolerance level. However, it is unclear whether this optimality
theory can be extended to more general models and other
sensible risk measures.

The parallel sequential change detection problem is also
closely related to the sequential multiple testing problem. The
latter can be viewed as a special case when a stream can
only change at the beginning of the process or never change.
Several methods have been proposed for the sequential multi-
ple testing problem, controlling compound risks. Specifically,
[32], [33], and [34] consider controlling a familywise error
rate, an FDR/FNR, and a generalized familywise error rate,
respectively. While the risk measures may be relevant, their
methods and theoretical results can hardly be extended to the
current change detection problem.

Statistical methodology for sequential change detection can
generally be divided into Bayesian and non-Bayesian methods
[10, 11, 13, 35, 36]. Bayesian methods assume a prior distribu-
tion for the change point/points, based on which performance
metrics are defined, such as average detection delay and
probability of false alarm. On the other hand, non-Bayesian
methods do not assume any knowledge on the change point
distribution, and typically aims to find the best-performing
procedure in the worst-case scenario (through a minimax
formulation). For these methods, performance metrics are
introduced to measure their performance in the worst-case
scenario, such as supremum average detection delay, average
run length to the false alarm, and worst-case probabilities of
missed detection and false alarm; see e.g., [13, 16, 36, 37].

The current work studies parallel sequential change detec-
tion under a Bayesian setting. It provides a unified decision
theory framework under general classes of change point mod-
els and performance measures. A computationally efficient
sequential method is developed under the proposed framework.
Two optimality criteria are introduced, for which the proposed
method is shown to be optimal under suitable conditions.

Our contributions are summarized below:
• We propose a general class of performance metrics to

evaluate the sequence procedures. This class of metrics
not only includes existing metrics as special cases (e.g.,
FDR [25] and the local FNR metric [26]) but also
introduces new metrics that are closely related to the
metrics for single-stream change detection and multiple
hypothesis testing. See Section II-E and Section IV-C for
more examples.
Thanks to the generality of these performance metrics,
the proposed method can also be used to solve problems
considered in [33, 34, 38] for sequential multiple testing.

See Section IV-C for a discussion on the connections with
several recent works [32–34, 38, 39].

• We propose a sequential procedure (Algorithms 1–4) that
is easy-to-implement and is data-driven. It automatically
adapts to various model settings when controlling the
risk measures to a pre-specified tolerance level, without
requiring additional Monte Carlo simulation or bisection
search commonly used in sequential problems to deter-
mine decision boundaries (see, e.g., [40]).

• We provide two optimality criteria for the parallel se-
quential change detection problem, including the local
and uniform optimalities. The local optimality criterion
concerns the maximization of a utility measure in the next
step, and the uniform optimality criterion refers to the
maximization of the utility measure at all time. We show
that the proposed method is locally optimal under very
mild conditions and uniformly optimal under stronger
conditions (Theorems 1–3).
We note that the precise characterization of the conditions
for uniform optimality requires the analysis of stochastic
processes on a special non-Euclidean space. To this end,
we develop new analytical tools for comparing vectors
and stochastic processes with different dimensions due to
early stopping. This analytical tool may be useful in the
theoretical analysis of other sequential decision problems.

The remainder of the paper is organized as follows. In
Section II, we describe the change point models, the class
of parallel sequential change detection methods, a general
class of performance metrics, and the optimality criteria. We
also provide examples of generalized performance metrics. In
Section III, we propose a parallel change detection method
(Algorithms 1 and 2) and provide a simplified version of this
method under mild conditions on the performance measures
(Algorithms 3 and 4). Section IV provides theoretical results
for the proposed methods including their optimality properties
and the connection with recent works. In Sections V and VI,
we evaluate the performance of the proposed method through
simulation studies and a case study. Concluding remarks and
future directions are given in Section VII. For space reasons,
part of the proofs of the theoretical and numerical results are
postponed to the Appendix in the supplementary material.

II. PROBLEM SETUP

A. Notation

The following notations are used throughout the paper. For
two real numbers, a∨b = max(a, b) and a∧b = min(a, b). For
two sets A and B, A \ B = {x : x ∈ A, x /∈ B} denotes the
set minus operator. We abbreviate ‘almost surely’ as ‘a.s.’ For
a set S, |S| denotes its cardinality. Z and Z+ denote the set
of integers and positive integers, respectively. For a positive
integer n, ⟨n⟩ denotes the set {1, · · · , n}.

B. Model Assumptions

Consider the case where there are K ≥ 2 data streams, and
let ⟨K⟩ denote the set {1, · · · ,K}. At each time epoch t ∈
Z+, an observation Xk,t is obtained from the kth data stream,
for k ∈ ⟨K⟩. Each data stream k is associated with a change
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Fig. 1: A flowchart of a sequential decision in D

point τk ∈ {0} ∪ {∞} ∪ Z+ for k ∈ ⟨K⟩. Under a Bayesian
parallel change point model, the change points τ1, · · · , τK are
assumed to be independent and identically distributed (i.i.d.)
with

P(τk = s) = πs (1)

for s ∈ {0} ∪ {∞} ∪ Z+ and k ∈ ⟨K⟩. Given (τ1, · · · , τK),
{Xk,t}t∈Z+

are independent for k ∈ ⟨K⟩, and have conditional
probability density

Xk,t|τk, {Xk,s}1≤s≤t−1 ∼

{︄
pk,t if t ≤ τk

qk,t if t ≥ τk + 1
(2)

with respect to some baseline measure over a measurable space
(Ω,F). That is, Xk,t are independent given the change points,
and follow pre- and post- change density functions pk,t and
qk,t, respectively. In particular, τk = ∞ corresponds to the
case where the change point never occurs to the kth stream.
That is, Xk,t follows the pre-change density function pk,t for
all t ∈ Z+. Throughout the paper, all the probabilities and
expectations are taken under the model described above.

C. Parallel Sequential Change Detection Procedures

A decision maker sequentially observes data from the par-
allel data streams and determines whether change points have
already occurred to these data streams at each time. Once
a change point is declared, the corresponding data stream is
deactivated and its data are no longer collected. This decision
process is characterized by an index set process St ⊂ ⟨K⟩
for t ∈ Z+, where k ∈ St if and only if the decision
maker has not declared a change in the kth stream at time
t yet (i.e., stream k is active at time t). Specifically, the
available information at time t is contained in the historical
data Ht = {{Xk,s}k∈Ss,1≤s≤t, {Ss}1≤s≤t} and, equivalently,
the induced information σ-field Ft = σ(Ht). At each time
t, the decision maker selects the index set St+1 ⊂ St based
on the current information Ft. That is, St+1 is measurable
with respect to Ft. Denote by D the set of all such compound
sequential decisions. A graphical illustration of the decision
process is given in Figure 1.

We make a few remarks on the information filtration and the
decision process. First, we require S1 = ⟨K⟩, meaning that all
the streams are initially active and data from all the streams
are collected at time 1. Second, {Ss}1≤s≤t is measurable
with respect to Ft, meaning that the decision history is
tracked in the current information. Third, {Xk,s}k∈Ss,1≤s≤t is
measurable with respect to Ft, indicating that Xk,s is observed
if and only if stream k is active at time s and s ≤ t (i.e.,
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St
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Fig. 2: An example of a parallel sequential change detection
procedure where K = 3, stream 2 is deactivated at time t = 2,
stream 3 is deactivated at time t = 3, and no more stream is
deactivated before t = 6. As a result, S1 = S2 = {1, 2, 3},
S3 = S4 = {1, 2}, S5 = S6 = {1}. Correspondingly, T1 = 2,
T2 = 4, and T3 > 6.

k ∈ Ss). Fourth, St+1 is required to be measurable with
respect to Ft, meaning that the decision maker selects the
active streams for time t + 1 based on all the information
available at time t. Lastly, St+1 is required to be a subset of
St for all t ∈ Z+, meaning that the deactivation of streams
is permanent. That is, no future data will be collected at a
stream, once a change is declared at that stream.

Remark 1. Although described in a different way, the class
of sequential decisions defined above is equivalent to that
in [25]. In [25], a parallel sequential procedure is defined
through a sequence of stopping times {Tq}q≥1 along with a
sequence of index sets {Dq}q≥1. At each stopping time Tq , a
decision maker declares change points for streams in Dq and
exclude those streams from the future decision process. Then,
the sequences {Tq}q≥1 and {Dq}q≥1 can be represented using
the sequence {St}t≥1 as Tq = min{t > Tq−1 : St\St+1 ̸= ∅}
and Dq = STq

\ STq+1 where T0 = 0, q = 1. An example
where K = 3 is given in Figure 2 for a graphical illustration.

Another way to understand a compound sequential change
detection procedure is to view it as a sequence of mappings
δ = (d1, d2, · · · , dt, · · · ), where each dt determines St+1

according to the historical information Ht. That is, dt is a
measurable function with respect to Ft and St+1 = dt(Ht)
satisfying that dt(Ht) ⊂ St for all t ∈ Z+.

D. Generalized Performance Measures and Optimality Crite-
ria

Ideally, a perfect sequential change detection procedure
collects all the pre-change streams in the set St at each time
point (i.e., St = {k : τk ≥ t}). However, this is not achievable
by any sequential decision because τks are unobserved. To
this end, we consider a general class of performance measures
to compare the performance of different sequential decisions.
We assume each sequential decision is associated with a risk
process, denoted by {Rt}t∈Z+

, and a utility process, denoted
by {Ut}t∈Z+ . The risk process is used to quantify the loss of
a sequential decision at time t due to the false detections of
pre-change streams and/or the non-detection of post-change
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streams, while the utility process is used to reward the correct
decisions. Our goal is to find a good sequential decision that
has a relatively small Rt and a relatively large Ut at every time
point. Below, we first give formal statements of the optimality
criteria, and then introduce several examples of Rt and Ut in
Section II-E, followed by additional discussions.

Let
Wk,t = P(τk < t | Ft) (3)

be the posterior probability that the change point τk has
already occurred at time t for the k-th stream given the
information up to time t. Under the Bayesian setting, Wk,t

is also the best estimator (under the squared error loss) of
1(τk < t), where 1(·) denotes the indicator function. A simple
iterative updating rule is derived to calculate Wk,t at each time,
which will be discussed in Section III.

Throughout the paper, we consider risk and utility processes
that are functions of ({Wk,t}k∈St , St, St+1). That is, there are
pre-specified functions {rt}t∈Z+

and {ut}t∈Z+
such that

Rt = rt({Wk,t}k∈St
, St, St+1), (4)

and
Ut = ut({Wk,t}k∈St

, St, St+1). (5)

From (4) and (5), Rt and Ut can be any processes that
are measurable with respect to {Wk,t}, St and St+1. On the
other hand, only some choices of Rt and Ut lead to practically
meaningful performance measures. A partial list of practically
meaningful choices of rt and ut are given in Section II-E

Let α ∈ R denote a pre-specified tolerance level, and let

Dα = {δ ∈ D : Rt(δ) ≤ α a.s., for all t = 1, 2, · · · } ,

where Rt(δ) denotes the risk process associated with the
sequential decision δ, and D denotes the entire set of parallel
sequential detection procedures described in Section II-C. The
set Dα collects all sequential decisions that control the risk
process to be no greater than the tolerance level α at all time
points.

We note that risk process {Rt}t∈Z+
is an adaptive stochastic

process with respect to the information filtration {Ft}t∈Z+
. It

is easy to verify that E[Rt(δ)] ≤ α for δ ∈ Dα. That is,
the expected risk is also controlled below or equal to the
same tolerance level. In addition, any weighted average of
Rt(δ) across different time points are also controlled. We
provide additional discussion and theoretical results regarding
this point in Section IV-C.

The following regularity assumptions over the risk and
utility functions are imposed throughout the paper.

Assumption 1. For any {Wk,t}k∈St
and St,

minS∈{∅,St} rt({Wk,t}k∈St , St, S) ≤ α. In addition, the
utility function ut is bounded at each time t.

The assumption on rt guarantees that the class of sequential
decisions controlling the risk process at a pre-specified level
is non-empty, i.e., Dα ̸= ∅. The boundedness assumption on
ut is a mild condition to ensure the integrability of the utility
process.

Given a pre-specified tolerance level α and sequences of
functions {rt}t∈Z+

and {ut}t∈Z+
, we define two optimality

criteria for sequential decisions in Dα.

Definition 1 (Uniform Optimality). A sequential decision δ∗ ∈
Dα is called uniformly optimal if

E (Ut (δ
∗)) = sup

δ∈Dα

E (Ut(δ)) ,

for all t ∈ Z+, where Ut(δ
∗) and Ut(δ) denote the utility

process associated with sequential decisions δ∗ and δ, respec-
tively.

Definition 2 (Local Optimality). A sequential decision δ∗ =
(d∗1, d

∗
2, · · · , d∗t , · · · ) ∈ Dα is called locally optimal at time t,

if
E(Ut(δ

∗)) ≥ E(Ut(δ))

for any δ = (d1, d2, · · · , dt, · · · ) ∈ Dα satisfying ds = d∗s , for
s = 1, . . . , t− 1.

We make a few remarks on the above optimality criteria.
First, in most applications, there is a trade-off between mini-
mizing the risk and maximizing the utility. That is, a sequential
decision that has relatively small risk tends to have relatively
small utility at the same time. Thus, we define both uniform
and local optimality through constrained optimization prob-
lems, where the overall goal is to find a sequential decision so
that its corresponding risk process is controlled to be no greater
than the tolerance level while the expected utility is no less
than any other sequential decisions that control the risk process
at the same level. Second, a uniformly optimal sequential
decision has the largest expected utility among all decisions in
Dα at every time point. In contrast, a locally optimal sequential
decision only has the largest expected utility at a given time
point t given the decisions at previous time points. Thus,
uniform optimality is a stronger notion than local optimality.
A sequential decision that is locally optimal at every time
point does not necessarily imply that it is also uniformly
optimal. See [26, Example 3] for a counterexample where a
locally optimal decision exists for Rt = LFNRt in (12) and
Ut = |St+1| but there is no uniformly optimal decision. In later
sections, we show that locally optimal sequential decisions
exist under very weak assumptions on the risk and utility mea-
sures, while uniformly optimal sequential decisions only exist
under stronger assumptions of the change point model and the
performance measures. Third, we assume the same tolerance
level α for every time t for ease of presentation. Our methods
and theory can be easily extended to the class of sequential
decisions whose risk is controlled at different levels at different
time points. That is, {δ ∈ D : Rt(δ) ≤ αt a.s., for all t} for
a sequence of constants αt. We can see this by redefining the
risk process as Rt − αt and replacing αt by 0.

E. Examples of Generalized Performance Measures

We start with several examples of performance measures
in the forms of (4) and (5), which are motivated by common
risk measures in the literature of multiple hypotheses testing
[31, 41–43].
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For the consistency of notation, the sum over an empty set
is defined to be 0 (i.e.,

∑︁
i∈∅ ai = 0), and the product over an

empty set is defined to be 1 (i.e.,
∏︁

i∈∅ ai = 1).

Example 1 (Local family-wise error rate (LFWER)). Consider
the event

E1,t = {There exists k ∈ ⟨K⟩ such that τk < t, k ∈ St+1},
(6)

which happens when at least one false non-detection occurs
at time t. Because E1,t is not directly observed, we consider
the its posterior probability given the information up to time
t,

LFWERt := P(E1,t|Ft) = 1−
∏︂

k∈St+1

(1−Wk,t). (7)

Example 2 (Generalized local family-wise error rate
(GLFWER)). Given m ≥ 1, we consider the event

Em,t = {|{k ∈ ⟨K⟩ such that τk < t, k ∈ St+1}| ≥ m}.
(8)

This event happens when false non-detections occur in at least
m data streams. Its posterior probability given information up
to time t is

GLFWERm,t := P(Em,t|Ft) (9)

=1−
m−1∑︂
j=0

∑︂
I⊂St+1

|I|=j

(︄∏︂
i∈I

Wi,t

)︄ ∏︂
k∈St+1\I

(1−Wk,t). (10)

In addition, GLFWERm,t = 0 if St+1 = ∅.

Comparing (7) with (9), we can see that GLFWER extends
LFWER by allowing for more false non-detections. Under a
large-scale setting with many data streams, it may be more
sensible to use GLFWER with its m value chosen based on
the total number of streams K to achieve a balance between
false detections and false non-detections. Similar risk measures
have been proposed for sequential multiple testing [34].

Example 3 (Local false non-discovery rate (LFNR)). Local
false non-discovery rate (LFNR) is defined in [26], which
extends the concept of LFNR in multiple testing to parallel
sequential change detection. It is defined as follows. First, the
false non-discovery proportion (FNP) is defined as

FNPt :=

∑︁
k∈St+1

1 (τk < t)

|St+1| ∨ 1
. (11)

FNP describes the proportion of post-change streams among
the active ones. Then, the local false non-discovery rate
(LFNR) at time t is defined as the Bayes estimator (i.e.,
posterior mean) of FNPt given information up to time t. That
is,

LFNRt := E(FNPt | Ft) =

∑︁
k∈St+1

Wk,t

|St+1| ∨ 1
. (12)

Compared with LFWER and GLFWER, LFNR depends on
Wk,t in a linear rather than multivariate polynomial form. In
addition, LFNR is scalable under a large-scale setting in the
sense that the same tolerance level α ∈ (0, 1) can be used as
K grows large.

Example 4 (Local False Discovery Rate (LFDR)). False
discovery proportion (FDP) and local false discovery rate
(LFDR) are defined by replacing τk < t and St+1 with τk ≥ t
and St \ St+1 respectively in (11) and (12). That is,

FDPt :=

∑︁
k∈St\St+1

1 (τk ≥ t)

|St \ St+1| ∨ 1
, (13)

and

LFDRt := E(FDPt | Ft) =

∑︁
k∈St\St+1

(1−Wk,t)

|St \ St+1| ∨ 1
. (14)

Similar to LFNR, LFDR also has the appealing feature of
scalability for large K. The difference between LFNR and
LFDR lies in whether focusing on false detections or false
non-detections.

In [25], an aggregated version of false discovery rate
(AFDR)1 is considered, which can be viewed as the expec-
tation of a weighted average of LFDR at different time points.
More discussions on the connection between LFDR and AFDR
will be provided in Section IV.

Next, we provide two examples of performance measures
motivated by single-stream sequential change detection. De-
note by Nk the detection time of the kth stream,

Nk = sup {t : k ∈ St} . (15)

Note that Nk plays a similar role as the stopping time in the
standard single-stream sequential change detection problem.
Indeed, Nk is a stopping time with respect to {Ft}t∈Z+

for
all k ∈ ⟨K⟩.

Example 5 (Incremental Average Run Length (IARL)). We
define the incremental run length (IRL) aggregated over dif-
ferent streams as

IRLt : =

K∑︂
k=1

{τk ∧Nk ∧ (t+ 1)} −
K∑︂

k=1

{τk ∧Nk ∧ t}

=

K∑︂
k∈St+1

1(τk > t)

(16)

IRL indicates the total number of pre-change streams being
used at a given time. We refer to its posterior mean as the
incremental average run length (IARL), defined as

IARLt := E(IRLt | Ft) =
∑︂

k∈St+1

{1− g(Wk,t)}, (17)

where

g(Wk,t) = P(τk ≤ t|Ft) = π̄−1
t πt +

(︁
1− π̄−1

t πt

)︁
Wk,t, (18)

π̄s = P
(︁
τk ≥ s

)︁
= π∞+

∑︁∞
l=s πl, and the proof for equation

(18) is given in Appendix D.

IRL and IARL are closely related to the average run length
to false alarm (ARL2FA) that is commonly used to measure
the propensity for making a false detection in a single-stream

1In [25], this risk measure is referred to as ‘false discovery rate (FDR)’.
Here, we name it as AFDR to distinguish it from LFDR.
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sequential change detection problem. Specifically, taking sum-
mation of IRLt over t, we obtain

t−1∑︂
s=0

IRLs =

K∑︂
k=1

(︁
τk ∧Nk ∧ t

)︁
, (19)

which is the total run length from different data streams up to
the change point by time t. Moreover, we have

E(
t−1∑︂
s=0

IARLs) = E(
t−1∑︂
s=0

IRLs) =

K∑︂
k=1

E
(︁
τk ∧Nk ∧ t

)︁
. (20)

Thus, the sum of the expected value of IARL across time leads
to the total averaged run length up to the change point.

Example 6 (Incremental Average Detection Delay (IADD)).
We define the incremental detection delay (IDD) aggregated
over all the streams as

IDDt : =

K∑︂
k=1

{(Nk ∧ (t+ 1)− τk − 1)+ − (Nk ∧ t− τk − 1)+}

=
∑︂

k∈St+1

1(τk < t).

(21)

IDD counts the total number of post-change streams that are
active at a given time. We refer to its posterior mean as the
incremental average detection delay (IADD), defined as

IADDt := E(IDDt | Ft) =
∑︂

k∈St+1

Wk,t. (22)

By taking summation over t, we have

t−1∑︂
s=0

IDDs =

K∑︂
k=1

(Nk ∧ t− τk − 1)+ (23)

and

E
(︁ t−1∑︂
s=0

IADDs

)︁
= E

(︁ K∑︂
k=1

(Nk ∧ t− τk − 1)+
)︁
. (24)

Remark 2. IDD and IADD are closely related to the concept
of average detection delay (ADD), which is commonly used
to measure false non-detection (i.e., the change point has
occurred but the sequential decision fails to detect it) in single
stream sequential change detection [44]. We clarify that IDD
and IADD are random, and ADD for a single data stream is
a non-random number.

Next, we give a precise characterization of the relationship
between IDD, IADD, and ADD for parallel change detection.
In [44], for a sequential detection rule with a stopping time
N and a change point τ following some prior distribution, its
ADD is defined as

ADD(N, τ) = E
(︁
N − τ |N > τ

)︁
.

It can be shown that IDD, IADD, and ADD have the following
relationship

E
(︁ ∞∑︂
s=0

IADDs

)︁
=

K∑︂
k=1

{ADD(Nk, τk)− 1}P(Nk > τk) (25)

given that N1, · · · , NK < ∞ almost surely. In other words,
if we aggregate the expected value of IADDt over all the
time t, then it is the same as a weighted sum of ADD − 1
across different data streams, where the weight is determined
by the probability of the stopping time to be greater than the
corresponding change point. The proof of (25) is given in
Appendix D.

Remark 3. Note that if St+1 = ∅, then LFWERt in Ex-
ample 1, GLFWERt in Example 2, LFNRt in Example 3,
IARLt in Example 5 and IADDt in Example 6 become zero,
regardless of the value of St and {Wk,t}k∈St . Similarly, if
we take St+1 = St, then LFDRt in Example 4 becomes
zero, regardless of the value of St and {Wk,t}k∈St

. Thus,
minS∈{∅,St} rt({Wk,t}k∈St

, St, S) = 0 and Assumption 1 is
satisfied for all α ≥ 0. Thus, all of the risk measures discussed
in this section satisfy Assumption 1 for α ≥ 0.

Among the above examples, LFWER, GLFWER, and
LFNR are error rates for false non-detections, LFDR
is an error rate for false detections, IARL estimates
the number of pre-change streams that are active, and
IADD estimates the number of post-change and ac-
tive streams. Because a small value of LFWER (or
GLFWER/LFNR/IADD) and a large value of IARL (or mi-
nus LFDR) is desired, we could choose the risk process
Rt ∈ {LFWERt,GLFWERt,LFNRt, IADDt} and the utility
process Ut ∈ {IARLt,−LFDRt}, or Rt ∈ {LFDRt,−IARLt}
and Ut ∈ {−LFWERt,−GLFWERt,−LFNRt,−IADDt}.
Note that in the above examples, there is a trade-off between
Rt and Ut. That is, if one declares detection at more data
streams, then the corresponding LFWER, GLFWER, LFNR,
and IADD tend to be smaller and IARL and minus LFDR
tend to be smaller as well. Thus, the optimality criteria (Defi-
nitions 1 and 2) formulated through constrained optimization
are reasonable.

The choices of Rt and Ut should be application-driven.
In practice, we suggest to choose the risk process Rt with
a known range so that the tolerance level is easy to specify.
For example, LFWER, GLFWER, LFNR, and LFDR represent
certain probability/expected proportions that are known to
be between [0, 1]. Thus, they are sensible choices of Rt,
for which setting the tolerance level α ∈ [0, 1] is relatively
straightforward.

III. PROPOSED SEQUENTIAL DECISION PROCEDURES

In this section, we first provide a formula for computing
the posterior probability Wk,t = P(τk < t|Ft), which is a key
quantity in computing the risk and utility measures. Then, we
present our proposed sequential decisions for controlling the
risk process at a given level, followed by a simplified version
of the algorithm to reduce the computational complexity.

A. Recursive Formula for Wk,t

Recall πs = P(τk = s) and π̄s = P
(︁
τk ≥ s

)︁
. Let

Qk,t = π̄−1
t

t−1∑︂
s=0

πs

t∏︂
r=s+1

qk,r (Xk,r)

pk,r (Xk,r)
with Qk,0 = 0. (26)
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Given Qk,t and Xk,t+1, Qk,t+1 can be computed using the
recursive formula

Qk,t+1 = π̄−1
t+1

(︁
π̄tQk,t + πt

)︁
Lk,t+1, (27)

where we define Lk,t+1 = qk,t+1 (Xk,t+1) /pk,t+1(Xk,t+1).
Then, we obtain

Wk,0 = 0 and Wk,t =
Qk,t

Qk,t + 1
. (28)

We note that Qkt calculates the odds of stream k having
changed given the up-to-date information Ft. It is introduced
to obtain a recursive formula for calculating Wkt. The above
recursive equations (27) and (28) are extensions of classic
results in single-stream Bayesian sequential change detection
problems [45]. Their rigorous justifications are given in Ap-
pendix D.

Remark 4. In many applications, the prior distribution and
pre- and post-change distributions may be unknown. To apply
the proposed method, one may combine it with a plug-
in estimator for these unknown distributions. In particular,
assuming that the prior distribution and the pre- and post-
distributions follow a parametric model (i.e., the distributions
only depend on a finite number of parameters), we could
take an empirical Bayes approach to estimate the unknown
parameters and use an Expectation-maximization (EM) algo-
rithm [46] for its computation. Then, we apply the proposed
method by replacing πt, π̄t, qk,t, pk,t in (26) – (28) with their
estimates. According to a simulation study in Appendix A, this
approach seems to perform well in controlling a compound
risk. The theoretical properties of this approach are left for
future investigation.

B. Proposed Sequential Decision for Unstructured Risk and
Utility

We first propose a one-step selection rule to select St+1,
given St and {Wk,t}k∈St

so that the risk Rt is controlled to
be no greater than α. This one-step selection rule goes over
all 2|St| possible subsets of St, and then select the one which
attains the highest utility Ut. Algorithm 1 implements this idea.
According to Assumption 1, {S : γS ≤ α and S ⊂ St} ̸= ∅.

Algorithm 1 One-step selection rule at time t.

1: Input: Tolerance level α, the current index set St,
and posterior probabilities {Wk,t}k∈St

, where Wk,t =
P (τk < t | Ft) is computed according to (28).

2: For all S ⊂ St, compute γS = rt({Wk,t}k∈St
, St, S) and

µS = ut({Wk,t}k∈StSt, S).
3: Output:

St+1 = argmaxS µS subject to γS ≤ α and S ⊂ St.
1

Thus, St+1 in line 3 of the above algorithm is well-defined.
The next proposition states that the above one-step selection
rule can control the risk process at any given level.

Proposition 1. Under Assumption 1, the index set St+1

selected by Algorithm 1 satisfies Rt ≤ α a.s.
1If the solution is not unique, St+1 can be any one of the solutions.

Proof. According to the second and third lines of Algorithm
1, St+1 output by Algorithm 1 belongs to the set {S : γS ≤
α and S ⊂ St}. Thus, Rt = rt({Wk,t}k∈St , St, St+1) =
γSt+1

≤ α.

Note that Proposition 1 does not require any assumptions
on Rt and Ut except for Assumption 1, which ensures the
existence of the set St+1 in the last line of Algorithm 1.

Next, we combine Algorithm 1 at different time points to
obtain a sequential decision in Dα. At each time t, this sequen-
tial decision selects St+1 using Algorithm 1 and deactivates
data streams that are not in the index set. Algorithm 2 below
implements this idea.

Algorithm 2 Proposed sequential decision δP.

1: Input: Tolerance level α.
2: Initialize: set t = 1, St = ⟨K⟩ and compute Wk,t for

k ∈ St using equations (27) and (28).
3: Select: input α, St and (Wk,t)k∈St

to Algorithm 1, and
obtain St+1.

4: Update: deactivate streams in St \ St+1. If St+1 = ∅,
stop; otherwise, update {Wk,t+1}k∈St+1 using equations
(27) and (28).

5: Iterate: set t = t+ 1 and return to line 2.
6: Output: {St}t≥1.

Proposition 2. Under Assumption 1, δP ∈ Dα. That is, the
proposed sequential decision given by Algorithm 2 controls
the risk process at level α at every time point.

Proof. For each t, St+1 is obtained through Algorithm 1.
Thus, Rt(δP) ≤ α a.s. for all t ∈ Z+, according to Proposition
1. This implies δP ∈ Dα.

C. Simplified Sequential Decision for ‘Monotone’ Risk

At each time t, directly applying Algorithm 1 requires eval-
uating and comparing the risk and utility associated with 2|St|

subsets, which is computationally intensive when |St| is large.
In many cases where the risk and utility satisfy additional
monotonicity assumptions, this algorithm can be simplified,
reducing the computational complexity significantly. In this
section, we provide one such assumption, under which the
proposed sequential decision only requires evaluating and
comparing the risks associated with |St|+ 1 subsets.

Assumption 2. For all non-empty S0 ⊂ ⟨K⟩, w =
(w1, · · · , w|S0|) ∈ [0, 1]|S0|, S ⊂ S0, i ∈ S, j ∈ S0 \ S, and
wi ≥ wj , we have rt(w, S0, S) ≥ rt(w, S0, (S \ {i}) ∪ {j})
and ut(w, S0, S) ≤ ut(w, S0, (S \ {i}) ∪ {j}).

Under Assumption 2, Rt tends to become larger and Ut

tends to become smaller if we keep streams with relatively
smaller posterior probability active. Under this assumption,
Algorithm 1 can be simplified to the following Algorithm 3,
and it also controls Rt to be below a pre-specified level α.
As will be discussed in Corollary 1, all the risk and utility
measures presented in Examples 1 – 6 satisfy this assumption.

The following Algorithm 3 selects St+1 so that streams with
relatively large posterior probabilities are detected and those
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with relatively small posterior probabilities are kept active. The
cut-off point for the detection is decided by maximizing the
utility while controlling the risk at time t. Because Algorithm
3 restricts St+1 to be a subset of streams with relatively
small posterior probability, it only involves evaluating and
comparing the risk and utility functions associated with |St|+1
subsets, and, thus, reduces the computational complexity from
the order O(2|St|) to the order O(|St| log(|St|)).

Algorithm 3 Simplified one-step selection rule.

1: Input: Tolerance level α, the current index set St, and
posterior probabilities {Wk,t}k∈St

.
2: Arrange posterior probabilities in an ascending order2, i.e.

Wk1,t ≤ Wk2,t ≤ · · · ≤ Wk|St|,t
.

3: For n = 1, . . . , |St| , compute

γn = rt({Wk,t}k∈St
, St, {ki}ni=1)

and
µn = ut({Wk,t}k∈St

, St, {ki}ni=1).

For n = 0, compute γ0 = rt({Wk,t}k∈St
, St,∅) and

µ0 = ut({Wk,t}k∈St
, St,∅).

4: Set n∗ ∈ {0, · · · , |St|} as the solution to the problem3

n∗ = argmax
n

µn subject to γn ≤ α.

5: Output: St+1 = {k1, . . . , kn∗} if n∗ ≥ 1 and St+1 = ∅
if n∗ = 0.

Note that under Assumption 1, {n : γn ≤ α} ≠ ∅. Thus,
the fourth line of the above Algorithm 3 is well-defined. The
following Algorithm 4 gives an overall sequential decision rule
δS by adopting Algorithm 3 at every time point.

Algorithm 4 Simplified decision procedure δS.

1: Input: Tolerance level α.
2: Initialize: set t = 1. St = ⟨K⟩ and compute Wk,t for

k ∈ St using equations (27) and (28).
3: Select: input α, St and (Wk,t)k∈St

to Algorithm 3, and
obtain St+1.

4: Update: deactivate streams in St \ St+1. If St+1 = ∅,
stop; otherwise, update {Wk,t+1}k∈St+1

using equations
(27) and (28).

5: Iterate: set t = t+ 1 and return to Step 3.
6: Output: {St}t≥1.

Proposition 3. Under Assumptions 1, the sequential decision
δS given by Algorithm 4 satisfies δS ∈ Dα.

Proof. Under Assumption 1, Rt = rt({Wk,t}k∈St , St, St+1),
where St+1 is obtained by Algorithm 3. According to the
third and fourth lines of Algorithm 3, it satisfies Rt =
rt({Wk,t}k∈St

, St, St+1) ≤ α. Thus, δS ∈ Dα.
2If Wki,t = Wkj ,t for 1 ≤ i < j ≤ n, we choose ki < kj to avoid

additional randomness because of ties.
3If the solution is not unique, we choose n∗ to be the largest solution.

IV. THEORETICAL PROPERTIES OF PROPOSED METHODS

In this section, we first show that the proposed sequential
decision δP is locally optimal under very weak assumptions
in Section IV-A. Then, we show that the simplified sequential
decision δS is uniformly optimal under stronger model assump-
tions and additional monotonicity assumptions on risk and
utility measures in Section IV-B. We also provide theoretical
results on aggregated risk and utility measures of the proposed
methods in Section IV-C.

A. Local Optimality Results

The following two theorems show that the proposed sequen-
tial decision δP is locally optimal under Assumption 1 while
δS is locally optimal under Assumptions 1 and 2. That is, they
satisfy Definition 2.

Theorem 1. Under Assumption 1, the sequential decision δP

described in Algorithm 2 is locally optimal.

Proof. First, we know that δP = (d∗1, d
∗
2, · · · , d∗t , · · · ) ∈ Dα

according to Proposition 2. We compare it with an arbitrary
sequential decision δ = (d1, d2, · · · , dt, · · · ) ∈ Dα satisfying
ds = d∗s , for s = 1, · · · , t− 1. Let {S∗

t }t∈Z+
be the index set

of active streams following δP at all time points, and St+1 be
the set selected by δ at time t + 1. Note that both δP and δ
select S∗

1 , · · · , S∗
t as the index sets at time 1, · · · , t, according

to the assumption that ds = d∗s for s = 1, · · · , t− 1.
According to the second and third line of

Algorithm 1, S∗
t+1 satisfies ut({Wk,t}k∈S∗

t
, S∗

t , S
∗
t+1) =

maxS⊂S∗
t
ut({Wk,t}k∈S∗

t
, S∗

t , S) subject to γS ≤ α. Because
δ ∈ Dα, and the index set selected by δ and δP at time t are
both S∗

t , we have Rt(δ) = γSt+1 ≤ α a.s. This further implies
ut({Wk,t}k∈S∗

t
, S∗

t , S
∗
t+1) ≥ ut({Wk,t}k∈S∗

t
, S∗

t , St+1).
That is, Ut(δP) ≥ Ut(δ). The proof is completed by taking
expectation on both sides.

Theorem 2. Under Assumptions 1 and 2, the sequential
decision δS described in Algorithm 4 is locally optimal.

Proof. The proof is given in Appendix B.

The next corollary applies the above results to examples
given in Section II-E.

Corollary 1. If α > 0 and Rt ∈
{LFWERt,GLFWERt,LFNRt, IADDt}, Ut ∈
{IARLt,−LFDRt}, or Rt = LFDRt and Ut ∈
{−LFWERt,−GLFWERt,−LFNRt,−IADDt}, then the
simplified sequential decision δS is locally optimal.

If α < 0 and Rt = −IARLt and Ut ∈
{−LFWERt,−GLFWERt,−LFNRt,−IADDt}, then the sim-
plified sequential decision δS is locally optimal.

Proof. The proof is given in Appendix B.

B. Uniform Optimality Results

In this section, we show that the proposed sequential de-
cision rule δS defined in Algorithm 4 is uniformly optimal
under stronger assumptions. We note that the uniform opti-
mality results developed in the current work are non-trivial
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extensions of those in [26]. In particular, we consider a general
class of risk and utility measures while [26] only allows
the risk measure to be LFNR. Moreover, time-heterogeneous
pre/post- change distributions and non-geometric priors for
the change points are allowed in the current work. These
extensions require a delicate analysis of a special class of
monotone functions and stochastic processes defined over a
non-Euclidean space.

The assumptions for establishing the uniform optimality
results include monotonicity assumptions on the risk and
utility processes and assumptions on the pre- and post- change
distributions. We point out that the monotonicity assumptions
are made on functions over a special non-Euclidean space

So =

K⋃︂
k=1

{(v1, · · · , vk) : 0 ≤ v1 ≤ · · · vk ≤ 1} ∪ {∅}, (29)

which contains ordered vectors of different dimensions. Thus,
the definition of monotonicity is non-standard.

Specifically, for functions maps So to R, we define two
types of monotonicity.

Definition 3 (Entrywise increasing functions). A function f :
So → R is “entrywise increasing”, if f(u) ≤ f(v) for all m ∈
⟨K⟩, u = (u1, · · · , um),v = (v1, · · · , vm) ∈ So, satisfying
uj ≤ vj for 1 ≤ j ≤ m. In addition, a function f is “entrywise
decreasing” if −f is “entrywise increasing”.

Definition 4 (Appending increasing functions). A function f :
So → R is “appending increasing”, if for all m ∈ ⟨K⟩, u =
(u1, · · · , um) ∈ So, f(u1, · · · , uk) ≤ f(u), for all k ≤ m. In
addition, f(∅) ≤ f(u1) for u1 ∈ [0, 1].

For each vector v = (v1, · · · , vm), denote its order statistic
by [v] = (v(1), · · · , v(m)). That is, [v] is a permutation of v
satisfying v(1) ≤ · · · ≤ v(m). We can see that if vk ∈ [0, 1]
for all k ∈ ⟨K⟩, then [v] ∈ So.

Assumption 3. There exists a measurable function ˜︁rt : So →
R such that rt({Wk,t}k∈St , St, St+1) = ˜︁rt(︁[{Wk,t}k∈St+1 ]

)︁
.

In addition, ˜︁rt is entrywise increasing and appending increas-
ing.

Assumption 4. There exists a measurable function ˜︁ut : So →
R such that ut({Wk,t}k∈St , St, St+1) = ˜︁ut

(︁
[{Wk,t}k∈St+1 ]

)︁
.

In addition, ˜︁ut is entrywise decreasing and appending increas-
ing.

Assumption 5. The pre- and post-change distributions
{pk,t}t≥1 and {qk,t}t≥1 are the same for different k ∈ ⟨K⟩.
That is, p1,t = . . . = pK,t and q1,t = . . . = qK,t for all t.

Theorem 3. Under Assumptions 1, 3, 4 and 5, the sequential
decision δS described in Algorithm 4 is uniformly optimal.

Proof. The proof is involved that requires monotone coupling
for stochastic processes living on the space So. It is given in
Appendix C.

We make several remarks on the above theorem. First, under
Assumptions 3 and 4, risk and utility measures are symmetric
functions (Wk,t)k∈St+1 . These assumptions rule out the cases
(e.g., LFDR defined in Example 4) where the risk also depends

on Wk,t for k /∈ St+1, without which the uniform optimal
solution may not exist (see Counterexample 1 below). Second,
under the monotonicity assumptions that ˜︁rts are entrywise
increasing, the risk process tends to be larger if the posterior
probability of the change points associated with the selected
streams is larger. It is also appending increasing, meaning that
the risk tends to be larger if more streams are kept active.
Similarly, the utility process tends to be larger if fewer streams
are kept active and the posterior probabilities associated with
the selected streams are smaller. Third, we require the pre-
and post- stream distributions pk,t and qk,t to be identical
for different streams. In this case, the process {Wk,t}t∈Z+

has identical distribution for different k and contributed in a
symmetric way to the risk and utility processes.

For most of applications, it is easy to check Assumptions 1
and 5. In some cases, additional efforts are needed to verify
monotonicity assumptions described in Assumptions 3 and 4.
Below we provide sufficient conditions for the monotonicity
conditions. Note that the risk and utility measures described
in Examples 1, 2, 3, 5, and 6 are all symmetric multivariate
polynomials of the posterior probabilities. Thus, we restrict
the analysis to the polynomial case in the next proposition.

Proposition 4 (Polynomial case). Let ˜︁r : So → R be a
function in the following form

˜︁r(u) = ∞∑︂
p=0

1(dim(u) = p)

p∑︂
k=1

Cp,k

∑︂
i1<i2<···<ik

k∏︂
j=1

uij .

(30)
Note that ˜︁r(∅) = 0. If ˜︁r(·) satisfies

˜︁r(ui,p−i) ≤ ˜︁r(ui−1,p−i+1), for all i ∈ ⟨p⟩ and p ≥ 1,
(31)

where ⟨p⟩ = {1, · · · , p} and ui,p−i denotes the p dimensional
vector whose first i elements are 0 and last p− i elements are
all 1, then ˜︁r is entrywise increasing.

Moreover, if ˜︁r satisfies (31) and

˜︁r(ui,p−i) ≤ ˜︁r(ui+1,p−i), for all i ∈ {0, · · · , p} and p ≥ 0,
(32)

then ˜︁r is also appending increasing.

Proof. The proof is given in Appendix C.

Remark 5. The inequalities (31) and (32) are equivalent to

p−i∑︂
k=1

Cp,k

(︃
p− i− 1

k − 1

)︃
≥ 0, for i = 0, · · · , p− 1, (33)

p−i∑︂
k=1

(Cp+1,k − Cp,k)

(︃
p− i

k

)︃
≥ 0, for i = 0, · · · , p, (34)

and all p ≥ 0. We leave the rigorous justification for the above
statements in Appendix C.

Proof. The proof is given in Appendix C.

Now we apply the uniform optimality result in Theorem 3
to performance measures described in Examples 1, 2, 3 and
5.
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Corollary 2. If α > 0, Rt ∈
{LFNRt,LFWERt,GLFWERt, IADDt}, and Ut = IARLt, then
under Assumption 5, δS is uniformly optimal.

Proof. The proof is given in Appendix C.

We point out that LFDRt described in Example 4 does not
satisfy the assumptions made in Theorem 3. Thus, we do not
have uniform optimality results for it. Indeed, if Rt = LFDRt,
then the uniformly optimal sequential decision may not exist.
A counterexample is given below.

Counterexample 1. Let K = 3, pk,t(x) = (0.01)x(0.99)1−x,
qk,t(x) = (0.99)x(0.01)1−x, and P(τk = l) = 1/3 for k =
1, 2, 3, x = 0, 1, l = 0, 1, 2, and t ≥ 1. That is, the pre-
and post- change distributions are Bernoulli distributions with
parameters 0.01 and 0.99, respectively, and τks are uniformly
distributed over {0, 1, 2}. We further assume that the tolerance
level α = 0.51, the risk process Rt = LFDRt (see Example
4) and the utility process Ut = −IADDt (see Example 6).

In this setting, there does not exist a sequential decision
achieving the maximum of the expected utility at both times
1 and 2. This implies that there is no uniformly optimal
sequential decision. We leave detailed calculation in Appendix
C.

We make a connection between the current notion of
optimality and that under a non-Bayesian setting.

Remark 6. We remark that our utility and risk processes are
defined under a Bayesian setting, and so do the local and
uniform optimalities. Alternatively, one may study the current
problem under a non-Bayesian setting, without assuming a
prior distribution for the change points. The performance
metrics defined in Section II-D can be naturally extended to the
non-Bayesian setting. For example, one may replace LFDRt

by a supremum false discovery rate

sup
τ1,··· ,τK∈Z+∪{0}∪{∞}

Eτ1,··· ,τK (FDPt)

which measures the false discovery rate in the worst-case
scenario with respect to the change points τk. The other
performance metrics can be extended similarly. Taking one
worst-case metric as the risk, it is possible to come up
with sequential procedures that control the risk under a pre-
specified threshold at all time points. However, it is a challenge
to extend the current notion of optimality to the non-Bayesian
setting. A more sensible optimal criterion may be needed to
establish optimality results under the non-Bayesian setting. We
leave it for future investigation.

C. Implications on Aggregated Risk

Let {at}t≥1 be a sequence of non-negative random variables
satisfying

∑︁∞
t=1 at = 1, and {bt}t≥1 be a sequence of non-

negative constants. Consider the following aggregated risk
(AR) and aggregated utility (AU),

AR = E
(︁ ∞∑︂
t=1

atRt

)︁
and AU = E

(︁ ∞∑︂
t=1

btUt

)︁
. (35)

The aggregated risk and utility metrics defined above provide
a summary of the performance across time. These types of
risk and utility measures are considered in many recent works
on multi-stream sequential change detection and hypothesis
testing, including [25, 33, 34, 38].

The next proposition shows that if the risk process is
controlled at the desired tolerance level at every time point,
then the aggregated risk is also controlled at the same level.

Proposition 5. Let δ ∈ Dα and AR(δ) be the corresponding
aggregated risk defined in (35). Then, AR(δ) ≤ α.

Proof. According to the definition of Dα, δ ∈ Dα im-
plies Rt(δ) ≤ α a.s. for all t ∈ Z+. Thus, AR(δ) =
E
(︁∑︁∞

t=1 atRt

)︁
≤ αE

(︁∑︁∞
t=1 at

)︁
= α, where the last equation

is due to
∑︁∞

t=1 at = 1.

Note that the reverse statement does not hold. That is, the
aggregated risk being controlled does not imply the risk at
each time t being controlled.

The next proposition shows that a uniformly optimal se-
quential decision also maximizes the aggregated utility.

Proposition 6. Suppose that δ is uniformly optimal in Dα.
Then, for the aggregated utility defined in (35),

AU(δ) = sup
δ′∈Dα

AU(δ′),

where AU(δ) and AU(δ′) denote the aggregated utility asso-
ciated with δ and δ′, respectively.

Proof. For any δ′ ∈ Dα, AU(δ′) = E
(︁∑︁∞

t=1 btUt(δ
′)
)︁

=∑︁∞
t=1 btE

(︁
Ut(δ

′)
)︁
≤
∑︁∞

t=1 btE
(︁
Ut(δ)

)︁
= AU(δ), where the

second last inequality is due to the assumption that δ is
uniformly optimal, and the last equation is obtained based on
the definition of aggregated risk.

Next, we use Propositions 5 and 6 to make a connection
between the current results and recent works on the sequential
multiple testing and parallel sequential change detection [25,
26, 38].

1) Controlling generalized error rates in multi-stream se-
quential hypothesis testing: Note that if π0 + π∞ = 1 (i.e.,
change points either occur at the beginning or never occur),
the sequential change point detection problem reduces to a
sequential multiple hypotheses testing problem, where the goal
is to choose between Hk

0 and Hk
1 for k = 1, · · ·K,

Hk
0 : Xk,t ∼ pk,t for all t against Hk

1 : Xk,t ∼ qk,t for all t,

under a Bayesian setting, where P(Hk
0 holds) = π∞ and

P(Hk
1 holds) = π0. In addition, we assume that Xk,t are

jointly independent.
Let m ≥ 1. We define the generalized family-wise error rate

(GFWER) as
GFWERm := P(Em,T ), (36)

where T is a stopping time and the event Em,t is defined in (8).
GFWERm can be viewed as a generalized family-wise error
rate measuring type-II errors in sequential multiple hypotheses
testing, which takes a similar form as the generalized type-II
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error rate in [32, 34, 38, 39]. Specifically, if we reject Hk
0 at

time t if and only if k ∈ St+1. Then,

Em,t =
{︂ K∑︂

k=1

1(Hk
1 holds and Hk

0 is chosen at time t) ≥ m
}︂

in the context of multiple hypotheses testing.
The next corollary of Proposition 5 shows that the proposed

method δS controls the GFWER in the perspective of the
hypothesis testing problem.

Corollary 3. Given the tolerance level α, consider the se-
quential decision δS in Algorithm 3 with the risk process
Rt = GLFWERm,t defined in Example 2 and any utility pro-
cess. Then, the generalized family-wise error rate GFWERm

defined in (36) is also controlled to be no greater than α for
any stopping time T .

Proof. By comparing the definition of GFWERm with that of
GLFWERm,t defined in (9), we have GFWERm = E(RT ) =
E
(︁∑︁∞

t=1 1(T = t)Rt

)︁
. The proof is completed by applying

Proposition 5 with at = 1(T = t).

Note that the above Corollary 3 holds for any stopping time
T . In particular, if we let T grow to infinity, then Corollary 3
states that the GFWER accumulated over all the time points is
controlled to be no greater than α. If we let T = T1 as defined
in Remark 1, then different data streams are stopped at the
same detection time T1. In this case, the proposed sequential
procedure belongs to the class of sequential multiple testing
procedures described in [34].

2) Controlling aggregated false discovery rate: The aggre-
gated false discovery rate (AFDR) is considered in [25],

AFDR = E

⎛⎝∑︁N̄−1
t=1

∑︁K
k=1 1 (τk ≥ t,Nk = t)(︂∑︁N̄−1

t=1

∑︁K
k=1 1 (Nk = t)

)︂
∨ 1

⎞⎠ , (37)

where N̄ is a positive integer that is referred to as a ‘deadline’.
The next proposition states that any decision that controls
LFDRt at every time also controls AFDR asymptotically.

Proposition 7. Let Rt = LFDRt and δ ∈ Dα. Assume that
there exist a sequence of constants {Ct}t≥1 and a sequence of
random variables {At}t≥1 such that K−1

∑︁K
k=1 1 (Nk = t)

converges to Ct in probability and FDPt converges to At

in probability for all t ≥ 1 as K grows to infinity. Then,
limK→∞ AFDR(δ) ≤ α. That is, AFDR is controlled to be no
greater than α asymptotically.

Proof. The proof is given in Appendix C.

3) Maximizing total average run length: Let the total
average run length (TARL) be

TARL =

K∑︂
k=1

(τk ∧Nk), (38)

where Nk is defined in (15). TARL aggregates IRLt across
different time points, and can be viewed as an extension
of the classic ARL2FA to multi-stream problems. The next
corollary of Proposition 6 shows that the proposed method
also maximizes TARL under certain conditions.

Corollary 4. Under Assumptions 5, and Rt ∈
{LFNRt,LFWERt,GLFWERt, IADDt},

E(TARL(δS)) = sup
δ∈Dα

E(TARL(δ)),

where δS is obtained from Algorithm 4 by letting Ut = IARLt,
and TARL(δS) and TARL(δ) denote the the total average run
length (TARL) of the decision δS and δ, respectively.

Proof. According to the definition of IRLt in Exam-
ple 5, TARL =

∑︁∞
s=0 IRLs. This implies E(TARL) =

E(
∑︁∞

s=0 E(IRLs|Fs)) = E(
∑︁∞

s=0 IARLs). According to
Corollary 2, δS is uniformly optimal when Ut = IARLt. We
complete the proof by letting bt = 1 for all t, Ut = IARLt

and AU(δ) = TARL(δ) in Proposition 6.

V. A SIMULATION STUDY

In this section, we study the performance of the proposed
sequential decision δS defined in Algorithm 4 through three
simulation studies. Throughout the simulation studies, we let
the tolerance level α = 0.1.

A. Study I: Controlling LFDR

In this simulation study, we choose Rt = LFDRt and Ut =
−IADDt in Algorithm 4. We compare the performance of the
proposed method with the MD-FDR method proposed in [25].

Let πt = (1 − π∞)θ(1 − θ)t for t ≥ 0, pk,t(x) =

(2π)−1/2e−
(x−µ0)2

2 and qk,t(x) = (2π)−1/2e−
(x−µ1)2

2 for all k
and t. We set π∞ = 0.2, θ = 0.1, µ0 = 0 and µ1 = 1. That is,
we set the pre- and post-change probability distributions to be
the Gaussian distributions N (0, 1) and N (1, 1), respectively,
and set the prior distribution for the change point τk to be a
mixture of a point mass at infinity and a geometric distribution.

We assess and compare the performance of two sequential
decisions. The first sequential decision is the the proposed
method δS described in Algorithm 4 with Rt = LFDRt

(defined in Example 4) and Ut = −IADDt (defined in
Example 6). With this choice of Rt and Ut, line 4 in Algorithm
3 can be simplified as

n∗ = arg min
n=0,1,...,|St|

{n : γn ≤ α}.

The other sequential decision is the MD-FDR method devel-
oped in [25]. Following the MD-FDR method, the risk measure
AFDR defined in (37) is guaranteed to be no greater than the
tolerance level α.

We first compare the proposed method with the MD-FDR
method in terms of their FDPt (defined in (13)) and IDDt

(defined in (21)) for fixed K = 500 with 1000 independent
Monte Carlo simulations. The averaged FDPt and IDDt across
the 1000 replications are plotted in Figures 3 and 4 as functions
of t. According to Figure 3, the averaged FDPt of both
methods are below 0.1 for all t with a trend of first increasing
and then decreasing as t increases. The FDPt of the proposed
method has a plateau near 0.1 for t ∈ [5, 20]. In addition, the
FDPt of the proposed method is larger than that of the MD-
FDR method, which suggests that the proposed method is less
conservative while still controlled under the target tolerance
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Fig. 3: FDPt averaged over 1000 Monte Carlo simulations at
K = 500
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Fig. 4: IDDt averaged over 1000 Monte Carlo simulations at
K = 500

level. Figure 4 compares the averaged IDDt of the proposed
method and the MD-FDR method for different t. It displays
that, for both methods, IDDt first increases and then decreases
as t increases. The proposed method has a lower averaged
IDDt than the MD-FDR method for all t, indicating a smaller
detection delay.

Next, we compare the two methods in terms of aggregated
performance measures. In particular, we consider the aggre-
gated risk AFDR defined in (37), where we set the deadline
parameter N̄ = 500. For aggregated utility, we consider the
the total average detection delay (TADD), defined as

TADD = E
(︂ N̄−1∑︂

s=0

IDDs

)︂
= E

(︂ N̄−1∑︂
s=0

IADDs

)︂
, (39)

where IDDs is defined in (23). Then, we let the aggregated
utility be AU = −TADD. A higher utility, which corresponds
to a lower TADD, reflects a quicker detection of the changes.

Tables I and II compare the two methods in terms of
their aggregated risk AFDR and the aggregated utility TADD,
respectively, which are estimated based on a Monte Carlo
simulation with 1000 replications. From Table I, we can see
that both the proposed method and MD-FDR method control
AFDR below the tolerance level α = 0.1, while the MD-FDR
method is more conservative. We also note that as K grows

larger, AFDR of the proposed method is approaching α = 0.1.
From Table II, we can see that the TADD of the proposed
method is significantly less than that of the MD-FDR method,
indicating that the proposed method detects changes faster than
the MD-FDR method, when the AFDR of both methods are
controlled at the same level. An interesting observation is that
TADD of both methods scale with K as K grows. That is,
TADD/K seems to converge to a constant as K grows large.
Specifically, for the proposed method, TADD/K is around 3.9.
For the MD-FDR method, TADD/K is around 6.5 for large
K.

Overall, these results suggests that the proposed method is
less conservative and adapts better to the tolerance level than
the MD-FDR method.

K Proposed method MD-FDR method
10 7.0× 10−2 (3× 10−3) 2.8× 10−2 (2× 10−3)

100 8.6× 10−2 (9× 10−4) 2.4× 10−2 (5× 10−4)
200 9.2× 10−2 (7× 10−4) 2.4× 10−2 (4× 10−4)
500 9.6× 10−2 (5× 10−4) 2.3× 10−2 (2× 10−4)

1000 9.8× 10−2 (3× 10−4) 2.4× 10−2 (2× 10−4)

TABLE I: Estimated AFDR (standard deviation in parenthesis)

K Proposed method MD-FDR method
10 45.8 (0.5) 61.4 (0.5)

100 413.8 (1.3) 650 (1.7)
200 799.8 (1.9) 1304.1 (2.4)
500 1964.9 (3.0) 3264 (3.7)
1000 3891.4 (4.0) 6535.3 (5.2)

TABLE II: Estimated TADD (standard deviation in parenthe-
sis)

B. Study II: Time-heterogeneous distributions

We choose Rt = LFDRt and Ut = −IADDt

and let pk,t(x) = (2πσ2
t )

−1/2e
− x2

2σ2
t and qk,t(x) =

(2πσ2
t )

−1/2e
− (x−1)2

2σ2
t for all k and t. That is, the pre- and

post- change distributions at the kth stream for time t are
N(0, σ2

t ) and N(1, σ2
t ), respectively. This simulation study has

a similar setting as Study I in Section V-A except that the pre-
/post- change distribution have time-heterogeneous standard
deviation. We generate {σt}t≥1 independently from a uniform
distribution over {2/

√
1, · · · , 2/

√
10}.

Figure 5 and 6 present the averaged FDPt and IDDt over
1000 Monte Carlo replications, respectively. As we can see in
Figure 5, the averaged FDPt is controlled at the level α = 0.1
and fluctuates for t < 50. Figure 6 displays a first increasing
then decreasing trend as t increases, which is similar to the
trend in Figure 4.

C. Study III: Controlling LFNR

In this simulation study, we let pk,t(x) = (2π)−1/2e−
x2

2

and qk,t(x) = (2π)−1/2e−
(x−1)2

2 for all k and t and π∞ = 0.2,
and πt = (t + 2)!/(2 t!) · 0.8 · (0.1)3(0.9)t for t ≥ 0. In
addition, we set K = 100 and consider the risk process Rt =
LFNRt (see Example 3) and the utility process Ut = IRLt

(see Example 5).
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Fig. 5: FDPt averaged over 1000 Monte Carlo simulations at
K = 500
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Fig. 6: IDDt averaged over 1000 Monte Carlo simulations at
K = 500

We plot the averaged risk measure FNPt and the averaged
utility measure of the proposed method δS defined in Algo-
rithm 4 in Figures 7 and 8 based on a Monte Carlo simulation
with 1000 replications. From Figure 7, we can see that the
averaged FNPt is below 0.1 with a peak at around t = 27,
which is consistent with Proposition 3. From Figure 8, we
can see that IRLt gradually decreases to 0 as t increases.

VI. A CASE STUDY: MULTI-CHANNEL SPECTRUM
SENSING IN COGNITIVE RADIOS

In this section, we conduct a case study on a multi-channel
spectrum sensing problem for cognitive radios, following the
settings described in [25]. Cognitive radios are radios that
can dynamically and automatically adjust their operational
parameters according to the environment so that the spectrum
is utilized more efficiently [47, 48]. To make the most out of a
spectrum, a cognitive user is allowed to use the idle spectrum
band when the primary user is not transmitting. However,
when the primary user starts transmission, the cognitive user
should detect the change and vacate the spectrum band as soon
as possible. The detection of the transmission of the primary
user can be formulated as a sequential change detection prob-
lem, where the transmission time corresponds to the change
point [25, 29].
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Fig. 7: FNPt averaged over 1000 Monte Carlo simulations at
K = 100
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Fig. 8: IRLt averaged over 1000 Monte Carlo simulations at
K = 100

We consider a multi-channel spectrum sensing problem for
cognitive radios, where there are K independent frequency
channels assigned to K independent primary users. The cog-
nitive users monitor the spectrum bands and collect signal sam-
ples sequentially. The distribution of the signals will change
when a primary user starts transmission. As soon as the change
is detected, the cognitive user vacates the spectrum band, so
that the primary user can use it without interference. Here,
each channel corresponds to a data stream, and the time that a
primary user starts transmission corresponds to a change point
in that data stream. Our goal is to have a sequential decision
that can detect the transmission of the primary user at each
channel quickly to reduce the interference, while controlling
the false discovery rate, which corresponds to the expected
proportion of unoccupied channels among the detected ones.

Specifically, we assume that Xk,t is the signal collected
from the kth cognitive user at time t, τk is the time when
the k-th primary user starts transmission, and Xk,ts and τks
follow the change point model described in (1) and (2). For
the change point τk, we further assume that

πt = (1− π∞)θ(1− θ)t

with π∞ = 0.1 and θ = 0.05. That is, τk follows a
mixture distribution of a point mass at infinity and a geometric
distribution.
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For the pre- and post- change distributions, we assume

Xk,t =

{︄
Yk,t, if t ≤ τk

Yk,t + Zk,t, if t > τk
,

where Yk,t denotes a Gaussian white noise and Zk,t de-
notes the faded received primary radio signal at the cogni-
tive user’s end. We further assume that Yk,t ∼ CN (0, σ2),
Zk,t ∼ CN (0, λk), and Yk,ts and Zk,ts are independent, where
CN (0, σ2) and CN (0, λk) denote the circularly-symmetric
complex Gaussian distributions with mean 0 and the com-
plex variance σ2 and λk, respectively. Note that a complex
random variable has a circularly-symmetric complex Gaussian
distribution with a variance σ2 if its real and imaginary parts
are independent and identically distributed univariate Gaussian
random variables with the mean zero and the variance σ2/2.

Under this model, Xk,t has the distribution

Xk,t ∼

{︄
CN (0, σ2), if t ≤ τk

CN (0, σ2 + λk), if t > τk
.

Notice that in this setting, the streams share the same pre-
change distribution, but have different post-change distribu-
tions characterized by their different variances. The above dis-
tribution assumptions are commonly adopted in the literature
[25, 29].

In this case study, we assume σ2 = 2 and sample inde-
pendent λks from a uniform distribution over [1, 2]. We then
treat λk as known parameters. Here, we sample λk from an
interval to mimic the practical situation where the signals sent
by the primary users may experience channel attenuation at
the cognitive user’s end, which results in a range of variance-
distinct post-change signals.

Let the tolerance level α = 0.1. We compare the perfor-
mance of the proposed sequential decision following Algo-
rithm 3 (with Rt = LFDRt and Ut = −IADDt) and the
MD-FDR method proposed in [25]. We also consider the
aggregated risks AFDR (defined in (37)) and the aggregated
utility TADD (defined in (39)).

Figures 9 and 10 show the averaged FDPt and IDDt for
different t based on a Monte Carlo simulation with 1000
replications. We see that FNPt of both methods are below
0.1 with a peak at around t = 12 and t = 42, respectively.
According to Figure 9, the averaged FNPt of the MD-FDR
method appears to be smaller than that of the proposed method
for time t < 50, while both of them decline at a similar
rate after time t = 50. For larger t, the averaged FNPt of
both methods are close to zero. According to Figure 10, the
averaged IDDt of the MD-FDR method is larger than that
of the proposed method for all t, which suggests that the
proposed method detects changes more quickly than that of
the MD-FDR method.

Tables III and IV show the AFDR and TADD for both
methods for K ∈ {10, 100, 200, 500, 1000}. According to the
tables, the AFDR of both methods are controlled to be less
than α = 0.1, with the AFDR of the MD-FDR method smaller
than that of the proposed method for all K. This indicates
that the proposed method is less conservative in controlling
FDR-type of risks, when compared with the MD-FDR method.
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Fig. 9: FDPt averaged over 1000 Monte Carlo simulations at
K = 100 in Case Study
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Fig. 10: IDDt averaged over 1000 Monte Carlo simulations at
K = 100 in Case Study

Moreover, the proposed method has a much smaller TADD
that that of the MD-FDR method for all K, indicating that the
proposed method has a smaller detection delay.

VII. CONCLUSIONS

The parallel sequential change detection problem is widely
encountered in the analysis of large-scale real-time streaming

K Proposed method MD-FDR method
10 6.7× 10−2 (3× 10−3) 3.2× 10−2 (2× 10−3)

100 8.5× 10−2 (9× 10−4) 2.9× 10−2 (6× 10−4)
200 9.0× 10−2 (7× 10−4) 2.9× 10−2 (4× 10−4)
500 9.5× 10−2 (4× 10−4) 2.8× 10−2 (2× 10−4)
1000 9.7× 10−2 (3× 10−4) 2.8× 10−2 (2× 10−4)

TABLE III: Estimated AFDR in case study (standard deviation
in parenthesis)

K Proposed method MD-FDR method
10 122.1 (1.2) 162 (1.4)

100 1115.8 (3.7) 1708.5 (4.6)
200 2178.2 (5.1) 3434.8 (6.6)
500 5293.4 (8.1) 8609.4 (10.4)
1000 10460.1 (11.3) 17246.7 (14.8)

TABLE IV: Estimated TADD in case study (standard deviation
in parenthesis)
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data. This study introduces a general decision theory frame-
work for this problem, covering many compound performance
metrics. It further proposes a sequential procedure under this
general framework and proves its optimal properties under
reasonable conditions. Simulation and case studies evaluate
the performance of the proposed method and compare it
with the method proposed in [25]. The results support the
theoretical developments and also show that the proposed
method outperforms in our simulation studies and case study.

The current study can be extended in several directions.
First, the current parallel sequential change detection frame-
work may be extended to account for multiple types of
decisions, including alerting the changes without stopping the
streams and diagnosis of the post-change distribution upon
stopping, which is also known as the sequential change diag-
nosis [49, 50]. We may also consider transient changes (i.e.,
changes that can appear and then disappear; see [16, 36, 37])
and allow stream reactivation to be one possible decision.
Second, in many applications, the post-change distribution of
data is challenging to obtain. Also, it is sometimes difficult
to specify a prior distribution for the change points. In these
cases, it is desirable to formulate the problem in a non-
Bayesian decision theory framework, and develop a flexible
parallel sequential change detection method that is robust for
unknown post-change distributions under this framework. One
possible direction is to study the worst-case scenario, by de-
veloping a minimax formulation under a non-Bayesian setting.
Third, we assume that the change points are independent for
different data streams. For some applications, it is reasonable
to extend the methods to the case where the change points are
dependent. For example, the change points may be driven by
the same event [19] or propagated by each other [51].
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