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Abstract The varied and wide-reaching impacts
of climate change are occurring across heterogene-
ous landscapes characterized by a broad diversity of
soil types. Despite the known importance of soils in
mediating biogeochemical nutrient cycling, there is
little experimental evidence of how soil character-
istics may shape aqueous nutrient losses from forest
ecosystems under climate change. Our objective was
to clarify how soil characteristics modify the impact
of climate changes on carbon and nutrient leaching
losses in temperate forests. We therefore conducted
a field-based mesocosm experiment with replicated
warming and snow exclusion treatments on two
soils in large (2.4 m diameter), in-field forest sapling
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mesocosms. We found that nutrient loss responses to
warming and snow exclusion treatments frequently
varied substantially by soil type. For example, warm-
ing and snow exclusion increased nitrogen (N) losses
on fine textured soils by up to four times versus con-
trols, but these treatments had no impact on coarse
textured soils. Generally, the coarse textured soil,
with its lower soil-water holding capacity, had higher
nutrient losses (e.g., 12—17 times more total N loss
from coarse than fine textured soils), except in the
case of phosphate, which had consistently higher
losses (23-58%) from the finer textured soil. Further-
more, the mitigation of nutrient loss by increasing
sapling biomass varied by soil type and nutrient. Our
results suggest that potentially large biogeochemical
responses to climate change are strongly mediated
by soil characteristics, providing further evidence of
the need to consider soil properties in Earth system
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models for improving nutrient cycling and climate
projections.

Keywords Climate change - Soil freezing - Infrared
warming - Mesocosm - Soil texture - Soil nutrient loss
and leaching

Introduction

Climate change is increasing air temperature, extend-
ing growing season length, and altering precipita-
tion dynamics (Demaria et al., 2016; Hayhoe et al.,
2008), but these changes are occurring across het-
erogeneous landscapes that contain a broad diversity
of soils that vary in physical and chemical attributes.
Differences in ecosystem properties, such as parent
material and soil type, could create substantial vari-
ation in ecosystem responses to climate change. By
determining properties such as soil water-holding and
sorption capacity (Mayes et al., 2012; Weil & Brady,
2017), soil texture and composition control soil bio-
geochemistry and carbon (C) storage (Doetterl et al.,
2015; Gonzélez-Dominguez et al., 2019; Silver et al.,
2000). Because soils are a critical component of the
terrestrial C cycle with feedbacks to atmospheric
carbon dioxide (CO,) levels (Kochy et al., 2015;
Luo, 2007), researchers are increasingly calling for
the inclusion of edaphic properties in Earth system
models to improve C and climate projections (Doet-
terl et al., 2015; Todd-Brown et al., 2013). While the
inherent heterogeneity of soils presents challenges in
the inclusion of their properties in these Earth system
models, doing so may help resolve outstanding ques-
tions on the variable responses of ecosystems to cli-
mate change effects.

Climate and soil properties control ecosystem
processes and properties (Chapin III et al., 2011) by
regulating resources that limit plant and microbial
activity (LeBauer & Treseder, 2008; Wang et al.,
2019), such as soil moisture (Dai et al., 2004; Merz &
Plate, 1997) and nutrient availability (Ge et al., 2019;
Melillo et al., 2011; Sanders-DeMott et al., 2018).
Soil warming may increase plant and microbial activ-
ity, increasing decomposition and net nitrogen (N)
mineralization (Melillo et al., 2011; Rustad et al.,
2001), or decrease activity by reducing soil mois-
ture availability (Rustad et al., 2001; Xu et al., 2013;
Zhang et al., 2015). If, as in the first case, warming
accelerates microbial processes and leads to greater
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soil nutrient availability, it could also increase nutri-
ent leaching losses, with variations depending on soil
moisture and soil freezing (Groffman et al., 2009).
Climate change effects also vary seasonally, with
increased wintertime temperatures impacting soil
biogeochemistry and nutrient retention by shap-
ing snow and soil freezing conditions. By providing
insulation, snow maintains soil temperatures that can
support microbial activity and lead to nutrient accu-
mulation in the subnivean soil environment (Brooks
et al., 2011; Hardy et al., 2001; Henry, 2008; Schimel
et al., 2004). However, warming winter temperatures
have decreased snow cover extent and depth, and
shortened snow seasons (Demaria et al., 2016; Hay-
hoe et al., 2008). With insufficient snowpack, soils
freeze more deeply (Decker et al., 2003; Groffman
et al., 2001a), reducing microbial activity due to tem-
perature (Kirschbaum, 1995) and water limitations
(Brooks et al., 2011). By changing the abiotic condi-
tions of the soil environment, soil freezing can alter
soil respiration (Blankinship & Hart, 2012; Reinmann
& Templer, 2018), N cycling, and hydrologic losses
of nitrate (NO3), inorganic phosphorus (P), magne-
sium (Mg) and calcium (Ca) (Fitzhugh et al., 2003;
Sanders-DeMott et al., 2019). Finally, the cycles of
soil freezing and thawing that are more prevalent in
warmer winters (Henry, 2008) can lyse microbial
cells and disrupt soil aggregates, plant litter, and
plant roots (Campbell et al., 2014; Oztas & Fayetor-
bay, 2003; Schimel & Clein, 1996; Song et al., 2017).
These disruptions can alter soil nutrient pools as well
as biological nutrient uptake by plants and microbes,
with the potential to influence soil nutrient retention.
The physical and chemical mosaic of soils across
the landscape provides the foundation upon which
climate change will act, giving soils the potential to
mitigate or exacerbate the impacts of climate change
on the soil water balance and soil nutrient retention
or loss. For example, along with climatic condi-
tions, soil texture and organic matter content deter-
mine soil moisture (Cosby et al., 1984; Jawson &
Niemann, 2007) and moist soils tend to warm more
due to latent heat increases (Subin et al., 2013). But
soil moisture also regulates microbial activity, with
high soil moisture increasing microbial popula-
tions and enzyme activity (Prado & Airoldi, 1999;
Tiwari et al., 1987). In fine soils, high soil moisture
may combine with high nutrient or C availability
to enhance rates of decomposition, soil respiration,
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N mineralization, and denitrification (Hamarashid
et al., 2010; Silver et al., 2000; Xu et al., 2016).
Similarly, soil texture determines water available
for soil activity during dry (Ritchie 1981) or frozen
periods (Gray et al. 1985), as well as the extent of
soil freezing in winter (Fuss et al. 2016). Therefore,
fine soils, with higher soil moisture, C, and nutrient
availability, may support greater levels of plant and
microbial activity than coarse soils as the climate
warms. In addition to soil texture, mineralogy also
determines nutrient dynamics of soils. For exam-
ple, soils with higher clay or iron/aluminum (Fe/
Al) oxide contents have greater soil cation exchange
capacity and thus nutrient retention and availabil-
ity; conversely, nutrient leaching tends to be higher
from coarse soils (Feng et al. 2013; Manrique et al.
1991; Silver et al. 2000; Tahir and Marschner 2017).
Thus, while it is clear that many of the basic chemi-
cal and physical attributes of soils will interact with
climate change to affect ecosystem processes, the
compounded effects of soils and changing climate
on forest ecosystem C and nutrient losses are poorly
documented with few studies attempting to control
for multiple interacting factors.

Here we experimentally tested the effects of warm-
ing and reduced snow on soil water leachate loss of
nutrients (C, N, P) and cations prone to mobiliza-
tion following environmental perturbation (Ca, Mg,
and Al) from two different soil types. We also meas-
ured in-situ net N mineralization in the soils to help
explain N leachate loss dynamics. To fully quantify
main and interactive effects, we examined these lea-
chate nutrient losses and N mineralization dynamics
in a field-based, replicated climate change mesocosm
experiment that imposed aboveground warming and
snow exclusion treatments on two soils that differed
in texture and chemical composition. We chose this
large (2.4 m diameter), in-field mesocosm approach
to reduce heterogeneity and allow quantification of
annual aqueous losses of C and nutrients. We hypoth-
esized that climate treatment impacts would vary
substantially with soil type. Specifically, we expected
that warming and snow exclusion would increase lea-
chate nutrient losses, but that losses would interact
with soil type, and thus, for example, be greatest on
a soil type with a coarser texture. Our in-field, for-
est sapling mesocosm experiment provides direct
quantitative evidence of the importance of soil char-
acteristics in modifying and interacting with climate

impacts to control C and nutrient losses from forest
ecosystems.

Materials and methods
Site description and climate treatments

We examined interactions among climate treatment
and soil type in a replicated, in-field climate change
forest sapling mesocosm experiment at the George D.
Aiken Forestry Sciences Laboratory in South Burl-
ington, VT, USA (44°27" N, 73°12" W; 60 m eleva-
tion). Mean annual temperature in South Burlington
is 7.3 °C, and mean annual precipitation is 904 mm
with about 23% falling as snow. On average, January
is the coldest month (-7.8 °C), and July is the warm-
est (21.3 °C). Average winter snowfall amounts to
2080 mm, with most occurring between December
and March (climate data measured from 1950-2015
at the Burlington International Airport, S. Burling-
ton, VT; elevation 100 m;~5.9 km from study site;
NOAA National Weather Service, 2017). Using a
factorial design, we imposed control, warming, and
snow exclusion treatments on two soil types (fine and
coarse) across 24 large mesocosms, resulting in four
replicates of each soil type-climate treatment com-
bination (i.e., fine-control, fine-warming, fine-snow
exclusion, coarse-control, coarse-warming, coarse-
snow exclusion).

Mesocosms were installed in 1995 as described
in Beard et al. (2005). Briefly, the 2.4 m diameter
polyethylene mesocosms had a 1 m soil depth and a
closed leachate drainage area with a vacuum extrac-
tion system (Fig. 1a-b, Fig. S2). Tanks were installed
belowground with a 20 cm aboveground rim. Each
mesocosm was filled with one of two randomly
assigned sediments (herein referred to as soils) that
were mined from physically and chemically distinct
unweathered glacial lake deposits (Table S1). Mined
sediments were transported to the field site and
homogenized via repeated mixing with a front-end
loader. Mesocosms were filled in parallel to ensure
equal substrate distribution. At the time the current
study was initiated, the experimental infrastructure
had been in place for 18 years (1995-2013). This
represents a relatively short period during which the

@ Springer



202 Biogeochemistry (2022) 160:199-217
a 2.14 m
r = > R
& 5 [ ) X :“l’ ad
1 A I e N
| Extraction
Soil tube
(1m)

|

Drainage

area
C
0-
E 5
S
£ 1071
o
QO 30'
60
8.1 8.4 8.7 9.0 9.3 9.6

Mean Temperature (°C)

= Control == Warming — Snow Exclusion

Fig. 1 a Cross section diagram of in-field forest sapling mes-
ocosms used for the replicated climate change experiment.
Coarse fill at the bottom represents gravel in the leachate drain-
age area. Fine fill represents soil. The two layers were divided
by landscape cloth. The top of the soil is even with the sur-
rounding ground level. The dark line entering horizontally and
bending 90 degrees through a center tube to the bottom of the
mesocosm represents the tubing that allowed leachate removal

sediments were developing into soils, potentially
increasing their reactivity to climatic change as com-
pared to an older soil that may be buffered against
changes in soil development drivers such as tempera-
ture or moisture.

Soil particle size distributions for the mesocosms
were determined on the homogenized soil using the
hydrometer method (Bouyoucos, 1962), and bulk
density was determined with a fixed volume core
method (Rai et al., 2017). Based on the texture differ-
ences between the soils, we refer to them as “coarse”
and “fine.” The “coarse” soil was a sandy clay loam
with twice the fine gravel content (34%; 2-5 mm
diameter; Soil Science Division Staff, 2017) than the
“fine” soil, a loamy sand with low fine gravel content
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by pumping. b Photo of a mesocosm assigned to the warm-
ing treatment with the planted sapling community and infra-
red heaters on the perimeter. The radiometer used to measure
surface temperature is installed at the center top of the heater
assembly where the cross bars intersect. ¢ Mean soil tempera-
tures by depth for the three climate treatments for the duration
of the experiment. Error bars are + 1 standard error

(17%). Although we labeled the soil types as “coarse”
and “fine,” they varied by multiple characteristics.
The gravel content of the coarse soil reduced its
water holding capacity, while its higher Ca availabil-
ity increased its pH buffering capacity relative to the
fine soil. Overall, the coarse soil (including gravel)
had higher cation exchange capacity (11 vs 1), clay
(1.15 vs. 0.95%), and percent C (0.7 vs 0.3%) than the
fine soil (including gravel), but lower water holding
capacity (9.6 vs. 14.1%). Mesocosms contained only
the coarse or fine soil throughout the entire depth
profile, with no organic horizon. No significant differ-
ences were found in soil properties among treatments
prior to treatment establishment (p <0.05, Tables S2
and S3).
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Although it is not possible to entirely eliminate
the possibility of container effects in any mesocosm
experiment, two aspects of the current study helped
reduce the likelihood of them influencing our results:
(1) The large size of the mesocosms reduced the vol-
ume of soil impacted by proximity to the container
edge; and (2) both soils included in the study had
a rapid infiltration rate, suggesting that water was
unlikely to have flooded the mesocosms and resulted
in preferential flow down the container sides.

Mesocosms were planted in spring 2013 (see Sup-
plementary Methods and Figs. S1, S2). We used four
deciduous tree species: paper birch (Betula papyrif-
era Marshall), quaking aspen (Populus tremuloides
Michx.), American chestnut (Castanea dentata (Mar-
shall) Borkh.), and black cherry (Prunus serotina
Ehrh). The selected species represented different root-
ing depths and geographic ranges to examine possible
effects of future climate on range shifts (Table S4).
Each mesocosm contained 20 tree saplings per spe-
cies. Equally spaced and randomly distributed plant-
ing locations resulted in an inter-planted deciduous
mix (Fig. S2a). American chestnut seedlings were
grown from nuts originating in Haun, PA from The
American Chestnut Foundation (Asheville, NC).
One-year old seedlings of all other species came from
a commercial tree nursery (Porcupine Hollow Farm,
Central Lake, MI). To mimic natural deciduous forest
growth and germination conditions, in fall 2013, we
simulated a forest floor (2.2 cm depth) using leaves
of the four species collected in litter traps from local
mature trees. Following collection, we homogenized
the leaves by air-drying and chopping them to ensure
that each mesocosm received the same litter qual-
ity and quantity and thus avoid introducing variation
across mesocosms. During the experiment, all plants
other than the saplings were removed and left on the
mesocosm soil surface.

Climate treatments were based on the low CO,
emissions scenario model projections for the north-
eastern United States in the year 2100 (Frumhoff
et al., 2007). We initiated them in in December
2013 following the establishment period for the sap-
lings. Treatments consisted of control, infrared (IR)
warming of 2 °C above ambient, and snow exclu-
sion at the beginning of winter. The snow exclu-
sion treatment was designed to simulate the reduc-
tion in snowfall and snowpack depth projected to
occur in the northeast United States under climate

change (Danco et al., 2016; Demaria et al., 2016;
Hayhoe et al., 2008; Peng et al., 2013), which is
already occurring regionally (Burakowski et al.,
2008; Campbell et al., 2010; Hodgkins & Dudley,
2006). Reduced snow often results in more fre-
quent or deeper soil freezing events, paradoxically
creating colder soils as the climate warms (Groft-
man et al.,, 2001a), which has been observed to
occur even during mild winters (Hardy et al., 2001).
Treatments were randomly assigned to mesocosms
with four replicates per soil type. To minimize wind
interference from December to June, we enclosed
mesocosms within 0.6 m tall clear plastic sheeting
located around the perimeter (Fig. S2b).

For warming treatments, we suspended 4
ceramic IR warming elements (Kimball et al., 2008;
Mor Electric Heating, Comstock Park, MI; FTE-
1000-240-0-L6-WH-0 240 V 1000 W), encased in
aluminum extrusion reflectors (Mor Electric Heating)
and inverted aluminum gutters, around each meso-
cosm’s perimeter on 5 cm diameter galvanized steel
posts that were located outside the mesocosm tanks
(Fig. 1b). Heaters were hung 1.5 m above the soil
surface at a 45° angle to achieve spatially uniform
warming (Kimball et al., 2008), which we confirmed
through thermal imaging. Temperature of IR-warmed
and control mesocosms were measured using radi-
ometers (Apogee Instruments, Logan, UT; SI-111)
installed above the center of the mesocosm so that
the measurement field encompassed the entire plant
and soil surface of each mesocosm (as in Rich et al.,
2015; Suseela & Dukes, 2013). Radiometers were
controlled by a CR1000 datalogger (Campbell Scien-
tific, Logan, UT), scanned every 30 s (2014) or 60 s
(2015), and used to maintain IR-warmed mesocosms
2 °C warmer than their paired control tanks. Surface
temperature means were logged every 5 min and used
to calculate hourly averages. Non-warmed meso-
cosms had identical, non-functional heater assemblies
to standardize infrastructure effects.

We excluded snow by covering mesocosms with
tarps during snow events for six weeks following the
first snowstorm of the year (Fig. S2b). This began on
14 December 2013 and 9 December 2014 for win-
ters 2013/2014 and 2014/2015, respectively. Prior to
initiation of snow exclusion, we allowed two inches
of snow to accumulate to maintain consistent albedo
across treatments (Groffman et al., 2001b), thereby
precluding any warming effect due to the lower
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albedo of the bare ground and maintaining a snow
reduction treatment, as opposed to the complete elim-
ination of snow.

Environmental measurements

Soil temperature in each mesocosm was measured at
1, 5, 10, 30, and 60 cm depths using type T thermo-
couples (Omega Engineering, Inc., Stamford, CT).
Temperatures were scanned every 30 s (2014), or
60 s (2015) and 5-min means were recorded (CR1000
datalogger) and used to calculate hourly averages for
analysis.

During the snow-free period, we took weekly soil
moisture measurements in the upper 12 cm of soil in
each mesocosm in either eight (2014) or six (2015)
locations using a FieldScout Time Domain Reflec-
tometer (TDR) 300 Soil Moisture Meter (Spectrum
Technologies, Aurora, IL). To achieve maximum
accuracy, we collected the TDR measurement period
data (in microseconds) and then performed soil-
specific calibrations with gravimetric soil moisture,
which was determined by oven drying a soil sample
previously measured with the TDR at 60 °C to con-
stant mass. We also converted gravimetric soil mois-
ture into volumetric water content (VWC) using each
soil’s bulk density measurement. Gravimetric soil
moisture and VWC showed the same response pat-
terns to soil and climate treatment and the same sta-
tistical significance, so we only report the results for
gravimetric soil moisture.

From the first snowfall until snowmelt, we meas-
ured soil frost depth weekly, and snow depth three
times weekly. Soil frost depth was determined using
frost tubes (Iwata et al., 2012), which consisted of
tygon tubing filled with 0.03% methylene blue solu-
tion inserted into a PVC pipe installed vertically into
the soil to 60 cm depth. We measured snow depth
weekly using meter sticks affixed to the frost tubes.
Area under the curve (AUC; depth vs. date; trapz
command in R pracma package version 2.1-4; Borch-
ers, 2018) was calculated for snow and soil freezing
depths to provide a metric that integrated depth and
duration of snow and frost (Duran et al., 2014).

Plant biomass

To account for the impact of treatment and soil type
differences in plant biomass on nutrient losses, we
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measured total plant biomass in each mesocosm at
the end of the experiment in August of 2015. Sapling
aboveground stem and leaf material was oven dried at
50 °C and weighed. Coarse and fine roots were care-
fully excavated, oven dried at 50 °C and weighed.
Total biomass per mesocosm therefore consists of
stem, leaf, coarse root, and fine root mass.

Leachate collection and analyses

During the snow-free period, we measured the water
level in each mesocosm weekly by inserting a meas-
urement rod into the center tube (Fig. la-b) to the
bottom of the leachate drainage area. When leachate
reached the top of the drainage area, we extracted it
using a pump with attached totalizer to quantify the
water volume removed. While pumping, we col-
lected a leachate sample, filtered it using 0.45 pm
nylon filters (Fisher Scientific, Hampton, NH, cat.
no. 09-719-008) and froze it until analysis to prohibit
microbial activity and transformations of nutrients
(Menchyk et al., 2014).

Leachate samples were analyzed for inorganic N
(Ammonium,NH}, and nitrate-nitrite, NOJ + NOJ,
hereafter referred to as NO3), phosphate (POi_), dis-
solved organic C (DOC), total dissolved N (TDN), and
cations prone to mobilization following environmental
perturbation (Ca, Mg, Al). Nitrate and POi_ were quan-
tified colorimetrically using a Lachat QuikChem 8000
flow-injection analyzer (Lachat Instruments, Hach Com-
pany, Loveland, CO). Ammonium was quantified using
a salicylate method modified from Weatherburn (1967)
and analyzed with a Synergy HT Microplate Reader
(BidTek Instruments, Winooski, VT). Because NH;r was
only a very small percentage of available mineral N (2%
in 2014 and 4% in 2015 on average) and was unrespon-
sive to climate treatments and soil type (see Supplemen-
tary Results and Table S5), we combined NHj‘r and NOJ
as “total mineral N for analyses. Dissolved organic C
and TDN were measured using a Total Organic C Ana-
lyzer (Shimadzu TOC-L with TNM-L, Columbia, MD)
by sample combustion followed by infrared gas analysis
and chemiluminescence for DOC and TDN, respectively.
Lastly, Ca, Mg, and Al were measured by inductively
coupled plasma atomic emission spectroscopy (ICP-AES)
on an Optima 3000DV (Perkin Elmer, Inc., Boston, MA).
For all leached nutrients, we multiplied the concentration
by leachate volume to calculate total losses (flux) on each
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sampling date. Losses were summed by year to examine
each experimental interval.

In situ N mineralization and nitrification

In situ net N-mineralization and nitrifica-
tion were quantified using an intact core
method (Durdn et al.,, 2012) during three peri-
ods: overwinter (11/16/2014-4/23/2015),
spring (4/22/2015-6/3/2015), and summer
(6/3/2015-7/6/2015). Two soil cores were collected
from each mesocosm, one of which was enclosed
in a polyethylene bag and incubated in the soil. The
other was sieved to less than 2 mm, subsampled, and
extracted with 2 M potassium chloride (KCl) in a
1:10 s0il:KCl ratio. Concentrations of NH;r and NOy
were quantified using a salicylate method modified
from Weatherburn (1967) and the vanadium method
of Doane and Horwath (2003), respectively, and ana-
lyzed on a Synergy HT Microplate Reader. For each
sampling period, potential N mineralization was
calculated as the accumulation of total inorganic N
(NHI + NOj + NOy,), and potential net nitrification
was calculated as the accumulation of NOJ. We only
present results for nitrification because NHI levels
were below analytical detection limits. This lack of
net accumulation of NHI was likely due to low levels
of soil organic matter combined with low soil mois-
ture, which created unfavorable conditions for min-
eralization. Under these conditions, NH:lr resulting
from mineralization was likely quickly nitrified due to
overall low availability of NH for nitrification.

Statistical analyses

All statistical analyses were performed in R (R Core
Team, 2017). Effects of experimental climate treat-
ment and soil type on surface and soil temperatures
and soil moisture were determined using linear
mixed effects models in the R nlme package (version
3.1-131; Pinheiro et al., 2017) with mesocosm as a
random effect to account for non-independence due
to repeated measures (Zuur et al., 2009). Day of year
(doy) and a quadratic day of year term (doy?) were
included in the surface and soil temperature models
to account for nonlinearity in temperature by day
relationships.

Snow and soil freezing AUC, leachate volume,
nitrification rates, and leachate loss of DOC and other

nutrients (total mineral N, TDN, POi_, Ca, Mg, Al)
in response to soil and climate treatments were deter-
mined using generalized least squares (gls) models
in the R package nlme (Pinheiro et al., 2017). For
all C and nutrient leachate losses, we then included
biomass as a covariate in our gls model to determine
the degree to which plant biomass was responsible for
treatment effects (e.g., via plant nutrient uptake). We
also used gls to examine if plant biomass varied by
soil or climate treatment. In all cases, significance of
model terms (ANOVA: soil X treatment; ANCOVA:
soil X treatment X biomass) was determined with type
3 (partial) Analysis of Deviance models conducted in
the R car package (Fox & Weisberg, 2011).

For all models, assumptions of constant vari-
ance and normality were assessed by inspection of
residuals. When necessary, we constructed variance
structures for categorical and continuous variables
using the varldent and varPower functions, respec-
tively (nlme package; Pinheiro et al., 2017), and we
applied power transformations to non-normal data.
Results were considered significant at p <0.05, and
R? values were calculated with the rsquared com-
mand in the piecewiseSEM package in R (Lefcheck,
2016). Unless otherwise noted, reported values are
means + one standard error.

Results
Treatment effects

Climate treatments significantly altered mean sur-
face and soil temperatures year-round, and climate
treatment and soil both influenced water dynam-
ics (Table S6). Infrared warming increased average
annual surface temperature by 2.04 °C+0.001 °C
(»<0.0001, R? =0.66) and increased mean soil tem-
perature to a depth of 60 cm (p <0.05; Fig. 1c). Snow
exclusion decreased mean soil temperature to a depth
of 60 cm (p <0.05; Fig. 1c; Table S6). Soil type did
not affect surface or soil temperatures.

Fine soils had consistently higher soil moisture
than coarse soils throughout the experiment, and
both climate treatments reduced soil moisture in the
second year. In 2014, fine soils held twice the mois-
ture of coarse soils (p <0.0001, R2:0.16), a differ-
ence that increased to 2.25 times in 2015 (p <0.0001,
R’=0.34). Although treatment effects were not
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significant in 2014, both warming and snow exclu-
sion reduced soil moisture by ~20% in 2015 (p=0.03;
Table S6).

Annual leachate volume varied by both soil and
climate treatments, with effects of soil type and
warming individually observed in 2014 and inter-
active effects between soil and climate treatment
observed in 2015. In 2014, 10% more leachate
was collected from the coarse soils than fine soils
(»=0.003) and warming reduced leachate volume by
14% (p=0.005; R’= 0.52). In 2015, climate treatment
effects on leachate volume differed across soils such
that on both coarse and fine soils, warming reduced
leachate volume by~20%, but snow exclusion only
reduced leachate volume on fine soils (by 30% reduc-
tion; p=0.04, R?=0.36; Table S6).

Both warming and snow exclusion significantly
reduced snow depth throughout the experiment, while
soil freezing dynamics varied due to differing climatic
conditions between years (Fig. 2). Both climate treat-
ments reduced snowpack AUC. Patterns were consist-
ent between years, with the warmed treatment having
the smallest snowpack followed by snow exclusion
and control mesocosms having the largest snow-
pack (Fig. 2; Table S6, 2014: p <0.0001, R?=0.94;
2015: p<0.0001, R2=0.94). In 2014, soil freez-
ing increased under both snow exclusion (by 130%)
and warming (by 18%, Fig. 2; Table S6; p <0.0001,
R*=0.89). In 2015, delayed onset of snowfall fol-
lowed by below freezing temperatures resulted in

deep soil freezing in all mesocosms prior to onset of
the snow exclusion treatment (Fig. 2). This reduced
differences in soil freezing depth and duration across
treatments in 2015, with soil frost AUC~10% greater
in snow exclusion than control (Fig. 2; Table S6;
p=0.01, R°=0.36).

Finally, fine soils supported 24% more total plant
biomass than coarse soils (p=0.007, R°=0.29; Fig.
S3). There was no significant relationship between
plant biomass and climate treatment.

Dissolved carbon and nitrogen losses

Throughout the experiment, dissolved organic C
(DOC) losses were generally higher from coarse
than fine soils, although with variation by climate
treatment and plant biomass across years. In 2014,
there were no impacts of treatment or soil on DOC
losses unless differences in biomass were accounted
for (Table 1). After accounting for biomass impacts,
DOC losses in 2014 were slightly higher from coarse
than fine soils (30% on average; Table 1; Fig. 3a).
Furthermore, increasing biomass decreased DOC
loss by roughly 50% (Table 1). In 2015, treatment
impacts varied by soil type, and only snow exclu-
sion treatments on coarse soils had DOC losses that
were different from the control (30% less loss than in
the control). Overall, coarse soils in 2015 lost 36%
more DOC than fine soils, but in the snow exclusion

Fig. 2 Mean snow and soil 2014

I 2015

freezing depth by climate
treatment in 2014 and 2015.
Error bars are + 1 standard
error. Values above zero
(solid lines) represent snow
depth, and values below
zero (dashed lines) repre-
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Table 1 Analysis of deviance results for 2014 and 2015 mod-
els of soil water leachate carbon and nutrients and nitrification
as a function of soil X treatment (ANOVA) and as a function of

soil X treatment X total plant biomass (ANCOVA). Bold values
indicate p <0.05

Var Year R? Chi-square values
Soil Trt Soil x Trt Biomass Bio x Soil Bio x Trt Bio X Soil x Trt
DOC 2014 0.3879 3.7 4.6 32
0.7277 4.1 4.5 0.2 4.3 35 3.7 0.2
2015 0.5146 8.6 5.5 7.2
0.6765 0.9 24 2.7 0.0 0.2 3.0 0.9
TDN 2014 0.4150 0.6 2.3 9.0
0.6011 0.3 3.0 2.0 0.1 0.4 2.9 1.6
2015 0.7623 434 39 124
0.8668 5.5 2.0 8.2 4.2 2.7 3.9 5.1
TMN 2014 0.6378 1.0 13.1 24.4
0.7862 2.0 1.5 9.9 4.0 3.0 2.6 7.2
2015 0.6531 29.3 1.5 7.2
0.9384 349 429 52.1 44.5 18.8 51.7 56.9
PO, 2014 0.3187 5.6 3.0 0.1
0.6285 0.0 2.3 6.5 0.4 0.1 2.6 6.9
2015 0.6450 5.6 3.0 0.1
0.7565 1.8 0.5 1.9 0.0 0.5 0.4 1.3
Ca 2014 0.8350 85.2 32 2.9
0.8972 3.6 0.3 32 3.0 0.4 0.5 2.2
2015 0.9186 181.3 27.7 2.1
0.9314 0.7 0.4 0.9 0.2 1.5 0.2 1.4
NIT W 14-15 0.6962 771 17.24 16.29
Sp 2015 0.3604 2.73 7.17 3.86
Su 2015 0.3444 3.99 3.93 0.82

DOC: dissolved organic C, TDN: total dissolved N, TMN: total mineral N (ammonium plus nitrate), POZ‘: phosphate, Ca: calcium,
Mg: magnesium, Al: aluminum, NIT: nitrification rate, Trt: climate treatment, Bio: biomass. W: winter (11/16/2014—4/23/2015),

Sp: spring (4/22/2015—6/3/2015), Su: summer (6/3/2015—7/6/2015)

treatment losses from coarse and fine soils were simi-
lar (Fig. 3b). Biomass had no impact on DOC losses
in 2015 (Table 1).

Climate treatments consistently affected total dis-
solved N (TDN) losses differently depending on the
soil type, even after accounting for differences in
biomass (Table 1). In both years, treatments had lit-
tle impact on coarse soils (no real difference from
controls in either year; Fig. 3c and d). In fine soils,
warming and snow exclusion increased losses by
75% and 110%, respectively, in 2014 and by 160%
and 460% respectively in 2015. Losses from coarse
soils were also much larger (~12 times larger)
from coarse vs fine soils in 2015, which was not
observed in 2014 (Fig. 3c and d). In 2015, but not
2014, TDN losses declined with increasing biomass

and accounting for biomass did not change the sig-
nificance of soil type or its interaction with climate
treatments (Table 1).

Plant available nutrient losses and nitrification

The effect of the climate treatments on total mineral
N losses consistently differed according to soil type
throughout the experiment, regardless of sapling bio-
mass (soil X treatment interaction, Table 1, Fig. 4a, c).
As observed with TDN, climate treatments had little
impact on coarse soils relative to the controls. On fine
soils, mineral N loss from warmed and snow exclu-
sion treatments were 140% and 410% greater than
controls in 2014. But in 2015, only snow exclusion
soils were different than controls, losing 130% more
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Fig. 3 Boxplots for mesocosm leachate loss of a 2014 dis-
solved organic C (DOC), b 2015 DOC, ¢ 2014 total dissolved
nitrogen (TDN), and d 2015 TDN. The inset figure in panel
d shows the leachate loss of TDN from fine soils that year. X
axis codes are soil (C=coarse, solid lines or F=fine, dashed
lines) followed by climate treatment (C=control (gray),
W =warming (red), SE=snow exclusion (blue)). Significant

mineral N than controls (Fig. 4a, ¢). Much like TDN,
mineral N loss from coarse soils in 2015 was~12
times that from fine soils, but losses were similar
across soil types in 2014 (Fig. 4a, c). Accounting
for differences in biomass revealed significant soil
by treatment by biomass interactions in both years
(Table 1). Increasing biomass decreased losses from
coarse soils in control treatments in both years and
warming treatments in 2015. Increasing biomass had
little or no impact on mineral N losses from fine soils
in either year, regardless of treatment (Fig. 4b, d).
Both years, soil type was the main determinant
of POi_ loss, with 20% and 60% more loss from fine
than coarse soils in 2014 and 2015, respectively. In
either year, there was little or no impact of treatment.
However, in 2014 in control and heated mesocosms,
biomass at times reduced POi_ losses (in coarse- con-
trol and fine-heated; significant soil by treatment by
biomass interaction in 2014; Table 1; Fig. 4e-h).
Effects of soil and climate treatments on nitrifica-
tion rates varied by sampling period. During winter
2014/2015, nitrification rates were 26 times higher in
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ANOVA model (soil x treatment) terms are annotated on each
panel (S=soil, T=treatment, SxT =soil by treatment interac-
tion, N.S. =not significant). Significance of ANCOVA models
(soil x treatment x plant biomass) is reported in Table 1. Note
the different y axis limits in panels a and b. Open circles repre-
sent data points and filled circles represent outliers

warmed coarse soils compared to other soil-treatment
combinations (significant soil X treatment interaction;
Fig. 5a). In spring, nitrification in warmed mesocosms
was nearly twice that of controls, while snow exclu-
sion and controls had similar nitrification rates (sig-
nificant treatment effect; Fig. 5b). Finally, in summer,
coarse soil nitrification rates were 56% higher than in
fine soils, with no significant treatment effects (Table 1;
Fig. 5¢).

Cation losses

In both years, Ca losses were roughly double from
coarse compared to fine soils (Table 1). Treatments had
little impact on losses in 2014, but in 2015 warming
and snow exclusion both reduced loss by 16% relative
to controls. Biomass had no significant impacts on Ca
losses (Table 1). Effects of soil and climate treatments
on Mg and Al varied across years with no consist-
ent patterns (and biomass for Mg; see Supplementary
Results and Table S5).
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Fig. 4 Forest sapling mesocosm leachate loss of total mineral nitro-
gen (N) and phosphate. Total mineral N loss in 2014 (a) by soil
type and treatment and (b) versus biomass; and in 2015 (c) by soil
type and treatment and (d) versus biomass. Phosphate leachate loss
in 2014 (e) by soil type and treatment and (f) versus biomass; and
in 2015 (g) by soil type and treatment and (h) versus biomass. X
axis codes are soil (C=coarse, solid lines or F=fine, dashed lines)
followed by climate treatment (C=control (gray), W=warming
(red), SE=snow exclusion (blue)). Significant ANOVA model (soil

Sapling Biomass (kg)

X treatment) terms are annotated on panels a, ¢, e, and g (S=soil,
T=treatment, SxT=soil by treatment interaction). Significance
of ANCOVA model (soil x treatment x plant biomass) terms is
reported in Table 1. Note the different y axis limits in each panel. In
boxplots, open circles represent data points and filled circles repre-
sent outliers. In scatterplots, filled points/solid lines are data points
from coarse soils and open points/dashed lines are data points from
fine soils
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Fig. 5 In situ nitrification measured in forest sapling meso-
cosm soils by season: a winter; b spring; and ¢ summer. Box-
plots of the significant model terms (soil, treatment, or soil x
treatment) are shown in each panel. X axes are: a codes with
soil (C=coarse, solid lines or F=fine, dashed lines) followed
by climate treatment (C=control (gray), W=warming (red),
SE=snow exclusion (blue)); b climate treatment; or ¢ soil
type. Note the different y axis limits in each panel. In boxplots,
open circles represent data points and filled circles represent
outliers

Discussion

In this study, we examined how edaphic character-
istics alter the effects of climate change on leachate
losses of nutrients, and N mineralization in soils. We
did this in a large, in-field mesocosm experiment that
imposed warming and snow exclusion treatments on
two soil types. We show that the impacts of warm-
ing and snow exclusion are frequently modified
by soil characteristics. Notably, climate treatments
alone rarely influenced nutrient losses, with the only
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instance being that of Ca loss in 2015 (Table 1). In all
other instances, the climate treatment effect on nutri-
ent losses differed by soil type (Table 1). For exam-
ple, we consistently found soil x treatment interac-
tions driving patterns of nutrient losses of TDN and
total mineral N. In both cases, snow exclusion on fine,
but not coarse, soils elevated N losses. Other nutri-
ents, such as DOC and POi_, displayed more variable
responses across years, although soils did modify
the impact of climate treatments on loss dynamics at
times. Nutrient losses related to soil type alone were
also consistent throughout the experiment. Specifi-
cally, DOC, POi_, and Ca losses all varied by soil
type both years of the experiment. In general, coarse
soils experienced higher losses of DOC and most
nutrients, except POi_. In contrast to the consist-
ency evidenced in the nutrient loss data, driving fac-
tors behind N mineralization rates varied seasonally,
likely due to soil moisture and temperature dynamics.
Finally, while high plant biomass was able to mitigate
N losses from coarse soils, increasing biomass had
little impact on N losses from fine soils. Overall, our
results provide experimental evidence that interac-
tions among climate treatments and soil properties are
an important factor in determining the magnitude of
climate change effects on ecosystem biogeochemistry.

Soil and climate treatment impacts on abiotic factors

Climate treatments altered abiotic factors that influ-
ence processes related to our hypotheses. Overall,
climate treatments had the expected effects: on aver-
age, warming raised surface temperatures by 2 °C
and increased soil temperatures to a depth of 60 cm;
snow exclusion decreased soil temperatures to 60 cm,
induced deep soil freezing, and reduced snowpack
depth. However, between-year variation in winter
air temperatures and onset of snowpack resulted in
different impacts of the warming treatment between
winters. In 2014, warming reduced early winter
snowpack, causing soils to freeze deeper than in con-
trols. Conversely, in 2015 warmed mesocosms expe-
rienced less soil freezing overall than controls due
to faster soil thaw in the spring (Fig. 2). Importantly,
late snowpack development in 2015 allowed deep
soil freezing in all treatments that persisted under the
snowpack (Hardy et al., 2001).

Soil type and climate treatments both impacted soil
moisture throughout the experiment. Soil moisture of
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fine soils was consistently twice as much as coarse
soils. However, the leachate drained from coarse soils
was only 10% higher than from fine soils, likely due
to fine soils having higher plant biomass (Fig. S3)
and consequently greater evapotranspiration poten-
tial (Kosiba, 2017). Finally, both climate treatments
resulted in drier soils than controls in the second year.
In the warmed mesocosm, this was likely the result
of higher evapotranspiration, while in the snow exclu-
sion mesocosms the removal of snow, and therefore
its meltwater in the spring, may have contributed to
the soils being drier during snowmelt periods. How-
ever, the effect in snow exclusion soils was not lim-
ited to the snowmelt period, rather they remained
drier throughout the growing season and into the fall.

Coarse textured soils had greater C and nutrient
leaching, except for POi_

Cation exchange capacity, clay content, and organic
matter content generally correlate with reduced lea-
chate losses. In our study, the coarse soil exceeded
the fine soil in each of these metrics (Table S1). Not-
withstanding, in all cases with a significant soil effect,
except POi_, the coarse soil experienced higher lea-
chate losses. The high fine gravel content of the
coarse soil likely reduced its water holding capacity
and increased its hydraulic conductivity compared to
the fine soil, thereby diminishing its storage capacity
for cations and nutrients (Dudley et al., 2008). The
nutrients that experienced significant losses across
years by soil type were DOC and Ca (higher losses
from coarse soils), and POi_ (higher losses from fine
soils). The effect of soil on losses of all other nutri-
ents varied between years, but in all significant cases,
coarse textured soils experienced higher losses (2014:
Al; 2015: TDN, mineral N, and Mg).

Contrary to our expectations, the loss of POi_ was
greater from fine vs. coarse textured soils. However,
this could be associated with between-soil differences
in pH and cation contents. Namely, the fine soil had a
lower pH (6.2) than the coarse soil (7.6; Table S1). In
soils with pH<7, POi_ tends to be available but can
be fixed, to some degree, by Al (Penn & Camberato,
2019). Because Al availability in the fine soil was rela-
tively low (Table S1), and Al tends to be non-soluble
at neutral pH (pH 6-8; Lindsay & Walthall, 1996),

POi_ may have been more easily lost from the fine soil
than expected based on its hydraulic conductivity. Con-
versely, in soils with pH>7, like the coarse soil, P is
fixed by Ca (Penn and Camberato 2019), which was
very abundant in the coarse soil (Table S1). Thus, the
Ca content of the coarse soil may have reduced the
susceptibility of POi_ to leaching despite that soil’s
reduced capacity for nutrient storage relative to the fine
soil.

Throughout the experiment, one of the largest dif-
ferences we observed was the change in the magnitude
of N loss (mineral N and TDN) across years. Coarse
soils lost a similar amount of N in both years, but N
loss from fine soils dropped to extremely low levels in
2015, despite no associated decrease in leachate vol-
ume, causing a significant soil effect (Fig. 4). Greater
N uptake due to the higher plant biomass (24% higher)
supported by the fine soil provides one possible expla-
nation for the large reduction in leachate N loss in 2015.
However, while increasing plant biomass did reduce
mineral N losses in coarse soils in some cases, it had
no impact on N losses from fine soils, suggesting that
higher plant uptake might not be responsible for this
difference. Alternatively, greater nitrification rates were
measured on the coarse soil during the 2015 growing
season, which could have created a pool of nutrients
vulnerable to leaching given the low water holding
capacity and larger volume of water leached from that
soil.

It is important to note that the soils used in this
experiment originated as relatively unweathered sedi-
ments (Beard et al., 2005) that then underwent a short
period (18 years) of development in the mesocosms
before the initiation of the current experiment. The
newness of the soils was an unavoidable experimen-
tal artefact given the volume of homogenous substrate
necessary to conduct a large, in-field mesocosm experi-
ment. The age of the soils combined with the distur-
bance caused by their mining and homogenization
provides context for interpretation of the results, which
may be most relevant to natural and managed systems
with relatively young, undeveloped soil types. Exam-
ples of comparatively new, unweathered soils include
inceptisols and entisols, which together comprise
approximately 40% of temperate region soils (Nater,
2005).
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Soil type frequently altered the effect of warming
and snow exclusion on leachate nutrient losses and
nitrification

Climate treatments consistently affected C and nutri-
ent responses differently depending on soil type, as
observed in wintertime nitrification rates and losses
of DOC, TDN, total mineral N, POi_, Mg, and Al
during one or both years. This occurred even though
the climate treatments did not affect the abiotic condi-
tions of the soils differently (Table S6). In all cases,
either soil or treatment, but not their interaction,
altered soil temperature and moisture, snow, or soil
freezing conditions. Despite this fact, the only nutri-
ent loss that responded to climate treatment alone
was Ca in 2015, in which both warming and snow
exclusion reduced losses (Table 1). Furthermore,
differences in plant biomass across mesocosms did
not account for the varying effects of climate treat-
ment by soil type, and accounting for plant biomass
at times revealed treatment and biomass interactions
with soils (i.e., PO]").

Throughout the experiment, snow exclusion con-
sistently elevated N losses (TDN and total mineral
N) from only fine soils. This finding coincides with
well-documented increases in NOJ loss following soil
freezing (Campbell et al., 2014; Mitchell et al., 1996),
although with variability (Groffman et al., 2011; Judd
et al., 2011). Nitrogen losses after soil freezing can
be associated with the freeze-thaw disruption of soil
aggregates and lysing of microbial cells (Brooks
et al., 1998; Schimel & Clein, 1996), but in forested
systems, elevated NOJ losses after soil freezing have
been attributed to root mortality (Tierney et al., 2001)
and decreased root nutrient uptake (Campbell et al.,
2014). In both our soil types, differences in plant bio-
mass in the snow exclusion treatment had no impact
on mineral N losses (the majority of which was NO3,
Fig. 4b and d), suggesting that root uptake in these
mesocosms was unable to reduce mineral N losses.
Our results therefore indicate that soil differences
could additionally account for variability in the NO3
leaching response to soil freezing, perhaps due to
water content during freezing or thawing events or
the type of soil frost (e.g., concrete or granular, Fuss
et al., 2016).

Warming also frequently increased total mineral
N and TDN losses from fine soils, but not coarse
soils. Contrary to our results, previous soil warming
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in temperate forests found no increase in N leaching
(Melillo et al., 2011) or soil solution NO; (Sand-
ers-DeMott et al., 2018) under warming conditions
despite increased N mineralization (Melillo et al.,
2011), a well-documented response to warming
(Rustad et al., 2001; Salazar et al., 2020). In those
cases, the tight cycling of N between plants and soil
accounted for the lack of increased leachate losses
despite accelerated N processing under warming
(Melillo et al., 2011). Although greater plant biomass
in our experiment reduced total mineral N losses from
warmed coarse soils in 2015 (Fig. 4d), we found no
other instances where higher plant biomass reduced
N losses from the warming treatment. These results
of increased N loss due to warming from only one
soil type show the tightness of nutrient recycling can
vary between soils under climate change.

Although elevating temperature increased N losses
from our fine soil type, N cycling processes often
correlate more with moisture conditions than tem-
perature alone (Beier et al., 2008; Groffman et al.,
2009). Nevertheless, overwinter nitrification rates in
our study increased under warming on only the drier
coarse soils, and over the summer the coarse soils
experienced higher nitrification rates than the moister
fine soils regardless of climate treatment. In sum,
the moister fine soil which supported greater plant
biomass had lower rates of summer nitrification and
higher leachate N losses under warming. The drier
coarse soil which supported less plant biomass had
higher rates of summer nitrification and no response
of N loss to warming. These results run counter to
expectations based on abiotic moisture and tempera-
ture conditions alone, highlighting the role of soil
characteristics in mediating biogeochemical losses
under climate change.

The response of nitrification to soil type, climate
treatment, or their interaction varied seasonally, in
contrast to the consistent patterns observed in nutri-
ent loss responses. Warming increased springtime net
nitrification, in accordance with prior observations
(but see also Barnard et al., 2005; MacDonald et al.,
1995). But warming only increased nitrification rates
of coarse soils in the winter, and during the sum-
mer coarse soils had higher nitrification rates than
fine soils, with no effect of climate treatments. The
lack of a summertime response to warming could be
explained by the lower soil moisture in that treatment.
As we observed, warming treatments tend to dry soils
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(Xu et al., 2013), which can reduce microbial activity
such as nitrification (Liu et al., 2009). Additionally,
plant activity dominates terrestrial water movement
during the summer (Jasechko et al., 2013). Thus,
early spring water availability during plant dormancy
combined with elevated temperatures in the warming
treatment could explain the ephemeral nature of the
nitrification response to warming. It is also notable
that nitrification did not respond to snow exclusion,
unlike previous findings that linked decreased net
nitrification to soil freezing (Shibata et al., 2013).

Plant mitigation of nutrient losses varied by soil type

Finally, plant biomass was able to temper nutrient
losses, but the impact of plant biomass often varied
by soil type. Increasing biomass reduced DOC and
TDN losses independent of soil type and treatment,
but only reduced mineral N loss in coarse soils. The
impact of soil was more variable for POi_ losses,
with increasing biomass reducing losses from coarse
or fine soils depending on treatment. However,
the impact of plant biomass on POi_ losses in both
cases was relatively small (a reduction of ~6-20 mg
P) compared to the impact of biomass on mineral N
losses (a reduction of~700-1200 mg N). Thus, the
ability of plants to mitigate mineral nutrient losses
appears to vary with soil texture, often with larger
impacts in coarse than fine soils. The necessary use
of saplings in the mesocosms, as opposed to mature
trees, also likely influenced the ability of the plants
to mitigate leachate nutrient losses. Trees with estab-
lished and more extensive root systems may have
been better able to withstand the stress of the cli-
mate treatments and take up the nutrients that were
leached from the mesocosms regardless of soil type.
Although increasing plant biomass is typically effec-
tive at reducing nutrient leaching in a range of soils
(Bergeron et al., 2011; Lehmann & Schroth, 2003),
our results suggest that increasing sapling biomass
may be more effective at reducing leaching losses
in soils with low water holding capacity and corre-
spondingly high leaching rates.

Conclusion
Our work provides experimental evidence of the

importance of soil properties in modifying the
effects of climate change on forest ecosystem

biogeochemistry. Furthermore, our results suggest
that differential soil properties can also modify the
capacity of plants to mitigate nutrient losses. Our
replicated, in-field climate change experiment on two
contrasting soils clearly demonstrated that the occur-
rence and magnitude of biogeochemical losses from
forests depends on the interaction of climate treat-
ments with soil type and their associated physical,
chemical, and biological attributes. While extrapo-
lating from experimental mesocosms containing two
soil substrates limits quantitative conclusions, our
results provide evidence of the critical need to con-
sider edaphic properties when projecting climate
change impacts on nutrient losses and other ecosys-
tem functions.
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