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ABSTRACT
Uncontrolled glycated hemoglobin (HbA1c) levels are associated with adverse events among complex dia-
betic patients. These adverse events present serious health risks to affected patients and are associatedwith
significant financial costs. Thus, a high-quality predictive model that could identify high-risk patients so as
to inform preventative treatment has the potential to improve patient outcomes while reducing healthcare
costs. Because the biomarker information needed to predict risk is costly and burdensome, it is desirable
that such amodel collect only as much information as is needed on each patient so as to render an accurate
prediction. We propose a sequential predictive model that uses accumulating patient longitudinal data to
classify patients as: high-risk, low-risk, or uncertain. Patients classified as high-risk are then recommended to
receive preventative treatment and those classified as low-risk are recommended to standard care. Patients
classified as uncertain are monitored until a high-risk or low-risk determination is made. We construct the
model using claims and enrollment files from Medicare, linked with patient electronic health records (EHR)
data. The proposed model uses functional principal components to accommodate noisy longitudinal data
and weighting to deal with missingness and sampling bias. The proposed method demonstrates higher
predictive accuracy and lower cost than competing methods in a series of simulation experiments and
application to data on complex patients with diabetes. Supplementarymaterials for this article are available
online.
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1. Introduction

Diabetes affects 9.4% of the U.S. population and is associated
with costly adverse healthcare outcomes (Centers for Disease
Control and Prevention 2017). For patients with diabetes, a
controlled glycated hemoglobin (HbA1c) level (≤ 7%) is known
to reduce the risk of microvascular complications in both type
1 and type 2 diabetes (ADVANCE Collaborative Group 2008).
Thus, there is tremendous clinical interest in identifying patients
who are at increased risk of chronic high HbA1c. Traditional
risk prediction models use baseline factors known to be asso-
ciated with disease, for example, the Framingham risk scores
for predicting cardiovascular outcomes (Wilson et al. 1998). In
the context of diabetes, biomarker information, for example,
BMI, blood pressure, metabolic profile, lifestyle factors, etc.,
have been used to predict cross-sectional or short-term HbA1c
control (Park et al. 2002; Chien et al. 2010; Kwon et al. 2014).
However, predictivemodels for long-term control have not been
widely studied; this is due in part to the lack of sufficiently rich
data to construct and evaluate such models.

The recent curation and linking of large observational data
sets has made it possible to study a wide range of chronic
diseases in complex patients with diabetes. We use such data
to construct a predictive model for long-term HbA1c control in
complex patients with diabetes. The data we consider comprises
claims and enrollment files from Medicare linked with patient

CONTACT Ying-Qi Zhao yqzhao@fredhutch.org Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

Electronic Health Records (EHR) information. This dataset
was created to study medically complex diabetic patients,
thus patients were included if they satisfied the following two
conditions: (C1) they were selected by a validated algorithm
for identifying diabetic patients via claims data, and (C2) they
were medically homed with an established plurality provider
algorithm at participating provider group (a large Midwestern
multi-specialty provider). Patient data was included for every
90-day quarter from 2003-2013 in which they were alive on the
first day of the quarter, had continuousMedicare Part A&B fee-
for-service, and met the medical home criteria (C1) and (C2)
(n = 9101).

Longitudinal information is regularly collected on diabetes
patients during primary care visits and is therefore available
in the EHR (Dassow 2007). For example, in our study dataset,
patients who have undergone a treatment change or failed to
meet glycemic goals are recommended to have their HbA1c
value measured quarterly (American Diabetes Association
2018). We seek to use this information to construct a risk
prediction model for uncontrolled HbA1c. This is in contrast
to predictive models of short-term (e.g., three months) control
constructed from data collected over short time intervals (Lee
et al. 2002; Weisner et al. 2003) or methods that seek to predict
long-term control using a single landmark event (Parast, Cheng,
and Cai 2012).
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Our goal is to construct a high-quality risk prediction
model that incorporates accumulating longitudinal information
without subjecting patients to undue burden. Using full-length
records, that is, those observed over the longest allowable time
horizon, for each individual may lead to better prediction,
but repeated biomarker collection, such as measuring HbA1c
values, can be costly and inconvenient. Furthermore, in applying
such a predictive model, there is an inherent trade-off between
waiting for enough information to accumulate so as to make a
high-quality prediction and rapid identification of a high-risk
patient so as to maximize the effectiveness of preventative care.
We propose a new approach, termed reinforced risk prediction,
which recursively incorporates longitudinal information into
a personalized risk prediction model for uncontrolled HbA1c.
This model accounts for costs associated with delaying patient
classification to a subsequent follow-up time at which more
informationwould be available to improve the accuracy of a pre-
diction. At each follow-up time, the proposedmodel categorizes
a patient trajectory as: (i) classified as high-risk for uncontrolled
HbA1c; (ii) classified as low-risk for uncontrolled HbA1c; and
(iii) unclassified due to insufficient information. Patients classi-
fied as high- or low-risk are then treated accordingly, whereas
unclassified patients are monitored to be classified at a later
time point when more information will be available. Because
each additional measurement incurs new cost (measured as
treatment burden, resource expenditure, risk of an adverse
event, or some combination of these factors), we optimize
classification accuracy subject to a constraint on the total
cost.

The proposed approach is related to the classification-with-
reject-option framework in the classification literature in which
the classifier is allowed to forgo making a prediction for a
small cost (Chow 1970; Herbei andWegkamp 2006; Bartlett and
Wegkamp 2008; Yuan and Wegkamp 2010). However, unlike
our setting, in the classification-with-reject-option framework,
predictions are not made over time with accruing information
nor is it required that every subject eventually be classified.
Trapeznikov and Saligrama (2013) considered applying reject
options in a multi-stage setting. However, they required spec-
ification of a constant penalty for each reject option, which is
not meaningful in our context.

In addition, EHR data pose significant challenges that pre-
vent direct application of existing methods for sequential clas-
sification. First, EHR data are often incomplete as a patient’s
information is recorded only if and when they visit a clinic.
In our data, although protocol stipulated that patients were to
measure their HbA1c every quarter (or at least every 6 months
if their HbA1c is controlled), 37.8% of patients measured over a
period of 11 years had≤ 6measurements in total. Moreover, the
HbA1c measurement times are irregularly spaced and can vary
across patients. Thus, existingmethods such as Trapeznikov and
Saligrama (2013) which require the features to be fully observed
across all stages cannot be applied. Second, there are missing
values for the response variable. Patients might dropout or die
before the end of the follow-up period. Selecting only individ-
uals with non-missing outcome values may introduce selection
bias. These issues are well-documented in the literature on EHR
data (Hripcsak et al. 2011; Hersh et al. 2013; Flood et al. 2015;
McVeigh et al. 2016). To accommodate irregularly spaced data,

we use functional generalized linear models (Ratcliffe, Heller,
and Leader 2002; Müller and Stadtmüller 2005; Li, Wang, and
Carroll 2010) which perform functional principal component
analysis (FPCA) (Ramsay and Silverman 2005) on longitudinal
HbA1c trajectories, and then uses the leading functional prin-
cipal component (FPC) scores to predict the binary response
variable. In addition, we propose a weighting scheme to account
for missing values in the response variable.

The remainder of the article is organized as follows. In Sec-
tions 2 and 3, we present the notation and formally describe
the proposed reinforced risk prediction estimator. In Section 4,
we present theoretical results characterizing the operating char-
acteristics of the proposed method. The results of extensive
simulation studies are presented in Section 5. In Section 6, we
illustrate the reinforced risk prediction model with the diabetes
data to identify patients who are more likely to have uncon-
trolled HbA1c level in the long-term. Section 7 concludes with
a discussion. Technical results are relegated to the supplemental
material.

2. Method: Reinforced Risk Prediction

2.1. Notation andOverview

We assume that the observed data are
{
(Zi, X̃ij,Uij,Yi),

j = 1, . . . ,mi, i = 1, . . . , n
}
, which comprise n independent

and identically distributed trajectories, one per subject, each
of the form

{
(Z, X̃j,Uj,Y), j = 1, . . . ,m

}
, where: Z ∈ R

p

denotes baseline patient information, X̃j ∈ R denotes a
longitudinal measurement taken at time Uj ∈ [0,T] for
j = 1, . . . ,m, and Y ∈ {0, 1} is a terminal outcome. Thus,
the number of visits, m, and the times at which they occur,
are random variables. We further assume that the longitudinal
measurements, X̃j, are noisy surrogates of a latent process,
X(t), t ∈ [0,T], so that X̃j = X(Uj) + ε(Uj), where
ε(·) is a mean-zero white noise process that is independent
of X(·) and Uj, j = 1, . . . ,m that has constant variance
var {ε(t)} ≡ σ 2

ε .
The goal is to predictY using accruing longitudinal informa-

tionwhile continuing to takemeasurements only if the improve-
ment to predictive accuracy outweighs the cost of delaying
making a prediction. To do this, we developwhat we term a rein-
forced risk prediction procedure as follows. Let 0 = t0 < t1 <

· · · < tK = T denote a set of time points at whichwe are allowed
to make predictions. These time points need not coincide with
the times at which longitudinal measurements are made. Let
Sk = {Z,X(t), : t ≤ tk} denote baseline and longitudinal infor-
mation up to and including time tk. At each time point tk,
k = 1, . . . ,K − 1, we consider a decision rule with a reject
option, dk : Sk �→ {

0, 1,′ ‘no decision”
}
, so that dk(Sk) ∈ {0, 1}

indicates that a definite decision was made, and thus follow-up
measurements of the biomarker are not needed beyond tk. The
“no decision” option (reject option) is selected when there is not
enough information, and we want to delay the decision to a later
time. At the final time point (tK = T), a classification must be
given, and a standard classifier, dK : SK �→ {0, 1}, is used. Let k∗
denote the time point at which a definite decision is made. That
is, k∗ = min {k : dk(Sk) = 0 or 1}, then the ultimate prediction
is dk∗(Sk∗).

https://doi.org./10.1080/01621459.2021.1978467
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2.2. AnOptimal Sequential Decision Rule

Our goal is to balance the tradeoff between minimizing pre-
diction error, which generally decreases with the amount of
data collected, against the cost, burden, and risk associated
with delaying prediction. The misclassification error associ-
ated with a sequential decision rule, d = (d1, . . . , dK), is
M(d) = E [I {Y 	= dk∗(Sk∗)}]. Let ck denote the incremental
cost incurred during the period (tk−1, tk], k = 1, . . . ,K. We rec-
ommend to consult with clinicians to determine the appropriate
values for ck’s. The average cost incurred by the sequential deci-
sion rule, d, is thus C(d) = E

(∑k∗
k=1 ck

)
, where the expectation

is over the distribution of k∗ induced by the decision rule d.
Given a budget, B, for the average total cost, we want to

minimize M(d) while satisfying the constraint C(d) ≤ B.
Using the method of Lagrange multipliers, we instead consider
the unconstrained problem of finding the minimizer of the
penalized objective Lλ(d) = M(d) + λC(d). We discuss the
equivalence between the constrained and the penalized problem
in Appendix A. To compute a solution, we apply a variant of
regression-based approximate dynamic programming (Bather
2000). To provide intuition for this estimator, we first derive its
population analog.

For each k = 1, . . . ,K, define ρ∗
k (Sk) = P(Y = 1

∣∣Sk). The
Bayes classifier for a decision to be made at time k given patient
information Sk is

b∗
k(Sk) =

{
1 if ρ∗

k (Sk) > 0.5
0 otherwise.

Suppose that at the final time point K (at which point a classi-
fication must be given), a yet unclassified patient presents with
history SK . The optimal decision rule is clearly

d∗
K(SK) = b∗

K(SK).
Define JλK(SK) = λcK + P

{
Y 	= d∗

K(SK)
∣∣SK

}
to be the cost

incurred at time K under d∗
K given patient history SK . For a

yet unclassified patient presenting at time K − 1 with SK−1, the
expected cost associated with a decision rule dK−1 is

Jλ,dK−1
K−1 (SK−1) = λcK−1 + E

[
I
{
Y 	= dK−1(SK−1)

}
I
{
dK−1(SK−1)

	= “no decision” } ∣∣SK−1
]

+E
[
JλK (SK )I

{
dK−1(SK−1) = “no decision”

} ∣∣SK−1
]

= λcK−1 + P
{
Y 	= dK−1(SK−1)|SK−1

}
I
{
dK−1(SK−1)

	= “no decision” }
+E

{
JλK (SK )

∣∣SK−1
}
I
{
dK−1(SK−1) = “no decision”

}
,

from which it can be seen that the rule dλ∗
K−1 that minimizes

Jλ,dK−1
K−1 is given by

dλ∗
K−1(SK−1) =

⎧⎨
⎩
b∗
K−1(SK−1) if P

{
Y 	= b∗

K−1(SK−1)
∣∣SK−1

}
≤ E

{
JλK(SK)

∣∣SK−1
}

“no decision” otherwise,
which is equivalent to

dλ∗
K−1(SK−1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if P
{
Y = 1

∣∣SK−1
}

≥ 1 − E
{
JλK(SK)

∣∣SK−1
}

0 if P
{
Y = 1

∣∣SK−1
}

≤ E
{
JλK(SK)

∣∣SK−1
}

“no decision” otherwise.

Define JλK−1(SK−1) = Jλ,d
λ∗
K−1

K−1 (SK−1); recursively for k = K −
2, . . . , 1 define

dλ∗
k (Sk) =

⎧⎨
⎩

b∗
k(Sk) if P

{
Y 	= b∗

k(Sk)
∣∣Sk

}
≤ E

{
Jλk+1(Sk+1)

∣∣Sk
}

“no decision” otherwise,

where,

Jλk (Sk) = λck + P
{
Y 	= b∗

k(Sk)
∣∣Sk} I {

dλ∗
k (Sk) 	= “no decision”

}
+E

{
Jλk+1(Sk+1)

∣∣Sk} I
{
dλ∗
k (Sk) = “no decision”

}
is the expected cost for a yet unclassified patient presenting
at time k with Sk who is to be classified under the optimal
sequential decision rule in future. The preceding arguments,
along with the principle of dynamic programming, establish
the following theorem; additional details are provided in
Appendix B.

Theorem 1. Let λ ≥ 0 be fixed. Assume that all requisite
expectations exist and let dλ∗ = (dλ∗

1 , . . . , d∗
K) be as defined

previously. Then M(dλ∗) + λC(dλ∗) ≤ M(d) + λC(d) for any
other sequential decision rule d.

3. Estimation of an Optimal Sequential Decision Rule

Theorem 1 shows that the optimal sequential decision rule is
determined by: the Bayes classifiers, b∗

k , for k = 1, . . . ,K;
the conditional means of the cost functions δλ

k (Sk) �
E

{
Jλk+1(Sk+1)

∣∣Sk
}
for k = 1, . . . ,K − 1; and the tuning

parameter λ ≥ 0.We describe estimation of the Bayes classifiers
and conditional means for a fixed value of λ and then describe
a tuning procedure for λ to ensure the estimated decision
rule, d̂λ, (approximately) satisfies the original cost constraint
C(̂dλ) ≤ B. In Appendix C, we also discuss procedures to
account for missing values in the response variable and to
perform variable selection when the baseline covariates Z are of
high-dimensional.

3.1. Estimation of anOptimal Sequential Decision Rule for
Fixed λ

In this section, we provide the estimation procedure for dλ∗
k .

This estimator comprises a sequence of estimators for the
Bayes classifiers b∗

k , k = 1, . . . ,K and models for δλ
k (Sk),

k = 1, . . . ,K − 1. Note that the misclassification error under
the Bayes rule at time k is P

{
Y 	= b∗

k(Sk)
∣∣Sk

} = ρ∗
k (Sk) ∧{

1 − ρ∗
k (Sk)

}
; we will use a plug-in estimator of this error

rate in constructing the thresholds for optimal decision rules.
To simplify the notation, we omit λ in the following two
subsections.

3.1.1. Estimation of b∗
k

Often longitudinal biomarker data are irregularly spaced subject
to missingness; thus, we estimate the optimal classification rule
using methods from functional data analyses (FDA) (Ramsay
and Silverman 2005; Yao, Müller, and Wang 2005). We use
functional principal components analysis (FPCA) to extract

https://doi.org./10.1080/01621459.2021.1978467
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meaningful features from each individual’s trajectory which we
use in constructing an estimator of P(Y = 1|Sk), and hence
b∗
k(Sk), for each k = 1, . . . ,K.
For each subject i = 1, . . . , n and stage k = 1, . . . ,K, define

Si,k = {Xi(t), t ∈ [0, tk],Zi}. We assume the following func-
tional generalized linear model (Ratcliffe, Heller, and Leader
2002; Müller and Stadtmüller 2005):

logit
{
P(Yi = 1|Si,k)

} = β
(k)
0 +

∫ tk

0
β(k)(t){Xi(t) − μ(t)}dt

+Z�
i γ (k), (1)

where logit(u) = log {u/(1 − u)}, μ(t) = E{X(t)}, β
(k)
0 , γ (k)

are unknown coefficients, and β(k)(·) is an unknown coefficient
function that describes the association betweenYi andXi(t), t ∈
[0, tk]. For 0 ≤ t, t′ ≤ tk, let �

(k)
X (t, t′) = cov

{
Xi(t),Xi(t′)

}
be

the covariance function of the longitudinal biomarker up to
time tk. By Mercer’s theorem (Mercer 1909), �(k)

X (t, t′) can be
decomposed as

∑∞
l=1 λ

(k)
l φ

(k)
l (t)φ(k)

l (t′), where φ(k) = {φ(k)
l :

l = 1, . . . ,∞} are orthonormal eigenfunctions satisfying∫ tk
0 {φ(k)

l (t)}2dt = 1,
∫ tk
0 φ

(k)
l (t)φ(k)

l′ (t)dt = 0, for l 	= l′, and
λ

(k)
1 ≥ λ

(k)
2 ≥ . . . are the corresponding eigenvalues. Based on

this decomposition, a Karhunen-Loève expansion (Karhunen
1947) for Xi(t), t ∈ [0, tk] is

Xi(t) = μ(t) +
∞∑
l=1

ξ
(k)
il φ

(k)
l (t),

where ξ
(k)
il = ∫ tk

0 {Xi(t) − μ(t)}φ(k)
l (t)dt are uncorrelated ran-

dom variables with mean 0 and variance λ
(k)
l . In the literature,

φ(k) = {φ(k)
l : l = 1, . . . ,∞} are called functional principal

components (FPCs), and ξ
(k)
i = {ξ (k)

il , l = 1, . . . ,∞} are
called FPC scores for the ith individual. Notice that there are
K different models corresponding to K time points, indexed by
the superscript k. For different time points, the Karhunen-Loève
expansions are also different, yielding different FPCs and FPC
scores.

Express β(k)(t) in the associated eigenbasis to obtain
β(k)(t) = ∑∞

l=1 β
(k)
l φ

(k)
l (t). Plugging the expressions for Xi(t)

and β(k)(t) back into (1), and using the fact that φ(k) form an
orthonormal basis, it follows that (1) is equal to

logit
{
P(Yi = 1|Si,k)

} = β
(k)
0 +

∞∑
l=1

β
(k)
l ξ

(k)
il + Z�

i γ (k). (2)

In practice, one might select the first several leading FPCs to
approximate Xi(t), that is, Xi(t) ≈ μ(t) + ∑L

l=1 ξ
(k)
il φ

(k)
l (t),

where L is the minimum number of components needed to
explain a specified percentage of the variation, for example, 99%
is a common choice. Thus,

logit
{
P(Yi = 1|Si,k)

} ≈ β
(k)
0 +

L∑
l=1

β
(k)
l ξ

(k)
il + Z�

i γ (k)

= β
(k)
0 + (ξ

(k)
i )�β(k) + Z�

i γ (k),

in which ξ
(k)
i = (ξ

(k)
i1 , . . . , ξ (k)

iL )� and β(k) = (β
(k)
1 , . . . ,β(k)

L )�.
The parameters (β

(k)
0 ,β(k), γ (k)) can be estimated using the

following two steps:

• Step 1. The FPC scores ξ
(k)
i are not known because the latent

process Xi(·) is not directly observable, the eigenfunctions
{φ(k)

l (·)}l≥1 are not known, or both. For the ith individual,
define m(k)

i = sup{j : Uij ≤ tk}, to be the index
of the time point Uij immediately preceding tk. When
the repeated observations are sufficiently dense for each
subject, that is, if all m(k)

i are larger than some order of n
(Zhang and Wang 2016), one can pre-smooth the discrete
observations {(Uij, X̃ij) : j = 1, . . . ,m(k)

i } by fitting a local
linear regression, and the smoothed trajectories {X̂(k)

i (t) :
0 ≤ t ≤ tk, i = 1, . . . , n} are used to construct the
covariance, eigenvalues/basis and FPC scores; details are
given in Appendix D. When the design points are moderate
or sparse, we use the principal components analysis through
conditional expectation (PACE) approach to estimate the
FPC scores (Yao, Müller, and Wang 2005). Let X̃(k)

i =
(X̃i1, . . . , X̃im(k)

i
)�, φ

(k)
il = (φ

(k)
l (Ui1), . . . ,φ(k)

l (Uim(k)
i

))�,

μ
(k)
i = (μ(Ui1), . . . ,μ(Uim(k)

i
))�, we obtain the best linear

predictors for ξ
(k)
il given the noisy observations X̃(k)

i as
E[ξ (k)

il |X̃(k)
i ] = λ

(k)
l (φ

(k)
il )��−1

X̃(k)
i

(X̃(k)
i −μ

(k)
i ), where�

X̃(k)
i

=
cov(X̃(k)

i , X̃(k)
i ). Plugging in estimates of λ(k)

l ,φ(k)
il ,�

X̃(k)
i
,μ(k)

i

then yields the estimated FPC scores ξ̂
(k)
il = Ê[ξ (k)

il |X̃(k)
i ],

ξ̂
(k)
i = (ξ̂

(k)
i1 , . . . , ξ̂ (k)

iL )�. (See Appendix E for details.) Note
here that the FPC scores are estimated using the noisy
surrogates {X̃ij, i = 1, . . . , n, j = 1, . . . ,m(k)

i }, regardless
of dense design or not.

• Step 2. Fit a logistic regression of Yi given (ξ̂
(k)
i ,Zi) to

obtain the parameter estimates (β̂
(k)
0 , β̂

(k)
, γ̂ (k)

), where
β̂

(k) = (β̂
(k)
1 , . . . , β̂(k)

L )�.

The estimator of P(Yi = 1|Si,k) is thus

P̂(Yi = 1|Si,k) =
exp

{
β̂

(k)
0 + (ξ̂

(k)
i )�β̂

(k) + Z�
i γ̂

(k)
}

1 + exp
{
β̂

(k)
0 + (ξ̂

(k)
i )�β̂

(k) + Z�
i γ̂

(k)
} ,

from which we obtain b̂∗
k(Sk) = 1 if P̂(Y = 1|Sk) > 0.5 and 0

otherwise.

3.1.2. Estimation of E
{
Jk+1(Sk+1)

∣∣Sk
}

The plug-in estimator of JK(Sk) is ĴK(SK) = λcK + ρ̂K(SK) ∧
{1 − ρ̂K(SK)}. We estimate δK−1(SK−1) � E

{
JK(SK)

∣∣SK−1
}

by regressing ĴK(SK) on SK−1 using a functional linear model.
Let δ̂K−1(SK−1) denote the estimated regression (details
are given shortly) and d̂K−1(SK−1) the plug-in estimator of
d∗
K−1(SK−1), thus

ĴK−1(SK−1) = λcK−1 +
[
ρ̂K−1(SK−1) ∧ {1 − ρ̂K−1(SK−1)}

]
×I

{̂
dK−1(SK−1) 	= “no decision”

}
+ δ̂K−1(SK−1)I

{̂
dK−1(SK−1) = “no decision”

}
.
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We estimate δK−2(SK−2) � E
{
JK−1(SK−1)

∣∣Sk−2
}

by
regressing ĴK−1(SK−1) onSK−2 using a functional linearmodel.
This process is repeated recursively for k = K − 2, . . . , 1 to
obtain estimators δ̂1(S1), . . . , δ̂K−1(SK−1) and subsequently the
plug-in estimators d̂1, . . . , d̂K .

For k = 1, . . . ,K − 1, we posit a functional linear model of
the form

δk(Sk) = α
(k)
0 +

∫ tk

0
α(k)(t){X(t) − μ(t)}dt + Z�ω(k), (3)

where we have ignored the constant term λck (which can
be absorbed into an intercept), α

(k)
0 ,ω(k) are the unknown

parameters, and α(k)(·) is an unknown parameter function.
Write α(k)(t) as a linear combination of FPCs, α(k)(t) =∑∞

l=1 α
(k)
l φ

(k)
l (t). After choosing the first L leading FPCs, the

right-hand side of Equation (3) is approximated by

α
(k)
0 + (ξ (k))�α(k) + Z�ω(k),

where ξ (k) are the FPC scores and α(k) = (α
(k)
1 , . . . ,α(k)

L )�.
We estimate the unknown parameters α

(k)
0 , α(k), and ω(k) using

least squares with outcome Ĵk+1(Sk+1) and covariates (ξ̂
(k)
,Z)

for k = 1, . . . ,K − 1. An estimator of δk(Sk) is thus δ̂k(Sk) =
α̂

(k)
0 + (ξ̂

(k)
)�α̂

(k) + Z�ω̂
(k).

3.2. Cross-Validation to Choose Optimal λ

For a new individual indexed by i = n + 1. At time
tk, k = 1, . . . ,K, let Sn+1,k = (ξ̂

(k)
n+1,Zn+1) denote the

features for this new individual. The estimated FPC score
ξ̂

(k)
n+1 can be computed based on the longitudinal data X̃(k)

n+1 =
(X̃n+1,1, . . . , X̃n+1,m(k)

n+1
)� and the FPCA objects obtained from

the training data.
For a fixed λ, a decision rule for this new individual has the

following form. At time points k = 1, . . . ,K − 1,

d̂λ
k (Sn+1,k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if P̂(Y = 1|Sn+1,k)
≥ 1 − δ̂λ

k (Sn+1,k)
0 if P̂(Y = 1|Sn+1,k)

≤ δ̂λ
k (Sn+1,k)

“no decision” otherwise.

At the last time point tK = T,

d̂K(Sn+1,K) =
{

1 if P̂(Y = 1|Sn+1,K) > 0.5
0 otherwise,

where the value of λ does not affect d̂K . When λ is large, the
“no decision” option is rarely invoked, meaning that predictions
are based on the information from time interval [0, t1] only.
Alternatively, when λ is small, the “no decision” option is used
frequently and thus predictions are made using longer patient
trajectories.

For a prespecified budget limit B, we want to find the min-
imum λ such that its corresponding sequential decision rule

d̂λ = (̂dλ
1 , . . . , d̂λ

K−1, d̂K) satisfy C(̂dλ) ≤ B. Write d̂
λ

k =
(̂dλ

1 , . . . , d̂λ
k ), k = 1, . . . ,K − 1, and let Hk(̂d

λ

k−1) be a binary

state variable indicating whether a definite decision was made
before time tk (1 = no, 0 = otherwise). It follows that

C(̂dλ) = E
[
c1 +

K−1∑
k=1

ck+1Hk(̂d
λ

k−1)I{̂dλ
k (Sk) = “no decision”}

]
.

We use cross-validation to estimate an optimalλ. Specifically,
we partition the study cohort randomly into Q folds that are
roughly equal in size. Let Vq be the index set of the qth fold,
q = 1, . . . ,Q. For a fixed λ, and for each q ∈ {1, . . . ,Q},
we use the qth fold as a validation set and combine the other
folds into a training set. From the training set, we fit FPCA
decompositions and obtain the parameter estimates. Then we
use the fitted model to make the prediction for individuals in
the validation set. The average cost on the qth fold is

Ĉ(q)(̂dλ) = c1 + 1
nq

∑
i∈Vq

×
[ K−1∑
k=1

ck+1Hk(̂d
λ

k−1)I{̂dλ
k (Si,k) = “no decision”}

]
,

where nq is the number of individuals inVq. The cross-validated
estimator of C(̂dλ) is Ĉ(̂dλ) = 1

Q
∑Q

q=1 Ĉ(q)(̂dλ). We will
preselect a range of candidate values for λ, and search for the
minimum λ where the budget constraint is satisfied, that is,
Ĉ(̂dλ) ≤ B.

4. Theoretical Results

In this section, we establish theoretical results for the estimated
optimal sequential decision rule using the proposed method.
The theoretical developments are nontrivial. First, we extend the
recent work of Kong et al. (2016) frompartially functional linear
models to generalized functional partially linear models. In
addition, our proposed procedure involves modeling two com-
ponents that are intertwined, where we estimate δK−1(SK−1) by
regressing ĴK(SK) on SK−1, and ĴK(SK) itself is obtained from
the fitted logistic regression model (1). Finally, because the best
decision rule at the current stage depends on the best decision
rules at later stages, the theoretical results need to be worked out
stage by stage conditioning on the estimated rule at future stages.
We consider the dense sampling design. In addition, we assume
that there is no missing value for Y , and that the number of
baseline covariates p is fixed. Technical conditions and detailed
proofs are relegated to Appendix F to H.

We assume that the data-generating model satisfies Equa-
tion (1), and recall β(k)(t) = ∑∞

l=1 β
(k)
l φ

(k)
l (t). Let β

(k)
0∗ , γ

(k)∗
and β

(k)
l∗ denote the true values of the parameters for l ≥ 1.

Following Kong et al. (2016), we write β̃
(k)
l = {λ(k)

l }1/2β(k)
l ,

so that the FPC scores are on a common scale of variability.
In addition, let Ln be the number of FPC components used
to approximate X(t), and denote θ̃

(k) = (β
(k)
0 , β̃(k)�, γ (k)�)�

where β̃
(k) = (β̃

(k)
1 , . . . , β̃(k)

Ln )�. The proposed estimator is

θ̌
(k) = (β̂

(k)
0 , β̌

(k)�
, γ̂ (k)�

)� where β̌
(k) = (β̌

(k)
1 , . . . , β̌(k)

Ln )�,
β̌

(k)
l = {λ(k)

l }1/2β̂(k)
l , l = 1, . . . , Ln. Let θ̃

(k)
∗ denote the true

value of θ̃
(k), that is, θ̃ (k)

∗ = (β
(k)
0∗ , β̃

(k)�
∗ , γ (k)�∗ )� where β̃

(k)
∗ =
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(β̃
(k)
1∗ , . . . , β̃

(k)
Ln∗)

�, β̃
(k)
l∗ = {λ(k)

l }1/2β(k)
l∗ , l = 1, . . . , Ln. The

following theorem establishes the convergence rates of θ̌
(k)

and
P̂(Y = 1|Sk) to θ̃

(k)
∗ and P(Y = 1|Sk) respectively.

Theorem 2. Under conditions (A1)–(A9) in the supplementary
material, for any k = 1, . . . ,K, we have ‖θ̌ (k) − θ̃

(k)
∗ ‖ =

Op(L1/2n n−1/2). Subsequently, P̂(Y = 1|Sk) − P(Y = 1|Sk) =
Op(Lnn−1/2).

Recall α(k)(t) = ∑∞
l=1 α

(k)
l φ

(k)
l (t) and let α

(k)
0∗ ,ω

(k)∗ and
α

(k)
l∗ , l ≥ 1 be the true values of the parameters in model

(3). Similarly, we write α̃
(k)
l = {λ(k)

l }1/2α(k)
l . Denote ι̃(k) =

(α
(k)
0 , α̃(k)�,ω(k)�)� where α̃(k) = (α̃

(k)
1 , . . . , α̃(k)

Ln )�. The pro-
posed estimator is ι̌

(k) = (α̂
(k)
0 , α̌(k)�, ω̂(k)�

)� where α̌
(k) =

(α̌
(k)
1 , . . . , α̌(k)

Ln )�. Let ι̃(k)∗ denote the true value of ι̃(k), i.e., ι̃(k)∗ =
(α

(k)
0∗ , α̃

(k)�∗ ,ω(k)�∗ )� where α̃(k)∗ = (α̃
(k)
1∗ , . . . , α̃

(k)
Ln∗)

�, α̃
(k)
l∗ =

{λ(k)
l }1/2α(k)

l∗ , l = 1, . . . , Ln. The following theorem establishes
the convergence rates of ι̌

(k), δ̂λ
k (Sk) and thus the consistency

results for the estimated decision rules.

Theorem 3. Under conditions (A1)–(A12) in the supplementary
material, for any k = 1, . . . ,K − 1, we have ‖ι̌(k) − ι̃(k)∗ ‖ =
Op(L1/2n n−1/2). Subsequently, δ̂λ

k (Sk) − δλ
k (Sk) = Op(Lnn−1/2).

Furthermore, our estimated sequential decision rule is con-
sistent. That is, for fixed λ, (̂dλ

1 , . . . , d̂λ
K−1, d̂K) converges in

probability to the optimal decision rule (dλ∗
1 , . . . , dλ∗

K−1, d
∗
K).

Remark 1. The convergence rates of δ̂λ
k (Sk) are comparable to

those inTheorem3.1 of Laber and Staicu (2018).Under partially
functional linear models with treatment-covariate interactions,
Laber and Staicu (2018) showed that the functional Q-learning
estimator (an estimator of the linear predictor function) con-
verges at a rate of Op(Lnn−1/2 + L1/2n n−�), where � is dictated
by the slowest rate of convergence among the estimators of
μ, �X , and σε . In the dense design we consider here, it is
possible to obtain � = 1/2 (Zhang and Wang 2016), and thus
Op(Lnn−1/2 + L1/2n n−�) = Op(Lnn−1/2), the same rate as we
obtained for δ̂λ

k (Sk).

5. Simulation Studies

We conducted extensive simulation studies to evaluate the finite
sample performance of our proposed method. Similar to Gold-
smith, Greven, and Crainiceanu (2013), we generated the longi-
tudinal biomarker using the following model:

X̃i(t) = Xi(t) + εi(t) = μ(t) +
4∑

l=1
ξilφl(t) + εi(t), (4)

for t on the equally spaced grid {s/60, s = 0, . . . , 60}, μ(t) = 0
and εi(t) ∼ N(0, σ 2

ε ). The eigenfunctions were chosen as φ =
{φ1(t) = 1;φ2(t) = √

3(2t − 1);φ3(t) = √
5(6t2 − 6t +

1);φ4(t) = √
7(20t3 − 30t2 + 12t − 1)}. The score variances

are λl = 0.75l−1, l = 1, . . . , 4, and the FPC scores are normally

distributedwith ξil ∼ N(0, λl). Themeasurement error variance
is σ 2

ε = 0.01.
Notice that for each individual, there are 61 time points in

total. To reflect commonly encountered missing data situations,
we assume that the curve X̃i(t) is incompletely observed. We
randomly observe 10 points from grid {0, . . . , 24/60}, assuming
that the baseline measurement is always available. The remain-
ing 10 observations are randomly chosen from {25/60, . . . , 1}
without replacement. We pre-smooth the discrete observations,
and then use the smoothed trajectories to construct the covari-
ance, eigenvalues/basis and FPC scores. A design plot is also cre-
ated, which displays the assembled pairs (Uij,Uik) of all subjects
with n = 100 (Figure S1 of the supplementary material). As this
figure illustrates, the assembled pairs are dense in the domain
plane.

The outcome Y is generated according to four different sce-
narios:

Scenario 1. Let Z ∼ Bernoulli(0.6) represents a baseline
covariate, we assume that

logit {P(Yi = 1|Xi(t), t ∈ [0, 1],Zi)} = a0 + a1Xi(1) + a2Zi,

where a0 = 0, a1 = −0.5, a2 = 0.5. That is, the outcome Yi
depends only on Xi(1), the biomarker value at the final time
point.

Scenario 2.We assume that

logit {P(Yi = 1|Xi(t), t ∈ [0, 1],Zi)}
= a0 + a1biXi(1) + a2(1 − bi)Xi(0.5) + a3Zi,

where a0 = 0, a1 = a2 = −0.5, a3 = 0.5, and bi ∼
Bernoulli(0.5). Notice that bi indicates whether Yi depends
on Xi(1) or Xi(0.5). Hence, for half of the population, the
binary outcome depends on Xi(1) only, and for the other half,
it depends on Xi(0.5) only.

Scenario 3.We assume that

logit {P(Yi = 1|Xi(t), t ∈ [0, 1],Zi)}
= a0 +

∫ 1

0
β(t)Xi(t)dt + a1Zi, (5)

where a0 = −0.5, a1 = 0.5 and β(t) = √
2 sin(π t/2) +

3
√
2 sin(3π t/2) (similar to the simulation example in Shin

(2009)). In this scenario, the outcome is associated with the
overall trajectory of the longitudinal biomarker.

Scenario 4. This scenario mimicks our motivating example,
in which the outcome is whether the average HbA1c value was
lower or higher than 7% in the 6th year, and the longitudi-
nal biomarker is the HbA1c values over the first 5 years. We
generated X̃i(t) according to model (4), but now on interval
[0, 1.2] with grid {s/60, s = 0, . . . , 72}. Here, the interval [0, 1]
corresponds to the first 5 years, and [1, 1.2] corresponds to
the 6th year. As before, X̃i(t) is observed with 10 points from
{0, . . . , 24/60} and another 10 points from {25/60, . . . , 72/60}.
The outcome Yi is 1 if the average of X̃i(t) during time interval
(1, 1.2] is negative, and coded as 0 otherwise. A binary indicator
variable Oi is generated,

logit {P(Oi = 1|Xi(t), t ∈ [0, 1],Zi)}
= −0.5 −

∫ 1

0
Xi(t)dt + 0.5Zi,
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where Oi = 1 indicates that the ith individual does not drop
out or die during the interval [0, 1] (the first 5 years), and
Oi = 0 otherwise. The outcome Yi is missing either because
Oi = 0 or the ith individual has no measurements available
in the interval (1, 1.2]. Here, Yi is missing at random, and the
missing rate is around 50%. We predict the binary outcome
using the longitudinal biomarker information X̃i(t), t ∈ [0, 1]
and other baseline covariates. We varied the measurement error
variance σ 2

ε among (0.01, 0.1, 0.5) to investigate how it affected
the simulation results.

The performance of the following four methods were com-
pared:

1. Use the baseline biomarker value X̃i(0) to predict Yi (Base-
line). For this analysis, the cost was 1 as the biomarker is
measured only at time 0.

2. The traditional functional generalized linearmodel (FGLM).
For this analysis, the cost is 61, because each individual is
followed for 61 time points. The estimated FPC scores based
on these complete trajectories are used to fit the FGLM and
make the predictions.

3. Wait until a fixed time point and used the up-to-date
longitudinal information to make the prediction (Fixed-
30, 35, 40, 45, 50, and 55). For instance, Fixed-30 indi-
cates that we use data from the first 30 time points
{0, 1/60, . . . , 29/60} to fit FPCA, and then the estimated FPC
scores are used for prediction.

4. The proposed reinforced risk prediction (Reinforced-
30, 35, 40, 45, 50, and 55). For example, Reinforced-30means
that the average follow up time was no longer than 30
points, although the individual follow up times could vary.
In other words, on average, we would like to make a definite
prediction before time t = 0.5. In our simulation studies,
the predictions were made at {t1 = 24/60, t2 = 25/60, . . . ,
t37 = 1}.
The proposed and competing methods were implemented

using R software. The proposed method is freely available
through the reinforcedPred package hosted on the comprehen-
sive R network (cran.org). For each scenario, we considered
three sample sizes for training datasets: n = 100, 400 or
1000. The performances of four methods were evaluated on
an independent test dataset of 10,000 individuals. The reported
misclassification rate and average cost are estimated using 1000
Monte Carlo replications.

Results for Scenarios 1 to 3 are presented in Figure 1. As
expected, the performance of different methods improved as
sample sizes increased. The baseline analysis incurred little cost,
but suffered from a large misclassification error. On the other
hand, traditional functional generalized linear models led to a
small misclassification error, but at a higher cost. The proposed
method achieved a balance between these two methods, which
produced a high-quality predictionwithin the cost constraint. In
all three scenarios, Reinforced-45 had an error rate comparable
to FGLM, but with significantly lower cost. Compared to Fixed-
30, 35, . . . , 55, reinforced risk prediction consistently resulted in
an equal or smallermisclassification error while yielding a lower
average cost.

Figure 2 shows the results for Scenario 4. In this scenario,
the outcome Yi could be missing. Inverse probability weighting
(IPW) was used, where the weights were fitted on X̃i(t), t ∈
[0, 1] andZi.When σ 2

ε = 0.01, Reinforced-45, 50, 55 and FGLM
had similarmisclassification errors. However, as σ 2

ε increased to
0.5, there were notable differences among these methods. That
is, the more noisier the biomarker data is, the preferable to wait
longer before making a prediction. In practice, we could obtain
an estimator of σ 2

ε based on the training data (see step (2) in
Appendix E for details), and then use the estimated value as a
guideline.

We also evaluated the performance of our method with
moderate-dimensional baseline covariates. We adopted the
same data generating mechanisms as those in Scenarios
1, 2, and 3, but the dimension of baseline covariates was
increased to 50. In particular, Z = (Z1, . . . ,Z50), where
Z1, . . . ,Z25 were independent and identically distributed
with Bernoulli(0.6), and Z26, . . . ,Z50 were independent and
identically distributed with N(0, 1). Among these baseline
covariates, only Z1 attributed to the outcome variable. The
results are presented in Figure 3,wherewe employed the variable
selection techniques in Appendix C. Again, the proposed
method required less resources, but still made a high-quality
prediction.

In addition, we report the parameter estimation results for
the proposed method. Here we focus on Scenario 3 since its
data-generating model (5) aligns with Equation (1) at tK = T,
that is, the outcome model is correctly specified. For model (5),
Table 1 displays the bias, standard deviation, and mean squared
error (MSE) of â0, â1; and the functional mean squared error
(MSEf ) of β̂(t), MSEf = E

[∫ 1
0 {β̂(t) − β(t)}2dt

]
. The results

show that the bias, MSE and MSEf are reasonably small, and
decrease as sample size increases.

Additional simulations are presented in Appendix I. In par-
ticular, we showed that even if the outcome Y was generated
from a probit model and we used the logistic regression model
(1) instead, the proposed method still performed well by pro-
viding a cost-effective prediction.

6. Applications to the Diabetes Study

We analyze a cohort of diabetes patients treated under UW
Health, one of the country’s largest physician group practices
(DuGoff et al. 2018). This dataset contains 9101 patients who
were enrolled from 2003 to 2013, and who were followed up
every 3 months until the 4th quarter of 2013. Thus, the longest
follow up time is 11 years (44 quarters) while the average follow
up time is 4.57 years (18.28 quarters). We restricted our analysis
to a subpopulation of 8635 patients who had at least one HbA1c
measurement in the first 5 years. The binary outcome Y was
defined as: “1” = average HbA1c is lower than or equal to 7%
(under tight control) in the 6th year, “0” = otherwise. The longi-
tudinal biomarkers were the HbA1c values in the first 5 years.
The baseline covariates Z included gender, race, medication,
baseline age, and 45 indicators for other comorbidities, such
as indicators for congestive heart failure and chronic kidney
disease. Race was categorized into 3 groups: White, Black, and
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Figure 1. Misclassification error vs. cost for various risk prediction methods under Scenarios 1 to 3. The symbols are �: Baseline, �: FGLM, ©: Fixed-30, 35, . . . , 55, •:
Reinforced-30, 35, . . . , 55.

other. Medication was coded as “1” = receiving either insulin,
sulfonylurea or oral hypoglycemic agents, “0” = none of the
above three.

Note that patients are mostly over the age of 65 at baseline,
and are complex patients with comorbidities and complica-
tions (at later stages of diabetes). Hence, this cohort can be
approximately considered as a homogeneous population with
common mean and covariance functions of HbA1c levels over
time. In addition, we create a design plot where assembled
pairs (Uij,Uik) are displayed (Figure S2 of the supplementary
material). While the data available per subject are sparse, the
assembled data fill the domain of the covariance surface quite
densely, and thus it is appropriate to use PACE.

As indicated in the previous sections, the outcome Y was
missing for some participants as they either dropped out or died
during the first 5 years, or simply did not have any HbA1c mea-
surements available in the 6th year. In total, 3394 participants
had at least one measurement in the 6th year. IPW techniques

from Appendix C were employed to address this problem. We
performed FPCA on longitudinal HbA1c trajectories, and then
fit a logistic regression model for the missing data mechanism,
with leading FPC scores and baseline characteristics Z included
as covariates.

We applied the comparison methods outlined in Section 5.
There was a total of 21 time points counting the baseline quarter
across 5 years. Hence, the cost was 21 in the FGLM method.
Fixed-12, 13, . . . , 20 and Reinforced-12, 13, . . . , 20 were con-
ducted.Here, Fixed-13meant thatwe used the data from the first
13 time points, that is, data from the first 3 years including the
baseline, to fit FPCA. Reinforced-13 indicated that on average,
the decisions for patients were made by the end of the 3rd year,
although the decision time for each patient might vary.

To evaluate the performance of different methods, we ran-
domly split the data into a training and a testing set with 1:1
ratio. The risk prediction model was fitted using the training
set, and then the prediction rule was applied to the testing set.
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Figure 2. Misclassification error vs cost for various risk predictionmethods under Scenario 4. The symbols are�: Baseline,�: FGLM,©: Fixed-30, 35, . . . , 55, •: Reinforced-
30, 35, . . . , 55.

The empirical misclassification rates and the average cost were
calculated based on the testing set. This process was repeated
multiple times, and we reported the mean of misclassification
error and the average cost from 1000 replications in Figure 4.
Note that Reinforced-18, 19, 20 correspond to the same λ = 0,
and hence the dots are overlapped. The resulting error rate was
0.257 with the traditional functional generalized linear models
(FGLM), which used the full data. The Reinforced-17 model,
which on average made predictions one year earlier, yielded an
error rate of 0.263. The Reinforced-13 model also produced a
fairly close error rate of 0.285, while making predictions two
years earlier on average compared with FGLM method. Hence,
with the proposed method, we are able to make an early pre-
diction, with little sacrifice in prediction accuracy. In addition,

the curve produced by the proposed method lies below the
line connecting the results of the baseline and the FGLM, as
well as the line produced by Fixed-12, 13, . . . , 20. While the
average costs of the Fixed-12, 13, . . . , 20 are similar as those of
the Reinforced-12, 13, . . . , 20 methods, the proposed procedure
can wisely allocate the time for prediction based on individual
information and lead to lower error rates across all time points.
This also indicates that our method is cost-effective.

7. Discussion

Motivated by risk prediction among complex diabetic patients
we proposed reinforced risk prediction procedure as a means
of predicting long-term risk while balancing the cost, which
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Figure 3. Misclassification error vs cost for various risk prediction methods under Scenarios 1 to 3 with 50 baseline covariates. The symbols are�: Baseline,�: FGLM,©:
Fixed-30, 35, . . . , 55, •: Reinforced-30, 35, . . . , 55.

can be interpreted as monetary cost or the cost of lost time
to prevent complications. The proposed method, which relies
on approximate dynamic programming and functional data
analyses, is quite general and could be used to construct adaptive
triage plans for a wide range of chronic diseases. In addition, it
can be applied to other areas such as genomics, electronic com-
merce, and growth curve analysis, such as classifying temporal
gene expression curves into known gene groups, predicting
end prices of online auctions, and predicting the risk of being
overweight.

Compared to FGLM which uses the full-length records, the
proposed method saves cost but also sacrifices some prediction
accuracy. Indeed, there is always benefit-cost tradeoffs in mak-
ing clinical decisions, where cost can be monetary cost, patient

Table 1. Parameter estimation results under Scenario 3.

â0 â1 β̂(t)

bias SD MSE bias SD MSE MSEf

n = 100 −0.047 0.64 0.41 0.056 0.72 0.52 2.13
n = 400 −0.010 0.28 0.08 0.018 0.30 0.09 0.41
n = 1000 −0.009 0.18 0.03 0.006 0.19 0.03 0.22

burden, and side effects, etc. The interpretation and tolerance
over the tradeoff will depend on patient/clinician preferences.
Hence, when making the decision in practice once we obtain
data-driven rules, we need to communicate with the patient and
the clinician, and make plans accordingly.
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Figure 4. Analysis of the diabetes study data. Misclassification error vs cost for
various risk prediction methods. The symbols are�: Baseline,�: FGLM, ©: Fixed-
12,…, 20, •: Reinforced-12,…, 20.

In our current framework, we perform separate FPCA at
different prediction time points. Suggested by one reviewer, it
would be more efficient to borrow information across different
prediction time points and implement an on-line update of the
algorithm. This will require incremental updates in covariance
function once new time points come in. One possibility is to
impose certain parametric structure on the correlation function,
for example, by assuming that corr{Xi(t),Xi(t′)} is a parametric
function of |t − t′|. New algorithms and theoretical develop-
ments are needed, which are beyond the scope of this paper.

In the theoretical analysis, we assume that there is nomissing
value forY , and that p is fixed. The caseswithmissing values ofY
or the number of baseline covariates diverging, that is, pn → ∞
pose additional theoretical challenges. In particular, it would
be interesting to investigate how inverse probability weighting
affects the convergence rates of the parameter estimates. There
are several other directions this work may be extended to. First,
we can incorporate individual patient preferences (Butler et al.
2018) into the framework. Second, we can consider settings
with multiple phases of treatment. In principle, reinforced risk
prediction could be appliedwithin each phase though alignment
and delayed effects would have to be carefully considered. In
addition, there could be multiple biomarkers or multi-category
involved in the decision making. We are currently exploring
solutions for these cases.

Supplementary Material

The supplementary material includes additional simulation results, regu-
larity conditions, auxiliary results and proofs.
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