
Nonlinear Analysis: Real World Applications 73 (2023) 103899

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

www.elsevier.com/locate/nonrwa

Sharp critical thresholds for a class of nonlocal traffic Ćow models✩

Thomas Hamori, Changhui Tan ∗

Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

a r t i c l e i n f o

Article history:
Received 22 April 2022
Received in revised form 25 November
2022
Accepted 30 March 2023
Available online xxxx

Keywords:
Nonlocal conservation law
Traffic Ćow
Critical threshold
Global regularity
Shock formation

a b s t r a c t

We study a class of traffic Ćow models with nonlocal look-ahead interactions.
The global regularity of solutions depend on the initial data. We obtain sharp
critical threshold conditions that distinguish the initial data into a trichotomy:
subcritical initial conditions lead to global smooth solutions, while two types of
supercritical initial conditions lead to two kinds of Ąnite time shock formations.
The existence of non-trivial subcritical initial data indicates that the nonlocal look-
ahead interactions can help avoid shock formations, and hence prevent the creation
of traffic jams.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The history of mathematical theory of traffic Ćow dates back to the 1920s. Many successful models have

been proposed and studied to understand the interactions and the emergent behaviors of vehicles on the

road.

One popular class of macroscopic traffic Ćow models are based on the continuum description of the

dynamics of the traffic density

∂tρ + ∂x(f(ρ)) = 0, f(ρ) = ρu(ρ). (1.1)

Here, f is known as the Ćux, which depends on local traffic density ρ = ρ(t, x). The traffic velocity u is

modeled through the relation u = u(ρ). A fundamental assumption is that u is a decreasing function in ρ,

meaning vehicles slow down as traffic density increases.

A celebrated model under this framework is the LighthillŰWhithamŰRichards (LWR) model [1,2], where

the velocity u(ρ) = 1 − ρ decays linearly in ρ. The corresponding Ćux reads

f(ρ) = ρ(1 − ρ). (1.2)
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The LWR model successfully captures the phenomenon of shock formation, which is responsible for the

creation of traffic jams.

The Ćux in (1.2) is concave and symmetric (with respect to ρ = 1
2 ). However, statistical data from real-

world traffic networks suggest that the Ćux should be neither concave nor symmetric. Rather, observed

empirical Ćuxes are right-skewed and become convex when the density is large, see e.g. [3,4]. In particular,

a family of Ćuxes were introduced in [5] that better Ąt the data

fJ(ρ) = ρ(1 − ρ)J , J > 0. (1.3)

For J > 1, the Ćux fJ is right-skewed, and switches from concave to convex at a point ρc = 2
J+1 ∈ (0, 1).

Another popular class of models that aim to better Ąt the data are known as second order models, e.g. [6,7].

Instead of imposing the relation u = u(ρ), the velocity u has its own dynamics. These models are not covered

in the present work.

In this paper, we consider (1.1) with a general class of Ćuxes with the following hypotheses

f ∈ C([0, 1]) ∩ C∞([0, 1)), f(0) = f(1) = 0, f ′(0) > 0, f ′′(ρ)

∮
< 0 ρ ∈ [0, ρc),

> 0 ρ ∈ (ρc, 1),
(1.4)

with a parameter ρc ∈ (0, 1]. The assumptions in (1.4) cover two scenarios of our concern. First, when ρc = 1,

the Ćux is concave in [0, 1]. Examples include the Ćux (1.2) in the LWR model, as well as Ćuxes in (1.3) with

J ∈ (0, 1]. Second, when ρc ∈ (0, 1), the convexity of f changes at ρc. The Ćuxes in (1.3) with J > 1 lie in

this category.

The system (1.1) with Ćux (1.4) is a scalar conservation law. The behaviors of global solutions have been

well-studied, see e.g. the book [8]. In particular, the system develops shock singularity in Ąnite time, for any

generic smooth initial data that is not monotone decreasing.

We are interested in the following class of traffic Ćow models with nonlocal look-ahead interaction

∂tρ + ∂x

(
f(ρ)e−ρ̃

[
= 0, ρ̃(t, x) =

∫ ∞

0

K(y)ρ(t, x + y) dy. (1.5)

Here, the term e−ρ̃ is known as the Arrhenius-type slowdown factor. ρ̃ represents the heaviness of the traffic

ahead, weighted by a kernel K.

The system (1.5) was Ąrst introduced by Sopasakis and Katsoulakis [9] where the Ćux f is taken as in

the LWR model (1.2), and the interaction kernel

K(x) = 1[0,L](x), (1.6)

where 1E denotes the indicator function of the set E. They formally derived (1.5) from a microscopic cellular

automata (CA) model. In the SK model, the look-ahead distance is L and the weight is a constant. Another

class of kernels has been studied numerically in [10] where

K(x) =

∮
1 − x

L 0 < x < L,

0 x ≥ L.
(1.7)

Finite time shock formations were observed in both models. The so-called wave breaking phenomenon was

studied in [11].

Lee in [12] proposed and studied (1.5) where the Ćux is taken as (1.3) with J = 2. The non-concave-convex

Ćux can lead to different types of shock formations. Later in [13], the system was derived from a class of CA

models. An intriguing observation was that the parameter J in (1.3) corresponds to the number of cells a car

moved in one step of the microscopic dynamics. See the recent work [14] for generalizations and numerical

implementations.
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The global wellposedness of (1.5) and related nonlocal traffic Ćow models have been extensively studied

under the framework of nonlocal conservation laws. The theory of entropic weak solutions has been

established in [15Ű24]. These solutions can be discontinuous, allowing the formation of shocks.

One challenging question is whether (1.5) admits global smooth solutions. In other words, the question

asks whether the nonlocal slowdown interaction can help prevent shock formations, and consequently avoid

the creation of traffic jams.

A positive answer was given in [25] in a special case when the Ćux f is (1.2), and the interaction kernel

K is (1.6) with look-ahead distance L = ∞, namely

K(x) = 1[0,∞)(x), (1.8)

and correspondingly

ρ̃(t, x) =

∫ ∞

x

ρ(t, y)dy. (1.9)

A sharp critical threshold on the initial data was established that distinguishes the global behavior of the

solutions: subcritical initial data lead to global smooth solutions while supercritical initial data lead to Ąnite-

time shock formations. Such critical threshold phenomenon has been studied in the context of Eulerian

dynamics, including the EulerŰPoisson equations [26Ű29], the Euler-alignment equations [29Ű32], and more

systems of conservation laws [25,33,34].

In this paper, we study the critical threshold phenomenon for (1.5) with the general class of Ćuxes in

(1.4). Our Ąrst result is a generalization of [25], considering concave Ćuxes.

Theorem 1.1. Consider Eq. (1.5) with smooth initial data ρ0 ∈ L1
+ ∩ Hk(R) with k > 3/2 and

ρ0(x) ≤ ρM < 1. Suppose the Ćux f is concave, satisfying (1.4) with ρc = 1. Suppose the nonlocal term

ρ̃ satisĄes (1.9). Then there exists a function σ : [0, 1] → [0, ∞) such that

• If the initial data is subcritical, satisfying

ρ′
0(x) ≤ σ(ρ0(x)), ∀ x ∈ R,

then there exists a global smooth solution, namely for any T > 0,

ρ ∈ C
(
[0, T ]; L1

+ ∩ Hk(R)
[
. (1.10)

• If the initial data is supercritical, satisfying

∃ x0 ∈ R s.t. ρ′
0(x0) > σ(ρ0(x0)),

then the solution must blow up in Ąnite time. More precisely, there exists a location x ∈ R and a Ąnite

time T∗ > 0 such that

lim
t→T∗−

∂xρ(t, x) = +∞.

Remark 1.1. Theorem 1.1 recovers the result in [25] when taking the Ćux f in (1.2). A similar critical

threshold phenomenon is obtained for general concave Ćuxes. The left graph in Fig. 1 illustrates the shape

of the threshold function σ. It can be constructed via the procedure described in Theorem 3.1.

Note that the subcritical region allows ρ′
0(x) to take positive values. Hence, there is a family of non-

monotone decreasing initial data that do not lead to shock formations. This provides a strong indication

that the nonlocal look-ahead interaction can help preventing the creation of traffic jams, for subcritical

initial conĄgurations.
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Fig. 1. Illustration of the critical thresholds. Left: when f is concave, the region above σ is supercritical, and the region below σ is

subcritical. Right: when f switches from concave to convex at ρ
c
, the region above σ is type I supercritical, the region below γ is

type II supercritical, and the remaining region is subcritical.

The next main result concerns Ćuxes that are not concave. The lack of concavity leads to a major difference

in the global behaviors of the solutions. In particular, there are two different types of shock formations.

There is a trichotomy on initial data that lead to global regularity and two types of Ąnite time blowup. The

following theorem provides a sharp characterization on the threshold conditions.

Theorem 1.2. Consider Eq. (1.5) with smooth initial data ρ0 ∈ L1
+ ∩ Hk(R) with k > 3/2 and

ρ0(x) ≤ ρM < 1. Suppose the Ćux f satisĄes (1.4) with ρc < 1, that is, f is concave on [0, ρc] and convex

on [ρc, 1]. Suppose the nonlocal term ρ̃ satisĄes (1.9). Then there exists two threshold functions σ and γ such

that

• If the initial data is subcritical, satisfying

γ(ρ0(x)) < ρ′
0(x) ≤ σ(ρ0(x)), ∀ x ∈ R,

then there exists a global smooth solution ρ satisfying (1.10).

• If the initial data is type I supercritical, satisfying

∃ x0 ∈ R s.t. ρ′
0(x0) > σ(ρ0(x0)),

then the solution must blow up in Ąnite time. More precisely, there exists a location x ∈ R and a Ąnite

time T∗ > 0 such that

lim
t→T∗−

∂xρ(t, x) = +∞,

unless type II blowup occurs earlier than T∗.

• If the initial data is type II supercritical, satisfying

∃ x0 ∈ R s.t. ρ′
0(x0) ≤ γ(ρ0(x0)),

then the solution must blow up in Ąnite time. More precisely, there exists a location x ∈ R and a Ąnite

time T∗ > 0 such that

lim
t→T∗−

∂xρ(t, x) = −∞,

unless type I blowup occurs earlier than T∗.
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Remark 1.2. The major different phenomenon compared with the models with concave Ćuxes is the

presence of the type II blowup. The description of the new threshold function γ is given in Theorem 3.2. It

is a function deĄned for ρ > ρc with a vertical asymptote at ρ = ρc, namely

lim
ρ→ρc+

γ(ρ) = −∞.

The right graph in Fig. 1 illustrates the shapes of the threshold functions. Our result is sharp: for any x ∈ R,

(ρ0(x), ρ′
0(x)) lies in exactly one of the three regions, which then lead to three types of global behaviors.

Note that the threshold functions σ and γ may only be deĄned in a subset of [0, 1] and (ρc, 1] respectively.

See Remark 4.1 for a clariĄcation on the meaning of the threshold conditions if σ(ρ0(x)) or γ(ρ0(x)) is

undeĄned.

Our Ąnal result concerns the class of Ćuxes in (1.3). Theorems 1.1 and 1.2 can be applied to the system

with f = fJ for J ∈ (0, 1] and J > 1, respectively. Remarkably, we Ąnd explicit expressions for the

corresponding threshold functions.

Theorem 1.3. Suppose the Ćux f = fJ satisĄes (1.3). Then the threshold functions σ = σJ and γ = γJ can

be explicitly expressed as follows. For any J > 0

σJ(ρ) =
ρ(1 − ρ)

J
, ρ ∈ [0, 1].

For any J > 1 we have ρc = 2
J+1 and

γJ(ρ) =
ρ2(1 − ρ)

⎞
ρ − 4J

(J+1)2

⎡

J(ρ − ρc)2
, ρ ∈ (ρc, 1].

We would like to mention that all our results are based on the particular choice of kernel in (1.8). This

allows us to obtain sharp results. The kernel K = 1[0,∞) features a jump discontinuity at the origin,

representing that the interaction is look-ahead. Indeed, such jump drives the main phenomenon: global

regularity for a class of non-trivial subcritical initial data. We believe the same phenomenon holds for general

look-ahead interactions, where the kernel has the same jump structure at the origin, like (1.6) and (1.7). We

shall leave the generalization for future investigation.

The rest of the paper is organized as follows. In Section 2, we establish a local wellposedness theory for

a general class of nonlocal traffic Ćow models, including the system (1.5) of our concern. In Section 3, we

provide unique constructions of the threshold functions σ and γ. In Section 4, we study the global behaviors

of solutions for the three types of initial data, proving Theorems 1.1 and 1.2.

Notations

We denote Lp(R) the Lebesgue spaces in R. The space L1
+(R) consists non-negative L1 functions in R.

We denote Hk(R) the Sobolev space, endowed with the norm

∥g∥2
Hk = ∥g∥2

L2 + ∥ dk

dxk g∥2
L2 ,

for any non-negative integer k. For non-integer k, the space Hk(R) is deĄned via Fourier transform

∥g∥Hk = ∥(I − ∆)k/2g∥L2 =
///F−1

[
(1 + ♣ξ♣2)k/2Fg

]///
L2

,
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where F and F−1 are the forward and inverse Fourier transforms in R, respectively. We denote ∥ · ∥Ḣk(R)

the homogeneous semi-norm with ∥g∥Ḣk = ∥ dk

dxk g∥L2 , and for general k > 0

∥g∥Ḣk = ∥(−∆)k/2g∥L2 =
///F−1

[
♣ξ♣kFg

]///
L2

.

The notation ⌈k⌉ refers to the smallest integer greater than or equal to k.

In Section 2, we will repeatedly use the letter C to refer to a constant C > 0 whose value may change

line by line. The constant might depend on parameters and initial conditions. We write C(p) to represent

that the constant depends on the parameter p.

Finally, we denote g′ the derivative of g, if g has a single variable; and ġ denotes the material derivative

of g = g(t, x) along a characteristic path

ġ(t, X(t)) =
d

dt
g(t, X(t)) = ∂tg +

(
(f ′(ρ))e−ρ̃

[
∂xg,

where f is the Ćux and X(t) is the characteristic path deĄned in (2.4).

2. Local wellposedness and regularity criteria

In this section, we establish a local wellposedness theory for a general class of nonlocal traffic Ćow models

∂tρ + ∂x

(
f(ρ)e−ρ̃

[
= 0, ρ̃(t, x) =

∫

R

K(y)ρ(t, x + y) dy. (2.1)

We shall present the theorem with general assumptions on the kernel K:

K ∈ BV (R), 0 ≤ K(x) ≤ K. (2.2)

Here, we only require K to be bounded, nonnegative, and have bounded total variation. In particular, the

interaction does not need to be look-ahead. We shall comment that all look-ahead interactions (1.6), (1.7)

and (1.8) satisfy the assumption (2.2), with K = 1 and ♣K♣BV ≤ 2.

Let us start with the statement of the local wellposedness theory for strong solutions in Sobolev space

Hk. We take k > 3
2 to ensure ρ0 is Lipschitz.

Theorem 2.1 (Local Wellposedness). Let k > 3
2 . Consider (2.1) with smooth initial condition

ρ0 ∈ L1
+ ∩ Hk(R).

Assume the Ćux f satisĄes (1.4), and the kernel K satisĄes (2.2). Then there exists a time T > 0 such that

solution ρ = ρ(t, x) exists and

ρ ∈ C
(
[0, T ]; L1

+ ∩ Hk(R)
[
.

Moreover, the solution exists in [0, T ] as long as

∫ T

0

∥∂xρ(t, ·)∥L∞dt < ∞. (2.3)

Local wellposedness of (2.1) has been studied in [25] for speciĄc Ćux (1.2) and interaction kernel (1.8).

Here, we extend the result to general Ćuxes and kernels. We also provide a regularity criterion (2.3). It allows

us to study global wellposedness based on the control of ∂xρ.

In the rest of the section, we present a proof of Theorem 2.1, using a priori energy estimates. The focus

is on the proper treatment of the nonlinearity in f and the nonlocality in the term e−ρ̃, where nontrivial

commutator and composition estimates are used.

6



T. Hamori and C. Tan Nonlinear Analysis: Real World Applications 73 (2023) 103899

2.1. A priori bounds

First, we state the conservation of mass. Integrating (2.1) in x gives

d

dt

∫

R

ρ(t, x)dx = −
∫

R

∂x

(
f(ρ)e−ρ̃

[
dx = 0.

Let us denote the total mass

m :=

∫

R

ρ(t, x) dx =

∫

R

ρ0(x) dx.

Next, we consider the characteristic path X(t, x) originated at x ∈ R

∂tX(t, x) = f ′(ρ(t, X(t, x)))e−ρ̃(t,X(t,x)), X(t = 0, x) = x. (2.4)

We shall suppress the x dependence and write X(t) from now on. Along each characteristic path, we have

d

dt
ρ(t, X(t)) = −ρ(t, X(t))f(ρ(t, X(t)))e−ρ̃(t,X(t)). (2.5)

This leads to the following maximum principle.

Proposition 2.1 (Maximum Principle). Let ρM ∈ (0, 1]. Let ρ = ρ(t, x) be a classical solution of (2.1) in

[0, T ] × R with initial condition ρ0(x) ∈ [0, ρM ] for all x ∈ R. Then, ρ(t, x) ∈ [0, ρM ] for all x ∈ R and

t ∈ [0, T ].

Proof. Since f(0) = f(1) = 0, ρ = 0 and ρ = 1 are equilibrium states of (2.5). Hence, ρ0 ∈ [0, 1] implies

ρ(t) ∈ [0, 1]. Moreover, −ρf(ρ)e−ρ̃ < 0 for any ρ ∈ (0, 1). Hence, if ρ0 ≤ ρM < 1, we have ρ(t) < ρ0 ≤ ρM

for any t ≥ 0. □

Finally, we present a priori bounds on the nonlocal term e−ρ̃. Applying the deĄnition of ρ̃ in (2.1) and

the bounds on the kernel K in (2.2), we obtain the bounds

0 ≤ ρ̃(t, x) ≤ Km, (2.6)

which then implies

e−Km < e−ρ̃ ≤ 1. (2.7)

Furthermore, we have the following bound on ∂x(e−ρ̃).

Proposition 2.2. Under the same assumptions as in Proposition 2.1, we have

∥∂x(e−ρ̃)∥L∞ ≤ ♣K♣BV . (2.8)

Proof. First, apply (2.7) and get

∥∂x(e−ρ̃)∥L∞ = ∥e−ρ̃(−∂xρ̃)∥L∞ ≤ ∥∂xρ̃∥L∞ .

It remains to control ∂xρ̃. We apply maximum principle and compute

♣∂xρ̃(t, x)♣ =

\\\\
∫ ∞

−∞

K(y)∂xρ(t, x + y) dy

\\\\ ≤ ♣K♣BV · ρM ≤ ♣K♣BV , (2.9)

which directly implies (2.8). □
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2.2. L2 energy estimate

Let us integrate (2.1) against ρ and get

1

2

d

dt
∥ρ(t, ·)∥2

L2 = −
∫

R

ρ ∂x

(
f(ρ)e−ρ̃

[
dx =

∫

R

∂xρ f(ρ)e−ρ̃ dx =

∫

R

∂xF (ρ) e−ρ̃ dx

=

∫

R

−F (ρ) ∂x

(
e−ρ̃
[

dx ≤ ∥∂x

(
e−ρ̃
[
∥L∞∥F (ρ)∥L1 .

Here the function F is the primitive of f with F (0) = 0. From (1.4), we know that f(x) ≤ f ′(0)x for all

x ∈ [0, 1]. Therefore, we can estimate

♣F (x)♣ =

\\\\
∫ x

0

f(y) dy

\\\\ ≤ f ′(0)

2
x2.

Since ρ ∈ [0, 1], we get

∥F (ρ)∥L1 ≤ f ′(0)

2
∥ρ∥2

L2 .

Apply (2.8) and we conclude with

1

2

d

dt
∥ρ(t, ·)∥2

L2 ≤ f ′(0)♣K♣BV

2
∥ρ(t, ·)∥2

L2 . (2.10)

2.3. Hk energy estimate

Now, we consider the evolution of the homogeneous Ḣk semi-norm of ρ

∥ρ(t, ·)∥Ḣk = ∥Λkρ(t, ·)∥L2 ,

where Λ = (−∆)1/2 denotes the fractional Laplacian operator.

Let us Ąrst state the following estimates. We refer the proofs to [25] and references therein.

Lemma 2.1 (Fractional Leibniz Rule). Let k ≥ 0, g, h ∈ L∞ ∩ Ḣk(R). There exists a constant C > 0,

depending only on k, such that

∥gh∥Ḣk ≤ C
(
∥g∥L∞∥h∥Ḣk + ∥g∥Ḣk ∥h∥L∞

[
.

Lemma 2.2 (Commutator Estimate). Let k ≥ 1, g ∈ L∞ ∩ Ḣk(R), and h ∈ L∞ ∩ Ḣk−1(R). There exists a

constant C > 0, depending only on k, such that

∥[Λk, g]h∥L2 ≤ C
(
∥∂xg∥L∞∥h∥Ḣk−1 + ∥g∥Ḣk ∥h∥L∞

[
,

where the commutator is denoted by [Λk, f ]g = Λ
k(fg) − fΛkg.

Lemma 2.3 (Composition Estimate). Let k > 0, g ∈ L∞ ∩ Ḣk(R), and h ∈ C⌈k⌉(Range(g)). Then, the

composition h◦g ∈ L∞ ∩ Ḣk(R). Moreover, there exists a constant C > 0, depending on k, ∥h∥C⌈k⌉(Range(g)),

and ∥g∥L∞ , such that

∥h ◦ g∥Ḣk ≤ C∥g∥Ḣk .

8
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To begin with, we act Λ
k on (2.1), integrate against Λ

kρ and get

1

2

d

dt
∥ρ(t, ·)∥2

Ḣk = −
∫

R

Λ
kρ · Λk∂x

(
f(ρ)e−ρ̃

[
dx

= −
∫

R

Λ
kρ · Λk

⎞
f ′(ρ)∂xρ · e−ρ̃ − f(ρ) · e−ρ̃∂xρ̃

⎡
dx

= −
∫

R

Λ
kρ · Λk∂xρ · f ′(ρ)e−ρ̃dx −

∫

R

Λ
kρ · [Λk, f ′(ρ)e−ρ̃]∂xρ dx

+

∫

R

Λ
kρ · Λk

(
f(ρ)e−ρ̃∂xρ̃

[
dx

= I + II + III.

We bound the three terms one by one. For the Ąrst term we use integration by parts

I = −
∫

R

∂x

⎤
(Λkρ)2

2

⎣
· f ′(ρ)e−ρ̃ dx =

1

2

∫

R

(Λkρ)2 · ∂x

(
f ′(ρ)e−ρ̃

[
dx.

Applying (2.7) and (2.8), we estimate

\\\∂x

(
f ′(ρ)e−ρ̃

[\\\ =
\\\f ′′(ρ)e−ρ̃∂xρ + f ′(ρ)∂x(e−ρ̃)

\\\ ≤ ∥f∥C2([0,ρM ])(∥∂xρ∥L∞ + ♣K♣BV ).

This leads to the bound

I ≤ 1

2
∥f∥C2([0,ρM ])(∥∂xρ∥L∞ + ♣K♣BV )∥ρ∥2

Ḣk . (2.11)

Moving on to the second term, we apply Lemma 2.2 and get

II ≤ ∥ρ∥Ḣk

//[Λk, f ′(ρ)e−ρ̃]∂xρ
//

L2

≤ C(k)∥ρ∥Ḣk

⎞
∥∂x(f ′(ρ)e−ρ̃)∥L∞∥∂xρ∥Ḣk−1 + ∥f ′(ρ)e−ρ̃∥Ḣk ∥∂xρ∥L∞

⎡
.

For convenience in notations, we shall use C to denote the constants, which can change line by line. We will

also keep track of the dependence of the constant with respect to the parameters.

Now we focus on the estimate of ∥f ′(ρ)e−ρ̃∥Ḣk . Apply Lemma 2.1

∥f ′(ρ)e−ρ̃∥Ḣk ≤ C(k)
⎞

∥f ′(ρ)∥L∞∥e−ρ̃∥Ḣk + ∥f ′(ρ)∥Ḣk ∥e−ρ̃∥L∞

⎡
. (2.12)

The term ∥e−ρ̃∥Ḣk can be estimated as follows.

Proposition 2.3. For k ≥ 1,

∥e−ρ̃∥Ḣk ≤ C(k, Km, ♣K♣BV )∥ρ∥Ḣk−1 . (2.13)

Proof. We begin by applying Lemma 2.3 with g(x) = ρ̃(t, x) and h(x) = e−x. From (2.6) we know

∥g∥L∞ ≤ Km. Moreover, ∥h∥C∞([0,Km]) ≤ 1. Therefore, we have

∥e−ρ̃∥Ḣk ≤ C(k, Km)∥ρ̃∥Ḣk .

Next, we apply YoungŠs inequality and get

∥ρ̃∥Ḣk = ∥∂xΛ
k−1ρ∥L2 =

////
∫

R

K(y)∂x(Λk−1ρ) dy

////
L2

≤ ♣K♣BV ∥Λk−1ρ∥L2 . (2.14)

Put together and we conclude with (2.13). □

9
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For the term ∥f ′(ρ)∥Ḣk , we again apply Lemma 2.3 with g(x) = ρ(t, x) and h(x) = f ′(x). From the

maximum principle, ∥g∥L∞ ≤ ρM < 1. Moreover,

∥h∥C⌈k⌉(Range(g)) ≤ ∥f∥C⌈k⌉+1([0,ρM ]),

which is bounded due to the assumptions on f in (1.4). Hence,

∥f ′(ρ)∥Ḣk ≤ C(k, ∥f∥C⌈k⌉+1([0,ρM ]))∥ρ∥Ḣk . (2.15)

Applying (2.8), (2.13) and (2.15) to (2.12) we get

∥f ′(ρ)e−ρ̃∥Ḣk ≤ C(k, Km, ♣K♣BV , ∥f∥C⌈k⌉+1([0,ρM ]))∥ρ∥Hk .

Consequently, we have the bound on the second term

II ≤ C(k, Km, ♣K♣BV , ∥f∥C⌈k⌉+1([0,ρM ]))(1 + ∥∂xρ∥L∞)∥ρ∥Ḣk ∥ρ∥Hk . (2.16)

Finally, let us estimate the third term using Lemma 2.1

III ≤ ∥ρ∥Ḣk ∥f(ρ)e−ρ̃∂xρ̃∥Ḣk

≤ C(k)∥ρ∥Ḣk

⎞
∥f(ρ)∥Ḣk ∥e−ρ̃∂xρ̃∥L∞ + ∥e−ρ̃∥Ḣk ∥f(ρ)∂xρ̃∥L∞

+ ∥∂xρ̃∥Ḣk ∥f(ρ)e−ρ̃∥L∞

⎡

= C(k)∥ρ∥Ḣk

(
III1 + III2 + III3

[
.

For III1, use (2.7), (2.9) and (2.15) (with f ′ replaced by f)

III1 ≤ C(k, ∥f∥C⌈k⌉([0,ρM ]))♣K♣BV ∥ρ∥Ḣk .

For III2, use (2.9) and (2.13)

III2 ≤ C(k, Km, ♣K♣BV )∥f∥C0([0,ρM ])♣K♣BV ∥ρ∥Ḣk−1 .

For III3, use (2.7) and (2.14)

III3 ≤ ∥f∥C0([0,ρM ])♣K♣BV ∥ρ∥Ḣk .

All together, we obtain

III ≤ C(k, Km, ♣K♣BV , ∥f∥C⌈k⌉([0,ρM ]))∥ρ∥Ḣk ∥ρ∥Hk . (2.17)

Collecting the estimates (2.11), (2.16), (2.17), we end up with the estimate on Hk energy (k ≥ 1) as

follows.
1

2

d

dt
∥ρ(t, ·)∥2

Ḣk ≤ C(k, Km, ♣K♣BV , ∥f∥C⌈k⌉+1([0,ρM ]))(1 + ∥∂xρ∥L∞)∥ρ∥Ḣk ∥ρ∥Hk , (2.18)

where the constant C is Ąnite under our assumptions on f and K.

2.4. Proof of Theorem 2.1

DeĄne an energy

Y (t) = ∥ρ(t, ·)∥2
L2 + ∥ρ(t, ·)∥2

Ḣk .

Clearly, Y (t) is equivalent to ∥ρ(t, ·)∥2
Hk . Combining the L2 and Hk energy estimates (2.10) and (2.18), we

have the bound on the evolution of Y as follows

Y ′(t) ≤ C(1 + ∥∂xρ(t, ·)∥L∞)∥ρ(t, ·)∥2
Hk . (2.19)

10
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Let k > 3/2, from the Sobolev embedding theorem, we have ∥∂xρ∥L∞ ≤ C(k)∥ρ∥Hk . This leads to a bound

Y ′(t) ≤ C(1 + Y 1/2)Y (t).

Then there exists a time T∗ > 0, depending on Y (0) and C, such that Y (t) exists and is bounded for

t ∈ [0, T∗]. This Ąnishes the local wellposedness proof.

Moreover, we apply Grönwall inequality to (2.19) and obtain

Y (T ) ≤ Y (0) exp

⎠∫ T

0

C(1 + ∥∂xρ(t, ·)∥L∞) dt

⎜
.

Therefore, Y (T ) remains bounded if criterion (2.3) holds.

3. Critical thresholds

In this section, we restrict our attention to our main Eq. (1.5) with the special kernel (1.8). The goal is

to construct threshold functions that distinguish the global behaviors of the solutions.

From the regularity criterion (2.3), we know that the solution is globally regular if and only if ∂xρ is

bounded. Let us denote

d = ∂xρ.

We shall focus on the boundedness of d.

Differentiating (1.5) in x, we can write the dynamics of d as

∂td + f ′(ρ)e−ρ̃∂xd =
(
−f ′′(ρ)d2 − (f(ρ) + 2ρf ′(ρ))d − ρ2f(ρ)

[
e−ρ̃.

Here we have used the special structure of (1.9). In particular,

∂xρ̃ = −ρ.

Let us denote ḋ as the time derivative along the characteristic a path X(t), namely

ḋ =
d

dt
d(t, X(t)).

Then, together with (2.5), we obtain a coupled dynamics of (ρ, d) along each characteristic path
∮

ρ̇ = −ρf(ρ)e−ρ̃,

ḋ = −
(
f ′′(ρ)d2 + (f(ρ) + 2ρf ′(ρ))d + ρ2f(ρ)

[
e−ρ̃.

(3.1)

Note that the only nonlocality in the coupled dynamics (3.1) appears to be the factor e−ρ̃. Thus, the

trajectories on the phase plane (ρ, d) depend on the local information. Indeed, if we express a trajectory

as d = d(ρ), then it satisĄes the following differential equation

d′(ρ) =
f ′′(ρ)d2 + (f(ρ) + 2ρf ′(ρ))d + ρ2f(ρ)

ρf(ρ)
. (3.2)

We will examine the trajectories in the phase plane and investigate whether the trajectories are bounded

or not. The boundedness of d will then lead to global wellposedness of the system (1.5) by Theorem 2.1.

There are two special trajectories that serve as thresholds in the phase plane. They divide the area

¶(ρ, d) : ρ ∈ [0, 1]♢ into three regions. Trajectories originated in each region stay inside the region for their

life-spans. Trajectories in different regions have different large time behaviors.

We call the two trajectories that separate the regions critical threshold functions, and denote them by two

functions σ and γ. The trajectories are expressed as d = σ(ρ) and d = γ(ρ) respectively. Fig. 1 illustrates

the shapes of the threshold functions.

In the following, we focus on the wellposedness of the two critical thresholds.

11
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3.1. The threshold function σ

The curve σ represents a trajectory that goes across (0, 0) in the phase plane. Since (0, 0) is a degenerate

equilibrium state of the phase dynamics, there are inĄnitely many trajectories such that d(0) = 0. These

trajectories satisfy the following property.

Proposition 3.1. Let d = d(ρ) be a trajectory that satisĄes (3.2) with d(0) = 0, and f satisĄes (1.4).

Assume d′(0) exists. Then, we must have

d′(0) = 0 or d′(0) = −2f ′(0)

f ′′(0)
. (3.3)

Proof. We apply (3.2) and take ρ → 0

d′(0) = lim
ρ→0+

f ′′(ρ)d(ρ)2 + (f(ρ) + 2ρf ′(ρ))d(ρ) + ρ2f(ρ)

ρf(ρ)

= lim
ρ→0+

ρf ′′(ρ)

f(ρ)
· d′(0)2 + lim

ρ→0+

2ρf ′(ρ) + f(ρ)

f(ρ)
· d′(0) =

f ′′(0)

f ′(0)
· d′(0)2 + 3d′(0).

This directly leads to (3.3). □

To simplify the notation, we denote

β = −2f ′(0)

f ′′(0)

for the rest of the section. Note that β > 0.

Among these trajectories, there is only one such that d′(0) = β. This is the trajectory σ that we seek for.

The following theorem ensures a uniquely deĄned threshold curve σ. The idea of the proof follows from [25,

Proposition 3.1].

Theorem 3.1. Let f satisfy the hypotheses in (1.4). There exists a unique trajectory represented by σ that

satisĄes the Eq. (3.2), namely

σ′(ρ) =
f ′′(ρ)σ(ρ)2 + (f(ρ) + 2ρf ′(ρ))σ(ρ) + ρ2f(ρ)

ρf(ρ)
, (3.4a)

with initial conditions

σ(0) = 0, and σ′(0) = β. (3.4b)

Proof. We start with the local existence theory. Fix a small ϵ > 0. The classical CauchyŰPeano theorem

does not apply directly near x = 0, as the right hand-side of (3.4a)

F (ρ, σ) :=
f ′′(ρ)σ2 + (f(ρ) + 2ρf ′(ρ))σ + ρ2f(ρ)

ρf(ρ)

is not uniformly bounded for (ρ, σ) ∈ [0, ϵ] × [−ϵ, ϵ]. By smallness of ϵ and smoothness of f , we have

F (ρ, σ) = − 2

β

⎤
σ

ρ

⎣2

+ 3

⎤
σ

ρ

⎣
+ O(ϵ),

for any ρ inside the region

A =

⎭
(ρ, σ) : 0 ≤ σ ≤ 5β

4
ρ, 0 ≤ ρ ≤ ϵ

⎨
.

12



T. Hamori and C. Tan Nonlinear Analysis: Real World Applications 73 (2023) 103899

We can check that if σ
ρ ∈ [0, 5β

4 ], then

min

⎭
ρ,

5β

8
+ O(ϵ)

⎨
≤ F (ρ, σ) ≤ 9β

8
+ O(ϵ).

Hence, if we pick ϵ small enough, we would have

0 ≤ F (ρ, σ) ≤ 5β

4
, ∀ (ρ, σ) ∈ A. (3.5)

Now, we can build a sequence of approximate solutions ¶σn(ρ)♢ for ρ ∈ [0, ϵ]. Given n ∈ Z+, deĄne

equi-distance lattice ¶ρk = kϵ
n ♢n

k=0.

(i). σn(ρ) = βρ, ∀ ρ ∈ [0, ρ1] .

(ii). σn(ρ) = σn(ρk) + F (ρk, σn(ρk))(ρ − ρk), ∀ ρ ∈ [ρk, ρk+1], k = 1, . . . , n − 1.

From (3.5), we know (ρ, σn(ρ)) ∈ A, for all ρ ∈ [0, ϵ]. Hence, σn(ρ) is uniformly bounded and equi-

continuous in ρ ∈ [0, ϵ]. By the ArzelaŰAscoli theorem, σn converges uniformly to σ, up to an extraction of

a subsequence. And by its construction, σ is indeed a solution of (3.4a).

Next, we verify the initial conditions (3.4b). It is clear that σ(0) = 0 since σn(0) = 0 for every n. To

verify σ′(0) = β, we show the following statement: the image of the solution (ρ, σ(ρ)) lies inside the cone

¶(ρ, σ) : (1 − δ)βρ ≤ σ ≤ (1 + δ)βρ, 0 ≤ ρ ≤ ϵ♢.

Indeed, we check F at the boundary of the cone

F
(
ρ, σ = (1 − δ)βρ

[
= β(1 + δ − 2δ2) + O(ϵ) > β, (3.6)

F
(
ρ, σ = (1 + δ)βρ

[
= β(1 − δ − 2δ2) + O(ϵ) < β,

where the inequalities can be obtained by choosing δ =
√

ϵ and let ϵ small enough. Therefore, σ′(ρ) ∈
[(1 − δ)β, (1 + δ)β] for all ρ ∈ [0, ϵ]. Take ϵ → 0, we conclude with σ′(0) = β.

Finally, we discuss the local uniqueness. Let σ(1) and σ(2) be two different solutions of (3.4). Fix a small

ϵ. From (3.6) we know that σ(i)(ρ) ≥ (1 − δ)βρ for i = 1, 2. Let w = σ(1) − σ(2). Note that σ(1) and σ(2)

cannot cross each other for ρ ∈ (0, ϵ]. Without loss of generality, we may assume w(ρ) > 0 for ρ ∈ (0, ϵ].

(Otherwise, switch σ(1) and σ(2)). Compute

w′(ρ) =
f ′′(ρ)(σ(1)(ρ) + σ(2)(ρ)) + (f(ρ) + 2ρf ′(ρ))

ρf(ρ)
w(ρ)

≤ f ′′(0) · 2(1 − δ)βρ + 3f ′(0)ρ + O(ρ2)

ρf(ρ)
w(ρ) =

−f ′(0)ρ + O(δρ)

ρf(ρ)
w(ρ) < 0,

for any ρ ∈ (0, ϵ]. Since w(0) = 0, it implies w(ρ) < 0 for ρ ∈ (0, ϵ]. This leads to a contradiction.

Once we obtain local wellposedness of σ near ρ = 0, global existence and uniqueness for ρ > 0 follows from

the standard CauchyŰLipschitz theorem. Indeed, F (ρ, σ) is bounded and Lipschitz in σ as long as ρ ∈ (0, 1)

and σ is bounded. □

Next, we discuss properties of the threshold function σ.

Proposition 3.2. Let σ be the solution of (3.4). Then for any ρ ∈ (0, 1) that lies in the domain of σ,

σ(ρ) > 0.

13
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Proof. Suppose the statement is false. Then there must exist

ρz = min¶ρ ∈ (0, 1) : σ(ρ) = 0♢ > 0,

such that σ(ρz) returns to zero for the Ąrst time. Clearly, σ(ρ) > 0 for all ρ ∈ (0, ρz). This implies σ′(ρz) ≤ 0.

On the other hand, from the dynamics (3.4a) and σ(ρz) = 0 we have σ′(ρz) = ρz > 0. This leads to a

contradiction. □

The positivity of σ allows the subcritical regions in Theorems 1.1 and 1.2 to contain initial data ρ0 that

is not monotone decreasing. It is a major indication that the nonlocal slowdown interaction helps to prevent

shock formations for a class of non-trivial initial data.

Generally speaking, it is possible that σ can become unbounded. The following Proposition describes the

behavior of σ.

Proposition 3.3. Let σ be the solution of (3.4). Then exactly one of the following statement is true.

• σ is well-deĄned in [0, 1].

• There exists a ρ∗ ∈ (0, 1] such that

lim
ρ→ρ∗−

σ(ρ) = +∞. (3.7)

Moreover, we have ρ∗ > ρc.

Proof. Suppose (3.7) does not hold, namely σ is bounded from above in [0, 1]. Together with Proposition

3.2, we know σ is bounded. Hence, Theorem 3.1 implies the existence and uniqueness of σ in [0, 1].

We are left to show that ρ∗ > ρc, namely blowup cannot happen before ρc. To this end, we observe that

f ′′(ρ) ≤ 0 for all ρ ∈ [0, ρc]. We can estimate from (3.4a) that

σ′(ρ) ≤ 0 · σ(ρ)2 + Mσ(ρ) + 1, where M = max
ρ∈[ϵ,ρc]

f(ρ) + 2ρf ′(ρ)

ρf(ρ)
< +∞,

for any ρ ∈ [ϵ, ρc]. This implies the upper bound

σ(ρ) ≤
⎤

σ(ϵ) +
1

M

⎣
eMρ, ∀ ρ ∈ [ϵ, ρc].

Therefore, the blowup cannot happen when ρ ≤ ρc. □

When the Ćux f is concave, namely ρc = 1, the second statement in Proposition 3.3 will not hold. Hence,

σ is well-deĄned in [0, 1]. When f switches from concave to convex at ρc < 1, one cannot guarantee that σ

will not blow up. However, for the particular fJ in (1.3) of our concern, σJ is well-deĄned in [0, 1], even if

J > 1. Moreover, we Ąnd the explicit expression of the threshold function σJ .

Proposition 3.4. Let f(ρ) = fJ(ρ) = ρ(1 − ρ)J for J > 0. Then the trajectory σJ in (3.4a) can be explicitly

expressed by

σJ(ρ) =
ρ(1 − ρ)

J
. (3.8)

Proof. We verify that σJ solves (3.4). For Eq. (3.4a), we plug in fJ and σJ to the right hand side and get

f ′′
J (ρ)σJ(ρ)2 + (fJ(ρ) + 2ρf ′

J(ρ))σJ(ρ) + ρ2fJ(ρ)

ρfJ(ρ)

=
J(1 − ρ)J−2(−2(1 − ρ) + (J − 1)ρ) · J−2ρ2(1 − ρ)2

ρ2(1 − ρ)J

14
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+
ρ(1 − ρ)J−1(3(1 − ρ) − 2Jρ) · J−1ρ(1 − ρ)

ρ2(1 − ρ)J
+ ρ

=
−2(1 − ρ) + (J − 1)ρ

J
+

3(1 − ρ) − 2Jρ

J
+ ρ =

1 − 2ρ

J
= σ′

J(ρ).

For the initial conditions (3.4b), we can verify that σJ(0) = 0, σ′
J(0) = 1

J and βJ = − 2f ′
J (0)

f ′′
J

(0)
= 1

J . □

3.2. The threshold function γ

Next, we describe the construction of the other threshold function γ, when the Ćux switches from concave

to convex at ρc < 1. The function γ describes a new type of singularity.

Theorem 3.2. Let f satisfy the hypotheses in (1.4) with ρc < 1. Then there exists a unique trajectory

represented by γ that satisĄes the Eq. (3.2), namely

γ′(ρ) =
f ′′(ρ)γ(ρ)2 + (f(ρ) + 2ρf ′(ρ))γ(ρ) + ρ2f(ρ)

ρf(ρ)
, (3.9a)

with initial condition

lim
ρ→ρc+

γ(ρ) = −∞. (3.9b)

Proof. Let us Ąrst construct γ locally in (ρc, ρc + ϵ), for a sufficiently small ϵ > 0. γ can be deĄned via

η = 1
γ . Indeed, as γ satisĄes (3.9a), we must have

η′(ρ) = − γ′(ρ)

γ(ρ)2
=

−f ′′(ρ) − (f(ρ) + 2ρf ′(ρ))η(ρ) − ρ2f(ρ)η(ρ)2

ρf(ρ)
. (3.10a)

Then, Eq. (3.10a) with initial condition

η(ρc) = 0 (3.10b)

is locally wellposed in [ρc, ρc + ϵ]. We claim that γ(ρ) = 1
η(ρ) satisĄes (3.9) for ρ ∈ (ρc, ρc + ϵ]. It suffices to

show that η(ρc+) < 0. To this end, take Taylor expansion of η around ρc

η(ρ) =

∞∑

n=0

η(n)(ρc)

n!
(ρ − ρc)n.

The Ąrst term of the series is zero due to the initial condition (3.10b). For the second term, observe from

the assumption of f in (1.4) that f ′′(ρc) = 0. Then from (3.10) we get η′(ρc) = 0. We continue to calculate

the next term

η′′(ρc) = − f ′′′(ρc)

ρcf(ρc)
.

Since f switches from concave to convex at ρ = ρc, we have f ′′′(ρc) ≥ 0. If the strict inequality holds, we

have η′′(ρc) < 0, which yields η(ρc+) < 0. If f ′′′(ρc) = 0, we can continue to the next terms in the Taylor

expansion until we have f (n)(ρc) > 0 for some n. Note that such Ąnite n exists, as otherwise f is linear

around ρc, violating the strict convexity assumption in (1.4). Then

η(ρc) = η′(ρc) = · · · = η(n−2)(ρc) = 0, η(n−1)(ρc) = −f (n)(ρc)

ρcf(ρc)
< 0,

which also leads to η(ρc+) < 0. Note that the η deĄned in (3.10) is unique. Hence, γ can also be uniquely

deĄned in (ρc, ρc + ϵ] by γ(ρ) = 1
η(ρ) .
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Starting from ρ = ρc + ϵ, we can consider the dynamics (3.9a) with initial condition γ(ρc + ϵ) = 1
η(ρc+ϵ) .

From the CauchyŰLipschitz theorem, γ exists and is unique in ρ ∈ [ρc + ϵ, 1) as long as γ is bounded.

We now show γ is lower bounded when ρ ≥ ρc + ϵ. Let us start with an estimate on f(ρ) + 2ρf ′(ρ).

Applying convexity of f , we have

f(ρ) = f(1) − f ′(ρ)(1 − ρ) − f ′′(ξ)

2
(1 − ρ)2 ≤ −f ′(ρ)(1 − ρ).

Here ξ ∈ [ρ, 1] and f ′′(ξ) ≥ 0. Since f ′(ρ) < 0 for ρ ∈ (ρc, 1), we obtain

f(ρ) + 2ρf ′(ρ) ≤ f ′(ρ)(3ρ − 1) < 0, if ρ > 1
3 .

Then from (3.9a) it is easy to verify that γ′(ρ) > 0 as long as γ(ρ) ≤ 0. Therefore, it is not possible that

γ(ρ) → −∞ for any ρ > max¶ρc + ϵ, 1
3 ♢. It remains to show that γ(ρ) is lower bounded when ρ ∈ [ρc + ϵ, 1

3 ],

in the case ρc + ϵ < 1
3 . From strict convexity in (1.4), we obtain a uniform bound

sup
ρ∈[ρc+ϵ, 1

3 ]

f(ρ)

f ′′(ρ)
< M,

where M depends on ϵ. Now, if γ(ρ) < −M we apply (3.9a) and get

γ′(ρ) =
f ′′(ρ)γ(ρ) + f(ρ)

ρf(ρ)
γ(ρ) +

2f ′(ρ)γ(ρ)

f(ρ)
+ ρ > 0,

as all three terms above are positive. We conclude with a lower bound of γ

γ(ρ) ≥ min¶−M, γ(ρc + ϵ)♢.

For the upper bound, since γ and σ are two trajectories satisfying the same ODE, we have the bound

γ(ρ) < σ(ρ).

Therefore, if σ is bounded, so is γ. On the other hand, if σ becomes unbounded as in (3.7), it is possible

that γ also becomes unbounded, namely there exists ρ∗ ∈ (ρ∗, 1)

lim
ρ→ρ∗−

γ(ρ) = +∞. □ (3.11)

For the family of Ćuxes fJ in (1.3), we Ąnd an explicit expression to the threshold function γJ .

Proposition 3.5. Let f(ρ) = fJ(ρ) = ρ(1 − ρ)J for J > 1. Then the trajectory γJ in (3.4a) can be explicitly

expressed by

γJ(ρ) =
ρ2(1 − ρ)

⎞
ρ − 4J

(J+1)2

⎡

J
⎞

ρ − 2
J+1

⎡2 . (3.12)

Proof. First, we calculate

f ′′(ρ) = J
(
(J + 1)ρ − 2

[
(1 − ρ)J−2,

and hence the inĆection point ρc = 2
J+1 . Let us denote ρe = 4J

(J+1)2 . Since ρc < ρe, it is easy to verify the

condition (3.9b). Now, we verify Eq. (3.9a). Differentiate (3.12) and get

γ′
J(ρ) =

ρ

J(ρ − ρc)3
·
⎞

−2ρ3 + (ρe + 4ρc + 1)ρ2 − 3(ρe + 1)ρcρ + 2ρeρc

⎡
. (3.13)
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Plug in fJ and γJ to the right hand side of (3.9a) and get

f ′′
J (ρ)γJ(ρ)2 + (fJ(ρ) + 2ρf ′

J(ρ))γJ(ρ) + ρ2fJ(ρ)

ρfJ(ρ)

= J(J + 1)(ρ − ρc)(1 − ρ)J−2 · ρ4(1 − ρ)2(ρ − ρe)2

J2(ρ − ρc)4
· 1

ρ2(1 − ρ)J

+ ρ(1 − ρ)J−1(3(1 − ρ) − 2Jρ) · ρ2(1 − ρ)(ρ − ρe)

J(ρ − ρc)2
· 1

ρ2(1 − ρ)J
+ ρ

=
(J + 1)ρ2(ρ − ρe)2 + ρ(3(1 − ρ) − 2Jρ)(ρ − ρe)(ρ − ρc) + Jρ(ρ − ρc)3

J(ρ − ρc)3

=
ρ

J(ρ − ρc)3
·
[
−2ρ3 + (ρe + (3 − J)ρc + 3)ρ2

+
(
ρe((J + 1)ρe − 2Jρc) − 3(ρeρc + ρc + ρe − Jρ2

c)
[
ρ + (3ρe − Jρ2

c)ρc

]
.

Using the deĄnitions of ρc and ρe, we see that the expression matches with (3.13). We conclude that γJ

satisĄes (3.9a). □

4. Global behaviors of solutions

In this section, we study the dynamics (3.1) with initial conditions

ρ(t = 0) = ρ0 ∈ [0, ρM ], d(t = 0) = d0. (4.1)

We argue that when (ρ0, d0) lie in different regions in the phase plane separated by the threshold functions

σ and γ, the global behaviors of the dynamics vary.

Theorem 4.1. Consider the system (3.1) with initial data (ρ0, d0) as in (4.1), and f satisfying the hypotheses

in (1.4). Then,

(a). If (ρ0, d0) lies in the type I supercritical region, that is

d0 > σ(ρ0), (4.2)

then there exists a Ąnite time t∗, such that

lim
t→t∗−

d(t) = +∞.

(b). If (ρ0, d0) lies in the type II supercritical region, that is

ρ0 > ρc and d0 ≤ γ(ρ0), (4.3)

then there exists a Ąnite time t∗, such that

lim
t→t∗−

d(t) = −∞.

(c). If (ρ0, d0) lies in the subcritical region, meaning neither of the two supercritical regions, that is

ρ0 ≤ ρc and d0 ≤ σ(ρ0), (4.4)

or

ρ0 > ρc and γ(ρ0) < d0 ≤ σ(ρ0), (4.5)

then the solution (ρ, d) exists in all time. Moreover,

lim
t→∞

ρ(t) = 0, lim
t→∞

d(t) = 0.
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Remark 4.1. Since σ and γ might not be deĄned in [0, 1] and (ρc, 1] respectively, in the cases (3.7) and

(3.11) when blowups happen, we shall adapt the following conventions in the descriptions of the regions

(4.2), (4.3) and (4.5):

σ(ρ) = +∞, ∀ ρ ∈ [ρ∗, 1], and γ(ρ) = +∞, ∀ ρ ∈ [ρ∗, 1].

For instance, if ρ0 ≥ ρ∗, (4.2) implies that (d0, ρ0) does not lie in the type I supercritical region for any

d0 ∈ R.

Fig. 1 provides an illustration of the three regions. Note that if f is concave, satisfying (1.4) with ρc = 1,

the type II supercritical region (4.3) is empty. The region (4.5) is also empty.

Theorems 1.1 and 1.2 follow directly from Theorem 4.1 by collecting all the characteristic paths.

The rest of the section is devoted to the proof of Theorem 4.1. We start with a description of the dynamics

of ρ: it decreases in time, and approaches zero as t → ∞.

Lemma 4.1. Consider (3.1) with initial data (4.1) and f satisfying (1.4). Then ρ(t) is strictly decreasing

in time. Moreover, for any ρ1 ∈ (0, ρ0), there exists a Ąnite time t1 such that ρ(t1) ≤ ρ1, unless d(t) blows

up before t1. In particular, if (ρ, d) exists in all time, then

lim
t→∞

ρ(t) = 0.

Proof. Apply the bound (2.7) to the ρ-equation in (3.1) and get ρ̇ ≥ −ρf(ρ), which implies ρ(t) ≥
ρ0e−∥f∥L∞ t > 0 is strictly positive in all time. On the other hand, we have

ρ̇ ≤ −e−mρf(ρ).

Since the right hand side is strictly negative when ρ ∈ (0, 1), we conclude that ρ(t) is strictly decreasing in

time.

Moreover, using separation of variables and integrating in [0, t] yield

∫ ρ(t)

ρ0

dρ

ρf(ρ)
≤ −e−mt. (4.6)

DeĄne G : (0, ρ0] → (−∞, 0] as follows

G(ξ) :=

∫ ξ

ρ0

dρ

ρf(ρ)
.

We observe that G is an increasing function.

Now, given any ρ1 ∈ (0, ρ0), we can take

t1 = −emG(ρ1) = em

∫ ρ0

ρ1

dρ

ρf(ρ)
< +∞.

Then (4.6) implies G(ρ(t)) ≤ G(ρ1), which leads to ρ(t) ≤ ρ1. □

Next, we focus on the behaviors of the dynamics of d, which varies in different regions of initial data.

4.1. Blow-up of type I supercritical initial data

For any type I supercritical initial data (4.2), we have the following Lemma on a positive lower bound of

d.
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Lemma 4.2. Consider (3.1) with type I supercritical initial data satisfying (4.2) and f satisfying (1.4).

Then there exists c > 0 such that d(t) > c in the whole lifespan of d.

Proof. We express the trajectory of the dynamics in the (ρ, d) phase plane by d = d(ρ), and compare the

function d with the threshold function σ. Since d(ρ0) = d0 > σ(ρ0), we have

d(ρ) > σ(ρ) > 0, (4.7)

for any ρ ∈ (0, ρ0] that lies in the domain of d. Here, the second inequality is due to Proposition 3.2.

Therefore, we have

inf
t

d(t) = inf
ρ

d(ρ) ≥ 0, (4.8)

where the equality can only be attained in the case when limρ→0 d(ρ) = 0, namely that (0, 0) lies on the

trajectory. Moreover, from (4.7) we have

d′(0) ≥ σ′(0) = β. (4.9)

However, in view of Proposition 3.1, any trajectory with d(0) = 0 must have either d′(0) = 0 or d′(0) = β.

The former contradicts with (4.9). For the latter case, it has been shown in Theorem 3.1 that σ is the only

trajectory that enters (0, 0) with the slope β. Hence, the equality in (4.8) cannot be reached, Ąnishing the

proof. □

With the uniform lower bound, we are ready to show that d must blow up in Ąnite time. Let us rewrite

the dynamics of d in (3.1) as

ḋ = −e−ρ̃
⎞

f ′′(ρ)d2 +
(
f(ρ) + 2ρf ′(ρ)

[
d + ρ2f(ρ)

⎡
= C(ρ)

(
d − d−(ρ)

[(
d − d+(ρ)

[
, (4.10)

where

C(ρ) = −e−ρ̃f ′′(ρ), d±(ρ) =
−
(
f(ρ) + 2ρf ′(ρ)

[
∓
√(

f(ρ) + 2ρf ′(ρ)
[2 − 4ρ2f(ρ)f ′′(ρ)

2f ′′(ρ)
.

Observe that when ρ ∈ (0, ρc), the coefficient C(ρ) > 0. The curves (ρ, d±(ρ)) are the two nullclines of d in

the phase plane. We have d−(ρ) < 0 < d+(ρ), and furthermore

lim
ρ→0+

d±(ρ) = 0. (4.11)

Therefore, when ρ is small enough, the dynamics of d would behave like ḋ ∼ C(0)d2, which leads to a Ąnite

time blowup.

Proof of Theorem 4.1(a). First, from (4.11) we can Ąnd a small ρ1 > 0 such that

2d+(ρ1) < c,

where c is the uniform lower bound of d as in Lemma 4.2.

From Lemma 4.1, there exists a Ąnite time t1 such that ρ(t1) = ρ1, unless d already blows up before t1.

We focus on the dynamics (4.10) starting from t1. From the hypotheses of f in (1.4), we can obtain a

uniform lower bound on C(ρ) as

C(ρ) ≥ e−m · min
ρ∈[0,ρ1]

(
−f ′′(ρ)

[
=: C > 0, ∀ ρ ∈ [0, ρ1].
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Since ρ(t) ∈ (0, ρ1] for any t ≥ t1, we deduce from (4.10) that

ḋ ≥ C
(
d − d−(ρ)

[(
d − d+(ρ)

[
≥ C

(
d − d+(ρ)

[2 ≥ C
(
d − d+(ρ1)

[2
,

with initial condition at t1 satisfying

d(t1) > c > 2d+(ρ1),

where we have used Lemma 4.2. Solving the initial value problem would yield

d(t) > d+(ρ1) +
d+(ρ1)

1 − Cd+(ρ1)(t − t1)
.

Therefore, we must have

lim
t→t∗−

d(t) = +∞

at a Ąnite time

t∗ ≤ t1 +
1

Cd+(ρ1)
. □

4.2. Blow-up of type II supercritical initial data

For type II supercritical initial data (4.3), the blowup is a direct consequence of a comparison with the

threshold function γ.

Proof of Theorem 4.1(b). Compare the trajectory d = d(ρ) with the threshold function γ. Since

d(ρ0) = d0 ≤ γ(ρ0), we have

d(ρ) ≤ γ(ρ),

for any ρ ∈ (ρc, ρ0] that lies in the domain of d. Since limρ→ρc+ γ(ρ) = −∞, d must blow up to −∞ at some

ρ1 ≥ ρc. Apply Lemma 4.1, d(t) must blow up to at a Ąnite time t1. □

4.3. Global regularity of subcritical initial data

Let us Ąrst consider initial data that lie in the region (4.4). The main idea is that the coefficient C(ρ)

in the dynamics (4.10) has a favorable sign that prevents d from going to −∞. On the other hand, d is

controlled from above by σ.

Proof of Theorem 4.1(c) for region (4.4). We start with obtaining a lower bound on d. First, suppose

ρ0 < ρc. In view of the deĄnition of d−, it has a uniform lower bound on [0, ρ0]

min
ρ∈[0,ρ0]

d−(ρ) ≥ d > −∞,

where d depends on f and ρ0. Since C(ρ) > 0 for ρ ∈ [0, ρ0], (4.10) implies ḋ > 0 as long as d < d. This

implies the lower bound

d ≥ min¶d0, d♢
in the whole timespan of d.

For ρ0 = ρc, it is easy to verify that the dynamics (4.10) is locally well-posed. Hence, there exists a time

t1 > 0 such that solution d(t1) exists. From the monotonicity of ρ in time, we know ρ(t1) < ρc. Hence the

dynamics starting from t1 reduces to the prior case, leading to a lower bound of d.

To obtain an upper bound of d, note that d(ρ0) = d0 ≤ σ(ρ0). We compare the trajectory d with σ and

get

d(ρ) ≤ σ(ρ). (4.12)
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From Proposition 3.3, we know σ is bounded in [0, ρc]. Since ρ(t) ≤ ρ0 for all time, we conclude that

d(t) ≤ max
ρ∈[0,ρ0]

d(ρ) ≤ max
ρ∈[0,ρc]

σ(ρ) < +∞. □

For initial data that lie in the region (4.5), note that σ is not necessarily deĄned for large ρ. Instead, we

may bound d from above using the dynamics (4.10). When ρ ∈ (ρc, 1), the coefficient C(ρ) < 0. It is possible

that the quadratic form in (4.10) has no real roots, and d± do not exist. In which case we have ḋ < 0. If

d± exist, we still have ḋ < 0 when d > d− ≥ d+. Hence, d cannot blow up to +∞. The lower bound can be

controlled by γ.

Proof of Theorem 4.1(c) for region (4.5). For the upper bound, we apply Proposition 3.3. If σ is well-

deĄned in [0, ρ0], then d is bounded by σ by comparison (4.12). If σ blows up at ρ∗ ∈ (ρc, ρ0), we observe

that d−, if exists, has a uniform upper bound on [ρ∗, ρ0]

max
ρ∈[ρ∗,ρ0]∩Dom(d)

d−(ρ) ≤ d < +∞,

where d depends on f , ρ∗ and ρ0. Since C(ρ) < 0 for ρ ∈ [ρ∗, ρ0], (4.10) implies ḋ < 0 as long as d > d. This

leads to the upper bound

d ≤ max¶d0, d♢.

Once ρ(t) drops below ρ∗, it can be controlled by σ.

For the lower bound, can compare the trajectory d with the threshold function γ. Since d(ρ0) = d0 >

γ(ρ0), we have

d(ρ) > γ(ρ), ∀ ρ ∈ [ρc, ρ0].

Hence, d has a lower bound as long as ρ > ρc. Moreover, d(ρc) is bounded. This is because if limρ→ρc+ d(ρ) =

−∞, we deduce from Theorem 3.2 that d = γ, violating the initial condition (4.5). Therefore, by Lemma 4.1,

there exists a time t1 such that ρ(t1) = ρc and d(t1) = d(ρc) is bounded. The dynamics enter the region

(4.4) at t1. The global behavior follows from the proof for the region (4.4). □
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