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1. Introduction

The mathematical theory on traffic flows has been fast devel-
oping in the past century. Many successful models have been pro-
posed, analyzed and simulated [1-11] to understand the emer-
gent phenomena in the traffic networks. These models can be
categorized by different scales.

A famous macroscopic model is the Lighthill-Whitham-
Richards (LWR) model [12,13],

0o+ (pu) =0, U= unx(1l— p). (1)

Here, p denotes the normalized density of the traffic, taking
values in [0, 1]. The velocity is denoted by u, taking maximum
value un,y if o = 0, and becomes 0 if the maximum density p = 1
is reached. The LWR model can be equivalently expressed as a
scalar conservation law:

3o+ 0(f(0)) =0, f(p) = pu(p) = tmaxp(1— p), ()

where f is the nonlinear flux. This elegant model captures the
wave breakdown phenomenon, where solution becomes discon-
tinuous in finite time. The wave breakdown is arguably responsi-
ble for the creation of traffic jams.

The LWR model (1) has many extensions. One direction is
to consider the nonlocal slowdown effect: drivers intend to slow
down if heavy traffic is ahead. This would involve a nonlocal
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look-ahead interaction

Ocp+0x(pu) =0, U= umx(1—p)exp (—/ K(y)p(x +y)dy> ,
0

(3)

where K is the look-ahead kernel. The model was first introduced
by Sopasakis and Katsoulakis (SK) in [14], with

1, xe€[0,d],
0, otherwise.

K(x)= { (4)
The kernel features a look-ahead distance a and a constant weight.
Another class of kernels was discussed in [15] for pedestrian
flows, where

2(1-%), xel0,al,
0, otherwise,

K(x) = { (5)
followed by an extensive numerical study. The wave breakdown
phenomenon for the SK model (3) and related nonlocal models
has been studied in [ 16-18]. Recently, it is shown in [19] that the
nonlocal slowdown effect can help avoid the wave breakdown for
a family of initial configurations.

Another extension to the LWR model (1) is on the flux in (2).
Observe that f is a concave function of p with an even symmetry
at p = 1/2. This does not agree with the fundamental diagrams
for the density-flow relation from statistical data of real traffic
networks, see e.g. [8,10]. A family of fluxes were introduced
in [20] with

f(p) = tumaxp(1—pY, J>1. (6)
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The fluxes are right-skewed and non-concave, fitting better with
the experimental data. The non-concavity can lead to a different
type of wave breakdown, as discussed in [21,22].

A general class of traffic flow models with fluxes in (6) and
nonlocal look-ahead interactions takes the form

dep+ox(pu) =0, U= unx(1—p)g (/O K(y)p(x +y)dy) - (7)

Here g : [0, +00) — [0, 1] is the function characterizing the
slowdown factor. Naturally, g is a nonincreasing function, repre-
senting that heavier traffic ahead leads to more slowdown. Also,
g(0) = 1, namely no slowdown if there is no traffic ahead. A
typical choice of g is the Arrhenius relation g(x) = e~*. This
leads to a generalization of the SK model (3). Other choices of
the function g include g(x) = (1 — x) or (1 — x). See for instance
the model studied by Bressan and Shen [23].

In this work, we are interested in the microscopic models that
are closely related to (7).

One class of microscopic dynamics is the agent-based mod-
els, featuring interacting ODE systems on the locations (xi)ﬁvz 1

and|or velocities (v;)N ; of cars. Many models are proposed and

studied [24-28], inclluding the consideration of the look-ahead
interactions [29].

Another class of microscopic dynamics, which is our main con-
cern, is the lattice models. The road is configured as a fixed lattice.
Each cell has values 1 (car is present) or O (car is absent). Explicit
rules for car movements on the lattice cells are described to rep-
resent the traffic flow. The lattice models, also known as cellular
automata (CA) models [30-32], have been widely used to repre-
sent traffic flows. A vast literature exists addressing various ana-
lytical and numerical techniques for models of this type [33-41].
Compared with the agent-based models, CA models are simpler
to implement and are more amenable to numerical investigation.

In [14], a CA model with Arrhenius type look-ahead interac-
tions was proposed. Through a semi-discrete mesoscopic stochastic
process, the SK model (3) can be formally derived as a coarse-
grained hydrodynamic limit of the CA model. See also [42] for an
improved mesoscopic model that connects the microscopic and
macroscopic dynamics. Further extensions include multilane [43],
multiclass [44] and multi-dimensions [45].

A new class of CA models with the Arrhenius relation g(x) =
e~ * was introduced by the authors in [46], recovering the fluxes in
(6). A remarkable discovery is that the parameter ] represents the
number of cells that a car advances in one movement. Following
this idea, we describe a large class of CA models in Section 2, with
general choices of the function g. A formal derivation is provided
that connects the CA models to the macroscopic dynamics (7).

A major focus of this paper is on the numerical implemen-
tation of the CA models. One widely used method for vehicular
flows and pedestrian flows is the Metropolis Monte Carlo (MMC)
method [47]. It is easy to implement, but can be inefficient. In-
deed, selected events are sometimes rejected because the accep-
tance probability is small, in particular when a system approaches
the equilibrium, or the car density is high.

To improve computational efficiency, we use the kinetic Monte
Carlo (KMC) algorithm [48] due to its main feature: rejection-free.
Compared to the MMC method, the KMC method requires fewer
events to be executed in order to reach a target time, especially
when the system is closed to the equilibrium. The KMC method
has been successfully applied to traffic flow models [45,46] with
special types of nonlocal interactions.

One disadvantage of the KMC method is that the transition
rates of all possible events have to be calculated prior to the
selection of an event, while the MMC method only requires the
transition rate for the selected event. For models with global
look-ahead interactions, it is computationally costly to obtain all
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transition rates due to its nonlocal nature. To overcome such
inefficiency, we introduce a new way to evaluate the transition
rates, updating from the previous steps. Taking advantage of the
fact that only one car advances in one event, the updates are
much cheaper compared with direct evaluations, reducing the
cost from O(M?) to ©(M), where M denotes the number of cells
in the lattice. We call the new procedure the accelerated KMC
method.

We apply our accelerated KMC method to the nonlocal traffic
flow models with a variety of parameter setups. The computa-
tional efficiency is verified through numerical experiments. We
also obtain the fundamental diagrams of these dynamics, and
discuss the relation to the PDE models as coarse-grained limits
of the CA models.

The rest of the paper is organized as follows. In Section 2,
we introduce the CA models with general nonlocal interaction
rules, and the connections to macroscopic models like (7). In
Section 3, we describe the standard KMC algorithm and introduce
the new accelerated KMC method. The computational efficiency
is also analyzed and compared. In Section 4, we provide a series of
numerical simulations to demonstrate the efficiency of our accel-
erated KMC method. We also generate fundamental diagrams for
the CA models and compare them with the macroscopic models.
Finally, we state our conclusions in Section 5.

2. Cellular automata models with nonlocal interaction rules

In this section, we describe the construction of cellular au-
tomata (CA) models for 1D traffic flow, and the connection to the
macroscopic models.

The CA models are defined on a periodic lattice £ with M
evenly spaced cells, £ = {1, 2, ..., M}. For simplicity, we assume
that all cars move toward one direction on a single-lane loop
highway with no entrances or exits. The configuration at each cell
i € £ is defined by an index o;:

lo
o; =
0,

The state of the system is represented by o = {Ui}?ilv which lies
in the configuration space

> ={0, }M.

if a car occupies cell i,
if the cell i is empty.

We denote N the number of cars. Clearly we have
M

N = Z 0Oj.
i=1

2.1. Nonlocal interaction rules

Car movements can be represented by the transitions in the
state of the system, which follow the spin-exchange dynam-
ics [49]: two nearest-neighbor lattice cells exchange values in
each transition. Since all cars move to the right, the only possible
configuration changes are of the form

{Uj = 1, Oit+1 = 0} — {Uj = 0, Oit+1 = 1}, (8)

meaning that the car located at the ith cell moves to the (i +
1)th cell when it was not occupied. A generalized spin-exchange
dynamics introduced in [46] allows the following types of config-
uration changes

{oi=1,0i11 ="+ =01y =0} 9)
—{oi="-=o0iyy1 =004y =1}.

This represents that the car located at the ith cell moves J cells
to the right provided that none of ] cells in front was occupied.
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A novel discovery in [46] is that the parameter | determines the
macroscopic fluxes (6).

The transition rate for (8) depends on spatial one-sided inter-
actions and a look-ahead feature to represent drivers’ behavior. It
takes the form
ri = g (10)
Here, the prefactor wy = 1/79 corresponds to the car mov-
ing frequency or speed and tj is the characteristic time. The
normalization factor 1/] makes sure that the estimated velocity
is comparable among different choices of J. The function g is
the same as in the macroscopic dynamics (7) that describes the
slowdown factor. The quantity w; encodes the weighted nonlocal
information ahead

1 M
= MZK]'_I'U]‘. (11)
=1

A larger value of w; means heavier traffic ahead. The kernel {«;} is
a microscopic analogue of the look-ahead kernel K. For instance,
for the SK model (4),

1, i=1,...,L
_ L R 12
ki {0, otherwise, (12)

where L = aM is the microscopic look-ahead distance. In general
we shall assume that the kernel is bounded, namely there exists
a constant K such that

0<«k <K.

Under the assumption of a looped highway, the kernel {«;} is
M-periodic. By convention we set kg = 0.

2.2. Connection to macroscopic models

In this section, we formally derive the nonlocal traffic models
(7) from the CA models. The derivation is a generalization of [46].

Let us first obtain a semi-discrete mesoscopic model. In a time
step At, the probability of the configuration change

P ({oi=1,041 =" =01y =0}

(13)
= 0jyy—1 = 0,01y = 1} )= (A1) 13,

— {oi — ...
where the rate r; is given in (10).
Define o(7) = {ai(r)}f‘il be a continuous-in-time stochastic
process with a generator
E o(t + Ar))| — ¥ lo(z
(Ay)(t) = lim [1#( ( ))] W( ( )), (14)

AT—0 AT

for any test function v : ¥ — R, where 7 is the time variable.
All possible configuration changes from o(t) to o(t + At) obey
the transition rule (13). We have

d
(TE‘” = E[Ay]. (15)
T

In particular, taking ¥(o) = o;, we can calculate (14) explicitly
as follows

J
Aoi(t) = —r1i(t)oi(t 1_[ — oi(T
= (16)

+ riy(t)oiy(t l_[ ) = Fiy(t) — F(t)
j=1

—

= 0iy4i(T

where F; is defined as

Fi(r) = ri(t)oi() [ [ (1 = oisr)
j=1
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Let pi(t) = E[oi(7)] = P(0i(t) = 1). Then, from (15) and (16),
the dynamics of {p,} * , reads
d
El)i(f) = E[Aoi(7)] = E[Fi—;(7)] — E[F(7)]. (17)
Note that the right hand side of the equation is not yet a closed
form of {p,-(‘c)}?il. We shall approximate the term E[F;(7)] and

make a closure to the system.
We impose the following propagation of chaos hypothesis,

Eloi(t)oj(7)] = Eloi(z)] Eloj(t)], Vi#j, t>0. (18)
The hypothesis is widely used in kinetic theory. It assumes that
{ai(r)}?i , are independent to each other. Due to nonlocal inter-
actions, {oi(t )}’V’1 are all correlated. So the hypothesis (18) is not
true for a system with fixed M cells. However, as the number
of cells M tends to infinity, the system can become chaotic, and

condition (18) can be valid as M — oc.
By formally assuming the chaotic condition (18), we get

J
EIF(0)] = pi(7) [ [(1 = pins(7)
j=1
x E[ 1i(t) | oi(t) = 1, 001(7) = - - - = oiyy(1) =0 |.
For the rest of the section, we drop the r-dependence for sim-
plicity.
To estimate the rate r; in (10), we perform a formal Taylor
expansion of g on w; around its expectation and get

wo wo > n
BT ; [(wi_E[wiD |
(19)

Note that from (11), E[w;] can be expressed in terms of {pi}ﬁ‘i].
1 M
i
j=1
We claim that all terms in the series on the right hand side of (19)

vanish as M — oo. For n = 1, it is clear that E[w; — E[w;]] =0
For n = 2, we compute

(n
g
E[r] =

E[w] =

2

IE[( — E[w]) ] NlIZJE

M
Y ki-ilos
j=1
Z * (0 —
ZZK] iKe— l )( IOZ)

j=1 =1
By condition (18), the cross terms
E[(oj — pj)(o1 — p1)] = Elo; — pj]E[o1 — pi] = 0.

For the remaining term, since |oj — pj| < 1, we have IE[(O']' -
,oj)z] < 1. As «; are bounded, we obtain

—2
IE[( —]E[w]] MZZ )]S%MO

Similarly, higher moments vanish when M — oo.
Plugging back into (19), we conclude with

ZK] ipj | +o(M).

E[r] = —
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The conditional expected rate can be represented similarly as

wo 1
E[riloi=10111==01y=0]= Tg M Z Kj—ij
JFl it
+ o(M).
Hence, E[F;] can be approximated in terms of {pi(r)}ﬁ‘i ;as
J
E[F] = — l_[ — pi+i)8 Z Ki—ipj | + o(M).

it

Now, we are ready to derive the coarse-grained PDE model. Let
us rescale the lattice £ into a fixed interval T = [0, 1], where each
cell has length h = 1/M. The ith cell is rescaled to the interval
[(i — 1)h, ih].

Define the macroscopic density p : T x R, — R, where

p(x,t) = pi(tr), with x =1ih, t=rth.

Letting h — 0, we formally obtain the macroscopic flux

F(x. t) =] - im E[F(t)] = wop(x, )(1 = p(x. 1))

X g (/ K(y —x)p(y, t)dy> .
T

The dynamics of p in (17) becomes the following scalar conser-
vation law:

1 E[Fi_;(t)] — E[F()]

e = ;

h—0 F(x — Jh, t) — F(x, t)

}11132) Th ~ = —3(F(x, 1)).

We end up with the following coarse-grained PDE model:

ap(x, t) =

0 p + Oy [wop(l —-p)g (/ Ky — x)p(y, t)dy>] =0. (20)
T

It is the periodic version of the macroscopic model (7) with
Umax = Wo.

3. The accelerated kinetic Monte Carlo method

In this section, we focus on the numerical implementation of
the CA models in Section 2. We use the kinetic Monte Carlo (KMC)
method [48] to simulate the spin exchange dynamics. Compared
with the Metropolis Monte Carlo (MMC) method [47], the KMC
method has a major advantage: rejection-free. In each step, the
transition rates for all possible changes from the current config-
uration are calculated and then a new configuration is chosen
with a probability proportional to the rate of the corresponding
transition. The other feature of the KMC method is its capability of
providing a more accurate description of the real-time evolution
of a traffic system in terms of these transition rates since the
KMC method is more suitable for simulating the non-equilibrium
system.

3.1. The KMC algorithm

Let us describe the KMC method that we use for the CA models
with nonlocal look-ahead interactions.

We start with some notations. Let us denote (j; )j" , the ordered
locations of the cells that are occupied by cars. Here we recall N is
the number of cars. Note that all events happen at these occupied
cells. According to (9), the event k is that the kth car located at
the cell i, moves J cells to the right, with the rate r;,. The KMC
algorithm is built on the assumption that the model features N
independent Poisson processes (corresponding to N moving cars
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on the lattice) with transition rates T in (10) that sum up to give

the total rate R = ZJ 1 Ty;- In each round of the KMC algorithm,

we need to do the following.

The KMC algorithm:

Step 1: Generate a random number &; from the uniform dis-
tribution in [0, 1]. Decide which event will take place by using a
binary search to choose the event k such that

N
R=>"r (21)
j=1

Step 2: Check if there are enough vacant cells ahead of the kth
car of the selected event. If “Yes”, perform Step 3. If “No”, skip
Step 3 and advance directly to Step 4.

Step 3: Perform the selected event (the kth car moves J cells
to the right) leading to a new configuration. Update the location
of the kth car if*W = o' 4 J.

Step 4: Use R and another random number & € (0,1) to
decide the time it takes for that event to occur (the transition
time), i.e., the non-uniform time step At = —In(&;)/R, from the
exponential distribution described by the rate R.

Step 5: Update any transition rates Tijs the total rate R, and any
data structure that may have changed caused by the event that
may have changed due to this move. O

k

ki]:r,-j %_ <Zrij
b < A
R ! R

Remark 3.1. A major advantage of the KMC method is the use
of the non-uniform time step At. When the system evolves from
the initial state to the equilibrium state, the total rate R decreases.
From Step 4, we can see that the average of the time step At will
increase with the decreasing R so that the KMC simulation will
advance faster as the system approaches the equilibrium state.
This leads to another computational advantage over the MMC,
which usually sets the time step At to be a small constant.

3.2. List-based KMC methods

In simulations with a finite number of distinct processes, it is
more efficient to consider the groups of events according to their
rates [50-52]. This is known as the list-based methods.

In the context of traffic flow models, the list-based KMC al-
gorithm has been successfully implemented in [45,46] for the SK
model where the kernel takes a special form (12) with a constant
value in the look-ahead distance L. In this case, the rate r; in (10)
can only take (L+ 1) different values, since w; in (11) can only be
0, ﬁ ..., L.To speed up the event search process in Step 1 of the

KMC algorithm, (L+ 1) lists are created. Each list is a collection of
all events with the same rate. To find an event, we first perform a
binary search in the level of lists, namely searching for list [ such
that

L I L+1

Z% Zl? R_Zn]rj (22)
i=1 i=1

Here, we denote (r;)*! the different rates, and n; the number

of events in the list W1th rate rj, which is called the multiplicity.
Once a list is chosen, we then randomly pick an event in the
list to proceed. The binary search in (22) would cost O(log, L)
operations, smaller than O(log, N) that is needed in (21) when
L is much smaller than N.

However, the list-based KMC method does not have an advan-
tage when the rates take many different values. For instance, if
the kernel is a discrete version of (5), namely

201 =522), i=1,...,L
Ki= ( L ) ! e (23)
0, otherwise,
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the rate can take O(L?) different values. For general kernel (k;),
the rates can take as many as M? different values. Since there
are a total of N events, many lists would have only one or no
event. This makes the list-based method inefficient. Therefore, in
the present work, we do not use the list-based KMC method.

3.3. An accelerated KMC method

Another major issue is the computational cost of updating the
rates rj; in Step 5 of the KMC algorithm.

For the SK model with a constant kernel (12) in a look-ahead
distance L, the configuration change (9) at cell iy only alter the
values of o;, and oy 4,. It is easy to check that the change may
only affect the rates of at most J cars in certain cells from the
location iy — L to iy — L +J — 1 (if there are cars there). Together
with the kth car, we only need to update at most J + 1 rates.
Calculating the new rates from (10)-(11) costs O(L) operations.
Since ] = O(1), the total cost for Step 5 is O(L).

However, for a general kernel (k;) with a look-ahead distance
L, e.g. (23), the configuration change (9) at cell i, can affect the
rates of all the cars behind the moving kth car in the range of
L, from the location iy — L to i, — 1 (if there are cars there).
Together with the kth car, we need to update up to L + 1 rates.
Computing these rates from (10)-(11) would cost up to a total of
O(L?) operations. For a global kernel (k;) when L = M, all rates
(rij )j’.\’: ; can be affected, and the total computational cost can be

O(NM).
To accelerate the KMC algorithm, we introduce a new method,
aiming to reduce the cost of computing the rates of the (N — 1)

not-moving cars (r,-j )J’.\’=]#k from O(NM) down to O(N). The main

idea is to calculate the new weights wj, not from (11), but from
the old weights in the previous step prior to the event. More
precisely, let us denote {oi"'d}ﬁ‘i 1 and {o**" f‘i ; the configurations
of the system before and after an event (9) located at cell i,

respectively. Clearly, we have

new old

0; =0, Vj#iks iy +J.
The only differences are

old __ new __ old __ new __
o, =10, " =0, and Oy =0,0,5 =1

We apply (11) and obtain the relation

1 M 1 M
new new new
w = — E K¢—iO = — E K¢—iO + K4 —i:
}j {\/1[1 =% M A bt =

Oip i+
(24)
M
1 Z Kiy-Hj—ij — Kig—i;
old k Y kY
= — K¢—i. O, + ki | +——————
- e kY M
LFig i+
Kig+]—i; — Kip—i;
— wpld + J J

lj M ’

for any jth car with j = 1,...,N and j # k. The relation
(24) allows us to obtain w{" from w,?ld using O(1) operations.
Then we can compute the rates (ri;_‘ew)}il#k from (10) in O(N)
operations. Note that the relation (24) is not applicable to the
kth car, as its location changes during the event. We shall still
update w;, from (11). Overall, the total updating cost in Step 5 is
reduced to O(N + L) < O(M). It is a big improvement compared
with O(NM).

We shall comment that at the beginning of a KMC simulation,
we need to compute the weights (w,-]. )jN:1 of all cars from (11) for
initialization, and create a data segment to store these weights
so that we can update them by using (24) on the fly in the
subsequent steps.
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4. Numerical experiments

In this section, we investigate 1D nonlocal traffic flow models
in various parameter regimes with the accelerated KMC method
presented in the previous section.

Following [ 14,45,46], we set the actual physical length of each
cell to 22 feet (6.7 m), which allows for the average car length
plus safe distance. Therefore, 1 mile (=5280 feet ~1609 m) is
equivalent to 240 cells. For a car which has average speed of 60
miles per hour (*26.8 m/s), an estimate of time to cross a cell is
given by

22 feet _ lcell x3600s 15
60 miles/h = 60 x 240 cells ~ 4"

Therefore, in the KMC simulations we set the characteristic time
70 = 0.25 s, and then wy = 4 s~'. We mention that other values
of 7o may be chosen to adjust our model for considering different
standards in other regions or countries.

One important group of statistical features that characterize
the CA models is the fundamental diagrams. Define the average
flow (F) to be the number of cars passing a fixed detector site
per unit time [53]. This quantity can be measured in a real
traffic system. In our study, we run KMC simulations for different
initial averaged car densities p. Each simulation is run for suf-
ficient long time so the dynamics reaches a stable equilibrium:
macroscopically speaking p(x,t) = p. (F) is taken as a long-
time average for each simulation, and is further averaged among
several simulations with the same p. The function

(F) = (F)(p)

is known as the density-flow fundamental diagram of the corre-
sponding CA model. It is closely related to the flux f = f(p) for
the coarse-grained PDE models, e.g. (2) and (6), when there is no
nonlocal interaction. Another statistical quantity is the ensemble-
averaged velocity (v), representing the velocity averaged among
all cars and in a long time period. One can generate density—
velocity and flow-velocity diagrams in a similar way.

ATeel =

4.1. The KMC acceleration

We start with a demonstration of the computational efficiency
of the accelerated KMC method, in comparison with the standard
KMC method. Two examples are presented.

In the first example, we consider a loop highway of ~2.09
miles (3352 m, M = 500 cells). Take an Arrhenius type in-
teraction relation g(x) = e~ and a linearly decay kernel (23)
with a large look-ahead distance L = M = 500 for a global
interaction. The multiple move parameter is set to be ] = 1. We
establish the fundamental diagrams of the density-flow, density-
velocity and flow-velocity relationships using the standard KMC
and accelerated KMC methods. In particular, we generate random
initial distributions with the averaged car density p increasing
incrementally from p = 0.01 to p = 0.99. Fig. 1 shows the
fundamental diagrams generated from the standard KMC method
and the accelerated KMC method. The results of two methods in
Fig. 1(a)(c)(e) agree with each other very well.

To compare the computational efficiencies of the two algo-
rithms, we now vary the size of the lattice, taking M = 100
to 800 cells. Table 1(a) shows the CPU times of computing the
simulations described above using both methods. Fig. 2(a) dis-
plays a power-law relationship between the CPU time and the
highway distance M with a power-law exponent ~2.94 for the
standard KMC algorithm, and a much smaller exponent ~1.59
for the accelerated KMC algorithm. One can clearly observe the
acceleration from our new KMC algorithm.
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Fig. 1. Comparison results between the standard KMC and the accelerated KMC algorithms for two examples. In all KMC simulations, we take the highway distance
of ~2.09 miles (~3352 m, M = 500 cells), the look-ahead parameter of L = 500, the multiple move parameter of ] = 1, and the final time of 1 h. (a)(b): Long-time
averages of the density-flow relationship; (c)(d): Ensemble-averaged velocity of cars versus the density p; (e)(f): Long-time averages of the flow-velocity relationship.
(left panels): Results of the first example with an Arrhenius type interaction relation g(x) = e~ and a linearly decay kernel (23). (right panels): Results of the
second example with the interaction relation (25) and the kernel (26).

Table 1
Comparison of the CPU times between the standard KMC and the accelerated KMC algorithms, which are also displayed by a log-log plot in Fig. 2. (a) The first

example with an Arrhenius type interaction relation g(x) = e~ and a linearly decay kernel (23) for M = 100 to 800 cells. (b) The second example with the
interaction relation (25) and the kernel (26) for M = 100 to 600 cells.

(@) M (cells) 100 200 300 400 500 600 700 800
Standard KMC 93 s 580 s 1889 s 4270 s 8262 s 14302 s 22728 s 34353 s
Accelerated KMC 12 s 44 s 83 s 124 s 181 s 249 s 318 s 415 s
(b) M (cells) 100 200 300 400 500 600
Standard KMC 475 s 3625 s 12051 s 28063 s 55086 s 89409 s
Accelerated KMC 47 s 146 s 302 s 479 s 658 s 959 s

In the second example, we consider the same loop highway example generated from the standard KMC method and the accel-

with a different type of global interactions introduced in [23]. erated KMC method agree with each other very well. As shown in
In particular, we take the function g in (25), the kernel K = Table 1(b) and Fig. 2(b), the comparison of the CPU times by using
K* in (26) with A = 0.1, and the multiple move parameter both methods demonstrates again the computational efficiency of

J = 1. Fig. 1(b)(d)(f) show that the fundamental diagrams of this the accelerated KMC method over the standard KMC method.
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Fig. 2. Comparison of the CPU times between the standard KMC and the accelerated KMC algorithms for two examples. (a) The first example with an Arrhenius
type interaction relation g(x) = e~ and a linearly decay kernel (23). A log-log plot of the CPU times with the two KMC algorithms for different highway distance
M = 100 to 800 cells; the power-law lines with exponent ~2.94 (red) and exponent ~1.59 (blue) provided for comparison. (b) The second example with the
interaction relation (25) and the kernel (26) for different M = 100 to 600 cells; the power-law lines have the exponents ~2.93 (red) and ~1.60 (blue), respectively.

4.2. A family of models with global interactions

Now we apply the accelerated KMC method to a class of 1D
nonlocal traffic flow models with global look-ahead interaction
kernels. The coarse-grained PDE dynamics has the form (20) with

1—x, xe]0,1],
= 25
8(x) {O, otherwise, (25)
and the kernel
—AX >
Kix) = 1€ x=0. (26)
0, x <0,

which is parameterized by A. This family of PDE models was
proposed and analytically studied in [23].

For the CA model, we take the loop highway of ~ 4.17 miles
(A~6704 m, M = 1000 cells). The discrete analogue of (26) in the
periodic domain that we will use takes the form
Kk = w L e Mi/M),

1—e?

Let us focus on the model under two extreme choices of A.

First, when A is close to 0, we get from (27) that

i=1,...,M.

i=1,...,M. (27)

lim K{\ =1,
r—0

The kernel becomes uniform. Formally, the macroscopic flux be-
comes

f(p) = wop(1— p)g(p).

Therefore, as the dynamics reaches the equilibrium state p(x) =
p, we should expect that the long-time averaged flux and the
ensemble-average velocity satisfy

(F)(p) = wop(1—pY*!, (v)(p) = wo(1—pY*". (28)
Second, when A approaches 400, we get from (27) that
M, i=1
limwh =0 T
A—00 0, otherwise,

Apply this to (11) and we have

M
A 1 § : 0
w;, = — Kj—i0j = Oj+1 = U.
i M 4 - ] J
]:

The last equality holds for any event in (9). Therefore, there is
no slowdown (g(0) = 1), and hence the averaged flux and the

averaged velocity satisfy

(F)(p) = wop(1—pY,  (v)(p) = wo(1—pY. (29)

We would like to point out that for the macroscopic dynamics
(20) with (26), K* converges to a Dirac delta as A — oo, and the
limiting PDE reads

3o + 0x(wop(1— pYg(p)) = 0.

The macroscopic flux of the limiting system does not match with
(29). This reveals an interesting effect: the two limits M — oo
and A — oo do not commute.

We use the accelerated KMC method to simulate the dynamics
with different choices of A. In Fig. 3, the fundamental diagrams
are plotted for different choices of A:

A =0.1, 10, 100, 500, 1000, 10000, (30)

and for different multiple move parameters ] = 1 and J] = 2. All
curves exhibit phase transitions between the free-flow phase and
the jammed phase.

In Fig. 3(a) and (b), we plot the fundamental diagrams on the
averaged fluxes (F) against the averaged density p with different
A in (30) and J] = 1,2, respectively. For each p, we run 10
simulations with different random number seeds for a long time
(1 h) to get (F) and (v). All curves share certain characteristics:
a nearly linear increase of the flow at low averaged densities
(which corresponds to the free-flow regime), a single maximum
of the flow reached at a critical density p’,,, and a right-skewed
asymmetry (namely p2. < 1/2). We also observe that both the
value of the critical density p, and the maximum value of the
flow (F) tend to decrease with decreasing A. In particular, for the
cases of A = 0.1 and 10, the fluxes of the KMC simulations agree
with the limiting fluxes in (28) and (29), (shown as the dotted and
dashed black curves, respectively).

In Fig. 3(a) for the case of ] = 1, the density-flow curves for
the cases of A = 0.1 and 10* take their maxima at the critical
density around Py = % and % respectively, which is consistent
with the limiting cases (28) and (29)

1
J+1
The maximum flux for 2 = 0.1 at pee = 5 is about 3600wy - 55 ~
2133 cars per hour (recall that wy = 4 s~ '), and the maximum
flux for A = 10* at peye = 5 is about 3600w - 3 = 3600 cars
per hour. Similarly, in Fig. 3(b) for the case of ] = 2, the density-
flow curves for the cases of A = 0.1 and 10* take their maxima

lim p} = (31)

lim p} = ——,
)L~>OIOC J+2 »—>00
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Fig. 3. Comparison results of the traffic flow on the one-lane highway with six different values of the interaction strength A. In all KMC simulations, we take
the highway distance of ~4.17 miles (26704 m, M = 1000 cells), and the final time of 1 h. (a)(b): Long-time averages of the density-flow relationship; (c)(d):
Ensemble-averaged velocity of cars versus the density p; (e)(f): Long-time averages of the flow-velocity relationship. Note that for A = 0.1 and 104, the fluxes of
the KMC simulations in (a) and (b) agree with the macroscopic averaged fluxes in (28) and (29) (shown as the dotted and dashed black curves, respectively). (left
panels): Results of ] = 1. (right panels): Results of ] = 2. The slowdown interaction function: g(x) = 1 — x in (25).

3600w 7 A 1519 and 3600w+ 5+ A 2133 at the critical density
Pait = 3 and 3, respectively.

Fig. 3(c) and (d) show the fundamental diagrams of the density-
velocity relationship for ] = 1 and J = 2, respectively. For the
special case of ] = 1 and A = 10% in Fig. 3(c), the ensemble-
averaged velocity (v) decreases linearly as the averaged density
p increases, which is consistent with the classical Lighthill-
Whitham-Richards (LWR) model [12,13]. All other cases in both
Fig. 3(c) and (d) show that in the free-flow regime the ensemble-
averaged velocity (v) decreases approximately linearly from the
full speed of 4 cells per second (*26.8 m/s or 60 miles/h) as
p increases and the chance of interaction between cars gets
higher. As A decreases, when p is larger than the critical point

Perit, the average velocity drops down to zero and the density-
velocity curve is convex. This linear relationship follows the
Greenshields model [54] and the convex relationship belongs to
the Underwood model [55]. For the cases of 4 = 0.1 and 10*
in both Fig. 3(c) and (d), the ensemble-averaged velocity of the
KMC simulations agrees with limits (28) and (29), (shown as the
dotted and dashed black curves, respectively).

Fig. 3(e) and (f) show the fundamental diagrams of the flow-
velocity relationship for ] = 1 and J = 2, respectively, which plot
the ensemble-averaged velocity (v) versus the averaged flow (F).
In Fig. 3(e) of ] = 1, for the case of A = 10* (shown as cyan
squares), the flow (F) reaches its maximum ~23600 cars per hour
when the ensemble-averaged velocity (v) is at a critical value
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Fig. 4. Comparison results of the traffic flow on the one-lane highway with six different values of the interaction strength A. (a)(b): Long-time averages of the
density-flow relationship; (c)(d): Ensemble-averaged velocity of cars versus the density p; (e)(f): Long-time averages of the flow-velocity relationship. Note that for
A = 0.1 and 10% the fluxes of the KMC simulations in (a) and (b) agree with the macroscopic averaged fluxes in (33) and (29) (shown as the dotted and dashed black
curves, respectively). (left panels): Results of ] = 1. (right panels): Results of ] = 2. All parameters are the same as in Fig. 3 except that the slowdown interaction

function: g(x) = (1 — x)? in (32).

(V)eie & 2.0 cells per second (~13.4 m/s or 30 miles/h). As A
decreases to 0.1, the maximum value of the flow decreases a lot
to 22133 cars per hour and the critical value (v).; decreases a bit
and becomes slightly lower than 2 cells per second. For the case
of ] = 2 in Fig. 3(f), when A decreases, the maximum flow (F)
decreases from ~22133 cars per hour for the case of A = 10* down
to ~1519 cars per hour for the case of A = 0.1. The critical value
(v) it Where the flow (F) reaches its maximum do not change too
much. The results compare favorably with observed data in [56].

4.3. General slowdown relations

In the following, we perform numerical experiments on a
family of CA models with the same kernel (27) but a different

slowdown relation

2
g(x):{(l x)?, xel0,1],

32
0, otherwise. (32)

We apply the accelerated KMC method and generate fundamental
diagrams of the dynamics with A in (30)and J =1, 2.

Let us summarize the expected behaviors of the two extreme
cases. When 1 — 0, we have

(F)(P) = wop(1—pY*?,  (v)(P) = wo(1 - pY*2,

1 (33)
J+3

When A — oo, (F) and (v) should behave the same as in (29).

lim p*. =
=0 crit
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Fig. 5. Comparison results of the traffic flow on the one-lane highway with five different values of the multiple move parameter J. (a)(b): Long-time averages of the
density-flow relationship; (c)(d): Ensemble-averaged velocity of cars versus the density p; (e)(f): Long-time averages of the flow-velocity relationship. (left panels):
Results of A = 10%. (right panels): Results of A = 0.1. Note that for each value of ] = 1,2, ..., 5, the fluxes of the KMC simulations in (a) and (b) agree with the
macroscopic averaged fluxes in (28) and (29) (shown as the dashed and dotted black curves, respectively). The slowdown interaction function: g(x) = 1 —x in (25).

In Fig. 4, we observe the essentially same phenomena about
the fundamental diagrams as shown in Fig. 3. In particular, the
averaged results for the case of A = 10* (shown as cyan squares)
in all panels of Fig. 4 are statistically equal to the ones shown in
Fig. 3. But for A = 0.1 (shown as green “v” signs), the density-
flow curves in Fig. 4(a)(b) for the cases of ] = 1 and ] = 2 take
their maxima at the critical density pcit = % and % respectively,
which is consistent with (33). Moreover, for all cases of A < 104,
the density—flow curves shown in Fig. 4(a)(b) and the density-
velocity curves in Fig. 4(c)(d) are below the corresponding curves
shown in Fig. 3(a)-(d), respectively. Meanwhile, the flow-velocity
curves in Fig. 4(e)(f) are left of the corresponding ones shown
in Fig. 3(e)(f). This is because the function g(x) = (1 — x)?
introduces a stronger slow-down effect than g(x) = 1 — x does
such that for the same value of p, both the averaged flux and the
ensemble-averaged velocity are reduced.

10

4.4. Different multiple move parameters

Finally, we show the effects of the multiple move parameter J
on the flows in more detail in Fig. 5. We first take the slowdown
relation g(x) = 1 — x in (25) and compare the results of A = 10%
and A = 0.1, respectively.

Fig. 5(a) shows the density-flow relationship for the case
of A = 10* with J increasing from 1 to 5. The fluxes match
beautifully with the macroscopic averaged fluxes (29) (shown as
the dashed black curves). The case of ] = 1 corresponds to the
LWR type model, where the curve is symmetric and concave. We
note that the same KMC results have also been shown for A = 104
and J = 1in Fig. 3(a). For]J > 2, the curves become neither convex
nor concave, and have a right-skewed asymmetry. Moreover, for a
fixed p, the magnitude of the flow (F) decreases with increasing J.
The density-flow curves for ] = 1 to 5 take their maxima at the



Y. Sun and C. Tan

4000 .
J=1
- — ——J=2
3500 T S —o—J=3 *
7 N ——J =4
7 N | J=5
3000 - 7 N= = (F) = wp(l - p)’ |
= 4 N
2500 ’ b :
fan / N
I~
.2, 2000

1500

Flow

1000

500

0.4 0.6
Density p

(c)

J=1
——J =2
——J =3
——J =4 4
—v—J =5
= =) =w(l-p’

Average velocity [cells/s]
n

0.4 0.6 0.8 1

Density p

Average velocity [cells/s]
N

1000 1500 2000 2500 3000 3500 4000
Flow [cars/h]

Physica D 446 (2023) 133657

(b)

4000 ‘
J=1
3500 - j:; iz |
——J =4
3000 | il |
e (F) = wyp(1 = p)’**
< 2500} |
4
<
5,2000 |
3
S 1500
[
1000
500
0 ' v
0 0.2 0.4 0.6 0.8 1
Density p
d
. (d) ‘
J=1
——J =2
——J =3
al ——J =4 7
—v—J =5
...... (v) = wo(1 = )"+

0
0 0.2 0.4 0.6 0.8 1
Density p
f
) (f)
23
~
2
EE f
o,
> J=1
3 ——J=2
S 2 —o—J =31
T,) ——J =4
> —v—J=5
o
g
o 1 q
o
=
<

1000 1500 2000 2500 3000 3500 4000
Flow [cars/h]

Fig. 6. Comparison results of the traffic flow on the one-lane highway with five different values of the multiple move parameter J. (a)(b): Long-time averages of the
density-flow relationship; (c)(d): Ensemble-averaged velocity of cars versus the density p; (e)(f): Long-time averages of the flow-velocity relationship. (left panels):
Results of A = 10%. (right panels): Results of A = 0.1. Note that for each value of ] = 1,2, ..., 5, the fluxes of the KMC simulations in (a) and (b) agree with the
macroscopic averaged fluxes in (29) and (33) (shown as the dashed and dotted black curves, respectively). The slowdown interaction function: g(x) = (1 — x)? in

(32).

critical density peie = 5 to g, respectively, which is consistent
with pé\ — ﬁ as A — oo in (31). For the case of A = 0.1 shown
in Fig. 5(b), the microscopic fluxes agree with the macroscopic
averaged fluxes (28) very well (shown as the dotted black curves).
The critical density takes perig = 3 to 3 for ] = 1to 5, respectively,
as p} — J% as A — 0in (31). Moreover, the averaged results of
A = 10* for the cases | = 2 to 5 in the left panels of Fig. 5 are
statistically equal to the ones of A = 0.1 for the cases ] = 1to 4
shown in the right panels of Fig. 5.

The fundamental diagrams of the density-velocity relationship
in Fig. 5(c) and (d) show that at the same p, the ensemble-
averaged velocity (v) decreases as ] increases. For the cases of

11

A = 10* and 0.1, the ensemble-averaged velocity of the KMC sim-
ulations agrees with limits (29) and (28), (shown as the dashed
and dotted black curves, respectively).

Fig. 5(e) and (f) of the flow-velocity relationship show that for
a fixed value of (v), the magnitude of the flow (F) decreases with
increasing J. In Fig. 5(e) of A = 10%, as J increases, the maximum
value of the flow decreases a lot from ~3600 cars per hour down
to ~965 cars per hour, and the critical value (v).;; decreases a
bit and becomes slightly lower than 2 cells per second. For the
case of A = 0.1 in Fig. 5(f), the value of (v).;; does not change
too much as J increases.

In Fig. 6, we show the three fundamental diagrams for the
slowdown relation of g(x) (1 — x)? in (32) with A = 10%
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and A = 0.1, respectively. Here, we observe the essentially same
phenomena about the fundamental diagrams as shown in Fig. 5.
In particular, the averaged results for the case of A = 10* in the
left panels of Fig. 6 are statistically equal to the ones shown in
the left panels of Fig. 5 as the long-time averaged flux and the
averaged velocity still satisfy (29). But for A = 0.1, the density-
flow curves in Fig. 6(b) for all cases of ] = 1 to 5 take their
maxima at the critical density peir = 3 and g, respectively,
which is consistent with (33). Moreover, for all cases of ] = 1
to 5, the density-flow curves shown in Fig. 6(b) and the density-
velocity curves in Fig. 6(d) are consistent with the macroscopic
averaged flux and velocity in (33), and these curves are below
the corresponding curves shown in Fig. 5(b) and (d), respectively.
Meanwhile, the flow-velocity curves in Fig. 6(f) are left of the
corresponding ones shown in Fig. 5(f). As we pointed out in the
previous section, this is because the function g(x) = (1 — x)?
introduces a stronger slow-down effect than g(x) = (1 — x) does.

5. Conclusion

We have presented a class of one-dimensional cellular au-
tomata (CA) models on traffic flows, featuring nonlocal look-
ahead interactions. We extended the Arrhenius type look-ahead
rule in our previous work [46] to more general functions for char-
acterizing the nonlocal slowdown effect. The look-ahead rule also
features a novel idea of multiple moves, which plays a key role
in recovering the right-skewed non-concave flux in the macro-
scopic dynamics. Through a semi-discrete mesoscopic stochastic
process, we derived the coarse-grained macroscopic dynamics of
the CA model.

To simulate the proposed CA models with general slowdown
functions, we developed an accelerated KMC algorithm to im-
prove computational efficiency. In the KMC method, the dynamics
of cars is described in terms of the transition rates corresponding
to possible configurational changes of the system, and then the
corresponding time evolution of the system can be expressed in
terms of these rates. For models with global look-ahead interac-
tions, it is computationally costly to obtain all transition rates in
each step due to its nonlocal nature. Therefore, in our accelerated
KMC method, we take a new way to evaluate the transition rates
by updating from the previous steps, which can reduce the cost
from O(M?) to ©(M), where M denotes the number of cells in the
lattice.

The numerical experiments verified the computational effi-
ciency of the accelerated KMC algorithm over the standard KMC
method. Our numerical results show that the fluxes of the KMC
simulations agree with the coarse-grained macroscopic averaged
fluxes under various parameter settings. We obtained funda-
mental diagrams that display several important observed traffic
states.

As one of our main goals is to compare the two look-ahead
rules, we propose our CA models in a closed system and take
the periodic boundary conditions to keep the number of cars and
the density constant in a single simulation. Therefore, we have
not applied our models to simulate some more complex non-
stationary features, such as traffic breakdowns at bottlenecks [6].
It is possible to improve the models further in the following direc-
tions. We can include entrances and exits in the models by adding
dynamical mechanisms such as adsorption/desorption. In reality,
there are multi-lanes on highways and fast vehicles may change
lanes to bypass slow ones. We also need to consider different
types of vehicles, such as cars and trucks with unequal sizes and
speeds. More complicated models addressing these aspects will
be explored in the future.

The accelerated KMC algorithm proposed in this paper has
the potential to be applicable in the simulations of stochastic

12

Physica D 446 (2023) 133657

dynamics with nonlocal interaction rules arising in diverse ap-
plications ranging from vehicular/pedestrian traffic flows to sur-
face processes and catalysis [57-60] and computational cellular
biology [61-63].
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