Scheduling Classifiers for Real-Time Hazard Perception
Considering Functional Uncertainty

Tarek Abdelzaher Sanjoy Baruah [ain Bate
zaher@illinois.edu baruah@wustl.edu iain.bate@york.ac.uk
University of Illinois Washington University in Saint Louis University of York
USA USA UK
Alan Burns Robert I. Davis Yigong Hu
alan.burns@york.ac.uk rob.davis@york.ac.uk yigongh2@illinois.edu
University of York University of York University of Illinois
UK UK USA

ABSTRACT

This paper addresses the problem of real-time classification-based
machine perception, exemplified by a mobile autonomous system
that must continually check that a designated area ahead is free of
hazards. Such hazards must be identified within a specified time.
In practice, classifiers are imperfect; they exhibit functional un-
certainty. In the majority of cases, a given classifier will correctly
determine whether there is a hazard or the area ahead is clear.
However, in other cases it may produce false positives, i.e. indicate
hazard when the area is clear, or false negatives, i.e. indicate clear
when there is in fact a hazard. The former are undesirable since they
reduce quality of service, whereas the latter are a potential safety
concern. A stringent constraint is therefore placed on the maximum
permitted probability of false negatives. Since this requirement may
not be achievable using a single classifier, one approach is to (log-
ically) OR the outputs of multiple disparate classifiers together,
setting the final output to hazard if any of the classifiers indicates
hazard. This reduces the probability of false negatives; however,
the trade-off is an inevitably increase in the probability of false
positives and an increase in the overall execution time required.

In this paper, we provide optimal algorithms for the scheduling
of classifiers that minimize the probability of false positives, while
meeting both a latency constraint and a constraint on the maximum
acceptable probability of false negatives. The classifiers may have
arbitrary statistical dependences between their functional behav-
iors (probabilities of correct identification of hazards), as well as
variability in their execution times, characterized by typical and
worst-case values.

CCS CONCEPTS

« Computer systems organization — Real-time systems; Real-
time systems; « Software and its engineering — Real-time
schedulability; Real-time schedulability; Software reliability.

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

RTNS 2023, June 07-08, 2023, Dortmund, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9983-8/23/06.
https://doi.org/10.1145/3575757.3593649

KEYWORDS

Real-Time, Classifiers, Optimal Ordering, DNN, arbitrary depen-
dences

ACM Reference Format:

Tarek Abdelzaher, Sanjoy Baruah, Iain Bate, Alan Burns, Robert I. Davis,
and Yigong Hu. 2023. Scheduling Classifiers for Real-Time Hazard Percep-
tion Considering Functional Uncertainty. In The 31st International Conference
on Real-Time Networks and Systems (RTINS 2023), June 07-08, 2023, Dort-
mund, Germany. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3575757.3593649

1 INTRODUCTION

The importance of obtaining assurance for safety-critical systems
that incorporate machine learning has been recognized in several
large-scale initiatives including: the Assured Autonomy Program
[24] of the United States Defense Advanced Research Projects
Agency (DARPA); the Assuring Autonomy International Programme
[25], funded by Lloyd’s of London; and the Bounded Behavior As-
surance initiative [20], led by Northrop Grumman Corporation.

The research reported in this paper is motivated by the problem
of real-time classification-based machine perception in a mobile
autonomous system. This system must continually check that a
designated area ahead is free of hazards. Such hazards must be iden-
tified within a specified time. In practice, classifiers are imperfect;
they exhibit functional uncertainty. In the majority of cases, a high
performance classifier will correctly determine whether there is a
hazard or the area is clear. However, in other cases it may produce
false positives, i.e. indicate hazard when the area is clear, or false
negatives, i.e. indicate clear when there is in fact a hazard. The for-
mer are undesirable since they reduce quality of service, whereas
the latter are a potential safety concern. A stringent constraint is
therefore placed on the maximum permitted probability of false
negatives. Since this requirement may not be achievable using a
single classifier, one approach is to (logically) OR the outputs of
multiple disparate classifiers together, setting the final output to
hazard if any of the classifiers indicates hazard. This reduces the
probability of false negatives; however, the trade-off is an inevitable
increase in the probability of false positives and an increase in the
overall execution time required.

Previous research in this area assumes that collections of classi-
fiers designed to solve the same machine perception problem are
independent; however, this is rarely the case in practice. Classifiers

RTNS 2023, June 07-08, 2023, Dortmund, Germany

can exhibit related behaviors for a variety of reasons. Statistical
dependences! may be induced by the environment (a hazard that is
difficult for one classifier to identify may also be difficult for another
classifier to identify), by the training process (the same data may
be used to train multiple classifiers), and by common components
and algorithms (the same Deep Neural Network approach may be
applied in a subset of the classifiers). These dependences result in
observable behavior that is to some degree correlated.

In this paper, we provide a methodology for characterizing the
arbitrary statistical dependences between the functional behaviors
of different classifiers. Building on this characterization, we present
a typical-case optimal algorithm for the scheduling of classifiers
that minimizes the probability of false positives, while meeting both
a latency constraint and a constraint on the maximum permitted
probability of false negatives. The algorithm provides the optimal
solution, i.e. the minimum probability of false positives, compliant
with the constraints, assuming that the classifiers execute for their
typical-case execution times, but crucially are not guaranteed to do
so. As is the case in practice, each classifier is assumed to have a vari-
able but bounded execution time, characterized by worst-case and
typical-case values. (Full details of the system model, terminology,
and definitions used are given in Section 2).

To support arbitrary statistical dependences, it is necessary to
capture information relating to each possible combination of n
classifiers that could be run. Since there are 2" such distinct combi-
nations, the methodology presented in this paper has the minimum
space complexity of O(2") needed to support such arbitrary de-
pendences. All further operations used in both the initial profiling
phase, described in Section 3, and in the off-line computations re-
quired by the typical-case optimal algorithm, presented in Section
4, are at most quadratic in the number of combinations and hence
O(4™) overall®. In practice, we do not expect applications to require
more than approximately 12 distinct classifiers to solve the same
hazard detection problem, while the methodology presented is vi-
able for up to n = 20 classifiers, equating to around 20 minutes
of processing time on a single core of an Intel i5-8265U 1.6 GHz
laptop computer. In summary, off-line processing with exponential
time complexity is necessary to support the arbitrary dependences
between classifier behaviors that exist in real systems, but does not
prevent the methodology presented from being effective in practice.

The main contribution of the paper is the derivation of a typical-
case optimal algorithm for the scheduling of classifiers to solve the
hazard detection problem. This algorithm determines a preferred
sequence of classifiers to run, along with a corresponding series of
trigger times, derived from the typical-case execution times of the
classifiers and the latency constraint, and escape sets, i.e. the subsets
of classifiers to run if the preferred classifiers do not complete by
the trigger times. The trigger times and escape sets are determined
such that the constraint on the probability of false negatives and
the constraint on the overall latency are guaranteed to be met. In
other words, if the preferred classifiers complete by the trigger

Two events X and Y are said to be statistically dependent if the probability of X occur-
ring given that Y has occurred, i.e. p(X|Y), is different from the separate probability
of X occurring, i.e. p(X). Two events are statistically independent if p(X|Y) = p(X).
This is achieved by using a binary representation for sets of classifiers, which enables
operations such as set intersection, set union, and set difference to be achieved in
O(1) time at least up to n = 64 on a 64-bit computer.

Tarek Abdelzaher, Sanjoy Baruah, lain Bate, Alan Burns, Robert I. Davis, and Yigong Hu

times, then the preferred sequence executes, otherwise an escape
set is employed; either way the constraint on the probability of
false negatives and the latency constraint will be met. This algo-
rithm requires substantial off-line computation as discussed above,
however, it then permits minimally dynamic run time operation
with O(1) overheads at each scheduling point, corresponding to
the completion of a classifier. The performance of the typical-case
optimal algorithm is evaluated, in Section 5, by comparison to that
of a statically optimal algorithm and a hypothetical clairvoyant
optimal algorithm, on a real-world case study. The paper concludes,
in Section 6, with a summary and directions for future work.

1.1 Related Work

System safety is concerned with the identification and subsequent
mitigation of potentially hazardous events [21]. The key point is
that a system is expected to be acceptably, but not necessary com-
pletely, safe. Any event that could lead to a hazard should be miti-
gated, and even if a hazardous event occurs then this should not
necessarily mean that a serious accident will happen. In this context,
two types of hazardous event are: (i) not detecting an object that is
in, or on a trajectory to be in, a potentially dangerous place [11]; or
(ii) erroneously detecting such an object that is not in fact there. In
the Uber accident [11] the pedestrian was repeatedly mis-classified
and was only correctly classified when it was too late. The second
type of hazardous event could lead to unnecessary avoidance ac-
tions creating other hazardous events or reduced trust in the system.
Classical examples of where the wrong actions were taken based on
incorrect information and key information not being readily avail-
able, or routinely ignored due to its unreliability, are the Bhopal
[12] and Kegworth accidents [28]. Any detection of a potentially
hazardous state therefore needs to be both trustworthy and timely.

Machine perception has a fundamental role in intelligent real-
time systems, such as in drones [17], autonomous cars [10, 26],
and medical IoT systems [4, 15]. Perception in such systems is
typically performed using classifiers that are based on Deep Learn-
ing, thus generating interest in understanding and optimizing the
trade-offs between the quality of deep-learning-based perception
and perception latency. Examples of such trade-off optimization
approaches include: (i) adaptive neural network approximations
aimed at meeting latency constraints [9, 14, 19, 31], and (ii) adaptive
model-switching systems that pick one of multiple neural network
versions depending on the time available [16].

Another direction is the use of “I Don’t Know” (IDK) classi-
fiers [18, 27]. Like model-switching, IDK classifier cascades [30] use
an ensemble of different classifiers; however, they assume that the
chosen classifier, when not confident enough, can return an “I Don’t
Know" value, which will then prompt the system to choose another
classifier, thereby executing a situation-dependent sequence simi-
lar to adaptive approximation approaches. Analytical results have
previously been developed [5, 8] for the special cases of IDK clas-
sifiers where the probabilities of successful classification by the
respective classifiers were either independent, or fully dependent of
one another. Further, extensions have also been made considering
arbitrary dependences between IDK classifiers [1], with a focus on
minimizing the expected duration required for successful classi-
fication. The research presented in this paper employs a similar

Scheduling Classifiers for Real-Time Hazard Perception Considering Functional Uncertainty

methodology for characterizing arbitrary dependences, but solves
a substantially different problem.

In 2020, Agrawal et al. [3] proposed a model whereby Learning
Enabled Components take a fixed time to execute, and return a value
that is not known prior to execution, but for which worst-case and
typical-case bounds are known. The model assumes multi-stage
computations where there is a choice of components for each stage.
The algorithms presented seek to determine a schedule that mini-
mizes the overall latency, while ensuring that the sum of the values
produced by the components that are executed is no less than a
specified target value. By summing the values output by the com-
ponents, this work implicitly assumes that the behaviors of the
components are independent. Building upon the earlier work of
Agrawal et al. [3], in 2022 Baruah et al. [7] considered a model
whereby components take a fixed time to execute and produce an
output indicating hazard or clear along with an associated confi-
dence or probability? that the output is correct. This probability is
assumed to be no less than a worst-case value under all circum-
stances, and no less than a typical-case value in non-pathological
circumstances. The algorithms presented in [7] seek to schedule the
components in sequence such that a target confidence is reached,
with the overall confidence that is achieved calculated as a mul-
tiplicative function of the probabilities involved. In other words,
assuming that the behaviors of the components are independent.
Both static and semi-adaptive algorithms are presented. With the
former, the sequence of components is predetermined prior to run
time, whereas with the latter the sequence is adapted as informa-
tion becomes available when each component completes. A similar
distinction between such strategies was previously made in the
context of graph routing problems [2, 6].

The problem addressed and the solutions provided in this paper
build upon the work of Baruah et al. [7]. However, a more practical
approach is taken in this paper: (i) Components (classifiers) are
assumed to take a variable amount of time to execute up to some
worst-case bound, rather than a fixed time; (ii) classifiers are not
trusted to output an accurate measure of their own confidence (un-
certainty) for each problem instance, since such measures cannot
in general be relied upon to give a correct indication in individual
cases [13], rather a long run frequency interpretation is used to de-
termine the probabilities of false negatives and false positives based
on a representative data set; and (iii) the methodology presented
supports arbitrary statistical dependences between the behaviors of
different classifiers, rather than implicitly assuming independence.

2 SYSTEM MODEL

We consider a collection of n classifiers K1, K», . . ., K, that are all
designed to solve the same hazard identification problem. When
invoked on an input, classifier Kj returns either 1 indicating hazard
or 0 indicating clear. Each classifier is assumed to take a variable
but bounded time to execute. If a classifier returns 1 and the ground
truth is 0, then that is referred to as a false positive, similarly if a
classifier returns 0 and the ground truth is 1, then that is referred to
as a false negative. When more than one classifier is employed on the
same problem, then we assume that the outputs of the classifiers are

3Baruah et al. [7] use the term uncertainty to mean 1 — p, where p is the estimated
probability that the output is correct.

RTNS 2023, June 07-08, 2023, Dortmund, Germany

(logically) OR-ed together. Hence if any of the classifiers indicates 1,
then the overall output is 1 indicating hazard. Only if all employed
classifiers indicate 0, is the overall output 0 indicating clear.

We use S to denote a set or subset of classifiers. Since there are
n classifiers, there are 2" such distinct subsets, including the empty
set @. We use the following functions to describe the characteristics
of each set or subset of classifiers. The probability of the classifiers
in S returning a false negative is denoted by FN(S). Similarly, the
probability of the classifiers in S returning a false positive is denoted
by FP(S). In Section 3, we describe how these probabilities can be
obtained. The fact that the outputs of the employed classifiers are
OR-ed together means that if set V is a subset of S, i.e. V C S,
then FN(V) > FN(S) and FP(V) < FP(S). In other words, adding
classifiers cannot increase the probability of false negatives, but
typically decreases it; whereas adding classifiers cannot decrease
the probability of false positives, but typically increases it.

The sum of the worst-case execution times of the classifiers in
S is denoted by WCET(S). Similarly, TCET(S) denotes the sum of
their typical-case execution times, and ACET(S) denotes the sum
of their actual execution times for a specific run-time instance of
the problem.

An ordered sequence® of classifiers (K’,Ké,Ké, .. .,K,’C) can be
represented by a set of the incrementally increasingly larger sets
of classifiers employed, for example {@, S, Sz, . . . Sk} where S; =
{K1}, S2 = {K], K}, S3 = {K{, K}, K3} and so on. At each stage in
the sequence, the classifier that has been added can be recovered as
{KJ’.} = Sj — Sj_1. (While this method of representing sequences is
somewhat cumbersome, it has significant advantages in describing
and understanding the algorithms proposed in Section 4).

The problem that we aim to solve is defined as follows:

DEFINITION 1. Hazard detection classifier sequencing prob-
lem: Given a latency constraint L, specifying the maximum time
available for classifier execution, and a constraint on false negatives
H, specifying the maximum permitted probability of false negatives,
select a sequence of classifiers to run that is compliant with the con-
straints and minimizes the probability of false positives.

A subset S of classifiers complies with the constraint on false
negatives if FN(S) < H, otherwise it does not. We use ESCAP(S)
to denote the set of classifiers, referred to as the escape set, that
provides the shortest guaranteed time to meet the constraint on
false negatives following the completion of the classifiers in S.
If FN(S) < H, then ESCAP(S) = @, since S already meets the
constraint on false negatives. Otherwise, ESCAP(S) equates to the
subset V with the smallest value of WCET(V) such that SNV =@
and FN(S U V) < H. In other words, there are no classifiers in V'
that are also in S, and once the classifiers in both S and then V have
executed then the constraint on false negatives can be guaranteed.

The optimal classifier sequencing problem admits different classes
of solution, from static solutions that are computed off-line to fully-
dynamic solutions that may select a different classifier to run each
time a classifier finishes and its actual execution time for that in-
stance becomes known. In this paper, we are mainly interested in

“Note, we use K] to represent the 1st classifier in the sequence, K}, the 2nd classifier
in the sequence, and so on. This is different from the classifier indexing, and so it may
be the case that, for example, K] = K3, K; = K] etc.

RTNS 2023, June 07-08, 2023, Dortmund, Germany

static and minimally dynamic algorithms that pre-compute a course
of actions that can be followed at run-time with O(1) overheads at
each scheduling point, corresponding to the completion of a classi-
fier. For comparison purposes, we also consider the performance of
a hypothetical clairvoyant algorithm that knows, before they are
run, what the actual execution times of the classifiers will be for
each run time instance of the problem, but does not know what
their outputs will be. Note, we do not pursue the characterization
of fully-dynamic solutions further in this paper, since the run-time
overheads are likely prohibitive.

DEFINITION 2. Static optimality: An algorithm is statically op-
timal if the set of classifiers Z that it selects off-line has the minimum
probability of false positives FP(Z) of any set of classifiers that com-
ply with the constraint on false negatives, FN(Z) < H, and has a
combined worst-case execution time that complies with the latency
constraint, WCET (Z) < L. The classifiers in Z may run in any order.

DEFINITION 3. Clairvoyant optimality: An algorithm is clair-
voyant optimal if the set of classifiers Z that it selects for each run-time
instance of the problem has the minimum probability of false positives
FP(Z) of any set of classifiers that comply with the constraint on
false negatives, FN(Z) < H, and has a total actual execution time
for that run-time instance that complies with the latency constraint,
ACET(Z) < L. The classifiers in Z may run in any order.

DEFINITION 4. Typical-Case optimality: An algorithm is typical-
case optimal if the sequence of classifiers that it selects, represented
by the set of the incrementally increasingly larger sets of classifiers
employed {So = @,51,S2,...Sk = Z}, has the minimum probability
of false positives FP(Z) of any set of classifiers that comply with
the constraint on false negatives, FN(Z) < H, have a combined
typical-case execution time that complies with the latency constraint,
TCET(Z) < L, and each subset of classifiers S; = So to S has a
valid escape set, ESCAP(S;), such that if the classifier in Sj — Sj_1
completes in more than its typical-case execution time, but within its
worst-case execution time, then executing the classifiers in ESCAP(S;)
is sufficient to guarantee that the constraints will still be met.

Note that if there is some slack time available, for example be-
cause a previous classifier in the sequence executed in less than
its typical-case execution time, then it may not be necessary to im-
mediately switch to executing the classifiers in ESCAP(S;) when
the classifier in (Sj — Sj-1) exceeds its typical-case execution time.
The typical-case optimal algorithm presented in Section 4 takes
advantage of any available slack time in this way.

3 PROFILING

In this section, we describe the profiling phase, which prepares a
profile table that captures the probabilistic dependences between
the behaviors of the n classifiers. Prior to this profiling phase, we
assume that each of the classifiers has been trained and verified
using representative input data. In many applications this data
can be re-used directly in the profiling phase. Where new data is
required, for example because the training and verification data
is proprietary, then it must also be representative of the inputs
expected during deployment.

During the profiling phase, all of the n classifiers are tested on
the same N input samples. Each input sample is a data structure

Tarek Abdelzaher, Sanjoy Baruah, lain Bate, Alan Burns, Robert I. Davis, and Yigong Hu

that includes information collected from all sensing modalities used
by the respective classifiers. It is assumed that each sample also
provides information relating to the ground truth, i.e hazard or clear.
There are no limitations on the format of the respective modalities,
other than being consistent with the input format expected by the
respective classifiers. For example, in a scenario involving vision,
acoustic, and seismic sensing, a single sample could include a high
definition image, a 1 second acoustic sound clip recorded at 4KHz,
and a 1 second seismic time-series measurement recorded at 100Hz.
Further, the number of classifiers used may be different from the
number of modalities present in the input sample. For example,
a joint acoustic plus seismic classifier would make use of both
the acoustic and the seismic information within the sample. By
contrast, three different image classifiers could be used that all act
on the same image information, but differ in the resolution used
and consequently in their execution time.

For each of the N input samples, we store the ground truth and
the output of each of the n classifiers for further processing as
described below. We also measure and store the execution time
of each classifier on each input sample. We assume that the ex-
ecution times of the different classifiers are independent of one
another. This is typically the case because the neural networks
used for such processing run on a dedicated GPU. Further, each
neural network typically performs the same computations on each
input, resulting in an execution time that depends primarily on the
neural network architecture, input size, and GPU type, but not on
the actual data values. We explore the correlations between the
behaviors of different classifiers, and also the correlations between
their execution times in Section 3.3. Note, in the case study used as
a proof-of-concept in this paper, the classifiers are run on one core
of a multi-core system, a Raspberry Pi 4.

Once we have considered all N inputs samples for all n classifiers,
then we can determine how many times each of the 2" binary pat-
terns of possible classifier outputs occurs: (i) when the ground truth
is 1, and (ii) when the ground truth is 0. From this information, we
can then compute the probability of obtaining a false positive, and
also the probability of obtaining a false negative, when employing
each of the 2" combinations of the n classifiers. Since the input data
used in profiling is assumed to be representative of the input data
when the system is operational, these probabilities are a correct
reflection of the long run frequencies of occurrence of false positive
and false negatives respectively for those sets of classifiers.

The method of computing the probabilities of false positives and
false negatives is best illustrated via an example, as described below.

3.1 Profiling the Multi-Modal Case Study

The data used in this case study was collected previously [22] as
part of a project that seeks to autonomously detect the presence
of a potentially hostile enemy vehicle in a battlefield environment.
Three different kinds of sensors were deployed for this purpose:
acoustic (a microphone array), seismic (a Raspberry Shake, com-
prising a Raspberry Pi plus a vertical-axis geophone), and vision (a
camera). The manner in which the input samples were collected is
described by Liu et al. [22] as follows:

“We deployed our devices on the grounds of the DEVCOM Army Re-
search Laboratory Robotics Research Collaboration Campus [...] and

Scheduling Classifiers for Real-Time Hazard Perception Considering Functional Uncertainty

collected seismic and acoustic signals, while different ground vehicles
were driven around the site. Data of three different targets: a Polaris
all-terrain vehicle, a Chevrolet Silverado, and Warthog UGV were col-
lected. Each target repeatedly passed by the sensors. The total length
of the experiment was 115 minutes, spread roughly equally across the
three targets. [...] A camera was employed to simultaneously record
video of the target.”

Based on this input data, the aim is for the classifiers to determine
if a vehicle of the designated target type is present in the detection
area. Such functionality is useful in “intelligent tripwire” scenarios,
where the system must generate an alert only when a specific type
of target is present, while ignoring other passing traffic, hence the
task is one of binary (i.e. combined) detection and classification.

There are seven classifiers of interest® in the case study:

e A: deepsense_both: Uses both seismic and acoustic data, and pro-
cesses it using the DeepSense neural network architecture [32].

o B: deepsense_both_contras: Similar to A, but was trained using
contrastive learning [23].

o C: deepsense_acoustic: Uses only acoustic data, and processes it
using the DeepSense neural network architecture [32].

e D: deepsense_seismic: Similar to C, but uses only seismic data.

e E: cnn_both: Uses both seismic and acoustic data, and processes
it using a standard convolutional neural network.

e F:cnn_acoustic: Uses only acoustic data, and processes it using
a standard convolutional neural network.

e G: cnn_seismic: Similar to F, but uses only seismic data.

To illustrate the methodology and provide a sufficiently compact
worked example, we first consider only the five classifiers A to E.
The evaluation in Section 5 later includes all seven classifiers.

The output of classifiers A to E on 1800 randomly chosen input
data samples® is summarized in Table 1. The first column shows
a binary code identifying a subset of the classifiers, which is then
enumerated in the second column. The fourth column, labeled
GTO0, indicates the number of times the binary code in the first
column was obtained by running all of the five classifiers when the
ground truth was 0, i.e. clear. Similarly, the third column, labeled
GT1, indicates the number of times that the binary code in the first
column was obtained by running all of the five classifiers when the
ground truth was 1, i.e. hazard. For example, the first row in the
table shows that there were 1107 input samples where none of the
classifiers indicated hazard, when the ground truth was 0, i.e. clear.
Similarly, there were 36 input samples where none of the classifiers
indicated hazard, even though the ground truth was 1, i.e. hazard.
Further, there was 1 input sample where only classifiers A and E
(10001) indicated 1 and the ground truth was 0, and 3 input samples
where only those classifiers indicated 1 and the ground truth was 1.

Once this summary of the classifier behavior on the input sam-
ples has been obtained, then the next step in profiling is to deter-
mine the probability of false positives and the probability of false
negatives for each of the 2" subsets of the n classifiers. (Since there
are five classifiers in this initial example, there are 32 combinations
of the classifiers and hence 32 rows in the profiling table). Recall
that when multiple classifiers are employed, the overall output
5We did not consider the vision based YOLOVS classifiers, since their execution times
were orders of magnitude greater than those of the other classifiers.

®An input data sample comprises an image, a 1 second acoustic sound clip recorded at
4KHz, and a 1 second seismic time-series measurement recorded at 100Hz.

RTNS 2023, June 07-08, 2023, Dortmund, Germany

is obtained by (logically) OR-ing together the individual outputs.
Hence any classifier indicating hazard results in an overall output
of hazard, whereas all employed classifiers must indicate clear for
the overall output to be clear.

Table 1: Profile table for the Multi-Modal case study

Binary ClassifiersS GT1 GT0 FP(S) FN(S) WCET(S)

00000 @ 36 1107 0.0000 1.0000 0
00001 A 3 2 0.0075 0.1183 0.025121
00010 B 1 1 0.0042 0.1383 0.023854
00011 AB 0 0 0.0100 0.0933 0.048975
00100 C 3 18 0.0200 0.3600 0.017554
00101 AC 9 1 0.0250 0.0933 0.042675
00110 BC 2 0 0.0242 0.1067 0.041408
00111 ABC 5 0 0.0275 0.0850 0.066529
01000 D 9 36 0.0358 0.2083 0.01618
01001 AD 4 1 0.0417 0.0833 0.0413
01010 BD 1 1 0.0383 0.1067 0.040033
01011 ABD 22 1 0.0433 0.0750 0.065154
01100 CD 0 2 0.0542 0.0850 0.033734
01101 ACD 1 0 0.0575 0.0700 0.058854
01110 BCD 2 0 0.0567 0.0767 0.057587
01111 ABCD 13 0 0.0592 0.0667 0.082708
10000 E 4 22 0.0250 0.1850 0.0053
10001 AE 3 1 0.0292 0.0900 0.030421
10010 BE 1 1 0.0275 0.1083 0.029154
10011 ABE 3 1 0.0308 0.0800 0.054274
10100 CE 2 1 0.0425 0.1267 0.022854
10101 ACE 4 2 0.0458 0.0783 0.047975
10110 BCE 4 0 0.0450 0.0867 0.046708
10111 ABCE 45 0 0.0475 0.0750 0.071828
11000 DE 2 2 0.0592 0.0983 0.021479
11001 ADE 3 0 0.0617 0.0700 0.0466
11010 BDE 2 0 0.0600 0.0850 0.045333
11011 ABDE 122 0 0.0625 0.0650 0.070454
11100 CDE 0 0 0.0750 0.0667 0.039033
11101 ACDE 0 0 0.0767 0.0617 0.064154
11110 BCDE 2 0 0.0758 0.0650 0.062887
11111 ABCDE 292 0 0.0775 0.0600 0.088008
Sum 600 1200

To compute the probability of false positives for a given subset
S of classifiers, we sum up the values in the GT0 column for all of
the subsets in the table that have a non-empty intersection with S
and then divide by the sum of all of the values in the GT0 column.
This totals up the number of input samples where at least one of
the classifiers in S indicates 1 when the ground truth is in fact
0 and divides it by the total number of input samples where the
ground truth is 0. subsets of classifiers in the table. For example,
consider S = {A, E}, the total number of input samples in the GT0
column where A or E appear in the set of classifiers is 35. As there
are 1200 input samples with a ground truth of 0, it follows that
FP({A,E}) = 35/1200 = 0.0292.

To compute the probability of false negatives for a given subset
S of classifiers, we sum up the values in the GT1 column for all of
the subsets in the table that have an empty intersection with S and
then divide by the sum of all the values in the GT1 column. This
totals up the number of input samples where none of the classifiers
in S indicate 1 when the ground truth is in fact 1 and divides it

RTNS 2023, June 07-08, 2023, Dortmund, Germany

Tarek Abdelzaher, Sanjoy Baruah, lain Bate, Alan Burns, Robert I. Davis, and Yigong Hu

o4 lassif o ® 1 classifi 0-16 i
@ 1 classifier classifier @ 1 classifier
() ® o @
0.35 2 classifiers 035 2 classifiers £ 0.14 2 classifiers
. =]
2 0.3 @ 3 classifiers w 0.3 @ 3 classifiers < 0.12 | @3 classifiers
2 0.25 4 c:assi:iers % 0.25 .151 c:assi?ers g 0.1 :c:assi:iers
© @ 5 classifiers classifiers @ 5 classifiers
3 0.2 e & 0.2 o £ 0.08 L
z () = ® o () ()
Q
2015 3 3015 | g 2 0.06 ® o
£ 01 £ o1 | & £ 0.08 o o o
. ® . o ¢ % 0
0.05 eV L 0.05 * e S0z ®® ¢ g
0 0 0)
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

Worst-case execution time

False Positives

False Positives

Figure 1: Multi-Modal case study: Relationships between FN(S), FP(S), and WCET(S).

by the total number of input samples where the ground truth is
1. For example, consider S = {A, E}, the total number of inputs
samples in the GT1 column where neither A nor E appear in the
set of classifiers is 54. As there are 600 input samples with a ground
truth of 1, it follows that FN ({A, E}) = 54/600 = 0.09.

Also shown in Table 1 is the total worst-case execution time,
WCET(S), measured in seconds for the classifiers in S. The worst-
case execution times for each classifier was set to the 99-percentile
of the values obtained via profiling on a Raspberry Pi 4.

The relationships between FN(S), FP(S), and WCET(S) for the
subsets S of classifiers listed in the profile table are illustrated in Fig-
ure 1. Observe that lowering the probability of false negatives typi-
cally requires employing more classifiers, which in turn increases
both the worst-case execution time required and the probability of
false positives. For example, employing just one classifier, the lowest
probability of false negatives that can be achieved is 0.1183 with clas-
sifier A, with a worst-case execution time of 0.0251 and a probability
of false positives of 0.0075. Using two classifiers, the probability of
false negatives can be reduced to 0.085 with classifiers CD, with
WCET({C,D}) = 0.0337 and FP({C, D}) = 0.0542. Further, with
three classifiers the probability of false negatives can be reduced to
0.0667 with classifiers CDE, with WCET ({C, D, E}) = 0.0390 and
FP({C, D, E}) = 0.0750. With four classifiers the probability of false
negatives can be reduced to 0.0617 with classifiers ACDE, with
WCET({A,C,D,E}) = 0.0642 and FP({A,C,D,E}) = 0.0767. Fi-
nally, with five classifiers ABCDE, the minimum probability of false
negatives of 0.06 is reached, with WCET({A, B,C, D, E}) = 0.088
and FP({A, B,C, D, E}) = 0.0775.

3.2 Static and Clairvoyant algorithms

Once the profiling table has been constructed, and populated with
the probabilities of false positives and false negatives as described
above, then it becomes trivially simple to formulate a statically
optimal algorithm (see Definition 2).

Statically Optimal Algorithm: Select the set of classifiers S
from the 2" entries in the profiling table that has the minimum
value of FP(S) such that FN(S) < H and WCET(S) < L. The
classifiers in S may then be run in any order.

"If a higher reliability estimate was required, then such values could be obtained via
static or measurement-based timing analysis. Potential overruns could also be dealt

with via budget enforcement and an assumption that hazard is returned in the rare
cases that a classifier exceeds its designated WCET.

Similarly, assuming that a clairvoyant algorithm also has access
to a further column of information indicating the total actual exe-
cution time ACET(S) for each subset of classifiers S the next time
that they run, then a clairvoyant optimal algorithm (see Definition
3) is also trivially simple to formulate.

Clairvoyant Optimal Algorithm: Select the set of classifiers S
from the 2" entries in the profiling table that has the minimum value
of FP(S) such that FN(S) < H and ACET(S) < L. The classifiers
in S may then be run in any order.

In Section 4, we present a minimally dynamic algorithm that is
typical-case optimal (see Definition 4). The statically optimal algo-
rithm and the clairvoyant optimal algorithm are used as reference
points for assessing the quality of the typical-case optimal algo-
rithm in Section 5. These algorithms provide, respectively, bounds
on the best possible solutions that can be achieved statically and
dynamically. First, however, we discuss correlations between both
the behaviors and the execution times of the classifiers.

3.3 Correlations

With the data that is available from profiling, it is possible to esti-
mate the level of statistical dependence, i.e. the degree of correlation,
between the behaviors of the different classifiers. This can be char-
acterized by calculating Pearson’s correlation coefficient® for each
pair of classifiers. This coefficient ry is given by:

SN (- D7)
VN i 025N, (ui - 7)?

where x; and y; are the paired results for the two classifiers on
input sample i = 1... N, while X and 7 are the respective means of
the N results.

Pearson’s correlation coefficient rxy can take values in the range
[-1,+1], with ryy = 0 implying no correlation, and hence possibly

Ixy =

independence.’ The value ryxy = +1 implies identical behavior, and
at the other extreme ryxy = —1 implies exactly opposite behavior.
Table 2 shows the coefficients computed for all seven classifiers
in Multi-Modal case study, color-coded by the degree of correla-
tion between the outputs of the distinct classifiers: red indicating a

8See https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
9 Although independence implies a correlation of zero, a correlation of zero does not
necessarily imply independence.

Scheduling Classifiers for Real-Time Hazard Perception Considering Functional Uncertainty

Table 2: Behavior: Pearson Correlation Coefficients

strong degree of correlation (abs(rxy) > 0.5), orange a moderate
degree of correlation (0.1 < abs(rxy) < 0.5), and green a weak
degree of correlation (abs(ryy) < 0.1). As expected, the outputs
of the classifiers in the case study mostly show a strong positive
correlation of between 0.433 and 0.909 for each pair, with 95% con-
fidence intervals!® for these correlation coefficients of [0.39, 0.47]
and [0.90, 0.92] respectively.

We also examined the dependences between the execution times
of the classifiers. For each of the N input samples, we recorded the
execution time of each classifier and categorized these execution
times as either: 1 indicating above the median value or 0 indicating
equal to or below the median value. We then computed Pearson’s
correlation coefficient for each pair of classifiers based on this
binary data. Recall that the coefficients can range from —1 to +1,
with a value of 0 implying no correlation. Table 3 shows these
coefficients for all seven classifiers in the Multi-Modal case study.

Table 3: Execution Times: Pearson Correlation Coefficients

A B C D E F G

1 0.031 0.036 -0.011 -0.027 -0.009 0.022
0.031 1 0.009 0.024 -0.040 -0.013 -0.024
0.036 0.009 1 0.000 0.029 -0.004 0.031
-0.011 0.024 0.000 1 -0.020 0.062 -0.058
-0.027 -0.040 0.029 -0.020 1 -0.007 0.076
-0.009 -0.013 -0.004 0.062 -0.007 1 0.024
0.022 -0.024 0.031 -0.058 0.076 0.024 1

OmMmgOOw >

Observe that for the execution times of the Multi-Modal classi-
fiers, the correlation coefficients in Table 3 for all pairs of distinct
classifiers indicate weak correlation (abs(rxy) < 0.1). The weak
degree of correlation implies that the majority of the execution time
of each classifier is effectively independent of the execution time
of other classifiers, with a small effect size of less than 10% that
is dependent. Hence regarding the execution time behavior of the
classifiers as independent is a reasonable approximation. In Table 3,
the correlation coefficients range from —0.058 to 0.076; the 95% con-
fidence intervals!? for these coefficients are [—0.104, —0.0118] and
[0.030,0.122] respectively. (Note, the widest confidence interval of
[—0.046,0.046] occurs when the correlation coefficient is 0.0).

Figure 2 illustrates the frequency distributions of the execution
times of the classifiers. Observe that classifiers A and B, which use
the DeepSense neural network architecture and operate on both

Y Computed using https://www.statskingdom.com/correlation-confidence-interval-
calculator.html

RTNS 2023, June 07-08, 2023, Dortmund, Germany

40%
35% —G
F
30% —E
D
—c
5% 4
5 5% —
$ 20% —A
o
4
& 150
10% -
5%
0%

O AN M ONDOANOAANMT N ONXOO
- - - oo - N

< un
oo - N N

- N ™M
N NN
Execution time (ms)

Figure 2: Frequency distribution of execution times.

seismic and acoustic data, have similar execution time distributions.
This is also the case with classifiers C and D, which also use the
DeepSense neural network architecture, but each operate on only
a single form of input data. Finally, classifiers E, F, and G all use a
standard convolutional neural network and have similar execution
time distributions.

4 TYPICAL-CASE OPTIMAL ALGORITHM

In this section, we present a typical-case optimal algorithm (see
Definition 4) for the hazard detection classifier sequencing prob-
lem. This algorithm has a substantial off-line component that then
permits minimally dynamic run time operation with O(1) over-
heads at each scheduling point. By construction, this typical-case
optimal algorithm is guaranteed to find a feasible solution if and
only if a static solution exists. We therefore assume that the typical-
case optimal algorithm is only run on problems that admit a static
solution.

The aim of the algorithm is to determine a preferred sequence of
classifiers to run, along with a corresponding series of trigger times
(derived from the typical-case execution times of the classifiers) and
escape sets, i.e. subsets of classifiers to run if the preferred classifiers
do not complete by the trigger times. The trigger times and escape
sets are determined such that the constraint on false negatives
and the constraint on overall latency are always guaranteed to be
met. In other words, if the preferred classifiers complete by the
trigger times, then the preferred sequence executes, otherwise the
classifiers in an escape set are executed, either way the constraint
on the probability of false negatives and the latency constraint will
be met. The difference being that the preferred sequence will result
in a lower probability of false positives.

We assume as input to the algorithm the profile table described in
Section 3, populated with the FP(S), FN(S), and WCET(S) values
for each of the distinct subsets of classifiers.

As a prelude to the main off-line operation of the typical-case
algorithm, values for the typical-case execution times TCET (S) and
the escape set ESCAP(S) are added to the profile table for each
subset of classifiers S. Table 4 extends Table 1, adding these values
for the five classifiers A to E considered.

First, typical-case execution times are defined for each classifier.
This is achieved by selecting an appropriate percentile from the

RTNS 2023, June 07-08, 2023, Dortmund, Germany

Table 4: Extended profile table for the Multi-Modal case study

Binary ClassifiersS FP(S) FN(S) WCET(S) TCET(S) ESCAP(S)

00000 @ 0.0000 1.0000 0 0 CD
00001 A 0.0075 0.1183 0.025121 0.018166 DE
00010 B 0.0042 0.1383 0.023854 0.017788 DE
00011 AB 0.0100 0.0933 0.048975 0.035954 E
00100 C 0.0200 0.3600 0.017554 0.012263 D
00101 AC 0.0250 0.0933 0.042675 0.030429 E
00110 BC 0.0242 0.1067 0.041408 0.030051 D
00111 ABC 0.0275 0.0850 0.066529 0.048217 %)
01000 D 0.0358 0.2083 0.01618 0.011878 C
01001 AD 0.0417 0.0883 0.0413 0.030044 E
01010 BD 0.0383 0.1067 0.040033 0.029666 E
01011 ABD 0.0433 0.0750 0.065154 0.047832 @
01100 CD 0.0542 0.0850 0.033734 0.024141 @
01101 ACD 0.0575 0.0700 0.058854 0.042307 @
01110 BCD 0.0567 0.0767 0.057587 0.041929 @
01111 ABCD 0.0592 0.0667 0.082708 0.060095 @
10000 E 0.0250 0.1850 0.0053 0.004112 CD
10001 AE 0.0292 0.0900 0.030421 0.022277 D
10010 BE 0.0275 0.1083 0.029154 0.0219 D
10011 ABE 0.0308 0.0800 0.054274 0.040066 %)
10100 CE 0.0425 0.1267 0.022854 0.016374 D
10101 ACE 0.0458 0.0783 0.047975 0.03454 @
10110 BCE 0.0450 0.0867 0.046708 0.034162 D
10111 ABCE 0.0475 0.0750 0.071828 0.052328 @
11000 DE 0.0592 0.0983 0.021479 0.01599 C
11001 ADE 0.0617 0.0700 0.0466 0.034156 @
11010 BDE 0.0600 0.0850 0.045333 0.033778 @
11011 ABDE 0.0625 0.0650 0.070454 0.051944 @
11100 CDE 0.0750 0.0667 0.039033 0.028252 %)
11101 ACDE 0.0767 0.0617 0.064154 0.046418 %)
11110 BCDE 0.0758 0.0650 0.062887 0.046041 %)
11111 ABCDE 0.0775 0.0600 0.088008 0.064206 %)

execution time distribution obtained from running the classifiers
on the N representative input samples during the profiling phase.
Initially for the purposes of an illustrative worked example, we
will assume that the 70-percentile value is used. We return to the
selection of an appropriate percentile for the typical-case execution
times in the evaluation in Section 5). The TCET(S) values are then
set to the sum of the typical-case execution times of the individual
classifiers in S. This is a valid estimate of the typical-case execution
times of each subset S, since the execution times of individual clas-
sifiers have a very weak degree of correlation, as shown in Section
3.3, and can therefore be modeled as independent. In any case cor-
rect operation of the algorithm does not rely on the precise values
chosen for the typical-case execution times, since compliance with
the constraints is guaranteed irrespective of the actual execution
times realized at run time, provided that they do not exceed the
worst-case execution times that were previously determined.

Second, the escape set ESCAP(S) is computed for each subset of
classifiers S. Recall that running the classifiers in the set ESCAP(S)
provides the shortest guaranteed time to meet the constraint on
false negatives following the completion of the classifiers in S.
ESCAP(S) is determined by finding the subset V in the profile table
that has the smallest value of WCET (V) of those subsets where
SNV = @and FN(SUV) < H. (If FN(S) < H, then ESCAP(S) = 2,
since S already meets the constraint on false negatives). Since there
are 2" subsets S in the profiling table, computing the 2" ESCAP(S)
values takes O(4™) time.

Tarek Abdelzaher, Sanjoy Baruah, lain Bate, Alan Burns, Robert I. Davis, and Yigong Hu

Figure 3: DAG representation.

A Directed Acyclic Graph (DAG) representation is used to derive
a typical-case optimal solution. Figure 3 illustrates the DAG for
the five classifiers A to E from the Multi-Modal case study, with
a constraint on the probability of false negatives of H = 0.085, a
latency constraint of L = 0.05 (i.e 50ms), and typical-case execution
times assumed to be given by the 70-percentiles. The meaning of
the dashed and solid lines and the color-coding used in the figure
is explained below.

Each vertex in the DAG corresponds to a unique subset S of
the classifiers, hence there are 2" vertices, starting with the empty
set @. The vertices are connected via directed edges. A directed
edge connects each vertex representing a subset of classifiers with
a vertex that represents the same subset extended via the addition
of exactly one further classifier.

Any vertex corresponding to a subset S that complies with the
constraint on false negatives, i.e. FN(S) < H, has ESCAP(S) = @.
Such vertices cannot be improved upon by running further classi-
fiers, since to do so cannot decrease either the overall execution
time required or the probability of false positives. Such vertices
therefore have no outgoing edges and are referred to as exit ver-
tices. Exit vertices are indicated in Figure 3 via a solid (rather than
dashed) boundary. While exit vertices represent potential solutions
that meet the constraint on false negatives, not all such vertices are
reachable due to the constraint on latency.

Along an edge, let P be the set of classifiers for the previous
vertex and Q the set of classifiers for the subsequent vertex. Hence,
an edge represents the addition of the single classifier in the set
Q — P. An edge is only valid, i.e. can form part of a solution that
is feasible when classifiers take their typical-case execution times,
if TCET(P) + WCET(Q — P) + WCET(ESCAP(Q)) < L. In other
words, the typical-case execution time for all completed classifiers
plus the worst-case execution time of the classifier to run next

Scheduling Classifiers for Real-Time Hazard Perception Considering Functional Uncertainty

plus the worst-case execution time of the escape set after running
that classifier, must be able to be completed within the latency
constraint. All invalid edges are removed, since they cannot form
part of a solution that is guaranteed not to fail. For example, on
the left hand side of Figure 3 the edges between AB and ABC and
between AB and ABD have been removed for this reason. As have
the edges between BCE and BCDE and between BCE and ABCE.

The slack time associated with an edge is given by L—(TCET (P)+
WCET(Q — P) + WCET(ESCAP(Q)). When there are two or more
valid incoming edges to a vertex Q, then this implies that there
are multiple sub-sequences, i.e. permutations of the classifiers in
the set Q, that could be utilized as part of a feasible solution that
includes that vertex. We need only retain one such possibility, and
therefore choose, without compromising solution optimality, to
consider only the incoming edge with the maximum slack. Such
edges are illustrated in Figure 3 by solid arrows, with other valid
edges shown as dashed arrows.

The optimal solution is determined by choosing the vertex Z that
has the minimum probability of false positives, FP(Z), from all of
the exit vertices Q corresponding to feasible solutions, i.e. that have
FN(Q) < H and are reachable via valid edges from the start vertex.
For example, in Figure 3 the vertices corresponding to feasible
solutions have a shaded background. They are CD, ABE, ACD,
ACE, ADE, BCD, BDE, and CDE. Of these vertices, subset ABE,
highlighted in red, has the smallest probability of false positives
and so is the optimal subset Z.

The order in which the classifiers in Z should be run is recovered
by tracing back the preferred incoming edges starting with vertex
Z.Let Zy, Z1, . .., Zy be the k vertices (sub-sets) in sequence where
Z) is the start vertex and Z; = Z is the optimal subset and an exit
vertex. For example, in Figure 3, the typical-case optimal sequence
of classifiers to run is ABE, as indicated by the red arrows.

To facilitate the best use of any available slack at run time, we
set the trigger points to be as late as possible, while still ensuring
that the escape sets can be completed in time if necessary. Hence
Vi=1...kTRIG(Z;) = L-WCET(Z;—Z;—1)-WCET(ESCAP(Z;)).
Hence, the solution in the format for use in run time scheduling
consists of i = 1...k triplets of the form:

(Zi - Zi—1, TRIG(Z;), ESCAP(Zi_1)).

Each triplet indicates: (i) the preferred classifier K l’ =Zi—Zi_1to
execute next; (ii) the latest permitted start time TRIG(Z;) for that
preferred classifier, sufficient to ensure that if it takes its worst-
case execution time, then a feasible solution can still be guaran-
teed via the subsequent execution of ESCAP(Z;) in at most time
WCET(ESCAP((Z;)); and (iii) the escape set ESCAP(Z;—1) to exe-
cute if it is too late to start the preferred classifier. By construction,
provided that all classifiers comply with their worst-case execution
times, then this scheduling point cannot be so late that escape set
ESCAP(Z;_1) is unable to complete within the latency constraint.

Considering the five classifiers A to E, the optimal solution is: ((A,
0.0034, DE), (B, 0.02085, DE), (E, 0.0447, E)). Meaning that if before
any classifier runs, the current time ¢ is no larger than 0.0034 then
preferred classifier A should run. (Since t = 0 to begin with then
this is always true). If classifier A completes before t = 0.02085, then
preferred classifier B should run, otherwise employing escape set
DE is guaranteed to meet the constraints, since FN(ADE) = 0.07
and 0.0034 + WCET ({A}) + WCET({D, E}) = 0.05 = L. If classifier

RTNS 2023, June 07-08, 2023, Dortmund, Germany

B completes before t = 0.0477, then preferred classifier E should
run, otherwise employing escape set E is guaranteed to meet the
constraints, since FN(ABE) = 0.08 and 0.02085 + WCET ({B} +
WCET({E})) = 0.05 = L. Note, in this example in the final stage, E
is both the preferred classifier and also provides the escape set, since
it is the only remaining classifier that can be guaranteed to meet
the constraints in time. In general, however, this is not necessarily
the case, a different escape set could be needed.

Observe that the typical-case optimal algorithm, by considering
all possible paths through the DAG, covers all possible permutations
of the classifiers. However, because the information about each
vertex S (i.e. FN(S), FP(S), WCET(S), ESCAP(S), TCET(S)) only
depends on the set of classifiers in S and not on the order in which
they are run, then the complexity of the DAG-based approach is
exponential in n, rather than factorial in n as would be the case if
every permutation were actually considered separately.

The overall complexity of the off-line part of the typical-case
optimal algorithm is O(4"), dominated by the construction of the
extended profile table. Once that table has been populated, the
DAG-based component of the algorithm has O(n2") complexity,
since there are 2" vertices and at most n outgoing edges per vertex.

It is interesting to compare the statically optimal, clairvoyant
optimal, and typical-case optimal solutions for the Multi-Modal
case study, with the constraints set as described previously, and
assuming in the clairvoyant case that ACET(S) = TCET(S). The
three solutions are as follows:

Static: ACE (any order):

FP(S) = 0.0458, WCET(S) = 0.047975, TCET(S) = 0.03454.
Typical: ABE (specific order):

FP(S) = 0.0308, WCET(S) = 0.054274, TCET(S) = 0.040066.
Clairvoyant: ABC (any order):

FP(S) = 0.0275, WCET(S) = 0.066529, TCET(S) = 0.048217.

Observe that the overall typical-case execution time of the clair-
voyant solution fits within the latency constraint of 0.05; however,
this does not mean that this solution is typical-case optimal, since it
cannot be guaranteed not to fail. This can be seen by observing that
if the first two classifiers run in their typical-case execution times,
there is insufficient time left to guarantee that the final classifier
can be completed within the latency constraint of 0.05 if it takes its
worst-case execution time:

TCET ({A, B}) +WCET({C}) = 0.0535081

TCET({A,C}) + WCET({B}) = 0.0542823

TCET({B,C}) + WCET({A}) = 0.0551716
By contrast, the typical-case optimal algorithm provides the best
solution, i.e. with the lowest probability of false positives, when the
classifiers take their typical-case execution times, without permitting
the possibility of failure if their execution times exceed those values.

The hypothetical clairvoyant algorithm dominates the static and
typical-case algorithms. However, there are scheduling anomalies
that mean there is no clear dominance between the typical-case
and static algorithms when actual execution times are considered.
It is possible that for some actual-case execution times the solu-
tion chosen by the typical-case algorithm will result in a higher
probability of false positives than the solution chosen by the static
algorithm. This happens when the typical-case algorithm chooses
a classifier to run first that is not present in the solution given by

RTNS 2023, June 07-08, 2023, Dortmund, Germany

the static algorithm. If this and all further classifiers require their
worst-case execution times, then although a feasible solution is still
guaranteed, it may result in a higher probability of false positives
than running the set of classifiers chosen by the static algorithm.

5 EVALUATION

In this section, we evaluate the performance of the typical-case opti-
mal algorithm compared to the hypothetical clairvoyant algorithm
and also the static algorithm. The running example in the previous
section considered specific values for the constraint on the proba-
bility of false negatives and the latency constraint, here we provide
a systematic evaluation that examines the performance of the three
algorithms for a range of different values of these constraints.

The evaluation is based on the Multi-Modal case study intro-
duced in Section 3, considering classifiers A to G. This necessitates
a profile table with 128 rows, covering all 27 distinct combinations
of these seven classifiers. Due to the space that it would require, we
do not reproduce this table here. The basic characteristics of the two
additional classifiers F and G are as follows: FP({F}) = 0.004167,
FN({F}) = 0.42, WCET({F}) = 0.00777 and FP({G}) = 0.0675,
FN({G}) = 0.3167, WCET({G}) = 0.0058.

The experiment involved 1000 runs. In each run:

e The latency constraint was randomly selected in the range
[0.03333,0.06667], i.e. 33 to 67ms, which is typically achiev-
able using three classifiers.

o The constraint on the maximum probability of false negatives
was randomly selected in the range [0.06667, 0.08333], which
is again typically achievable using three classifiers'!.

e Only pairs of constraints on latency and the probability of
false negatives that admitted a static solution were used,
otherwise further random constraints were generated.

o The set of actual execution times for the classifiers was se-
lected at random from the sets of execution time values
obtained for the 1800 input samples used during profiling.

On each run, we computed the solution produced by the static
and the clairvoyant algorithms, and also that produced by the
typical-case optimal algorithm assuming typical-case execution
times equating to the 25—, 50—, and 75—percentiles. For the typical-
case solutions, we simulated the schedule of classifiers obtained
when the classifiers took their assigned actual-case execution times.

Figure 4 shows the Cumulative Distribution Function of the
probability of false positives, computed for the 1000 runs, using
the set of classifiers that were selected in each case. The smallest
probability of false positives achieved was 0.0308333 for ABE and
the largest was 0.104167 for DEFG. Figure 4 shows that the typical-
case optimal algorithm results in performance that is on average
significantly better than that of the statically optimal algorithm,
roughly halving the gap to the hypothetical clairvoyant algorithm.

Out of the 1000 runs, the static algorithm outperformed the
typical-case algorithm on 33, 41, and 94 occasions, i.e. just 3.3%, 4.1%,
and 9.4% of the time, when the latter algorithm used the 75—, 50—,
and 25—percentiles respectively for the typical-case execution times.
The average probability of false positives across the experiment was

1No single classifier or pair of classifiers can achieve a value for FN (S) in this range.
The best that can be achieved using two classifiers is FN (S) = 0.085, using three
classifiers, FN (S) = 0.06667, and using four classifiers, FN (S) = 0.06.

Tarek Abdelzaher, Sanjoy Baruah, lain Bate, Alan Burns, Robert I. Davis, and Yigong Hu

—Clairvoyant
0.9 Typical (75)
0.8 —Typ!caI(SU)
s —Typical (25)
‘é 0.7 —Static
S5
@
5 o6
-]
3
2 o5
2
a
o 04
2
=]
°
S 03
£
=
© 02
0.1
0
0 0.02 0.04 0.06 0.08 0.1 0.12

Probability of False Positives

Figure 4: CDF: Multi-Modal case study, 7 classifiers.

0.062 for the static algorithm, 0.048 for the clairvoyant algorithm,
and 0.052 for all three variants of the typical-case optimal algorithm.
Again, illustrating the gains that can be made by employing a
minimally dynamic solution rather than a static one.

The performance of the typical-case optimal algorithm was not
especially sensitive to the values chosen for the typical-case ex-
ecution times between the upper and lower quartiles. Choosing
different percentiles (25%, 50%, or 75%) for the typical-case execu-
tion times resulted in small differences in performance for different
constraint settings, resulting in the lines crossing in Figure 4. Fur-
ther optimization in specific cases could be achieved by exploring
a limited number of different percentiles for the typical-case execu-
tion times, and making a pragmatic choice of the one that provides
the best overall performance in that case.

It is interesting to note that if all seven classifiers were employed,
then the probability of false positives would be 144/1200 = 0.12
and the probability of false negatives 32/600 = 0.053333. If instead
of (logically) OR-ing together the classifier outputs, we required a
minimum of two classifiers to agree on a hazard designation, then
in this case the probability of false negatives would increase to
49/600 = 0.081667, while the probability of false positives would
decrease to 41/1200 = 0.034167. However, this configuration is
outperformed by requiring only one classifier to indicate hazard
and using only classifiers ABE, for a probability of false negatives
of 0.08 and a probability of false positives of 0.0308. Nevertheless,
considering how the outputs of different classifiers should be com-
bined to balance requirements on the probabilities of both false
negatives and false positives is an interesting avenue for future
work.

Relaxing the latency constraint, i.e. L = oo, the clairvoyant op-
timal, typical-case optimal, and statically optimal algorithms all
choose the same solution for any given constraint on the probability
of false negatives. Figure 5 illustrates the Pareto front characterizing
this trade-off between the solution with the minimum probability
of false positives and the constraint on the probability of false nega-
tives, for the Multi-Modal case study with 7 classifiers. Observe that,

Scheduling Classifiers for Real-Time Hazard Perception Considering Functional Uncertainty

as expected, the tighter the constraint, the larger the probability of
false positives.

0.16
0.14
0.12

0.1

0.08

Probability of False Negatives

0.06

0.04
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Probability of False Positives

Figure 5: Pareto Front: Multi-Modal case study, 7 classifiers.

By contrast, relaxing the constraint on the probability of false
negatives, i.e. H = 0.999, results in very few different solutions
when the latency constraint is varied. In the Multi-Modal case study
with 7 classifiers, the optimal static solution for latency constraints
in the range [0.0053,0.00777] is to run classifier E, with FP({E}) =
0.025. For all larger latency constraints, the optimal solution is
to run classifier F, with FP({F}) = 0.004167. The reason there
are so few different solutions is that the relaxed constraint on the
probability of false negatives can be met by using a single classifier,
while adding further classifiers only increases the probability of
false positives. Hence, finding the optimal solution with a relaxed
constraint on the probability of false negatives effectively reduces
to choosing the single classifier that minimizes the probability of
false positives while also meeting the latency constraint.

6 CONCLUSIONS

The research described in this paper addressed a problem of real-
time classification-based machine perception, specifically the haz-
ard detection classifier sequencing problem (see Definition 1). The
main contribution was in the derivation of optimal algorithms for
the scheduling of classifiers that minimize the probability of false
positives, while meeting both a latency constraint and a constraint
on the maximum acceptable probability of false negatives (i.e. haz-
ards not detected). The classifiers may have arbitrary statistical
dependences between their functional behaviors (i.e. probabilities
of correct detection of hazards), as well as variability in their ex-
ecution times. The solutions proposed were both applicable to
real-world scenarios and practical, with O(1) run-time overheads.
The effectiveness of the approach was illustrated via a case-study
based on real Deep Learning classifiers operating on data from mul-
tiple sensors. The evaluation showed that the minimally dynamic,
typical-case optimal algorithm provides a significant improvement
over the best possible static solutions, approximately halving the
performance gap to a hypothetical clairvoyant algorithm.

RTNS 2023, June 07-08, 2023, Dortmund, Germany

6.1 Directions for future work

Deriving an optimal fully dynamic algorithm and assessing its
complexity is one possible avenue for future work. While such an
algorithm is likely to have prohibitively high run-time overheads,
it would provide a more precise reference for the performance of
the typical-case optimal algorithm presented in this paper, and any
heuristic algorithms that may be derived in future.

The work in this paper assumes that the performance of the
classifiers, as characterized by the profile table, is consistent across
different operational environments or contexts. Research in late 2022
[29] showed that this is not always the case, and that the training
of machine learning classifiers can lead to over-fitting, and hence
performance that can be significantly degraded in some practical
contexts. By comparison, simpler traditional classifiers are less
likely to suffer from this problem [29]. An interesting avenue for
future research relates to catering for different operational contexts
with associated classifier characterizations (i.e. multiple profiles
for each classifier) within the same system. This could potentially
be achieved by using the methodology presented in this paper to
determine solutions appropriate to different operational modes,
corresponding to the different contexts or environments.

ACKNOWLEDGMENTS

This research was funded in part by Innovate UK HICLASS project
(113213), and the US National Science Foundation (Grants CPS-
1932530, CNS-2141256, and CNS-2229290). EPSRC Research Data
Management: No new primary data was created during this study.

REFERENCES

[1] Tarek Abdelzaher, Kunal Agrawal, Sanjoy Baruah, Alan Burns, Robert I. Davis,
Zhishan Guo, and Yigong Hu. 2023. Scheduling IDK Classifiers with Arbitrary
Dependences to Minimize the Expected Time to Successful Classification. Real-
Time Systems (to appear) (2023). https://www-users.york.ac.uk/~rd17/papers/
IDKarbitrary.pdf

[2] Kunal Agrawal and Sanjoy K. Baruah. 2019. Adaptive Real-Time Routing in Poly-
nomial Time. In IEEE Real-Time Systems Symposium, RTSS 2019, Hong Kong, SAR,
China, December 3-6, 2019. IEEE, 287-298. https://doi.org/10.1109/RTSS46320.
2019.00034

[3] Kunal Agrawal, Sanjoy K. Baruah, and Alan Burns. 2020. The Safe and Effective
Use of Learning-Enabled Components in Safety-Critical Systems. In 32nd Euromi-
cro Conference on Real-Time Systems, ECRTS 2020, July 7-10, 2020, Virtual Confer-
ence (LIPIcs, Vol. 165), Marcus Volp (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 7:1-7:20. https://doi.org/10.4230/LIPIcs. ECRTS.2020.7

[4] Konstantinos Balaskas and Kostas Siozios. 2019. ECG analysis and heartbeat clas-
sification based on shallow neural networks. In 2019 8th International Conference
on Modern Circuits and Systems Technologies (MOCAST). IEEE, 1-4.

[5] Sanjoy Baruah, Alan Burns, Robert I. Davis, and Yue Wu. 2022. Optimally
Ordering IDK Classifiers Subject to Deadlines. Real-Time Systems (2022). https:
//doi.org/10.1007/s11241-022-09383-w

[6] Sanjoy K. Baruah. 2018. Rapid Routing with Guaranteed Delay Bounds. In 2018
IEEE Real-Time Systems Symposium, RTSS 2018, Nashville, TN, USA, December 11-
14, 2018. IEEE Computer Society, 13-22. https://doi.org/10.1109/RTSS.2018.00012

[7] Sanjoy K. Baruah, Alan Burns, and David Griffin. 2022. Functional Uncertainty in
Real-Time Safety-Critical Systems. In RTNS 2022: The 30th International Conference
on Real-Time Networks and Systems, Paris, France, June 7 - 8, 2022, Yasmina
Abdeddaim, Liliana Cucu-Grosjean, Geoffrey Nelissen, and Laurent Pautet (Eds.).
ACM, 1-11. https://doi.org/10.1145/3534879.3534884

[8] Sanjoy K. Baruah, Alan Burns, and Yue Wu. 2021. Optimal Synthesis of IDK-
Cascades. In RTINS 2021: 29th International Conference on Real-Time Networks and
Systems, Nantes, France, April 7-9, 2021, Audrey Queudet, lain Bate, and Giuseppe
Lipari (Eds.). ACM, 184-191. https://doi.org/10.1145/3453417.3453425

[9] Soroush Bateni and Cong Liu. 2018. Apnet: Approximation-aware real-time

neural network. In 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 67-79.

Michael G Bechtel, Elise McEllhiney, Minje Kim, and Heechul Yun. 2018. Deep-

picar: A low-cost deep neural network-based autonomous car. In 2018 IEEE

[10

RTNS 2023, June 07-08, 2023, Dortmund, Germany

24th international conference on embedded and real-time computing systems and
applications (RTCSA). IEEE, 11-21.

[11] National Transportation Safety Board. 2019. Collision Between Vehicle Controlled
by Developmental Automated Driving System and Pedestrian, Tempe, Arizona,
March 18, 2018. https://www.ntsb.gov/investigations/accidentreports/reports/
har1903.pdf

[12] Edward Broughton. 2005. The Bhopal disaster and its aftermath: A review.
Environmental health : a global access science source 4 (02 2005), 6. https://doi.
org/10.1186/1476-069X-4-6

[13] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration

of Modern Neural Networks. In Proceedings of the 34th International Conference

on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (Pro-
ceedings of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh

(Eds.). PMLR, 1321-1330. http://proceedings.mlr.press/v70/guo17a.html

Seonyeong Heo, Sungjun Cho, Youngsok Kim, and Hanjun Kim. 2020. Real-time

object detection system with multi-path neural networks. In 2020 IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS). IEEE, 174-187.

Md Sanzid Bin Hossain, Joseph Dranetz, Hwan Choi, and Zhishan Guo. 2022.

DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner for Estimating Lower

Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors

in Daily Living. IEEE Journal of Biomedical and Health Informatics 26, 8 (2022),

3906-3917. https://doi.org/10.1109/JBHI.2022.3165383

Yigong Hu, Shengzhong Liu, Tarek Abdelzaher, Maggie Wigness, and Philip

David. 2021. On exploring image resizing for optimizing criticality-based machine

perception. In 2021 IEEE 27th International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA). IEEE, 169-178.

[17] Vemema Kangunde, Rodrigo S Jamisola, and Emmanuel K Theophilus. 2021. A
review on drones controlled in real-time. International journal of dynamics and
control 9, 4 (2021), 1832-1846.

[18] Fereshte Khani, Martin C. Rinard, and Percy Liang. 2016. Unanimous Predic-
tion for 100% Precision with Application to Learning Semantic Mappings. In
Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics. https://doi.org/10.18653/v1/p16-1090

[19] Jung-Eun Kim, Richard Bradford, and Zhong Shao. 2020. Anytimenet: Controlling
time-quality tradeoffs in deep neural network architectures. In 2020 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 945-950.

[20] J. Lee, A. Prajogi, E. Rafalovsky, and P. Sarathy. 2016. Assuring Behavior of
Autonomous UxV Systems. In Safe and Secure Systems and Software Symposium
(55). The Air Force Research Laboratory (AFRL).

[21] Nancy G. Leveson. 1986. Software Safety: Why, What, and How. ACM Comput.

Surv. 18, 2 (jun 1986), 125-163. https://doi.org/10.1145/7474.7528

Dongxin Liu, Tarek Abdelzaher, Tianshi Wang, Yigong Hu, Jinyang Li,

Shengzhong Liu, Matthew Caesar, Deepti Kalasapura, Joydeep Bhattacharyya,

[14

[15

[16

[22

Tarek Abdelzaher, Sanjoy Baruah, lain Bate, Alan Burns, Robert I. Davis, and Yigong Hu

[23

[24

[26

[27

[28

[29

[30

[31

[32

Nassy Srour, Jae Kim, Guijun Wang, Greg Kimberly, and Shouchao Yao. 2022.
IoBT-OS: Optimizing the Sensing-to-Decision Loop for the Internet of Battle-
field Things. In 2022 International Conference on Computer Communications and
Networks (ICCCN). 1-10. https://doi.org/10.1109/ICCCN54977.2022.9868920
Donggxin Liu, Tianshi Wang, Shengzhong Liu, Ruijie Wang, Shuochao Yao, and
Tarek Abdelzaher. 2021. Contrastive self-supervised representation learning
for sensing signals from the time-frequency perspective. In 2021 International
Conference on Computer Communications and Networks (ICCCN). IEEE, 1-10.
Dr. Sandeep Neema. Accessed: 2019-03-07. Assurance for Autonomous Systems
is Hard. https://www.darpa.mil/attachments/Assured AutonomyProposersDay _
ProgramBrief.pdf

University of York. Accessed: 2022-12-20. Assuring autonomy international
programme. https://www.york.ac.uk/assuring-autonomy/

Weijing Shi, Mohamed Baker Alawieh, Xin Li, and Huafeng Yu. 2017. Algo-
rithm and hardware implementation for visual perception system in autonomous
vehicle: A survey. Integration 59 (2017), 148-156.

Thomas P. Trappenberg and Andrew D. Back. 2000. A Classification Scheme
for Applications with Ambiguous Data. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks, [JCNN 2000, Neural Computing:
New Challenges and Perspectives for the New Millennium, Como, Italy, July 24-27,
2000, Volume 6. IEEE Computer Society, 296-301. https://doi.org/10.1109/[JCNN.
2000.859412

E. Trimble. 1989. Report No: 4/1990. Report on the accident to Boeing 737-400,
G-OBME, near Kegworth, Leicestershire on 8 January 1989. (1989).

Tianshi Wang, Denizhan Kara, Jinyang Li, Shengzhong Liu, Tarek Abdelzaher,
and Brian Jalaian. 2022. The Methodological Pitfall of Dataset-Driven Research
on Deep Learning: An IoT Example. In Military Communications Conference,
MILCOMM 2022, Sydney, USA, 28 November - 2 December 2022. https://edas.info/
web/milcom2022/program. html#51569610867

Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and
Joseph E. Gonzalez. 2018. IDK Cascades: Fast Deep Learning by Learning
not to Overthink. In Proceedings of the Thirty-Fourth Conference on Uncer-
tainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August
6-10, 2018, Amir Globerson and Ricardo Silva (Eds.). AUAI Press, 580—590.
http://auai.org/uai2018/proceedings/papers/212.pdf

Shuochao Yao, Yifan Hao, Yiran Zhao, Huajie Shao, Dongxin Liu, Shengzhong
Liu, Tianshi Wang, Jinyang Li, and Tarek Abdelzaher. 2020. Scheduling real-time
deep learning services as imprecise computations. In 2020 IEEE 26th International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA). IEEE, 1-10.

Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek Abdelzaher.
2017. Deepsense: A unified deep learning framework for time-series mobile
sensing data processing. In Proceedings of the 26th international conference on
world wide web. 351-360.

	Abstract
	1 Introduction
	1.1 Related Work

	2 System Model
	3 Profiling
	3.1 Profiling the Multi-Modal Case Study
	3.2 Static and Clairvoyant algorithms
	3.3 Correlations

	4 Typical-Case Optimal Algorithm
	5 Evaluation
	6 Conclusions
	6.1 Directions for future work

	Acknowledgments
	References

