
Multi-Model Specifications and their Application to Classification
Systems

Alan Burns
The University of York

UK
alan.burns@york.ac.uk

Sanjoy Baruah
Washington University in St. Louis

USA
baruah@wustl.edu

ABSTRACT

Many safety-critical systems are required to have their correctness

validated prior to deployment. Such validation is typically per-

formed using models of the run-time behaviour that the system is

expected to exhibit and experience during run-time. However, these

systems may be subject to different requirements under different

circumstances; also, there may be multiple stakeholders involved,

each with a somewhat different perspective on correctness. We

examine the use of a multi-model framework based on assump-

tions (Pre and Rely conditions) and obligations (Post and Guarantee

conditions) to represent the workload and resource related needs

of complex AI system components such as DNN classifiers. We

identify three kinds of multi-models that are of particular interest:

Independent, Integrated and Hierarchical. All the individual mod-

els comprising an independent multi-model must remain valid at

all times during run-time; at least one of the models comprising

an integrated multi-model must always be valid. With hierarchical

multi-models all models are initially valid but the component’s

behaviour may gracefully degrade through a series of models with

successively weaker assumptions and commitments (we show that

Mixed-Criticality Systems, widely studied in the real-time comput-

ing community, are particularly well-suited for representation via

hierarchical multi-models). We explain how this modelling frame-

work is intended to be used, and present algorithms for determining

the worst-case timing behaviour of systems that are specified using

multi-models.
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1 INTRODUCTION

The safety properties of many safety-critical systems must be veri-

fied before they may be deployed out in the field. Since such ver-

ification occurs prior to run-time, it is typically performed upon
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carefully-constructedmodels of the run-time behaviour that the sys-

tem is expected to exhibit. Such models are designed to emphasize

the salient features of interest from the perspective of verification.

The verification of timing correctness properties (e.g., that dead-

lines are met) is usually done by the application of results from

real-time scheduling theory. The models used in real-time schedul-

ing theory make assumptions regarding the form of the workload

that will need to be accommodated and the characteristics of the

platform upon which such executions will occur. The validity of

the verification depends upon the actual workload and platform

being compliant with these model assumptions. For instance, the

widely used Liu & Layland task model [20] assumes that the real-

time workload comprises an a priori known number of recurrent

processes that are called tasks, each of which generates pieces of

work (łjobsž) a specified minimum duration (called the task pe-

riod) apart, with each job needing to execute for no more than a

specified duration of time (called the worst-case execution time or

simplyWCET ); for such a workload executing upon a single fully

preemptive processor, results in [20] a guarantee that any workload

for which the sum of the ratios of the WCET-to-period parameters

of all the tasks does not exceed ln 2 (≈ 0.69) is scheduled by the

Rate-Monotonic scheduling algorithm such that each job completes

execution prior to the arrival of the next job of the same task. How-

ever, this guarantee need not hold if any of the assumptions are

violated ś if either the workload or the processing platform is not

compliant with the model, or if the WCET-to-period ratios sum to

more than the specified bound.

In this paper we model such workload and resource-usage speci-

fications as a contract between assumptions (A) and obligations (O)

(or commitments) [10, 17, 18, 23]: if the system behaves according to

the assumptions then the obligations (including meeting deadlines)

shall be delivered1.

At runtime a system that has been verified according to the

appropriate schedulability test may depend upon the validity of the

assumptions regarding the characterisation of the work that must

be performed and the resources required for this work. And if these

assumptions hold then a verified implementation guarantees to

meet its obligations. (Note that the system does not need to check

during run-time that its assumptions are being met, although a

more resilient/robust implementation may choose to do so.)

And if the assumptions do turn out to be invalid at some time dur-

ing operation then the system is allowed to undertake any action,

1Assumptions are often described [8] as a combination of Pre-conditions (P) and
Rely conditions (R), while Obligations are a combination of Postconditions (Q) and
Guarantee conditions (G).
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including shut-down (although again a more resilient or robust im-

plementation maymake an effort towards meeting its commitments

at least partially, invalid assumptions notwithstanding).

In 2007, Vestal [29] proposed a generalization to the Liu & Lay-

land task model [20], the distinctive feature of which is that the

WCET parameter of each task is no longer a single value. Instead,

each task is characterized by multiple WCET parameter values

representing different estimates, that may be trusted to different

levels of assurance, of the actual (unknown) maximum duration

for which each job of the task may actually execute. Each task is

assigned a łcriticalityž level, informally denoting its importance to

some stakeholder in the system. The correctness criterion is that all

tasks at or above a particular criticality level commit to meet their

deadlines assuming that the actual execution durations of all jobs

do not exceed the WCET estimates made at the level of assurance

corresponding to that criticality level. MCS’s have been very widely

studied in the real-time scheduling literature (see, e.g., [6] for a sur-

vey); we will see, in Section 2.1, that this Vestal model for MCS’s is

essentially what we are terming here a hierarchical multi-model.

For relatively simple components a single model, such as the

Liu & Layland characterization [20] of each task by a single period

parameter and a single WCET estimate, is adequate. In general,

however, it is the case that the work that each task in a component

has to undertake may vary according to ambient operating con-

ditions (for example, the number of planes in a radar image, the

number of faces in a recognition system, or the number of cars in

a traffic control system), and as a consequence the expectations

upon the system śthe obligations that can reasonably be expected

from itś may vary. It may also be the case that different stakehold-

ers have somewhat different expectations of the system. We will

show how both these cases may be modelled by specifyingmultiple

assumption-obligation pairs for a single component. It is not al-

ways the case that the worst-case load on the system is when these

parameters are at their maximum. What may maximise the load on

one task may reduce the load on other tasks; these relations must

be taken into account if overly pessimistic scheduling analysis is to

be avoided.

The first contribution of this paper is therefore an extension of

the properties of a mixed-criticality system to a more general notion

of a multi-model specification. And rather than linking assumptions

only to execution times (the resources needed), in this paper we

allow them to also incorporate assumptions about the number of

relevant entities in the input space (the work that has to be done).

We believe that this framework is widely applicable to a range

of systems, in particularly those that incorporate AI algorithms

and other forms of Learning-Enabled components [21] such as

classifiers.

The second contribution is to consider how the worst-case exe-

cution time of software components that are based on deep learning

and related AI technologies can be computed. Such components are

increasingly being deployed for classification problems in complex

autonomous resource-constrained cyber-physical systems. Many

of these systems are employed (or are being considered for employ-

ment) in safety-critical applications and require accurate predic-

tions to be delivered in real time using limited computing resources

(this is sometimes called łedge AIž where the efficient execution

of machine intelligence algorithms on embedded edge devices is

required [9, 31]).

A number of schemes have been produced that aim to determine

the worst-case path through a sequence (or cascade) of classifiers.

For example Razavi et al. [24] note łDeep learning (DL) inference has

become an essential building block in modern intelligent applications.

Due to the high computational intensity of DL it is crucial to scale

DL inference serving systems in response to fluctuating workloads to

achieve resource efficiency.ž They provide a heuristic to reduce the

typical execution time of an object recognition system that is made

up of a set of different classifier (including face recognition, optical

character recognition, and natural language understanding). In this

paper we demonstrate that a relative straightforward approach

(compared with more general forms of WCET analysis) based on

Dynamic Programming can be used to derive worst-case execution

times for systems of classifiers whose temporal behaviours are

bounded by workload assumptions.

Having derived this modelling and analysis technique for classi-

fication systems we use it to illustrate the multi-model framework.

The remainder of the paper is therefore organised as follows. In the

next section we introduce the notion of a multi-model and define

three different forms: independent, integrated and hierarchical. In

Section 3 we then define a single-model specification scheme based

on Assumptions and Obligation for a SIMO-based classification

system, and illustrate how timing analysis can be performed upon

systems that are specified in this manner. Section 4 then describes

a Multi-Model classification system, building upon the modelling

framework for a single classification system from Section 3. Con-

clusions are drawn, and directions for future work suggested, in

Section 5.

In this initial paper on Multi-Models and their application to

classification systems we will keep the discussion informal and

focus more upon communicating insight and intuition rather than

formally defining our approach and providing rigorous correctness

proofs. In this spirit we introduce the salient aspects of our proposed

approach via a number of examples.

2 MULTI-MODEL SYSTEMS

Here we consider systems having more than one model to specify

their expected runtime behaviour. Such multi-models2 are particu-

larly relevant if (i) there are different modes of operation that give

rise to different models; or (ii) there are different stakeholders that

define different assumptions and obligations for the system.

We noted in the introduction that Mixed-Criticality Systems

(MCS’s) are a specific example of the Multi-Model approach. We

therefore start with a review of MCS. Although the use of contracts

(mappings from assumptions to obligations) are used extensively

in component engineering, they have not been widely applied to

the temporal properties of real-time systems. Notable exceptions

are works by Benveniste et al. [3] and Stoimenov et al. [28].

2The term łmulti-modelž is used in a number of different contexts, in particular with
regard to multi-model databases; there are also similar notions such as compositional
analysis ś here we use the term to simply express that a single system is being specified
using more than one workload/resource model.









RTNS 2023, June 7ś8, 2023, Dortmund, Germany Alan Burns and Sanjoy Baruah

orderings of the two dogs and the two cats in the RoI sequence that

⟨C, D, C, D⟩ represents the worst case and that 32 is consequently

the duration bound under the assumption that there are at most

two cat images and at most two dog images in the sequence of 4

RoI’s.

Another, less intuitive, example is where the Assumption predi-

cate asserts that there may be a maximum of 2 dogs and 3 cats in

our 4-RoI sequence:

A
def
= 𝑁 ≤ 4 ∧ 𝑁𝑐 ≤ 3 ∧ 𝑁𝑑 ≤ 2

The above cases all still apply but there are additional sequences

where there are 3 cats and 1 dog. For example, ⟨C, C, D, C⟩ gives

9+9+8+9 (=35). The same result occurs wherever the single dog

appears in the first three RoIs.

The specification of the classifier is completed by asserting that

the Obligation on the classifier, expressed as a Postcondition, Q, is

that all pets have their species (type) and breed identified:

Q
def
= ∀𝑖 • Species(𝑅𝑜𝐼𝑖 ) ∧ Breed(𝑅𝑜𝐼𝑖 )

The index 𝑖 is bounded by A (in effect 𝑖 ≤ 4 in the example). The

predicates Species and Breed simply return truewhen that attribute

has been identified. This Postcondition is required to be true when

the classifier completes. The other aspect of the component’s obli-

gations is that the execution time (𝑒) of the classification system

(Initial, CBC and DBC) is bounded to a known acceptable value, 𝑉 .

This is best expressed as a Guarantee condition (G) [8]:

G
def
= 𝑒 ≤ 𝑉

In the above example if 𝑉 is equal or greater than 35 then this

obligation can be satisfied.

3.2 Determining the Maximum Execution

Duration

We now generalize from the examples above, and devise a general

procedure for determining the maximum duration needed to pro-

cess an image, given an assumption asserting that there are at most

𝑁max RoI’s in the input image of pets (cats or dogs), of which at

most 𝑁max
𝑐 will be of cats and 𝑁max

𝑑
of dogs. We will show below

that we can guarantee to process this entire sequence of RoI’s in an

interval of duration not exceeding the value 𝐹 (𝑁max, 𝑁max
𝑐 , 𝑁max

𝑑
)

obtained by solving the recurrence defined in Fig 4 for 𝐹 (𝑁, 𝑁𝑐 , 𝑁𝑑 ).

This recurrence may be understood as follows:

(1) If 𝑁 equals zero or if 𝑁𝑐 and 𝑁𝑑 both equal zero, then there

can be no RoI of a pet; hence no RoI will be passed on from

the Initial classifier to CBC (and subsequently to DBC). This

is the base case. The cost of processing zero pets is of course

0.

(2) Else, if (𝑁𝑑 == 0) the CBC may assume that each RoI passed

on to it must be of a cat, and hence skip the pre-processing

and immediately move on to identifying the cat’s breed,

at a WCET of 6. Furthermore, it is evident that at most

min(𝑁, 𝑁𝑐 ) RoI’s will be passed on from the Initial classifier

to CBC.

(3) Analogously to the above case, if (𝑁𝑐 == 0) the CBC may

assume that each RoI passed on to it cannot be of a cat and

must hence be of a dog. It therefore immediately passes it

on to the DBC, which will process it with a WCET of 5.

(4) It remains to consider when both 𝑁𝑐 ≥ 1 and 𝑁𝑑 ≥ 1. Ob-

serve that the maximum time required to process the entire

sequence is the larger of the maximum processing time if

(i) the first RoI in the sequence is of a cat, or (ii) it is of a dog:

(i) In the former case, the CBC would take a total of up to 8

time units to process the first pet-containing RoI, (since

the pre-processing WCET on the CBC is 2, followed by

a further WCET of 6 for the actual breed identification),

after which the remainder of the sequence has at most

(𝑁 − 1) pet-containing RoI’s of which at most 𝑁𝑐 − 1 are

of cats and at most 𝑁𝑑 of dogs.

(ii) In the latter case, the CBC would pre-process the RoI

(WCET of 2) and pass it on to the DBC (WCET of 5 for

identifying the dog-breed), after which the remainder of

the sequence has at most (𝑁 − 1) pet-containing RoI’s of

which at most 𝑁𝑐 are of cats and at most 𝑁𝑑 − 1 of dogs.

A Dynamic Program. The recurrence in Figure 4 clearly demon-

strates that the problem of computing 𝐹 (𝑁, 𝑁𝑐 , 𝑁𝑑 ) possesses the

optimal substructure property (see, e.g., [11, p. 379]), and is hence

amenable to solution as a Dynamic Program [2]. Notice that the

recursive calls made in computing 𝐹 (𝑁, 𝑁𝑐 , 𝑁𝑑 ) are to 𝐹 (𝑁 −1, 𝑁𝑐−

1, 𝑁𝑑 ) and 𝐹 (𝑁 − 1, 𝑁𝑐 , 𝑁𝑑 − 1) ś in both cases, two of the three ar-

guments are strictly smaller integers. Hence computing the values

𝐹 (𝑥,𝑦, 𝑧) in order and storing them in a table:

for 𝑥 ← 1 to 𝑁max do

for 𝑧 ← 1 to min(𝑥, 𝑁max

𝑑
) do

Compute and store 𝐹 (𝑥,𝑦, 𝑧)

// Using previously computed-and-stored 𝐹 values

clearly has running time no worse that 𝑂 (𝑁max × 𝑁max
𝑐 × 𝑁max

𝑑
),

implying an asymptotic complexity no worse than 𝑶 ((𝑵max)3),

for computing 𝑓 (𝑁max, 𝑁max
𝑐 , 𝑁max

𝑑
).

This straightforward derivation of a dynamic program contrasts

with more complex optimal solutions such as model checking, con-

troller synthesis, or two-player strategies. Moreover, the use of

simple assumption predicates contrasts favourable with more com-

prehensive specification approaches such as guarded command

languages, state diagrams etc. Nevertheless, the expressive power

of the approach does seem to be sufficient to allow a wide range

of constraints to be managed without recall to the use of these

methods or heuristic (non-optimal) solutions.

3.3 A Bottom-up Implementation

Although it may seem more natural to solve the dynamic program

obtained in Section 3.2 above in a top-downmanner, here we apply a

bottom-up approach since that more easily generalises to the multi-

model case we will discuss in Section 4. Accordingly, let us first

reformulate the recurrence to facilitate bottom-up implementation:

let 𝐹𝑐 (𝑇,𝑇𝐶,𝑇𝐷) denote the maximum cost of processing an image

with 𝑇 pets (RoIs), 𝑇𝐶 cats and 𝑇𝐷 dogs. It is readily seen that the

bottom-up recurrence is
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𝐹 (𝑁, 𝑁𝑐 , 𝑁𝑑 ) =




0, if (𝑁 == 0) or ((𝑁𝑐 == 0) ∧ (𝑁𝑑 == 0))

6 ×min(𝑁, 𝑁𝑐 ), if (𝑁𝑑 == 0)

5 ×min(𝑁, 𝑁𝑑 ), if (𝑁𝑐 == 0)

max

(
8 + 𝐹 (𝑁 − 1, 𝑁𝑐 − 1, 𝑁𝑑 )

7 + 𝐹 (𝑁 − 1, 𝑁𝑐 , 𝑁𝑑 − 1)

)
otherwise

Figure 4: Computing the worst-case cost of processing 𝑁 RoI’s, under the assumption that there are ≤ 𝑁𝑐 cat images and ≤ 𝑁𝑑 dog images.

𝐹𝑐 (𝑇,𝑇𝐶,𝑇𝐷) = max

(
𝐶𝑐 + 𝐹𝑐

(
𝑇 + 1,𝑇𝐶 + 1,𝑇𝐷

)
,

𝐷𝑐 + 𝐹𝑐
(
𝑇 + 1,𝑇𝐶,𝑇𝐷 + 1

) )

where 𝐶𝑐 is the cost of processing an extra cat (i.e. 𝑇𝐶 + 1), and 𝐷𝑐

is the processing cost of a further dog (i.e. 𝑇𝐷 + 1). The iteration

stops when 𝐹𝑐 (𝑇 + 1,𝑇𝐶 + 1,𝑇𝐷) and 𝐹𝑐 (𝑇 + 1,𝑇𝐶,𝑇𝐷 + 1) are both

invalid; i.e. not sanctioned by the model. If both are valid then the

maximum must be taken, with the cat costing 𝐶𝑐 (8 in our running

example) and the dog 𝐷𝑐 ((2+5)=7). If only the cat possibility is

valid then

𝐹𝑐 (𝑇,𝑇𝐶,𝑇𝐷) = 𝐶𝑐𝑘 + 𝐹𝑐 (𝑇 + 1,𝑇𝐶 + 1,𝑇𝐷)

where 𝐶𝑐𝑘 is the cost of a cat when the type of the input is known

(so 6 in this example). And if only a dog is possible then

𝐹𝑐 (𝑇,𝑇𝐶,𝑇𝐷) = 𝐷𝑐𝑘 + 𝐹𝑐 (𝑇 + 1,𝑇𝐶,𝑇𝐷 + 1)

with 𝐷𝑐𝑘 = 5.

In the above description, three parameter (𝑇 , 𝑇𝐶 and 𝑇𝐷) are

employed to illustrate the recurrence property. However, on in-

spective, it is clear that 𝑇 (the number of pets) is always equal

to 𝑇𝐶 +𝑇𝐷 (number of cats plus the number of dogs). Hence the

implementation drops the 𝑇 parameter.

An outline of the pseudo (Ada) code for the algorithm is given in

Figure 5. The function returns one of four values: (i) the maximum

of the two allowed paths, or else (ii) the value of taking a cat when

only a cat is valid, or else (iii) the value of taking a dog when only

a dog is valid, or else (iv) the value 0 as neither a cat nor a dog can

be taken.

The array S holds previously computed values ś that can be used

to reduce the computational load. A simple two dimensional array

is used in the pseudo code, with all elements in this array being

initialised to −1.

Since the recurrence is bottom up, the initial call of the function

is:

Cost := Fc(0, 0)

The call terminates and returns when a recursive call is made that

has no valid successor (and hence returns 0).

The code implementing the function Valid is written according

to the assumptions, and is therefore model-specific. For example,

if there is a maximum of 6 pets, 3 cats and 4 dogs then the Valid

function is simply:

function Valid(TC, TD : integer) is

begin

return TC+TD <= 6 and TC <= 3 and TD <= 4

end

type SoFar is array(0..MaxN, 0..MaxN) of integer

with Default_Component_Value => -1

S : Sofar

function Fc(TC, TD : integer) return integer is

X,Y : integer := 0

VD, VC : boolean

begin

if S(TC,TD) > -1 then return S(TC,TD); end if

VD := Valid(TC, TD+1)

VC := Valid(TC+1, TD)

if VD and VC then

X := Cc + Fc(TC, TD+1)

Y := Dc + Fc(TC+1, TD)

X := max(X,Y)

S(TC,TD) := X

return X

end if

if VC then return Cck + Fc(TC+1, TD); end if

if VD then return Dck + Fc(TC, TD+1); end if

return 0

end Fc

Figure 5: Bottom-up implementation of the recurrence: Ada pseudo-

code.

This gives a result of 51 which is delivered by the sequence ⟨C, C,

D, D, D, C⟩.

The algorithm was coded in Ada and when executed on a normal

laptop returns łinstantaneouslyž from relatively large models such

as 𝑇 = 400, 𝑇𝐶 = 200, and 𝑇𝐷 = 250; i.e., 400 RoIs, ≤ 200 cats

and ≤ 250 dogs. For this particular example, the computed worst-

case execution time for the classifier is 3400, and happens when

a sequence of 199 cats is followed by 200 dogs and then a final

cat. In this example the function 𝐹𝑐 was called 128,976 times with

the 𝑆 array providing the (previously computed) answer on 48,326

occasions.

3.4 Extending the model ś arbitrary constraints

The above example shows a model defined by the costs of each

operation and a function that checks for a valid operation. The costs

reflect assumptions made about the RoI. Typically, if something

about the type of the RoI is known then the cost of the operation

can be reduced. In the simple example above if the RoI is known to

not be a cat then it may be passed directly to the dog classifier and

its execution time reflects the fact that the input is definitely a dog.

We re-emphesize that the assumptions are, in effect, axioms ś they

are true if the system behaves correctly, while if the system does

not behave correctly then nothing need be guaranteed.

In addition to constraints concerning the number of RoIs and the

maximum number of each type of RoI, it is possible to add further

constraints that can help reduce the solution space for the algorithm.
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So, for example, if it is known (i.e. it is a valid assumption) that

there are always more dogs than cats then Valid can reflect this:

function Valid(TC, TD : integer) is

begin

return TC+TD <= N and

TD + min(N-T, Nd-TD) > TC

end

The function returns true if TC+TD is not too large and if the number

of dogs so far identified (TD) plus the minimum that could still be in

the input image is greater than the number of cats so far identified

(TC). If this is true then there is a possible future that will satisfy

the constraint and hence this is a Valid step.

This example demonstrates the expressive power of the mod-

elling technique being proposed. A wide range of constraints can be

utilised. Some, for example incorporating cache effects that reduce

the execution time of repeating steps (e.g. a cat after a cat), may

require modifications to the recurrence formulation so that the

history of identified RoI processed so far is available at each step;

but this is not a fundamental change to the scheme and is easily

incorporated.

Depending upon the kinds of assumptions that it is permitted

to specify for a given application, determining satisfiability of as-

sumptions may turn out to be considerably more complex than

was the case in the earlier examples. Indeed, one could envision as-

sumptions that are of arbitrary computational complexity to check

ś e.g., if one of our CADIS stakeholders were to specify an assump-

tion that the number of cats is the index, in some given standard

encoding, of a Turing Machine that halts on all inputs, then deter-

mining satisfiability of this assumption requires the solving of the

Halting Problem and is thus undecidable. Although this example is

admittedly very contrived and rather extreme, one could envision

more plausible assumptions that similarly encode, say, some NP-

complete problem. If checking the satisfiability of assumptions is

computationally non-trivial, then efficiency considerations must

take the computational complexity of doing so into account; it may

be computationally more efficient to simply assume that some or

all of the assumptions hold and thereby take on the responsibility

of satisfying more obligations than may be strictly necessary.

As part of future work we plan to give further consideration to

the properties of the constraints that are amenable to inclusion in

the proposed modelling framework. In this paper we now focus

on extending this classification example to illustrate Multi-Model

specifications.

4 USE OF THE CADIS EXAMPLE TO

ILLUSTRATE MULTI-MODEL

SPECIFICATIONS AND ANALYSIS

We now extend the CADIS example to illustrate the use of a Multi-

Model for classification. Suppose that the nature of the environment

in which the classifier is to be deployed gives rise to two types of

input image. As cats and dogs do not naturally share the same

space, the image will either contain mainly dogs or mainly cats,

but not significant numbers of both. Each of the two image types

will have different assumptions. Alternatively, the CADIS may be

used simultaneously by two stakeholders, one that is interested in

determining the breeds of all the dogs in an image and the other,

in determining the breeds of all the cats in the (same) image. Each

stakeholder may again make different assumptions.

As before let 𝑁 be a counter of the number of RoI’s, 𝑁𝑐 the

number of these RoI’s containing images of cats, and 𝑁𝑑 the num-

ber of those containing images of dogs. The assumptions bound

all of these counters. The image type that is predominantly popu-

lated with dogs is defined by the model, 𝐷𝑀 . A second model, 𝐶𝑀 ,

captures the properties of images that contain mostly cats.

Let the assumption predicate for the 𝐷𝑀 model be given by:

A𝐷𝑀 def
= 𝑁 ≤ 8 ∧ 𝑁𝑐 ≤ 1 ∧ 𝑁𝑑 ≤ 7

and for 𝐶𝑀 :

A𝐶𝑀 def
= 𝑁 ≤ 7 ∧ 𝑁𝑐 ≤ 6 ∧ 𝑁𝑑 ≤ 1

Both have the same Postcondition:

Q𝐷𝑀 ,Q𝐶𝑀
def
= ∀𝑖 • Species(𝑅𝑜𝐼𝑖 ) ∧ Breed(𝑅𝑜𝐼𝑖 )

and Guarantee condition:

G𝐷𝑀 ,G𝐶𝑀
def
= 𝑒 ≤ 𝑉

Hence model 𝐷𝑀 allows up to 8 Pets with a maximum of 1 Cat and

7 Dogs; whereas𝐶𝑀 allows up to 7 Pets, with a maximum of 6 Cats

and 1 Dog. If both scenarios are to be catered for by a single model

𝑆 then the assumption predicate must incorporate both extremes:

A𝑆 def
= 𝑁 ≤ 8 ∧ 𝑁𝑐 ≤ 6 ∧ 𝑁𝑑 ≤ 7

The algorithm of Section 3.3 reveals that the worst-case execution

duration of just 𝐷𝑀 is 63, just 𝐶𝑀 is 60 and of 𝑆 is 70.

However it is clear that the single model 𝑆 covers combinations

that are not possible; for example there cannot be 4 Dogs and 3 Cats

in the same image. An integrated Multi-Model of 𝐷𝑀 and 𝐶𝑀 will

more accurately specify how the classifier can behave, for example:

(1) The first RoI received from Initial will be pre-processed in

CBC (WCET = 2) to determine whether it is of a cat or a dog.

If the former, its breed is determined at an additional WCET

of 6; if the latter, it is passed on to DBC which determines

the dog-breed at an additional WCET of 5.

Suppose the outcome here were łcatž ś from the perspective

of 𝐷𝑀 , its assumption predicate implies that all following

RoI’s are of dogs. (Analogously if the outcomewere łdogž the

𝐶𝑀 model will determine, based on its assumption predicate,

that all following RoI’s are of cats.)

(2) Our system seeks to satisfy the integration of both require-

ments. Hence regardless of the outcome above, neither as-

sumption is invalidated and consequently the second RoI of

interest must also be pre-processed.

Let us suppose that the outcome for this RoI is the opposite

of the outcome for the first (i.e., the first two RoI’s are either

⟨Cat, Dog⟩ or ⟨Dog, Cat⟩). The reader may verify that the

maximum duration required in Initial, CBC and DBC for

processing these two RoI’s is 2 + 8 + 7 = 17.

(3) The third RoI must also be preprocessed. Note that this pre-

processing necessarily invalidates one of the two assumptions

ś if the outcome is łdogž then the assumption of the 𝐶𝑀

model no longer holds (analogously if the outcome is łcatž

then the assumption predicate for the𝐷𝑀 model is no longer

valid).
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Let us separately consider the possibilities when the prepro-

cessing (WCET=2) reveals that this third RoI is of a) a dog or

of b) a cat.

a) If this turns out to be a dog image then the assumption of

the𝐶𝑀 model is not valid and henceforth our system need

only seek to satisfy the requirement of the 𝐷𝑀 model. It

may therefore assume that every subsequent RoI is of a

dog, and consequently no pre-processing in CBC is needed;

rather, the RoI is immediately passed through to the DBC

which identifies the dog breed at a WCET cost of 5. Since

there may be at most six such RoI’s (including the current

śthirdś one), the total processing duration does not exceed

6 + 6 × 5 = 36.

b) If, on the other hand, the third RoI turns out to be of a

cat then the assumption defining the 𝐷𝑀 model is inval-

idated; henceforth our system need only seek to satisfy

the requirement of the𝐶𝑀 model. It will therefore assume

that every subsequent RoI is of a cat, and consequently

no pre-processing in CBC is needed; rather, the RoI is im-

mediately processed to identify the cat breed (at a WCET

6). Since there may be at most 5 such RoI’s (including the

current one), the total processing duration does not exceed

5 + 5 × 6 = 35.

Summarising the discussion above, (i) worst-case duration

for processing the first two RoI’s is 17; (ii) pre-processing the

third RoI takes a maximum duration of 2; and (iii) processing

the remaining RoI’s takes a maximum duration of either 36

(if of a dog) or 35 (if of a cat). Hence, the worst-case duration

for a system to satisfy the requirements of this sequence is

17 + 2 +max(36, 35) = 55

However, this sequence of images which has the property of sat-

isfying both models for as long as possible is not the worst-case.

Consider the sequence ⟨𝐷, 𝐷, 𝐷, 𝐷, 𝐷, 𝐷,𝐶, 𝐷⟩. After two RoIs the

assumption of the 𝐶𝑀 model is broken and hence only the 𝐷𝑀

model applies, but because the allowed single cat does not appear

until almost the end the preprocessing of all but the last RoI is

required. This means that the worst case is

8 + (6 × 7) + 8 + 5 = 63

We continue with the issue of using the Multi-Model to estimate

the worst-case cost (𝑐𝑜𝑠𝑡 (𝑀𝑀)) of the classification. As it is neces-

sary to ensure that either (or both) of the assumptions remains true,

the Multi-Model caters for each of the single models and hence:

𝑐𝑜𝑠𝑡 (𝑀𝑀) ≥ max(𝑐𝑜𝑠𝑡 (𝐷𝑀), 𝑐𝑜𝑠𝑡 (𝐶𝑀))

With this example the computed cost is as low as possible as

𝑐𝑜𝑠𝑡 (𝑀𝑀) = 63. This compares favourable with 𝑐𝑜𝑠𝑡 (𝑆) = 70.

4.1 Necessary Properties for Integrated

Multi-Models

To integrate 𝐷𝑀 and 𝐶𝑀 to form an effective single Multi-Model

there are some necessary prerequisites:

• The twomodel assumptions are not inherently contradictory:

it is possible for both to be true.

• If both assumptions are true then the obligations are com-

plementary.

In the example

A𝐷𝑀 ∧ A𝐶𝑀
= 𝑁 ≤ 7 ∧ 𝑁𝑐 ≤ 1 ∧ 𝑁𝑑 ≤ 1

but as 𝑁 ≤ 𝑁𝑐 + 𝑁𝑑 then

A𝐷𝑀 ∧ A𝐶𝑀
= 𝑁 ≤ 2 ∧ 𝑁𝑐 ≤ 1 ∧ 𝑁𝑑 ≤ 1

Hence a maximum of two pets, one cat and one dog; both of which

will have their breeds identified.

A system that adheres to the integration of models 𝐷𝑀 and 𝐶𝑀

may experience various Modes of behaviour:

• Mode 1: A𝐷𝑀 and A𝐶𝑀 are true. Both sets of obligations

are delivered

• Mode 2a:A𝐷𝑀 remains true,A𝐶𝑀 is false. Only obligations

of 𝐷𝑀 are satisfied.

• Mode 2b:A𝐷𝑀 is false,A𝐶𝑀 remains true. Only obligations

of 𝐶𝑀 are satisfied.

• Mode 3: A𝐷𝑀 and A𝐶𝑀 are false. No obligations are satis-

fied.

In Fig. 2, the top-most mode corresponds to Mode 1, the two modes

depicted one layer down represent Modes 2a and 2b, and the mode

depicted at the bottom represents Mode 3. A system that enters

Mode 3 (from either 2a or 2b) has failed. A transition from Mode

2a to 2b, or vice versa, cannot be taken. Modes 1, 2a and 2b are all

valid and legal.

We note, as illustrated earlier, that the worst-case cost does not

necessarily occur when the system stays in Mode 1 for the longest

time.

A final example illustrates that the estimate of the Multi-Model

can lie between that of the combined model and the individual

models. Let

A𝐷𝑀 def
= 𝑁 ≤ 3 ∧ 𝑁𝑐 ≤ 0 ∧ 𝑁𝑑 ≤ 3

and for 𝐶𝑀 :

A𝐶𝑀 def
= 𝑁 ≤ 3 ∧ 𝑁𝑐 ≤ 3 ∧ 𝑁𝑑 ≤ 0

then the combined single model is :

A𝑆 def
= 𝑁 ≤ 3 ∧ 𝑁𝑐 ≤ 3 ∧ 𝑁𝑑 ≤ 3

These give rise to the following computations: the cost of DM is 18,

CM is 21 and S is 27. However the Multi-Model results in a cost of

23, which is higher than either of the individual models but lower

that the combined single model.

4.2 How to compute the cost of the worst-case

load

To compute the worst-case duration any input adhering to a Multi-

Model specification requires only a trivial change to the algorithm

given earlier. For the single model case a Valid function was re-

quired that checked that the next step in the recurrence was allowed

(was sanctioned by the model). For the Multi-Model case this is

simply extended:

function Valid(TC, TD : integer) is

begin

return Valid_CM(TC, TD) or Valid_DM(TC, TD)

end
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where Valid_CM and Valid_DM are the checks for each specific

model.

When applied to the earlier example this dynamic program does

return with the worst-case estimate of 63.

We note, for completeness, that for independent Multi-Models

(where both models must be true at all times) then the following

code is appropriate.

function Valid(TC, TD : integer) is

begin

return Valid_CM(TC, TD) and Valid_DM(TC, TD)

end

Both models must sanction the step.

4.3 Discussion ś Extending the Scope of the

Approach

The CADIS example discussed above has the property that the

temporal parameters of the models (𝐶𝑐 𝐷𝑐 , 𝐶𝑐𝑘 , 𝐷𝑐𝑘) as illustrated

in Figure 5 are constant; they are not a function of the model that

is being applied (e.g. not a function of which of the single models

is valid when the parameter is employed). But this constraint is not

necessarily always true.

If we return to the example given in Section 4 then the worst-case

sequence of RoIs was obtained from the 𝐷𝑀 model: ⟨𝐷, 𝐷, 𝐷, 𝐷, 𝐷,

𝐷,𝐶, 𝐷⟩. One interpretation of the 𝐷𝑀 model is that it applies to

stakeholders that are only interested in determining the breeds of

all the dogs in any input image. By the time a RoI is processed that

has the sole cat the 𝐶𝑀 model has become invalidated. Hence only

𝐷𝑀 applies. Arguably the 𝐷𝑀 stakeholder is not interested in the

breed of the solitary cat. And hence the cost associated with the

cat should be only 2 not 2 + 6. Giving an overall cost of 57 (not 63).

To illustrate how this can be taken into account consider the

parameter𝐶𝑐 which is the cost of determining the breed of an iden-

tified cat. In the examples discussed so far it has the constant value

of 6. Tomake its value model-specific requires a simple modification

to the code outlined in Figure 5, i.e. to include:

if Valid_CM then Cc := 6 else Cc := 0

Similar changes are needed to the other WCET parameters.

4.4 Integrated and Hierarchical Multi-Models

It was noted earlier that with a pure hierarchical model the as-

sumptions are weakened as the system moves from one mode of

operation to another, degraded, mode. This means, with two models

with predicates Valid1 and Valid2, then if Valid1 is true then so

is Valid2. The normal mode of operation is governed by the first

model, the degraded mode by the second. In the degraded mode less

will be achieved Ð i.e., the obligations are reduced. And it follows

that the resources required will also be reduced.

So in the CADIS example rather than the classifier failing if there

are more than 𝑁𝑚𝑎𝑥 RoIs in the input image, we could define a

degraded mode in which the type of the Pet within the RoI, but

not the breed, is computed. So in the normal mode we had the

assumptions and obligations as before:

A
def
= 𝑁 ≤ 4

Q
def
= ∀𝑖 • Species(𝑅𝑜𝐼𝑖 ) ∧ Breed(𝑅𝑜𝐼𝑖 )

but in degraded mode (X):

A𝑋 def
= 𝑁 ≤ 10

Q𝑋
def
= ∀𝑖∈1..4 • Species(𝑅𝑜𝐼𝑖 ) ∧ Breed(𝑅𝑜𝐼𝑖 ) ∧

∀𝑗>4 • Species(𝑅𝑜𝐼 𝑗 )

So if the number of RoIs is bounded by the initial aassumption then

all Pets will have their type and breed identified. But if there is a 5th

RoI then rather than fail, the system degrades to a mode in which

only the species of the RoI is identified. To make this commitment it

is still necessary to bound the load on the system. And if the number

of RoIs now raises above 10 then even the degraded mode will fail.

Note in this simple example the two models have the appropriate

hierarchical relationship as A ⇒ A𝑋 .

It is of course acceptable to combine Integrated and Hierarchical

Multi-Models. So again with the CADIS use case ifA𝐷𝑀 andA𝐶𝑀

both fail then there could be a degraded model similar to the one

given above that delivers only a partial classification.

5 CONCLUSIONS AND FUTUREWORK

We have proposed a framework for modelling and evaluating the

worst-case execution times of complex software components such

as classifiers. We have used a combination of assumptions and

obligations to define a workload model and a resource (CPU time)

requirements model. The assumptions are used to constrain po-

tential paths through the software and hence deliver effective esti-

mates of overall end-to-end timing behaviour. These estimates are

obtained by utilising a bottom-up recurrence algorithm that only

considers steps that are compliant with the defined assumptions.

These assumptions are also used to identify input elements and

sequences that are easier to process and hence lead to a reduction

in the worst-case execution time.

Although single models are potentially useful, a strong motiva-

tion for the modelling approach adopted is to facilitate the combi-

nation of models into, what has been termed here, Multi-Models.

The extensive literature on Mixed-Criticality systems has revealed

a large number of applications where one model is used to describe

the required behaviour in a łnormalž mode of operation, and an-

other the acceptable reduced behaviour in a łdegradedžmode. These

Multi-Model descriptions are mostly hierarchical ś the degraded

behaviour is a restricted form of the normal behaviour. In this paper

we have generalised this relationship to also include independent

and integrated Multi-Models. The integrated Multi-Model seems

to be particularly effective at describing and analysing complex

systems with multiple stakeholders or modes of operation.

In this first paper on these execution time Models and Multi-

Models we used an artificial simple example to motivate and illus-

trate the main ideas. Readers will hopefully be able to appreciate

that functionally similar applications (such as real-time classifiers

and other AI inspired autonomous components) within future Cy-

ber Physical Systems are likely to become increasingly common.

For example, a road-side monitoring unit could take periodic pho-

tographs and be tasked with (a) estimating the real-time volume of

traffic, (b) classifying the traffic into cars, vans, lorries, bikes, motor

bikes etc, (c) estimate the total number of drivers/passengers for

various combinations of these vehicle classes, taking into account

the fact that a single photograph cannot simultaneously have a
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maximum number of each vehicle class, (d) identify the number of

self-driving cars, (e) identify the number of cyclists not wearing

helmets, etc. A combination of these requirements could be ex-

pected to lead to realistic independent, integrated and hierarchical

Multi-Models.

There are a number of extensions that follow naturally from the

work presented in this paper:

• For classifiers that havemultiple components, such as IDKs [1,

12, 30], the order inwhich components are arranged can have

a significant influence on the worst-case execution time of

the classification. In future work we will use the framework

developed to investigate this optimisation.

• In future work we will also give further consideration to the

properties of the constraints that are amenable to inclusion

in the proposed modelling framework.

• A required extension to the framework is to consider mul-

tiple concurrent components, their deadlines and system

scheduling; for Mixed-Criticality Systems this has been ad-

dressed [8] within an assumptions/obligations formulation.

In future work we will integrate this approach with the more

general Multi-Model notion present in this paper.

• In the models presented in this paper the only failures con-

sidered are those caused by the input sequence failing to

comply with the defined assumptions. It is also possible to

introduce classification failures; e.g. a dog being wrongly

identified as being a cat, and hence its breed not being as-

certained unless it passes through both the CBC and DBC

components. With such failures the Assumptions must be

extended to include a Fault Model that bounds the number

of such mis-classification. This addition will be described in

detail in an extended version of this paper.
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