Dimensions of fixed-priority aperiodic servers

Abhishek Singh
abhishek.s@wustl.edu
Washington University in St. Louis
St. Louis, Missouri, U.S.A.

ABSTRACT

We identify the budget and the utilization of an aperiodic server as
vital attributes that affect its performance. Based on this observation,
we formulate an optimization problem in which we are given a
minimum budget for multiple servers running at the same priority,
and the objective is to find the dimensions (budgets and periods) of
these servers to maximize their cumulative utilization. We propose
a linear-time algorithm for solving the problem if priorities are rate-
monotonic, periods are harmonic, and deadlines are equal to periods.
We also propose mixed-integer nonlinear programs for the general
problem when these simplifying assumptions are lifted. Finally, we
discuss issues arising when implementing multiple servers at the
same priority, and we show how to modify the specifications of
servers to address these issues.

CCS CONCEPTS

« Computer systems organization — Real-time operating
systems; Embedded software.

KEYWORDS

aperiodic servers, fixed priority, harmonic, algorithm design, opti-
mization, MINLP

ACM Reference Format:

Abhishek Singh and Sanjoy Baruah. 2023. Dimensions of fixed-priority
aperiodic servers. In The 31st International Conference on Real-Time Networks
and Systems (RTINS 2023), June 07-08, 2023, Dortmund, Germany. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3575757.3593639

1 INTRODUCTION

Safety-critical systems can often be modeled as a collection of
preemptible priority-driven! hard real-time tasks (HRT tasks) and
aperiodic tasks, where the HRT tasks are recurrent and have strict
timing requirements, and the aperiodic tasks are isolated and have
loose timing requirements. For such hybrid collections, an aperiodic
server is often used to serve aperiodic tasks at a high priority while
simulating the timing behavior of one or more artificial HRT tasks
at that priority. The use of aperiodic servers results in smaller re-
sponse times for the aperiodic tasks; moreover, traditional real-time

!In preemptive priority-driven systems, at any instant, a pending task with the highest
priority amongst all pending tasks is picked to run on the processor.

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

RTNS 2023, June 07-08, 2023, Dortmund, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9983-8/23/06.
https://doi.org/10.1145/3575757.3593639

Sanjoy Baruah
baruah@wustl.edu
Washington University in St. Louis
St. Louis, Missouri, U.S.A.

scheduling theory can be used to analyze the system since it effec-
tively contains only HRT tasks (after aperiodic tasks are replaced
by artificial HRT tasks). The parameters of the artificial HRT tasks,
which are called the dimensions of the aperiodic server, are chosen
so that the original HRT tasks meet their timing requirements and
the response times of the aperiodic tasks are reduced; the prob-
lem of choosing dimensions to meet the above objectives is called
dimensioning the server.

We want to dimension servers when the original HRT tasks have
fixed priorities (tasks are assigned priorities that remain constant for
all behaviors) and constrained deadlines (for each task, its deadline is
at most its period; see Section 1.1 for terminology), are preemptible,
and run on a uniprocessor; we refer to fixed-priority constrained-
deadline preemptive uniprocessor systems as simply FP systems. The
theory for the timing analysis of FP systems is rooted in ideas like
the critical instant and response time analysis (RTA) [2, 3, 14, 17];
Section 2 explains the elements of the theory that we utilize in
this work. This theory underpins a rich framework for the design,
implementation, and analysis of safety-critical real-time systems
that has won widespread acceptance in industrial practice [11, 12,
22]; for instance, support for this framework is included in the IEEE
POSIX standard application program interface (API) for operating
system services [1].

We refer to servers for FP systems as FP servers. Notable FP
servers include the polling server, the sporadic server, the deferrable
server, and the priority exchange server [15, 23, 26]. The deferrable
server and the sporadic server are arguably the more well-studied
servers [7, 8, 24] because both servers are bandwidth-preserving
and have performed similarly in empirical evaluations [4]. Although
the initial motivation for FP servers was enhancing aperiodic re-
sponsiveness in systems containing HRT and aperiodic tasks, FP
servers have also been used in other contexts such as resource
reservations for multimedia applications [19, 20] and hierarchical
scheduling in open environments [8, 9, 13, 16, 18, 21]. Our aim is
to dimension FP servers in the original context, i.e., to enhance
aperiodic responsiveness. Before describing the existing work on
dimensioning servers, its limitations, and our proposed approach,
we must introduce some properties of FP servers.

1.1 FP systems and servers: model and terms

Our system contains sporadic tasks, which are a type of HRT tasks,
and aperiodic tasks. The HRT subsystem, which is an FP system, is
represented as a list

I'={(r,72,....,),

where 7; is a sporadic task, and the tasks are listed in decreasing
order of priority.? 7; receives at most one request in any interval of

2We assume that (e, . . ., ey,) is a list of n elements; () is an empty list; and [; o I, is
the concatenation of lists /; and .

RTNS 2023, June 07-08, 2023, Dortmund, Germany

length T; (T; is the period of 7;); 7; must complete the response to
the request within D; units of time (D; is the relative deadline of ;);
the execution of any single response for 7; takes at most C; units of
time on the processor (C; is called the wcet (worst-case execution
time) of 7;). Thus, 7; may be represented as the triple (C;, T;, D;), or
the pair (C;, T;) if the deadline is equal to the period. If 7; does not
miss its deadlines in any behavior of the system, then we say that
7; is schedulable in the system. If 7; is schedulable for all i € [n]3,
then we say that the system is schedulable.

Forany i € [n], we use I} (resp., I, —I}) to refer to the high (resp.,
low) subsystem containing tasks (71, 72,. .., 7;) (resp., {Ti+1, Ti+2,
..., Tny). The FP server serves the aperiodic tasks at a high priority
k to reduce their response times. We assume that k € [n+1], all tasks
in the FP subsystem I._; have a higher priority than the server,
and all tasks in the FP subsystem I}, — I}._; have lower priority
than the server. Recall that one of the objectives of the server is
to ensure that the system is schedulable; we refer to a server that
meets this objective as a feasible server. The schedulability of the
FP subsystem I, _; is unaffected by the server because it has higher
priority than the server and the server cannot interfere with its
timing behavior. The schedulability of the FP subsystem I}, — I._q,
on the other hand, is affected by the server. Thus, the feasibility of a
server is equivalent to the schedulability of the lower FP subsystem
In —Tr_q-

The server has a (execution-time) budget* B and a period P. The
server (k, B, P) simulates the timing behavior of m sporadic tasks,
denoted k1, . . ., k. The m tasks have priority k, cumulative wcet
B, period P, and (implicit) deadline P. For instance, the sporadic
server (k, B, P) simulates the timing behavior of B sporadic tasks
with weet 1 and period P, and the polling server (k, B, P) simulates
the timing behavior of 1 sporadic task with wcet B and period P.
Internally, the server does a lot of bookkeeping to ensure that the
simulation is valid; for instance, the server keeps track of how much
budget has been consumed by aperiodic tasks, it ensures that the
aperiodic tasks do not consume more budget than what is available,
and it decides when the budget should be replenished next. The
consumption and replenishment rules vary between servers de-
pending on the collection of tasks they aim to simulate (we discuss
the rules for sporadic servers in Section 6).

Externally, from the perspective of the FP scheduler, the server
appears to be a collection of sporadic tasks with the same priority
and is indistinguishable from the true sporadic tasks in I'. Thus,
we must choose the parameters of k1, . . ., K, so that the following
system is schedulable:

T_qo(Kkt,..skm)y o (Tn —Tk_q)

Application of elementary results from FP scheduling theory allows
the system to be simplified to

Ti—10{(B,P)) o (T — Tj—1)-

As mentioned before, I, _; is not affected by the server, and we can
focus on the subsystem I}, — I'._. The next theorem follows from
these observations.

3We assume that [n] denotes the set {1,2,...,n} and [0] = 0.
4The term capacity is also used to refer to the budget by some authors.

Singh and Baruah

THEOREM 1.1. LetT be an FP system. The server (k, B, P) is feasible
if and only if T;, — Ty._y is schedulable in the larger system

Ti—1 0 {(B,P)) o (I, = Tje_y).

It can be argued that the server task should also be schedulable
to provide quality-of-service guarantees to the aperiodic tasks; we
choose to work with a definition of feasibility that is only tied to the
schedulability of the true HRT tasks. The description of FP servers
in the above paragraph is a valid abstraction of the polling server,
the sporadic server, and the priority-exchange server but it is not
true for the deferrable server, which simulates a self-suspending
task. Thus, our results are applicable to polling server, the sporadic
server, the priority-exchange server, and any other server which
matches the above description.

1.2 Previous work on dimensioning FP servers

Dimensioning the server involves selecting feasible dimensions
k, B, P that reduce response times of aperiodic tasks as much as
possible. In the early stages of research on FP servers, dimensions
were chosen rather simply: rate-monotonic priority assignment®
was assumed, k was chosen to be equal to the highest priority,
ie, k = 1, P was chosen to be equal to the smallest period Ti,
and B was chosen to equal its maximum feasible value since k
and P were fixed [15, 23]. A few years later, researchers observed
that sometimes choosing a smaller period than T; can result in a
server with larger utilization [26]; the ratio B/P, which is called the
utilization or bandwidth of the server, is a measure of the rate at
which the server processes aperiodic requests. More details about
the limitations in these works may be found in the research of
Bernat and Burns [4, Secs. 3.2, 5]. Bernat and Burns investigated the
efficacy of sophisticated dimensioning schemes for sporadic and
deferrable servers by carrying out simulations on a large number of
synthetic task systems, and concluded that aperiodic responsiveness
is enhanced by ensuring that the server has a high priority, a large
budget and a large utilization [4, Sec. 4.4].

The intuition for the above recommendations can be explained
by considering two types of scenarios. An FP server shines in sce-
narios where an aperiodic task arrives and is served immediately
because the server has a high priority and a large enough budget
to accommodate the task’s execution time; a larger budget means
that it can serve aperiodic tasks with larger execution times im-
mediately without waiting for replenishment. In scenarios where
aperiodic tasks keep arriving and the server is continuously busy,
a larger utilization restricts the backlog of pending aperiodic work
to smaller values. Bernat and Burns propose a heuristic for dimen-
sioning servers so that a large budget and a large utilization are
achieved [4, Sec. 4.4]:

The best performance can be generally achieved by
selecting the capacity [budget] that corresponds to
the local maxima of Us(c) [utilization as a function
of budget] closer to the maximum possible capacity
[budget].
It is evident that the above heuristic is biased towards achieving
the largest budget or at least getting close to it (we will address this

SRate-monotonic priority assignment is a type of fixed priority assignment in which
tasks with smaller periods have higher priorities.

Dimensions of fixed-priority aperiodic servers

limitation, amongst other limitations, in the next subsection). We
do not know of any other work where FP servers are dimensioned
with the objectives of maximizing the budget and the utilization.

1.3 Some observations and the problem
statement

A larger utilization can often be assigned to a server by using a
smaller period, while a larger budget can often be assigned to a
server by using a larger period. For instance, if we try to insert a
server at the highest priority (k = 1) into the system ((1,5), (3, 10)),
then we discover that

(i) The maximum budget is 4, and the maximum utilization for
this budget is 4/9 ~ 0.44, using the server (4,9).

(if) The maximum utilization is 0.5, and the maximum budget
for this utilization is 2.5, using the server (2.5, 5).

Thus, the two objectives of maximizing the budget and maximizing
the bandwidth of the server are at odds with each other. Details
about how to compute the above servers are provided in Section 3.

In the above example, we can add two servers (1, 5) and (3, 10) at
the highest priority so that they serve aperiodic requests in concert
with each other. After the addition, the full system is given by
((1,5), (3,10), (1,5), (3, 10)); the upper half of the system contains
the artificial tasks that are simulated by the server, and the lower
half of the system contains the original sporadic tasks. It may be
verified that the full system is schedulable and hence the parameters
for the two servers are feasible. Collectively, the two servers have
budget 4 and utilization 0.5, and hence they are a better choice than
both servers (4,9) and (2.5,5). Thus, to improve our chances of
getting larger budget and utilization values, we should consider
using multiple servers at the same priority.

In this research, we ask the following question:

Given an FP system I', what is the maximum cumula-
tive utilization for a finite collection of servers that is
feasible at priority k and has a minimum cumulative
budget Bin?
Let the collection of servers simulate the following collection of
sporadic tasks:

(b1, p1), (b2, p2), - -, (bm, Pm))

All m servers run at the same priority k but a concrete implementa-
tion of such a collection of servers may decide to give preference to
one server over another when both servers have available budget
and an aperiodic task is pending. In our problem, the objective is
to find by, p1, . . ., bm, pm, where m is arbitrary, that maximize

D bilps
jelm]
subject to the following constraints:
(@) Zje[m] bj = Bmins
() Xje[mibj<p1<p2<-+ <pm,and
(iii) the collection of servers (k, by, p1), (k, b2, p2), - - ., (k,bm, pm)
are feasible.

The first constraint says that the cumulative budget is at least Bpin;

the second constraint imposes a linear order on the periods without
loss of generality, and its says that the smallest period p; is at least

RTNS 2023, June 07-08, 2023, Dortmund, Germany

Bmin. ¢ Using Theorem 1.1, the third constraint is equivalent to the
schedulability of the subsystem I, — I'._; in the larger system

Ti—1 0 (b1, p1), (b2, p2), - - > (b, pm)) © (Tn = Tie—1).-

We call this problem DIMENSIONING. An instance of DIMENSIONING
is given by the triple (I}, Bmin, k)-

If a system designer wants to maximize the utilization for a
given set of priorities K and a minimum budget By, then they
can explore the space of feasible server parameters by solving the
DIMENSIONING instances in {(T, Bpin, k) | k € K}. The optimal
utilization values for the instances will help the designer to select
the server parameters k, by, p1, . . ., bm, pm that best suit their needs.

2 MORE BACKGROUND & ASSUMPTIONS

We assume that T;, D;, and C; are rational values. The ratio U; =
Ci/T; is called the utilization of ;. rbf;, the request-bound function
of subsystem I}, is defined as follows:

t

i) =) ch 1)
jelit

rbf;(t) is the maximum cumulative execution requirement of the

tasks in I corresponding to requests that arrive in any interval of

length #7.

THEOREM 2.1 ([10, 14]). IfT is a preemptive constrained-deadline
fixed-priority uniprocessor system, then T is schedulable if and only
if for alli € [n]

3t € (0,D;] : rbf;(2) < t. (2)

Response time analysis (RTA) [10] solves the problem
min{t € (0,D;] | rbf;(¢) <t} 3)

by using a fixed-point iteration approach. RTA starts with an ini-
tial value, t, a lower bound for the optimal ¢, and then it updates
t to rbf;(t) repeatedly until ¢ stabilizes or t > D;. The number
of iterations is at most D;/minc[;_1] Ti, and the algorithm has
pseudo-polynomial running time. Of course, T' is schedulable if and
only if RTA finds feasible solutions for Problem (3) for all i € [n].

The next corollary follows directly from Theorem 1.1 and Theo-
rem 2.1.

COROLLARY 2.2. The collection of m servers at priority k is feasible
if and only if foralli € [n] \ [k —1],
t

—} bj <t
J

3t € (0,D;] : tbfi(t) + Z {
]

jelm

3 MAXIMIZE BUDGET AND UTILIZATION
SEPARATELY

Before we attempt to solve DIMENSIONING, we need to be able to
find the maximum cumulative budget and the maximum cumulative
utilization of the collection of servers separately.

oIf P1 < Bmin then the servers can serve a task with execution requirement strictly
greater than }, ; b; immediately in some scenarios; we ignore this complication by
assuming that p; > Bpin.

7Usually rbf is defined with respect to a task in T (see, for instance, [25, Sec. 3.3.3])
but it is more efficient for us to define it with respect to a subsystem of I'.

RTNS 2023, June 07-08, 2023, Dortmund, Germany

COROLLARY 3.1. Given T and k, let Bpmax denote the maximum
cumulative budget for any feasible collection of servers at priority k.
Then, we must have

Bmax = i t —rbf; ()}t
e ie[nrjn\llrllc—1j{te%%i]{ ' ’()}}

Proor. Since the servers are feasible, using Corollary 2.2, we
must have

Vie[n]\[k-1]:3te (0D : Z [
]

jelm

iwbj <t —1bf;(1)
j

Since the objective is to maximize), 7 bj, we can eliminate p; from
the above condition by choosing p; = max;c[,]\[k-1] Di because
this minimizes the coefficient of b;. Then, the above condition
simplifies to
Vie[n]\[k-1]:3t e (0,D;] : Z bj <t —1bf; (1)
jelm]

The expression in the statement of the corollary is the tightest
upper bound for }} ;¢ [, bj in this condition. O

COROLLARY 3.2. Given T and k, let Upax denote the maximum
cumulative utilization for any feasible collection of servers at priority

k. Then, we must have
Umax = min { max {I—M}}
ie[n\[k-1] |t€(0,D;] t

Proor. Since the servers are feasible, using Corollary 2.2, we
must have

Vie [n]\[k—-1]:3t e (0,D;] : Z {

jelm]

i}ijj <t —r1bf;(¢)

J

Let us assume that an optimal solution exists where t; € (0, D;] N Q
satisfies the above inequality for each i. Since the objective is to
maximize };; Uj, we can eliminate p; from the above condition
by choosing pj = ged;e[,]\[k-1] ti because this minimizes the
coefficient of U;. Then, the above condition simplifies to

rbf; ()
t

Vie[n]\[k-1]:3te (0,D;] : Z Uj<1-
jelm]
The expression in the statement of the corollary is the tightest
upper bound for }’ jc[,] bj in this condition.

The global maximum point of 1 - m must be D; or a multiple
of a period T; with j € [i], which are all rational values; thus, our
assumption that there exist optimal solutions with rational t;’s is
justified. O

From the above proofs, it is evident that a server with a large pe-
riod such as max;e [p]\[k—-1] Di can have budget Bmax and a server
with a small period ged{Ti,D;,...,Ty, Dn} can have utilization
Umax. Better periods can be chosen for these solitary servers by
analyzing the functions t — t — rbf;(¢t) and t — 1 —rbf;(¢)/t ina
little more detail. For any i € [n] \ [k — 1], let §; and y; be defined
as follows:

Pi = argmax {t — rbf; (1)} (4)
te(0,D;]

B rbfi(t)} -

Ji = arg max {1 ;

te(0,D;]

Singh and Baruah

If multiple global maximum points are available, then we let f;
(resp., p1i) denote the smallest global maximum point in the inter-
val, thus ensuring that f§; and y; are well-defined. The following
theorem follows from these definitions:

THEOREM 3.3. Given I' and k, a server with budget Brmax and
period maX;e[p)\[k—1] Bi is feasible; and a server with utilization
Umax and period ngiE[n]\[k—l] i is feasible.

In the remainder of the section, we discuss algorithms for com-
puting fi, f1i, Bmax, and Unax.

THEOREM 3.4. Algorithm 1 computes

t —rbf; ()}, il .
te%%i]{ bf(2)}, fi

Proor SKETCH. The correctness of the algorithm follows from
three observations:

(i) RTA can be used to solve min{t € (0,D;] | m+rbf;(¢) < t}
for a fixed m since the change is equivalent to modifying C;
to Cj + m.

(ii) The set

{z € (0,D;] | 3t € (0,D;] : z+1bf;(¢) < t}

is a down-set®, and, hence, binary search can be used to find
the largest value in the set. Thus, we must have

X = max | {t —rbf; ()} (6)

te(0,D;

(iii) The z returned by the algorithm equals min{t € (0,D;] |
x + rbf;(t) < t}. Thus, we must have

z—1bfi(z) =x
= z—1bfi(z) = max {t—1bf;(t)} (using Equation (6))
te(0,D;]

= z = argmax {t — rbf; ()}
te(0,D;]
—=z=4 (using Definition (4))

[m]

Algorithm 2 is similar to Algorithm 1, and the next theorem can
be proved using the same strategy as the above proof.

THEOREM 3.5. Algorithm 2 computes

({1 rbf; (t) })
max - , Ui
£€(0,D;] t Hi

Algorithm 1 (resp., Algorithm 2) can be called for all i € [n] \
[k — 1], and the minimum value amongst all values returned by the
algorithm is Bax (resp., Umax)-

4 A TRACTABLE SPECIAL CASE OF
DIMENSIONING

In this section, we solve DIMENSIONING in a restricted setting:

(i) The scheduler assigns rate-monotonic priorities to Iy, i.e.,
Viijje[n]:i<j = T; <Tj. (7)

8For an order P, a subset A C P is a down-set if x € Aand y < x imply that y € A.
We are implicitly working in the order (Q, <) whenever we use the term down-set.

Dimensions of fixed-priority aperiodic servers

Algorithm 1 Compute (maxte(O,Di] {t — rbf;(t)} ,ﬂi).

i (x,y,2) « (0,D;,0)
2: repeat
3 me (x+y)/2
Use RTA to solve min{t € (0,D;] | m +rbf;(t) < t}.
if an optimal solution exists then
X m
z « the optimal value
else
yem
10: end if
11: untilx = y
12: return (x,z)

N B A U

Algorithm 2 Compute (maxtE(O,Di] {1 - m} ,yi).

t: (x,y,2) « (0,1,0)

2: repeat

3 me (x+y)/2

4 Use RTA to solve min{t € (0, D;] | tbf;(¢) < (1 — m)t}.
5. if an optimal solution exists then
6 X —m

7 z « the optimal value

8 else

9 ye—m

10: endif

11: untilx = y

12: return (x,z)

(ii) The periods in I}, are harmonic, i.e.,

Vije[n] T | TV T | T ®)
(iii) The relative deadlines are all equal to their corresponding
periods, i.e.,
Vi,je[n]:D;=T,.)
The first two assumptions imply that

Viijje[n]:i<j = T;|Tj. (10)

For these restricted systems, it is not too hard to show that
Vijeln\[k-1]:fi=p=T; (11)
Vi€ [n] :1bfi(Ti) = T; X jepi) Uj (12)

Then, using Corollary 3.1, Corollary 3.2, Definition (4) and Defini-
tion (5), we get the following identities:

{T(1 = Zjern Up} (13)

min
ie[n]\[k-1]
Unax =1- Zje[n] Uj (14)
Thus, Bmax and Upax can be computed efficiently for I},. Let £ be
defined as follows:

t=max{l € [n] \ [k — 1] | f; —xbf;(f]) = Bmax} ~ (15)

Using Equations (11,12), £ is the largest number in [n] \ [k — 1]
such that

Tt’(l - Zje[f] Uj) = Bmax (16)

RTNS 2023, June 07-08, 2023, Dortmund, Germany

In the next theorem, we show that DIMENSIONING can be solved
efficiently for systems if they satisfy the assumptions laid out at
the beginning of the section.

THEOREM 4.1. If priorities are rate-monotonic, periods are har-
monic, and deadlines are equal to periods, then for an instance (I,
Bmin, k) of DIMENSIONING exactly one of the following statements is
true:

(i) Bmax is less than By, and hence the instance is infeasible.
(ii) Bmax is at least Byiy . In this case, an optimal solution ((b1, p1),

(ba, p2)) can be determined from the following properties:
p1=max{T; | i € [n] \ [£-1],T; < Bnax/Umax} (17)
pz=min{T; | i € [n]\ [£ = 1], T; 2 Bmax/Umax} ~ (18)

bl + b2 = Bmax (19)
b b
s + = = Umax (20)
p1 P2

b1,by > 0 (21)

Thus, the optimal objective value is Unmay; the optimal solution
and objective value are both independent of Bpp.

ProoF SKETCH. We only consider the case where By is at least
Bmin because the other case is trivial.

First, we show that p; and p; are well-defined. From Equa-
tions (16,14), we get

B max

Bmax < T < (22)

max

Thus, we have
T, €{Ti|i€ [n]\ [£~-1],T; < Bmax/Umax} # 0,

and hence p; is well-defined. Similarly, by using Equations (13,14),
we can show that T,, > Bmax/Umax and hence p; is well-defined.
We note that p; must be equal to T for some « € [n] \ [£— 1], and
p2 must be equal to Ty or Tiyin(g+1,n)- Thus, we must have

T <Ta=p1<p2 < Tmin(a+1,n) <Th (23)

Next, we show that we can always find values for b; and b, that

satisfy Equations (19-21). If p; and py are equal, then (b1, by) =
(Bmax, 0) works; otherwise, from Equations (19,20), we get

Umax _ Bnax
P2
bi=——
PP
Bm X
p_la - Umax
be=—F—
P P2
Then, from Equations (17,18,23), it follows that b1 and b, are non-

negative.
The first two constraints in DIMENSIONING are met by by, p1, by,
and pj because

BminSb1+b2=Bmax<Tt’ Spl SPZ

We assumed Bpin < Bmax when we started the proof; the second
inequality follows from Equation (16), and the other inequalities fol-
low from Equation (23). Equation (20) implies that the objective of
maximizing the utilization is achieved by ((b1, p1), (b2, p2)). Thus,

RTNS 2023, June 07-08, 2023, Dortmund, Germany

we can complete the proof by verifying that the servers are feasi-
ble, i.e., they satisfy the third constraint in DIMENSIONING. Using
Corollary 2.2, the server is feasible if and only if

Vi € [n]\[k-1] : 3t € (0,D;] :rbfi(t)+{pL}b1+ by <t (24)
1

We will prove the above statement by considering two cases in the
next two paragraphs.
Case I.Forany i € [a] — [k — 1], we can choose t = T; to get

it
p2
(using Equation (23), Assumption (7))

rbfl(Tl) + ’VE“ by + by
p1

=1bf;(T;) + by + by

=T; Zje[i] Uj+by+b
=T; Yje[i] Uj + Bmax
=T + Bmax — Ti(1 = X je[i1 Uj)

<T; (using Equation (13))

(using Equation (12))
(using Equation (19))

Case IL. For any i € [n] \ [«], we can choose t = T; to get
T.

_’} by

p2

T T;
=1bfi(T;) + = by + —L by
p1 p

rbf; (T;) + {El b1+
4!

(usiné Equation (23), Assumption (10))
=1bf(T;) + T;Umax
=T Xjei] Uj + TiUmax
=Ti + Ti(Umax — (1 = Xje[1) Uj))
<T; (using Equation (14))

(using Equation (20))
(using Equation (12))

]

We distill the analysis carried out in this section into Algorithm 3
which solves DIMENSIONING in the special case studied in this
section. Lines 1,5-8 run in O(n) time; the remaining lines run in
O(1) time. The next theorem follows.

THEOREM 4.2. When priorities are rate-monotonic, periods are
harmonic, and deadlines are equal to periods, Algorithm 3 solves
DIMENSIONING in Q(n) time.

We examine the behavior of Algorithm 3 by varying a parameter
of a simple system in the next example.

Example 4.3. Table 1 shows the solution to DIMENSIONING found
by Algorithm 3 for four systems when k = 1 and Bpjn < Bmax-
The systems differ only in the wcet of their lowest priority task z3.
Each server has a budget of 4 units and consumes all the residual
utilization, i.e., 1 — X;c(3] Ui, in the system. As we go down the
table, the residual utilization in the system decreases because C3
increases; the last two columns show that Algorithm 3 allocates
more budget to larger periods as we go down the table.

5 DIMENSIONING IN GENERAL

We formulate DIMENSIONING for general FP systems as an MINLP
(mixed-integer nonlinear program) in Figure 1. The formulation
is not exact yet because we treat m as a constant in the program
and DIMENSIONING requires m to be arbitrary (we will correct this

Singh and Baruah

Algorithm 3 Solve DIMENSIONING in special case.

1: Bmax & minje [\ [k-1] {T:(1 = Zjefi) Up}
. if Bmax < Bmin then
return “infeasible”
. end if
£ max{l € [n]\ [k~ 1] | Ti(1 - jeq1) Uy) = Bunax}
¢ Umax < 1= Xjen) Uj
: p1 &« max{T; | i € [n] \ [£ - 1], T; < Bmax/Umax}
¢ p2 — min{T; | i € [n] \ [= 1], T; > Bmax/Umax}
: if p; = pp then
10: return ((Bmax, 1))
11: end if
12: X ¢ Umax — Bmax/p2
13: y < 1/p1 —1/p2
14: by —x/y
15: bz — Bmax - b1
16: return (b1, p1), (b2, p2))

2
3
4
5
6
7
8
9

Table 1: Four DIMENSIONING instances solved by Algorithm 3

r Optimal solution Periods in solution
((1,5),(3,10),(0,20)) ((1,5),(3,10)) {5, 10}
((1,5), (3,10), (1,20)) {(0.5,5), (3.5,10)) {5,10}

((4,10)) {10}
((3,10), (1,20)) {10, 20}

((1,5), (3,10), (2, 20))
((1,5), (3,10), (3, 20))

departure from DIMENSIONING shortly). We observe the following
facts about the program:

(i) The constants C, T, and D, which are vectors of dimension
n, describe the FP subsystem I'. The constants C, T, D, Bpin
and k describe an instance of DIMENSIONING.

(if) The constant Bmax (resp., Umax) is computed for I' and k
using Algorithm 1 (resp., Algorithm 2).

(iii) The variables t, b, p, x and y are described in constraints 10—
13. b and p are vectors of dimension m; we emphasize that
m is fixed in the program. k, b and p describe the collection
of servers. We will build up to an interpretation of ¢, x, and
y in the following points.

(iv) The program and DIMENSIONING have the same objective.

(v) Constraint 1 is the first constraint in DIMENSIONING.

(vi) The nonnegativity of ¢, p, and P and constraints 5-6 imply
that x and y are nonnegative.
(vii) The nonnegativity of x and y, the positivity of C, and con-
straint 4 imply that ¢ is positive.
(viii) The positivity of t and constraint 6 imply that p is positive;
thus, the objective function is well-defined.
(ix) The positivity of p and constraints 2-3 are collectively equiv-
alent to the second constraint in DIMENSIONING.

(x) Since t; is positive and at most D; (constraint 7), we have
t; € (0,D;].

(xi) Inany optimal solution for the program, we must have x; ; =
[t;/T;] and y; j = [ti/pj] to ensure that b; is maximal in
constraint 4. Thus, in any optimal solution, for all i € [n] \

Dimensions of fixed-priority aperiodic servers

[k — 1], we must have

Ci+ Y Ta/TICi+ Y. Ttilpjlbj <t
jeli-1] jelm]
= D L/TIC;j+ Y. Tti/pjlbj <t (since t; € (0,D;])
Jjeli] jelm]
& 1bfi(t;) + Z [ti/pj1bj < ti
jelm]
Using Corollary 2.2, the above constraint is equivalent to the
third constraint in DIMENSIONING.
(xii) Constraints 8-9 are not essential to the formulation but they
help to strengthen it.
Therefore, the program is a formulation of DIMENSIONING for a
fixed m. In the next theorems, we show that m can be restricted
to n — (k — 1) in DIMENSIONING and therefore the MINLP with
m =n— (k—1) is an exact formulation of DIMENSIONING.

THEOREM 5.1. There exists an optimal solution to DIMENSIONING
wherem < n— (k—1).

Proor. Consider an optimal collection of m servers such that
m > n — (k — 1). This collection must satisfy the constraints in the
above MINLP for some t’,x’,y’,b’, p’. In particular, constraint 4
must be satisfied:

Vie[n\[k=11:Ci+ Y x[,Ci+ > yibj<tf
jeli-1] jelm]

Consider the following linear program where t’, x’, ¢/, p’ and C
are constants and b is variable:

max Y je[m] bj/P;

s.t. Zje[m] yl{,jbj < t{ - Zje[i] x;,jcj’ i€ [n]\[k-1]
bi = o0, i €[m]
b € R™

Clearly, b’ is an optimal solution for the above program. Therefore,
the program has basic feasible solutions. In any basic feasible solu-
tion, at least m constraints must be satisfied as equalities because
the program has m variables. Since the program has n — (k — 1)
constraints in the first line and m nonnegativity constraints in the
second line, at least m — n + (k — 1) of the variables must be equal
to zero in a basic feasible solution. Equivalently, at most n — (k — 1)
variables are nonzero in a basic feasible solution. The nonzero
variables and their corresponding periods in any basic feasible so-
lution constitute an optimal solution to DIMENSIONING in which
m<n—(k-1). O

The next theorem follows from the previous theorem and the
observations made at the start of this section about the MINLP in
Figure 1.

THEOREM 5.2. Ifm is equal ton — (k — 1) and Bmax (resp., Umax)
has been computed using Algorithm 1 (resp., Algorithm 2), then the
MINLP in Figure 1 is a valid formulation of DIMENSIONING.

MINLPs can often be solved more efficiently when they are
convex [6]. We note that constraints 4 and 6 are nonconvex; how-
ever, the constraints are quadratic and specialized approaches have
been proposed for solving mixed-integer quadratically-constrained
programs (MIQCPs) (see, for instance, [5]). We do not believe that

RTNS 2023, June 07-08, 2023, Dortmund, Germany

simply feeding the MINLP in Figure 1 into various MINLP or MIQCP
solvers and choosing the best solver based on these results is a good
idea. There is a lot of structure in DIMENSIONING, and we are in the
early stages of determining how DIMENSIONING can be decomposed
into smaller problems that are tractable as MINLP formulations or
otherwise; this structure is examined to a limited extent in the next
subsection.

Recall from Theorem 3.3 that we one server with a small pe-
riod such as g = ged;eqp\ (k1] #i and utilization Umax is feasi-
ble. Thus, if we get a DIMENSIONING instance (T, k, By,in) where
Bmin < 9gUmax, then the optimal value for the instance is Upax.
This idea that a DIMENSIONING instance with a small By, can be
solved immediately can be further strengthened by considering the
restricted dual of DIMENSIONING described in the next subsection.

5.1 A dual of DIMENSIONING
In the dual problem of DIMENSIONING, the objective is to find b, p1,
..., bm, pm for an arbitrary m that maximize
2 b
jelm]
subject to the following constraints:

@ Zjem) bi/pj = Umax
(ii) Zje[m] bj <p1<p2<--<Pm, and
(iii) the collection of servers (k, by, p1), (k, ba, p2), . .., (k, bm, pm)

are feasible.

We denote the optimal budget for this problem by Bmax(Umax)-
An instance of this problem is given by the pair (T, k). Any Di-
MENSIONING instance (T, k, Byin) induces an instance (T, k) of the
above problem; if the optimal value of the induced instance is at
least Bpin then the optimal solution of the induced instance is also
an optimal solution of the original instance and the optimal value
of the original instance is Upax. Thus, the problem of computing
Bmax (Umax) is closely related to DIMENSIONING.

We will propose an MINLP for computing Bmax (Umnax) Which
is similar to the MINLP for DIMENSIONING (Figure 1); the major
difference from the previous MINLP is that the periods are constant
in this MINLP, and hence there are fewer nonlinear constraints.
The next theorem explains why we can restrict our attention to a
small set of periods.

THEOREM 5.3. For any collection of servers with cumulative uti-
lization Umax, the period of each server must divide

g=ged i, (25)

iel
where I is given by

I'={ie[n]\[k—1] | 1—rbfi(ui)/pi = Umax} (26)

ProOF SKETCH. Let i € I, and let the server have parameters
k,b1,p1, ..., bm, pm- Recall from the proof of Corollary 3.2 that
since the server is feasible we must have

3t € (0,D4] : Z F}ijj <t —1bf;(t)
jetm]' Y

The lhs in the inequality is at least Upax and the rhs is at most Upax
using Corollary 3.2 and Equations (5,26). Thus, the inequality must

RTNS 2023, June 07-08, 2023, Dortmund, Germany

max Yicim] bj/pj
st. (1) Zje[m] bj >
(2) Yjelmbi <
(3) pi <
(4) Ci+2je[i—1] xi,jcj“'Zje[m] yijbj <
(5) t; <
(6) ti <
(7) ti <
(8) jelmbj <
(9) Yjelm bilp; <
(10) bp €
(11) t €
(12) x €
(13) y €

Singh and Baruah

Brin

P1

pjs

ti,
Tjxi,j,
PjYi,js

D

is i€

B max

Umax

R

R
Z
Z

m

>0

n—(k-1)

>0
(n(n-1)-(k-1)(k-2))/2
(n—(k=1))m

Figure 1: MINLP for DIMENSIONING

be satisfied as an equality with t = y;:

> [] =
jetm '

pj must divide y; to ensure that }’ ; Uj = Umax. Thus, p; divides p;
for all i € I, and hence it divides g.]

Let g’ be given by

’

g = ged

ie[n]\[k-1]
From Theorem 3.3, we know that Bmax(Umax) is at least Unaxg’.
Thus, Upaxg’ is a lower bound for Y, j bj, which in turn is a lower
bound for the periods, using the second constraint in the problem.
Thus, periods can be chosen from the following set:

Hi (27)

{g/x | X € N>0,9/x > Umaxgl}

Umax is the budget corresponding to a single server with period g.
We can perform binary search in the above set to find the largest
period g’ such that the server (k, Unaxg’’, g"’) is feasible. Upaxg’’
is the largest budget for one server with utilization Upax and we
denote it as B}, (Umax)- Now, periods can be chosen from the set

{g/x | x € Nog,g/x > Blay (Umax) }-

The MINLP in Figure 1 can be modified as follows to solve the
current problem:

(i) p is now a vector constant with elements

{g/x | x € N>g,g9/x > Bxlnax(Umax)}~

in increasing order. Like the previous MINLP, m still denotes
the length of p, or equivalently the length of b. Unlike the
previous, m is not equal to n — (k — 1); instead, it is equal to
|p| since p is constant in this MINLP.

(ii) The objective is max }’ je[m] bj-

(iii) Constraints 1-3 are replaced by the following constraints

Zjetmlbi 2 B1(Umax)
Zjelm bi/lp;j = Umax
bi>0 = Yic[mbj < i i€[m]

(iv) In constraints 4-7, i can be restricted to ([n] \ [k —1]) \ I
because when i € I the constraints are collectively equivalent
to the utilization constraint included above, i.e.,

Z bj/pj = Unax-
jelm]

We note that constraint 6 is a linear constraint in this program
(it was nonlinear in the MINLP for DIMENSIONING). Reducing non-
linearity in an MINLP brings it closer to a MILP making it more
tractable. However, we are not able to eliminate nonlinearity since
constraint 4 is still quadratic.

5.2 An example demonstrating the use of the
two MINLPs
Consider the following DIMENSIONING instance I' = ((1,4), (1,7)),

k = 1, and an arbitrary Bp,. Using Algorithm 1, we get the follow-
ing values for f;:

i pi Pi—rbfi(Bi)
1 4 3
2 7 4

From Corollary 3.1, Byax is equal to 3. Using Algorithm 2, we
get the following values for y;:

i 1—=rbfi(u)/pi
1 4 3/4
2 7 4/7

From Corollary 3.2, Unpax is equal to 4/7 = 0.5714.

First, we solve the dual of DIMENSIONING. From Definitions (26,
25, 27), it follows that I = {2}, g = ged(7) = 7, and ¢’ = ged(4,7) =
1. Thus, periods can be chosen from the set

(7/x | x € Nso, 7/x > 4/7} = {7,7/2,...,7/12}

By performing binary search on this set, we find that amongst
all servers with utilization 4/7, the server (2,7/2) has the largest
period, i.e., B}nax(Umax) = 2. Thus, the periods can be restricted
even further to the set

{(7/x | x € Noo, 7/x > 2} = {7,7/2,7/3}

Dimensions of fixed-priority aperiodic servers

0.571 \

e 2
Ut (SN
Ut [=3]

-
prs

=
ot
=
L,

Maximum utilization

0514 T 2 servers

----------- 1 server

0.0 0.5 1.0 15 20 25 3.0
Minimum budget

Figure 2: The dashed blue line shows optimal values of Di1-
MENSIONING where I' = ((1,4),(1,7)), k = 1, and By, €
[0, Bmax]; the dotted red line shows optimal values when only
one server is used.

We use the global optimization solver BARON [27] to solve the
MINLP for the dual. The solver returns {(3/2,7/2),(1,7)) as an
optimal solution, and the optimal value Bpax(Umax) is equal to 5/2.

For any instance of DIMENSIONING with B,y < 5/2 the optimal
value is Umpax = 0.5714. To understand how the optimal value
varies as a function of By, in (2.5, 3] (recall that By = 3), we
solve 10 instances of the MINLP for DIMENSIONING where By,j, €
{2.55,2.60,...,3.00} and m = 2 (recall from Theorem 5.1 that the
choice m = n— (k — 1) can be made without any loss of generality).
The optimal solution in all 10 cases is given by

<(4 = Bmin, Bmin + 1), (ZBmin -4, 7)>,
and the optimal value is

24 — 9Bpyin + 2B2
7Bmin +7

We show the results in Figure 2. While the maximum utilization
for one server sharply drops off at By, = 2 from 4/7 to 1/2, the
maximum utilization for m servers remains at 4/7 until By, = 2.5
and then it gradually decreases to 15/28. Thus, multiple servers
help in finding a better middle ground for the conflicting objectives
of maximizing budget and maximizing utilization than one server.

The methodology that we have described in this section can
be repeated for any (T, k), in principle, to visualize the full design
space for DIMENSIONING; however, more work needs to be done to
understand how to make it scale for larger I'.

6 IMPLEMENTATION ISSUES

When implementing m servers at the same priority k, we have two
choices:

(i) Implement a server which simulates a single task. For each
i € [m], instantiate a server which simulates a regular task

(bi, pi).

RTNS 2023, June 07-08, 2023, Dortmund, Germany

(if) Implement a server which simulates multiple tasks, and in-
stantiate it once.

In the first case, when a server’s budget is exhausted and the current
job is still pending, we need to switch over to a different server
which has nonzero budget; the time used in switching contexts is
wasteful. In the second case, some needless context switches can
be avoided, but we must implement a server which can simulate
multiple tasks. To the best of our knowledge, such servers have not
been specified before. Now, we will outline the specifications of a
regular sporadic server which is capable of simulating a single task
and an extended sporadic server which is capable of simulating
multiple tasks. This extension can also be used as a blueprint for
extending aperiodic servers other than the sporadic server.

6.1 A Regular Sporadic Server

The sporadic server simulates a swarm of small sporadic tasks with
the same period P and cumulative wcet B [24]. From a schedulabil-
ity perspective, the sporadic server simulates a single task (B, P)
since there is no distinction between the swarm and the single task
at a critical instant [17]. The following description of a sporadic
server is obtained by simplifying a corrected POSIX sporadic server
specification [24, Sec. 4].
At any instant, the server maintains a nonempty queue,

q = <(a1: bl): (a2: bz)) A (ax, bx)>‘

Each element (aj, b;) denotes a chunk b; of the budget B which
becomes active at time a;. The server ensures that g is sorted in
nondecreasing order of activation times, and that the sum of the
chunks of budget in g equals B; thus, there is no loss or amplification
of budget.

The formal budget at an instant ¢ is 0 if the first chunk in q is
not active, i.e., a; > t; otherwise, the formal budget at ¢ is b; — usg,
where usg is a variable maintained by the server which stores the
portion of b; that has been consumed by the server. A server is
said to be exhausted at an instant ¢ if the formal budget at ¢ is less
than or equal to zero. The formal budget at ¢ is a lower bound for
the true budget at t because a second chunk in ¢ might become
active before exhaustion occurs at ¢ + by —usg if az < t + by — usg.
If ap < t + b1 — usg, then the true budget is at least b1 + by — usg.
Thus, the true budget is equal to the sum of the budgets of chunks
with indices in the set given by

{ie[x]|ai<t+ Zje[i—l] bi —usg} (28)

At certain points in the execution, the server syncs the formal
budget and the true budget by merging chunks that contribute to
the true budget into one chunk.

Initially, g equals ((0, B)) and usg equals 0. The server modifies
its state (g, usg) in the following cases:

(i) An aperiodic request arrives at instant t when there are no
pending aperiodic requests and a; < t. All chunks that con-
tribute to the true budget are merged into a single chunk
with activation time ¢, and then the formal budget equals the
true budget. We demonstrate this rule through an example:
say that when the request arrives at time ¢, we have

q={(t—-51),(t—-31),(t+21)),usg=0.

RTNS 2023, June 07-08, 2023, Dortmund, Germany

All three chunks can be used to serve aperiodic requests
continuously in the interval [, ¢ + 2]. Therefore, we merge
the chunks into one, and we have

q = ((t,3)),usg = 0.

(ii) The server begins execution at t; and ends at to. The server
stops executing due to preemption, exhaustion, or comple-
tion of all pending aperiodic tasks. At ¢y, usg is increased by
ty —t1:

[usglat 1, = [usglats, +12 — 11

q, and b; in particular, do not change between t; and t,. Thus,
the formal budget at #; is t2 — t1 less than the formal budget
at t1; the server ensures that

ty —t1 < [b1 —usglat 1,

thus ensuring that the formal budget at t; is nonnegative.

(iii) At instant t, the server stops executing due to exhaustion. A
new element (aj + P, b1) is pushed to the back of g, the head
of q is popped off, and usg is reset to 0.

(iv) At instantt, the server stops executing due to completion of
all pending requests but it is not exhausted. A new element
(a1 + P, usg) is pushed to the back of the queue, the head of
q is modified to (a1, b1 — usg), and usg is reset to 0. We note
that by — usg > 0 because the server is not exhausted.

6.2 An Extended Sporadic Server

The extended sporadic server simulates m swarms of small sporadic
tasks where the i-th swarm contains tasks with the same period
P; and cumulative wcet B;. From a schedulability perspective, the
extended sporadic server simulates

((B1, P1), (B2, Py), (Bm, Pm)).

We assume that Py < Py < -++ < Pp,.
At any instant, the server maintains a nonempty queue,

q = {(a1,by,c1), (a2, bz, c2), ..., (ax, bx, cx)).

Each element (a;, b;, ¢;) denotes a chunk b; of the budget associated
with period ¢; € {Pi,...,Pp}; a; is the time at which the chunk
becomes active. The server ensures that for any two indices i, j we
have

i<j=>ai<ajv(ai:aj/\c,~<cj~) (29)
Thus, the elements are sorted primarily in nondecreasing order
of activation times, and secondarily in rate-monotonic order. The
server also ensures that the sum of the chunks of budget in ¢ with
period P; is equal to B; for each i € [m]; thus, there is no loss or
amplification of the budget associated with any period.

For the regular sporadic server, the formal budget is synced with
the true budget by merging adjacent chunks but in the extended
sporadic server adjacent chunks in ¢ may have different periods,
not allowing them to be merged with each other. We use a new
variable f to store the cumulative budget of one or more chunks
at the head of g. The formal budget at an instant ¢ is 0 if a; > ¢;
otherwise, the formal budget at t is f — usg, where usg stores the
portion of f that has been consumed by the server.

Initially, q equals

((0, By, P1), (0, Bz, P2), ..., (0, B, Pm)),

Singh and Baruah

f equals X’ jc[m) Bj, and usg equals 0. The server modifies its state
(g, f, usg) in the following cases:

(i) An aperiodic request arrives at instant t when there are no
pending aperiodic requests and a; < t.If a chunk at index
i contributes to the true budget, then g; is changed to t +
2jeli-1] bi —usg. All adjacent chunks with the same period
that contribute to the true budget are merged into a single
chunk. f is set to the true budget. We demonstrate this rule
using an example: say that when the request arrives at time
t, we have

q={(t-5,1,5),(t—3,13),(t+21,3)),f =0,usg = 0.

All three chunks can be used to serve aperiodic requests
continuously in the interval [¢, ¢ + 2] and the last two chunks
can be merged because they have the same period. We modify
q and f to get

q={((t1,5),(t+1,2,3)),f =3,usg = 0.

The astute reader will observe that instead of the above
modification we could also have reordered g safely to get

q={((t13),(t,1,5),(t+2,1,3)), f =3,usg = 0.

The reordering allows g to be more rate-monotonic and leads
to smaller activation times in a behavior of the server; how-
ever, reordering also requires more computation compared
to our initial proposal, which can be executed in linear time.

(if) The server begins execution at t; and ends at ty. As before, usg
must be increased by ¢ — t1, and the server ensures that the
formal budget at 3 is nonnegative by limiting the duration
of the execution:

to—t1 < [f —usqglatt,

(iii) At instant t, the server stops executing due to exhaustion. The
cumulative budget of a number of chunks at the head of g,
stored in f, has been completely consumed; thus, now we
have f = usg. The head of g is popped off, a new element
(aq + c1, b1, c1) is inserted in g at a position that maintains
the order described in Equation (29), and usg is decreased by
by; this process is repeated until usg = 0. Finally, f is reset
to the true budget.

(iv) At instantt, the server stops executing due to completion of all
pending requests but it is not exhausted. The process described
in the previous step is also repeated here until we have
usg < by. Then, the head of q is modified to (a1, b1 — usg, c1),
a new element (aj + c1, usg, c1) is inserted in g at a position
that maintains the order described in Equation (29), usg is
reset to 0, and f is reset to the true budget.

We note that the extended server reduces the unnecessary con-
text switch overhead mentioned at the start of Section 6 by keeping
track of the cumulative budget associated with different periods
through the variable f. However, maintaining q and f takes more
time and g takes more space since it stores triples. We have pre-
sented an informal specification for the extended sporadic server
but its effectiveness for specific applications and hardware plat-
forms has not been addressed here.

Dimensions of fixed-priority aperiodic servers

7 CONCLUSION

We proposed DIMENSIONING, an optimization problem which allows
a system designer to understand the trade-off between choosing
a large budget and a large utilization when multiple servers are
allowed to run at a priority of their choice. In the restricted case of
harmonic rate-monotonic implicit-deadline FP systems, we showed
that the trade-off is nonexistent because a collection of two servers
with budget Bmax and utilization Upax can be found in linear time
(Algorithm 3). We showed that the trade-off is present in general sys-
tems; for instance, in Figure 2 if the servers must have a minimum
budget of 2.2 (resp., 3) then their maximum cumulative utilization
is 0.571 (resp., 0.535). We showed how to compute the right end of
the flat part of the trade-off curve using one MINLP (Section 5.1),
and we showed how to compute points on the remainder of the
trade-off curve using another MINLP (Figure 1). We proposed a new
specification for an extended sporadic server which can simulate
multiple tasks at the same priority level (Section 6).

Many ideas introduced in this work need further investigation;
for instance, we do not know the answers to the following questions:

(1) Can we efficiently solve more general cases than the case
described in Section 4?

(2) How well do the MINLPs proposed in Section 5 scale for
larger instances of DIMENSIONING? Which MINLP algorithms
are most effective for instances generated in practice? Can
we solve the general case without using MINLPs?

(3) Is the extended sporadic server specification in Section 6 an
improvement over multiple regular sporadic servers for real
applications?

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their
valuable comments and helpful suggestions. This work is supported
by the US National Science Foundation under Grant numbers CPS-
1932530, CNS-2141256 and CNS-2229290.

REFERENCES

[1] 2008. IEEE Standard for Information Technology - Portable Operating System
Interface (POSIX(R)). IEEE Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004) (Dec.
2008), 1-3874. https://doi.org/10.1109/IEEESTD.2008.4694976

N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. 1993. Applying
New Scheduling Theory to Static Priority Pre-Emptive Scheduling. Software
Engineering Journal 8, 5 (Sept. 1993), 284-292. https://doi.org/10.1049/sej.1993.
0034

Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell, and Andy J. Wellings.
1995. Fixed Priority Pre-Emptive Scheduling: An Historical Perspective. Real-Time
Systems 8, 2-3 (1995), 173-198. https://doi.org/10.1007/BF01094342

[4] G.Bernatand A.Burns. 1999. New Results on Fixed Priority Aperiodic Servers. In
Proceedings 20th IEEE Real-Time Systems Symposium (Cat. No.99CB37054). 68-78.
https://doi.org/10.1109/REAL.1999.818829

Timo Berthold, Stefan Heinz, and Stefan Vigerske. 2012. Extending a CIP Frame-
work to Solve MIQCPs. In Mixed Integer Nonlinear Programming (The IMA Volumes
in Mathematics and Its Applications), Jon Lee and Sven Leyffer (Eds.). Springer,
New York, NY, 427-444. https://doi.org/10.1007/978-1-4614-1927-3_15

Pierre Bonami, Mustafa Kiling, and Jeff Linderoth. 2012. Algorithms and Soft-
ware for Convex Mixed Integer Nonlinear Programs. In Mixed Integer Nonlinear
Programming (The IMA Volumes in Mathematics and Its Applications), Jon Lee and
Sven Leyffer (Eds.). Springer, New York, NY, 1-39. https://doi.org/10.1007/978-
1-4614-1927-3_1

Pieter J. L. Cuijpers and Reinder J. Bril. 2007. Towards Budgeting in Real-Time
Calculus: Deferrable Servers. In Formal Modeling and Analysis of Timed Systems
(Lecture Notes in Computer Science), Jean-Francois Raskin and P. S. Thiagarajan
(Eds.). Springer, Berlin, Heidelberg, 98-113. https://doi.org/10.1007/978-3-540-
75454-1_9

[2

[

3

=

(5

=

(6

=

[7

[

[8

[

[10

(1]

=
)

(13

[14

[15]

(17]

(18]

(19]

[20

[21

[22

[23

[24]

[25

[26]

[27]

RTNS 2023, June 07-08, 2023, Dortmund, Germany

RI Davis and A. Burns. 2005. Hierarchical Fixed Priority Pre-Emptive Scheduling.
In 26th IEEE International Real-Time Systems Symposium (RTSS’05). 10 pp.—398.
https://doi.org/10.1109/RTSS.2005.25

Rob Davis and Alan Burns. 2008. An Investigation into Server Parameter Selec-
tion for Hierarchical Fixed Priority Pre-emptive Systems. In 16th International
Conference on Real-Time and Network Systems (RTNS 2008).

M. Joseph and P. Pandya. 1986. Finding Response Times in a Real-Time System.
Comput. . 29, 5 (Jan. 1986), 390-395. https://doi.org/10.1093/comjnl/29.5.390
M.H. Klein, J.P. Lehoczky, and R. Rajkumar. 1994. Rate-Monotonic Analysis
for Real-Time Industrial Computing. Computer 27, 1 (Jan. 1994), 24-33. https:
//doi.org/10.1109/2.248876

Mark H. Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and Michael Gonzalez Har-
bour. 1993. A Practitioner’s Handbook for Real-Time Analysis. Kluwer Academic
Publishers, USA.

Tei-Wei Kuo and Ching-Hui Li. 1999. A Fixed-Priority-Driven Open Environment
for Real-Time Applications. In Proceedings 20th IEEE Real-Time Systems Sympo-
sium (Cat. No.99CB37054). 256-267. https://doi.org/10.1109/REAL.1999.818851
J. Lehoczky, L. Sha, and Y. Ding. 1989. The Rate Monotonic Scheduling Algorithm:
Exact Characterization and Average Case Behavior. In [1989] Proceedings. Real-
Time Systems Symposium. 166—-171. https://doi.org/10.1109/REAL.1989.63567
John P. Lehoczky, Lui Sha, and Jay K. Strosnider. 1987. Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments. In Proceedings of the 8th IEEE
Real-Time Systems Symposium (RTSS 87), December 1-3, 1987, San Jose, Califorinia,
USA. IEEE Computer Society, 261-270.

G. Lipari and E. Bini. 2003. Resource Partitioning among Real-Time Applications.
In 15th Euromicro Conference on Real-Time Systems, 2003. Proceedings. 151-158.
https://doi.org/10.1109/EMRTS.2003.1212738

C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment. J. ACM 20, 1 (Jan. 1973), 46-61.
https://doi.org/10.1145/321738.321743

Jorge Martinez, Dakshina Dasari, Arne Hamann, Ignacio Safiudo, and Marko
Bertogna. 2020. Exact Response Time Analysis of Fixed Priority Systems Based
on Sporadic Servers. Journal of Systems Architecture 110 (Nov. 2020), 101836.
https://doi.org/10.1016/j.sysarc.2020.101836

C.W. Mercer, S. Savage, and H. Tokuda. 1993. Processor Capacity Reserves: An
Abstraction for Managing Processor Usage. In Proceedings of IEEE 4th Workshop
on Workstation Operating Systems. WWOS-III. 129-134. https://doi.org/10.1109/
WWOS.1993.348160

Alessandro Vittorio Papadopoulos, Martina Maggio, Alberto Leva, and Enrico
Bini. 2015. Hard Real-Time Guarantees in Feedback-Based Resource Reservations.
Real-Time Systems 51, 3 (June 2015), 221-246. https://doi.org/10.1007/s11241-
015-9224-1

S. Saewong, RR. Rajkumar, J.P. Lehoczky, and M.H. Klein. 2002. Analysis of
Hierarchical Fixed-Priority Scheduling. In Proceedings 14th Euromicro Conference
on Real-Time Systems. Euromicro RTS 2002. 152-160. https://doi.org/10.1109/
EMRTS.2002.1019197

Lui Sha, R. Rajkumar, and S.S. Sathaye. 1994. Generalized Rate-Monotonic Sched-
uling Theory: A Framework for Developing Real-Time Systems. Proc. IEEE 82, 1
(Jan. 1994), 68-82. https://doi.org/10.1109/5.259427

Brinkley Sprunt, Lui Sha, and John Lehoczky. 1989. Aperiodic Task Scheduling
for Hard-Real-Time Systems. Real-Time Systems 1, 1 (June 1989), 27-60. https:
//doi.org/10.1007/BF02341920

Mark Stanovich, Theodore P. Baker, An-I Wang, and Michael Gonzalez Harbour.
2010. Defects of the POSIX Sporadic Server and How to Correct Them. In
2010 16th IEEE Real-Time and Embedded Technology and Applications Symposium.
35-45. https://doi.org/10.1109/RTAS.2010.34

Martin Stigge and Wang Yi. 2015. Graph-Based Models for Real-Time Workload:
A Survey. Real-Time Systems 51, 5 (Sept. 2015), 602-636. https://doi.org/10.1007/
$11241-015-9234-2

J. K. Strosnider, J. P. Lehoczky, and Lui Sha. 1995. The Deferrable Server Algorithm
for Enhanced Aperiodic Responsiveness in Hard Real-Time Environments. IEEE
Trans. Comput. 44, 1 (Jan. 1995), 73-91. https://doi.org/10.1109/12.368008
Mohit Tawarmalani and Nikolaos V. Sahinidis. 2002. Convexification and Global
Optimization in Continuous and Mixed-Integer Nonlinear Programming. Non-
convex Optimization and Its Applications, Vol. 65. Springer US, Boston, MA.
https://doi.org/10.1007/978-1-4757-3532- 1

	Abstract
	1 Introduction
	1.1 FP systems and servers: model and terms
	1.2 Previous work on dimensioning FP servers
	1.3 Some observations and the problem statement

	2 More Background & Assumptions
	3 Maximize budget and utilization separately
	4 A tractable special case of dimensioning
	5 Dimensioning in General
	5.1 A dual of Dimensioning
	5.2 An example demonstrating the use of the two MINLPs

	6 Implementation issues
	6.1 A Regular Sporadic Server
	6.2 An Extended Sporadic Server

	7 Conclusion
	Acknowledgments
	References

