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Abstract 24 

Deltas are fragile ecosystems threatened by sea-level rise, sediment starvation, and subsidence. 25 

Erosional/depositional processes in these systems mainly depend on the sediment supply and the 26 

spatial divergence in bed shear stress induced by hydrodynamic forces. Thus, quantifying the 27 

spatiotemporal variability of the flow velocity field is essential for forecasting their fate. To 28 

calibrate/validate models, field measurements alone are not sufficient because such data only 29 

characterize the hydrodynamic conditions in localized areas. Remote sensing has potential to fill 30 

this data gap. We developed a methodology to estimate flow velocities from a map of suspended 31 

sediment concentration (SSC) measured by the NASA airborne spectrometer AVIRIS-NG within 32 

the Wax Lake Delta, Louisiana. We extracted streaklines from remotely sensed SSC estimates, 33 

and quantified water fluxes and velocities based on the distance between them. Our study 34 

demonstrates that the velocity field in deltas can be estimated by leveraging the synoptic 35 

information offered by remote sensing.  36 
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Plain Language Summary 49 

River deltas are coastal environments particularly susceptible to sea-level rise. Sediment 50 

deposition can counteract land loss from sea-level rise, but we have a poor understanding of 51 

where and when land is built through sediment accretion. Improving the accuracy of 52 

hydrodynamic models is pivotal to predicting the fate of sediment that rebuilds sinking land, but 53 

we lack methods to test these models against observations over large areas. Here, we introduce a 54 

new method to measure water discharge, flow direction and speed from remotely sensed data. 55 

The method takes advantage of water flow patterns revealed in data collected from a NASA 56 

instrument flown on an airplane. Our study shows the utility of remotely sensed data to improve 57 

the performance and reliability of models that are needed to predict the fate of river deltas. 58 

  59 
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1. Introduction 60 

River deltas are dynamic coastal environments characterized by distributary channels and deltaic 61 

islands. The channel network in these systems is composed by primary and secondary channels, 62 

with both playing a fundamental role in carrying water, sediments, and nutrients to deltaic 63 

islands [e.g., Syvitski, 2006; Edmonds and Slingerland, 2007; Edmonds et al., 2011; Salter and 64 

Lamb, 2022]. The importance of water connectivity, defined by Freeman et al., [2007] as the 65 

water-mediated transport of matter, energy and organisms across different elements of a 66 

landscape, has been emphasized in several studies [e.g., Tetzlaff et al., 2007; Bracken et al., 67 

2013; Wohl et al., 2018]. For instance, Hiatt & Passalacqua [2015] explored the connectivity 68 

through the delta network of channels and islands in the Wax Lake Delta (WLD) in coastal 69 

Louisiana, by measuring the hydrological exchange between these two morphological elements. 70 

Their field-based observations revealed that roughly 50% of the discharge is distributed from 71 

primary channels to islands via secondary channels and overbank flow. Subsequently, this 72 

finding was corroborated by other research [e.g., Liang et al., 2015; 2016]. However, assessing 73 

how water fluxes vary spatially at larger scales is more difficult to achieve due to lack of 74 

synoptic hydrodynamic data. In fact, pursuing field measurements in vast areas of a river delta is 75 

time-consuming and costly [e.g., Dong et al., 2020].  76 

Remote sensing can be used to fill this gap [e.g., Alsdorf et al., 2007; Dogliotti et al., 2015; Paris 77 

et al., 2016; Altenau et al., 2017], and it could offer a systemwide view of how a certain 78 

hydrodynamic quantity changes across the entire landscape. For instance, flow velocities in 79 

riverine environments have been estimated from remotely sensed data using Particle Image 80 

Velocimetry (PIV) [Muste et al., 2008]. The purpose of this study is to evaluate spatial changes 81 

in flow velocities within deltas via remote sensing imagery. Specifically, we aim to employ 82 
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remotely sensed images of suspended sediment concentration (SSC) to quantify water fluxes and 83 

flow acceleration/deceleration within the transition area between laterally confined flow and 84 

unchannelized delta front. This transition is particularly important for depositional/erosional 85 

patterns that ultimately control the long-term channel extension and delta progradation [e.g., 86 

Hiatt & Passalacqua, 2017; Shaw et al., 2018].  87 

Previous studies employed remotely sensed SSC data to study depositional/erosional processes 88 

in river deltas [e.g., Jensen et al., 2019]. For instance, Salter et al., [2022] linked changes in SSC 89 

along streaklines, i.e. curves defined by the paths of all fluid particles that have passed through a 90 

specific spatial location over time [Kundu et al., 2011], to patterns of sediment deposition and 91 

erosion. Specifically, they used SSC data from remote sensing to locate streaklines, which were 92 

combined with flow velocities derived from a numerical model to evaluate SSC variations along 93 

these curves. However, a reliable methodology which enables the computation of the velocity 94 

field from the same SSC map is still missing. Such information would allow us to quantify 95 

instantaneous sediment fluxes in river deltas using a single remotely sensed image (i.e., without 96 

employing numerical models to derive the hydrodynamic field). In addition, this methodology 97 

has the potential to provide high-spatial resolution data over the entire river delta, which are 98 

needed to calibrate hydrodynamic models and obtain reliable predictions of the impact of sea 99 

level rise and engineering projects on these valuable coastal systems.  100 

To the best of our knowledge, few attempts are present in the literature to derive flow velocities 101 

from optical remote sensing products [e.g., Bowen et al., 2002; Chen et al., 2008; Muste et al., 102 

2008; Yang et al., 2015]. Ayoub et al. [2018] conducted an airborne L-band synthetic aperture 103 

radar (SAR) acquisition campaign to quantify current velocities within the WLD. However, flow 104 

speeds were only estimated over the shallow vegetated deltaic islands. In this paper, we want to 105 
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fill this gap by providing a methodology that can help compute the flow field for the remainder 106 

of the river delta. In particular, we propose a new approach to calculate flow partitioning among 107 

different parts of the delta, and related velocities, from maps of remotely sensed suspended 108 

sediment concentration derived from images obtained by an airborne hyperspectral instrument.  109 

Our method takes advantage of curvilinear patterns of high and low sediment concentrations, 110 

known as streaklines, derived from an AVIRIS-NG image [Salter et al., 2022]. We use the WLD, 111 

a river delta with a bifurcating distributary channel network, as a test case. We assume that the 112 

flow traced by the streaklines is steady, i.e. its pattern does not change over time [Shaw et al., 113 

2016; Cathcart et al., 2020]. This condition implies that streaklines correspond with streamlines 114 

(i.e., curves tangential to the local fluid velocity), and water fluxes and flow velocities can be 115 

quantified based on the distance between these curves. To test the reliability of the proposed 116 

methodology, the flow velocities computed from remote sensing data are compared with high-117 

resolution numerical modeling results obtained by means of the ANUGA numerical framework 118 

[Roberts et al., 2015] and calibrated for the Wax Lake Delta [Wright et al., 2022]. This study 119 

shows a generalized approach which utilizes streaklines to compute the velocity field in river 120 

deltas. The proposed methodology offers the possibility to evaluate the spatial variability of 121 

hydrodynamic conditions within river deltas by leveraging the spatial information available in 122 

remotely sensed data.   123 
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2. Methods 124 

We use streaklines to compute water discharges and flow velocities within a sub-region of the 125 

Wax Lake Delta. First, we extract streaklines from a map of remotely sensed suspended sediment 126 

concentration (Figure 1a, see subsection 2.1). Then, to compute water fluxes and related flow 127 

velocities from these curves, we assume that streaklines are steady in time (hereinafter called 128 

steady streaklines or streamlines) and representative of the depth-averaged flow conditions (see 129 

subsection 2.2). These assumptions are discussed in Shaw et al., [2016] and Cathcart et al., 130 

[2020], who demonstrate that three-dimensional flow patterns (e.g., due to winds) and unsteady 131 

variations (e.g., due to tides) can be neglected under certain conditions in the WLD (e.g., when 132 

the water discharge is greater than 2400 m3/s with stable or falling tides). In general, we can 133 

assume steady conditions if the hydrodynamic conditions change slowly in time. Assuming that 134 

multiple images of SSC are available within a tidal cycle, the validity of this assumption can be 135 

assessed by extracting streaklines from each image and checking whether their locations vary 136 

over time. If such temporal changes are negligible over one or two hours, then steady conditions 137 

can be assumed over that time period. Finally, we compare the flow velocities obtained via 138 

remote sensing with numerical modelling results along a streamtube, i.e. a tubular region of fluid 139 

surrounded by two streamlines [e.g., Durst, 2022].  140 

 141 

2.1 Streaklines extraction 142 

In this subsection, we describe how to extract streaklines via the semi-automated method 143 

proposed by Salter et al., [2022]. Curvilinear patterns in AVIRIS-NG (i.e., streaklines) arise from 144 

the contrast between waters characterized by low suspended sediment concentration coming 145 

from deltaic islands, and waters characterized by high suspended sediment concentration coming 146 
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from channels [Salter et al., 2022]. These curves may differ from the streaklines detected via 147 

radar and employed in previous studies to estimate flow directions in the WLD [Shaw et al., 148 

2016; Cathcart et al., 2020]. In fact, curvilinear features in radar imagery are related to the 149 

presence of biofilms on the water surface. Specifically, such biofilms alter both the emissivity 150 

and roughness of the water surface, making them easily detectable via remote sensing. 151 

We use a map of remotely sensed SSC [Jensen et al., 2021] developed by Jensen et al., [2019] 152 

from the October 18, 2016 AVIRIS-NG (Airborne Visible/Infrared Imaging Spectrometer-Next 153 

Generation) flyover of Wax Lake Delta, Louisiana, that occurred between 15:25 and 15:41 GMT 154 

(Figure 1a). This map is based on a collection of paired SSC and remote sensing reflectance 155 

values (Rrs) measured at the water surface with a field spectrometer. The first derivatives of 156 

the in situ Rrs values, convolved to AVIRIS-NG’s spectral resolution, were used to generate a 157 

Partial Least Squares Regression model for SSC. A refined selection of the derivative bands 158 

formed the final model inputs based on variable importance scores. The model attained an R2 of 159 

0.83, with a mean relative error (MRE) of 14.87% and a mean absolute error (MAE) of 6.34 160 

mg/L, calculated from the 2016 AVIRIS-NG SSC products, with additional independent 161 

validation sites showing low-error SSC retrievals [Jensen et al. 2019].  162 

First, a Perona-Malik filter is applied to the original data to remove noise (i.e., irregularities at 163 

scales smaller than the one of interest) and preserve the original image’s sharp-gradient features 164 

[Perona & Malik, 2010]. This smoothing is also critical to make the calculations (e.g., 165 

derivatives) mathematically well posed [Passalacqua et al., 2010]. Next, we compute the 166 

geometric curvature (i.e., divergence of the normalized gradient) of SSC, which is interpreted as 167 

the curvature of the SSC contour lines (i.e., lines connecting points of equal SSC). More 168 
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specifically, the geometric curvature (κ) of a generic function ϕ: ℝ2 → ℝ can be expressed as 169 

follows [Minar et al., 2020]: 170 

κ = 𝛻𝛻 ∙ 𝛻𝛻𝛻𝛻|𝛻𝛻𝛻𝛻| = 𝜙𝜙𝑥𝑥𝑥𝑥𝜙𝜙𝑦𝑦
2−2𝜙𝜙𝑥𝑥𝜙𝜙𝑦𝑦𝜙𝜙𝑥𝑥𝑥𝑥+𝜙𝜙𝑦𝑦𝑦𝑦𝜙𝜙𝑥𝑥2

�𝜙𝜙𝑥𝑥2+𝜙𝜙𝑦𝑦2�
3/2  (1) 

We then define a cost function (ɳ), which represents the cost of traveling between the 171 

streaklines’ start and end points in terms of SSC and geometric curvature. In particular, this cost 172 

function is defined as in Salter et al., [2022]: 173 

ɳ = � 1 − 𝑒𝑒−𝑘𝑘1𝜅𝜅 + 𝑒𝑒−𝑘𝑘2𝑐𝑐,                 for high concentration streaks.
1 − 𝑒𝑒𝑘𝑘1𝜅𝜅 + 𝑒𝑒𝑘𝑘2(𝑐𝑐−max(𝑐𝑐)),          for low concentration streaks.

 
(2) 

 174 

where c is the suspended sediment concentration, while k1 and k2 are parameters controlling how 175 

well the curves of minimum cost follow the curvature and the concentration fields (these 176 

parameters are obtained by trial-and-error). These parameters can be selected at the beginning of 177 

the analysis using a few test streaklines; a poor choice of k1 and k2 is visually obvious as an 178 

extracted streakline that deviates from the real one [Salter et al., 2022]. Once these two 179 

parameters have been set, all streaklines are extracted using the same values of k1 and k2. Note 180 

that we used a map of suspended sediment concentration in this study, but one could also employ 181 

a simple image-derived quantity that highlights spatial differences in water color and could thus 182 

serve as a proxy for SSC. However, extracting such a signal from these images would not be 183 

trivial and by using SSC we were able to build upon previous work that has already validated the 184 

approach. 185 

Finally, we identify the streaklines as geodesic curves (i.e., curves of minimum cost), by 186 

computing the geodesic distance of each pixel from the start point and detecting the geodesic 187 
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curve by following the steepest descendent path from the end point to the start point. The 188 

methodology is semi-automated since the start and end points here are defined manually from an 189 

image of curvature. More specifically, streaklines are identified visually from the map of 190 

geometric curvature, and endpoints are selected as the points where curvilinear features either 191 

terminate or become ambiguous. Further details of the method can be found in Salter et al., 192 

[2022].  193 

 194 

2.2 Water discharges and flow velocities 195 

Once the streaklines are extracted, we compute flow velocities under steady-state conditions. 196 

This assumption implies that streaklines, streamlines and pathlines (i.e., trajectories that 197 

individual water parcels follow) coincide with each other. In particular, we quantify flow 198 

velocities (and related water discharges) using three fundamental proprieties [e.g., Durst, 2022]: 199 

(i) the difference between the values of a stream function (i.e., a scalar function whose derivative 200 

with respect to any direction gives the velocity component at right angles to that direction) over 201 

two streamlines is proportional to the water flow rate across any section crossing the two curves 202 

(e.g., section AB or CD in Figure 1b), (ii) closely-spaced streamlines create impermeable tubes 203 

(i.e., the discharge does not change along their length), and (iii) water fluxes are proportional to 204 

the distance between streamlines under the assumption of uniform flow.  205 

Under steady state conditions, the continuity equation in shallow waters reads: 206 

𝜕𝜕(hu)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(hv)
𝜕𝜕𝜕𝜕

= 0 
(3) 

where h is the water depth, and the 2D vector (u,v) is the fluid’s horizontal flow velocity. This 207 

equation can be re-written as follows: 208 
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𝜕𝜕(𝑞𝑞𝑥𝑥)
𝜕𝜕𝜕𝜕

+
𝜕𝜕(𝑞𝑞𝑦𝑦)
𝜕𝜕𝜕𝜕

= 0 
(4) 

where qx and qy represent the discharge per unit width in the x- and y-direction. A scalar function 209 

(ψ), called stream function, can be defined over the steady streaklines. In particular, the 210 

discharge per unit width (q) in the x- and y-direction can be expressed in terms of the stream 211 

function [e.g., Fagherazzi, 2002]: 212 

𝑞𝑞𝑥𝑥 = ℎ𝑢𝑢 =
𝜕𝜕ψ
𝜕𝜕𝜕𝜕

 ,  𝑞𝑞𝑦𝑦 = ℎ𝑣𝑣 =  −
𝜕𝜕ψ
𝜕𝜕𝜕𝜕

 
(5) 

 Next, we consider two closely-spaced streamlines and we quantify the water flux (Q) through 213 

section AB (Figure 1b): 214 

𝑄𝑄𝐴𝐴𝐴𝐴 = � 𝑞𝑞𝑥𝑥 𝑑𝑑𝑑𝑑 =

𝑦𝑦2

𝑦𝑦1

�
𝜕𝜕ψ
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑

𝑦𝑦2

𝑦𝑦1

 
(6) 

 215 

Since the total derivative of ψ along AB (dx = 0) is equal to:  216 

dψ = 𝜕𝜕ψ
𝜕𝜕𝜕𝜕

 𝑑𝑑𝑑𝑑 (7) 

expression (6) reads: 217 

𝑄𝑄𝐴𝐴𝐴𝐴 = � dψ = ψ𝑖𝑖+1 − ψ𝑖𝑖

𝑦𝑦2

𝑦𝑦1

 
(8) 

 218 

This means that the difference in the stream function values between two curves gives the water 219 

volume flow rate. The same result can be obtained for any other section (e.g., CD in Figure 1b). 220 

Since we are interested in knowing how the stream function varies among these curves to obtain 221 

water discharges (i.e., ψi+1 – ψi), we can assume a null value or an arbitrary constant over a 222 
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specific curve. After assigning the values of the stream function along the steady streaklines 223 

(assuming the existence of a uniform flow downstream of the delta), the discharge Qi (i.e., ψi+1 – 224 

ψi) can be computed and divided by the streamtube’s cross-sectional area to obtain along-225 

streamtube velocities (i.e., average velocities in each cross-section). This derivation is equivalent 226 

to writing the conservation of mass along a streamtube, and then computing the velocity 227 

magnitude knowing the streamtube’s geometry and the velocity across a generic section. Note 228 

that prior knowledge of the bathymetry is required to compute flow velocities (bathymetric data 229 

for the WLD come from Denbina et al., [2020]). In the absence of bathymetric information, this 230 

method can still be applied to characterize the spatial distribution of discharge in the delta (note 231 

that discharges have absolute units even if bathymetry is not available). 232 

 233 

  234 
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3. Results and Discussion 235 

3.1 Computation of flow velocities via remote sensing 236 

The geometric curvature (κ) is computed within a sub-region of the Wax Lake Delta (Figure 2a) 237 

and it exhibits positive and negative values. In particular, low concentration curves (troughs) 238 

have a positive κ, whereas high concentration curves (peaks) show a negative geometric 239 

curvature. Start and end points are manually selected from this, and connected by geodesics 240 

(curves of minimum cost). The streaklines overlaying the map of remotely sensed suspended 241 

sediment concentration are depicted in Figure 2b. In general, the streamtubes’ width can vary 242 

due to variations in the velocity magnitude or water depth or both. We follow three steps for 243 

quantifying the flow velocity magnitude from the steady streaklines: (i) assign a value of the 244 

stream function along each streakline, (ii) compute the water flux (Q) for each streamtube based 245 

on the stream function values, and (iii) divide Q by the streamtube’s cross-sectional area 246 

(assuming a known bathymetry and water surface elevation).  247 

We assume the existence of a uniform flow field downstream of the delta, and we assign a null 248 

value of the stream function along the westernmost streakline (Figure 2b). This choice does not 249 

impact the results since Q is proportional to changes in stream function’s values. Once the stream 250 

function is assigned along each steady streakline, a quantity proportional to the water flux is 251 

obtained from the difference in the stream function values between these curves. We note that, in 252 

general, we cannot compute the exact stream function, but a function which scales with the real 253 

one (unless the velocity is known in a certain section). Here, to obtain the exact stream function, 254 

we assigned the velocity resulted from the numerical model downstream of the delta. This type 255 

of information is not essential, however, because one can derive a velocity field which is 256 

proportional to the real one even if such data are not available. The values assumed by the stream 257 
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function along four arbitrary curves (dashed curves in Figure 2b and 2c) are depicted in Figure 258 

2c, while the water flow rate for each streamtube is shown in Figure 2d.  259 

At this point, we compute the flow velocities in three different sections along streamtube 5 (i.e., 260 

white dashed lines in Figure 2b). The flow velocity magnitude in section a-a is 0.35 m/s, then it 261 

decreases to 0.24 m/s in section b-b and finally reaches 0.2 m/s in section c-c. This means that 262 

the flow speed within the primary channel decreases as soon as it enters the shallow transition 263 

zone between confined and unconfined flow (consequently the streamtube’s width increases). 264 

When water depths start to increase again (for bathymetric information see Figure 3b), the flow 265 

velocity slightly decreases (the streamtube’s width decreases within this region since water 266 

depths become greater, whereas the flow velocity magnitude remains fairly constant with respect 267 

to section b-b). This finding is broadly consistent with Shaw et al., [2016] who found that 268 

adverse bed slopes are associated with flow direction divergences, while the flow converges 269 

where water depths increase.  270 

 271 

3.2 Validation of the methodology 272 

We simulate the hydrodynamics in the WLD by employing the ANUGA numerical model 273 

[Roberts et al., 2015], which uses the finite volume method to solve the 2D depth-averaged 274 

shallow water equations. The model was calibrated for the WLD in Wright et al., [2022] and it 275 

was shown to match observations well. The numerical domain is partitioned by an unstructured 276 

mesh of triangular grid cells. Details on the forcing conditions, set up and model validation can 277 

be found in Wright et al., [2022].  278 
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To validate our approach, we compare the instantaneous discharges and flow velocities 279 

computed from the map of SSC with those obtained from the numerical model ANUGA [Wright 280 

et al., 2022]. Discharge correspondences between the model and the estimates are depicted in 281 

Figure 2d. The velocity magnitude at the time of the AVIRIS-NG flight is shown in Figure 3a. 282 

We also reported the two steady streaklines delimiting streamtube 5 (Figure 3a) and the 283 

bathymetry of the selected streamtube (Figure 3b) in Figure 3. Along-streamtube velocities (i.e., 284 

average velocities in each cross-section) are computed from the numerical model results (Figure 285 

3a). These velocities match well those derived with our streamtube method (root-mean-square 286 

error, 𝜖𝜖𝑟𝑟𝑟𝑟𝑟𝑟 = 0.06 m/s), although the velocity profiles do not overlap exactly (Figure 3c, see also 287 

Figure S1 in Supporting Information S1). We explain this discrepancy and the limitations of our 288 

approach in the next subsection. 289 

 290 

3.3 Strengths and limitations of the proposed methodology 291 

This study presents a novel methodology to measure water discharge, flow direction and speed 292 

from remotely sensed data. The described approach can provide high-spatial resolution 293 

hydrodynamic data, which would allow us to test numerical models against observations over 294 

large areas of river deltas. More specifically, the velocity field obtained from remotely sensed 295 

data can be utilized to constrain crucial model parameters, and improve the accuracy and 296 

performance of numerical simulations. This is needed to achieve reliable estimations of fluxes of 297 

water (and its constituents), and predict the fate of sediment that rebuilds sinking land. 298 

Furthermore, our methodological framework can be applied to other systems worldwide where 299 

maps of suspended sediment concentration and bathymetric information are available, although 300 

bathymetric data are only needed to compute flow velocities.  301 
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We assumed steady-state conditions to apply the streamlines’ theory. This assumption was tested 302 

and discussed in Cathcart et al., [2020], where in-situ flow direction measurements were 303 

compared with remotely sensed flow directions estimated though the use of steady streaklines. 304 

Ayoub et al. [2018] and Cathcart et al. [2020] showed that this assumption holds in the WLD, 305 

although differences between measurements and remotely sensed values vary as a function of the 306 

forcing conditions. Specifically, the best match between steady streaklines and in-situ 307 

measurements was obtained during large discharges with stable or falling tides, whereas the 308 

largest mismatch took place during rising tides at a rate greater than 0.07 m/hr [Cathcart et al., 309 

2020]. In fact, Cathcart et al., [2020] argue that when the rate of tidal change becomes large, the 310 

assumption of steady state conditions does not hold and differences between streaklines and flow 311 

velocity patterns increase. 312 

During the October 18, 2016 AVIRIS-NG flight tides were falling and water discharge was 1900 313 

m3/s. Such hydraulic conditions are not optimal to assume a steady flow, however results may be 314 

still acceptable (the agreement between streakline-derived flow and measurements ranges 315 

between fair to optimal for water discharges at Calumet between 1000 m3/s to 7000 m3/s, and a 316 

rate of tidal change between -0.075 m/hr to 0.03 m/hr) [Cathcart et al., 2020]. This implies that 317 

the streaklines might not be perfectly tangential to the flow direction (i.e., the tubes detected by 318 

these curves are not perfectly impermeable) during the studied period, which in turn could affect 319 

the velocity magnitude computed via our method (Figure 3c). In fact, the suspended sediment 320 

concentration becomes more uniform downstream of the delta suggesting that water masses are 321 

exchanged among streamtubes within this part of the domain (Figure 2c). In addition, our 322 

approach does not consider secondary currents due to baroclinic effects and/or winds which may 323 

alter the velocity profile along the vertical direction [e.g., Valle-Levinson, 2010; Gerkema, 324 
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2019]. This point was extensively discussed in Shaw et al., [2016], who found that the flow 325 

direction at the top layer of the water column and the depth-averaged flow direction measured by 326 

acoustic doppler current profiler (ADCP) were aligned in the Wax Lake Delta during the period 327 

of observation characterized by high discharge conditions. Furthermore, Cathcart et al., [2020] 328 

found no clear relationship between wind direction and streakline direction which suggests that 329 

the streakline-derived flow is representative of the depth-averaged flow conditions also during 330 

wind events.  331 

Finally, it is worth highlighting that our results represent a snapshot of the flow characteristics in 332 

the selected streamtube. A sequence of streaklines obtained with several images of suspended 333 

sediment concentration at different instants could provide information on the temporal variability 334 

of the flow, if the SSC images have a sufficient resolution to capture the streaklines. The 335 

presence of streaklines also depends on hydrodynamic conditions (e.g., waves, tides) and 336 

gradients in sediment concentration. Short-term events (e.g., storms) can dramatically alter water 337 

movements and the amount of sediment in suspension in the system [e.g., Duran-Matute et al., 338 

2016; Donatelli et al., 2022a, b] which can inhibit the presence of streaklines [Salter et al., 2022].   339 
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4. Conclusions 340 

In this study, we provide a general framework to compute discharge and flow velocities via 341 

remote sensing imagery in river deltas. The main conclusions of this paper are: 342 

1. the spatial distribution of discharge can be computed from a map of remotely sensed 343 

sediment concentration. We extracted the steady streaklines via a semi-automated 344 

method, and we estimated water fluxes based on the distance between these curves under 345 

the assumption of uniform flow. The described methodology can be applied to other river 346 

deltas worldwide if the sediment maps are available. Note that for computing the 347 

discharge, bathymetric data are not necessary. 348 

2.  If bathymetric data are available, flow velocities can be derived as the ratio between 349 

discharge per unit length and water depth. 350 

3.  The proposed approach was tested with high-resolution numerical modeling results 351 

carried out by means of the numerical model ANUGA. We found that the results 352 

computed via remote sensing match well with those obtained through the numerical 353 

model along a streamtube.  354 

4. The present study highlights the importance of remote sensing to understand river deltas’ 355 

dynamics at large scales, since this methodology has the potential to offer high-resolution 356 

hydrodynamic data over vast regions. These data are important to comprehend water 357 

movements in these systems.  358 

5. The velocity field obtained from a map of remotely sensed suspended sediment 359 

concentration can be used to improve the accuracy of numerical models, and precisely 360 

quantify fluxes of water, sediments and nutrients that are essential to determining the 361 

resilience of river deltas to environmental change. 362 

363 
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Figure captions 376 

 377 

Figure 1. (a) Map of remotely sensed suspended sediment concentration over Wax Lake Delta, 378 

Louisiana. Data from Jensen et al. (2019, 2021), based on AVIRIS-NG flyover from October 18, 379 

2016 between 15:25 and 15:41 GMT. (b) Schematic representation of two closely-spaced steady 380 

streaklines. 381 

 382 

Figure 2. (a) Geometric curvature (κ) of remotely sensed suspended sediment concentration. (b) 383 

Extracted streaklines overlaying the map of SSC. (c) Stream function values along four steady 384 

streaklines (dashed curves). (d) Discharge correspondences between the model and the estimates 385 

for each streamtube.   386 

 387 

Figure 3. (a) Instantaneous velocity magnitude at the time of the AVIRIS-NG flight computed 388 

with the numerical model ANUGA. The streamtube 5 is reported in the same figure. (b) 389 

Bathymetry of streamtube 5. (c) Remote sensed and simulated velocities along streamtube 5. For 390 

this plot the root-mean-square error (rmse) is indicated. 391 

  392 
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