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ARTICLE INFO ABSTRACT

Handling Editor: L.G. Hultman In this work, the evolution of structural, optical and optoelectronic properties of coherently strained
Gep.gg3Snp.117/Ge multiple quantum wells (MQWSs) grown by molecular beam epitaxy under rapid thermal
annealing (RTA) is systematically investigated. The MQW structure remains fully-strained state with RTA at
400 °C or below and disrupts at higher annealing temperatures due to Sn segregation and interdiffusion of Ge and
Sn atoms. The GeSn well layers exhibit the strongest absorption in 2.0-2.4 um after annealing at 400 °C and
become transparent above 1.8 pm after RTA at 600 °C or beyond due to serve Sn segregation. Owing to improved
crystal quality after RTA at 400 °C, the dark current of the fabricated metal-semiconductor-metal photodetector
is effectively lowered by more than two times. Additionally, the responsivities at 1.55 and 2.0 pm are improved
by 4.15 and 3.78 folds, respectively, compared to those of the as-grown sample. The results can be an insightful
guidance for the development of high-performance short-wave infrared photonic devices based on Sn-containing

Keywords:

GeSn/Ge multiple-quantum-well
Molecular beam epitaxy
Thermal stability
Photodetection enhancement

group-IV low-dimensional structures.

1. Introduction

Short-wave infrared (SWIR, 1.4-3.0 pm) [1] photodetectors (PDs)
are of significant interest for applications in medical imaging, spectro-
scopic sensing, and optical communications [2-4]. The SWIR PDs that
currently dominate the market mostly rely on expensive group III-V (for
example, InGaAs and InSb) and group II-VI (HgCdTe) materials [5-7].
However, the low-cost mainstream silicon (Si) based complementary
metal-oxide-semiconductor (CMOS) technology are not compatible with
these semiconductor materials, which prevents the integration of
large-scale SWIR PDs with the Si platform in the future [8,9]. Conse-
quently, group IV material germanium (Ge) has received more attention
over the past decade [10,11]. Ge has a direct bandgap of 0.80 eV
rendering Ge PDs promising for telecommunication applications [12].
However, the smaller indirect bandgap of 0.67 eV restricts its photo-
detection efficiency at wavelengths over 1.55 pm and sets the cutoff
wavelength at around 1.8 pm [13]. Recent studies have shown that by
incorporating more than ~8% a-tin (Sn) into Ge, GeSn can become a
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direct bandgap material [14]. By raising the Sn concentration, GeSn’s
bandgap can be continuously tuned from near-IR to mid-IR regions [15].
The successful demonstration of optoelectronic devices based on GeSn
alloys has made possible the development of a new generation IR PDs
[16-18]. In addition to the bulk GeSn, low-dimensional GeSn/Ge
multiple-quantum-well (MQW) structures have been recently proposed
as the suitable active region for SWIR PDs. The use of a MQW structure
could increase the critical thickness of the GeSn epitaxial layers [19] and
induces quantum Stark confinement effect, thus improves the opto-
electronic performance [20].

The surface free energy of Sn is substantially lower than that of Ge,
and the thermal equilibrium solubility of a-Sn in Ge is as low as 1% [21].
Therefore, Sn segregation is the main obstacle to homogenous GeSn
alloy formation during epitaxial growth. Due to the development of
ultra-high vacuum technology [22,23], non-equilibrium growth tech-
niques are explored, such as low-temperature molecular beam epitaxy
(MBE), in which GeSn can be deposited at temperatures well below the
melting point of the element Sn. GeSn alloys with Sn content up to 27%
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have been reported, which is essential for near- and mid-IR photonics
[24]. However, low-temperature MBE of GeSn alloy will lead to poor
crystalline quality, which is detrimental for optoelectronic device [25,
26]. Therefore, in order to grow high-quality GeSn alloy, a solution must
be found to the dilemma between Sn segregation during
high-temperature growth and the dense defects introduced in
low-temperature growth. Post-deposition thermal annealing is an effi-
cient method to repair point defects and relax the coherent strain
[27-29]. However, the annealing temperature should be delicately
controlled to avoid Sn segregation and destruction of the GeSn layer,
especially for the strain-balanced GeSn/Ge MQWs [30]. Recently, some
work has found RTA to be an appropriate method to improve the quality
of single-layer GeSn material, such as light emission [31] and photo-
detection [32] performance enhancement. As for MQWs structure,
several groups have investigated the effect of heat treatment on
GeSn/Ge MQWs [30]. However, most of these works focused on the
structural evolution of GeSn/Ge MQWSs under thermal annealing [33,
34]. Few studies about the effect of heat treatment on the optical and
optoelectronic properties of GeSn/Ge MQWSs was reported.

In this work, the influence of RTA on the structural, optical and
optoelectronic properties of 10-period 16-nm Ge gg3Sng 117/22-nm Ge
MQWs are systematically investigated. High-resolution X-ray diffraction
(HR-XRD), Time-of-flight secondary ion mass Spectrometer (TOF-SIMS),
transmission electron microscopy (TEM), atomic force microscopy
(AFM) and Raman characterizations manifest that the MQWs maintain
coherently strained under RTA at 400 °C and lower. At higher annealing
temperature, Sn segregation and interdiffusion of Ge and Sn take place
leading to destruction of the GeSn/Ge MQWs. It is found the GeSn well
layers have a largest absorption window in 2.0-2.4 pm after RTA at
400 °C and become transparent above 1.8 pm after RTA at 600 °C or
beyond due to serve Sn segregation. For the fabricated metal-
semiconductor-metal (MSM) photodetectors, the MQWs annealed at
400 °C shows a lowest dark current and highest responsivity due to
improved crystal quality. Compared to the as-grown sample, the
responsivities at 1.55 and 2.0 pm of the sample annealed at 400 °C are
improved by 4.15 and 3.78 folds, respectively. These results suggest that
RTA can be a beneficial technique to improve the optical and opto-
electronic properties of GeSn/Ge MQWs for SWIR applications.

2. Experimental details
2.1. Preparation of GeSn/Ge MQWs

We used a Veeco/EPI Model 620 solid source MBE system with a base
pressure of 2 x 1078 Pa for the growth of Ge and GeSn materials. Ge
buffer layer and GeSn/Ge MQW structures were grown epitaxially on 3-
inch p-type Si (001) wafers with a resistivity of 3-10 Q cm. The Ge and
Sn beams were formed by thermal evaporation of triple zone-refined
intrinsic polycrystalline Ge and a high purity (99.9999%) metallic Sn
source. The growth rate and composition of the GeSn alloy were
controlled by adjusting the temperature of the effusion cells. The Si
substrate was cleaned with an optimized RCA wet-chemical procedure
[35]. Afterward, the substrate was loaded into the main chamber and
underwent a degassing process. A Ge buffer layer was growth using a
two-step low-temperature/high-temperature (LT-HT) growth process,
which involved depositing a Ge seed layer at 330 °C and growing a
high-quality Ge film at 600 °C. After depositing the Ge layer at a high
temperature, in-situ annealing was performed at 850 °C to reduce the
threading dislocation defects (TDDs). The final Ge buffer layer thickness
was 570 nm after repeating all three steps. The GeSn/Ge MQWs struc-
ture consists of 10 periods of 16 nm Geg gg3Snp.117 and 22 nm Ge grown
at 150 °C to avoid Sn segregation and maximize Sn incorporation. The
final thickness of each layer of the GeSn/Ge MQWs sample was deter-
mined using TEM Talos F200C in the cross-section geometry. Each
layer’s thickness and Sn composition were also validated by simulated
the XRD rocking curves and SIMS measurements.
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2.2. RTA of GeSn/Ge MQWs and fabrication of MSM PDs

The RTA was performed at a temperature range from 200 to 800 °C
for 1 min under a nitrogen (N3) atmosphere. Each sample was patterned
with Ti/Au(170/80 nm) interdigitated finger contacts by a standard lift-
off process. Before metal deposition, 12.5% dilute hydrochloric acid
(HCI) was used to remove surface oxides to form ohmic contacts. The
pattern used for these devices is a set of interdigitated finger contacts
with an active area of 1700 pm x 750 pm.

2.3. Characterizations of GeSn/Ge MQWs

The surface morphology and microstructure of the films were char-
acterized by AFM and TEM. Raman spectra and XRD rocking curves
were used to characterize the material quality of the MQWs. XRD
rocking curves were obtained by Bruker HR-diffractometer D8. Raman
spectroscopy experiments were performed at room temperature using
the Thermo Scientific DXR 3 Raman Microscope equipped with a 532 nm
laser. The incident light was focused on the sample surface with a laser
spot size of 0.7 pm with a magnification of 50 x . The laser power was 1
mW. XPS (X-ray photoelectron spectroscopy) was used in this study with
the aim of analyzing the effects of the RTA gas treatment conditions and
HCI treatment on the GeSn surface. The XPS spectrometer is Thermo
Fisher K-Alpha XPS. The base pressure during spectra acquisition was
lower than 1E-5 Pa. The excitation source was a monochromated Al Ka
(1486.6 eV). The spot size of X-ray beam was 400 pm. All spectra were
collected at the normal emission angle. During spectra acquisition, the
charge neutralizer (electron flood gun) was used. TOF-SIMS measure-
ments were utilized to quantify Ge, Sn concentrations using TOF SIMS 5
(ION TOF, Inc. Chestnut Ridge, NY). The SIMS measurement setup and
SIMS calibration procedure to obtain Sn concentrations can be found in
the Supplementary material. A Thermo Fisher iS50R Fourier transform
infrared (FTIR) spectrometer was employed to measure the absorption
spectra of samples annealed at different temperatures. Data were
collected using a liquid-nitrogen cooled MCT photodetector that oper-
ated at wavelengths between 1.43 pm and 22 pm [1]. All current-voltage
(I-V) characteristics were measured by a Keithley 2450 source meter.
The spectral responsivity of fabricated MSM PDs under IR blackbody
light source illumination at different biases was characterized by the
FTIR. The Lock-in technique was employed to improve the
signal-to-noise ratio by an SR860 500 kHz DSP lock-in amplifier from
Standard Research Systems and an MC100 optical chopper from Thor-
labs. A 1.55 pm Fabry-Perot Laser diode FPL1055T controlled by a laser
diode controller LDC205C and a temperature controller TED200C was
used to calibrate the responsivity of all the devices. The optical power
from a 1.55 pm laser was measured by a StarLite laser power and energy
meter as well as a high sensitivity thermal laser sensor 3A from Ophir.

3. Results and discussion
3.1. Structure and morphology analysis

Fig. 1 shows the TEM image of the GeSn/Ge MQWs grown on a Ge
virtual substrate. In the MQWs region, abrupt and flat interfaces be-
tween the GeSn wells and the Ge barriers without dislocation regions
can be observed, proving the high quality of the GeSn/Ge MQWs
structure. The inset shows a magnified TEM image of the interface be-
tween the GeSn well layer and the Ge barrier layer. The thicknesses of
the GeSn well layer and the Ge barrier layer are ~16 nm and ~22 nm,
respectively.

Typical 5 x 5 pm? AFM images of GeSn/Ge MQWs as-grown and
annealed samples are shown in Fig. 2 (a)-(h). The surface roughness root
mean square (RMS) of each sample as a function of RTA temperature is
shown in Fig. 2 (i). The surface of samples annealed at temperatures
below 400 °C is smooth as evidenced by the RMS roughness in the range
of 1.04-1.38 nm, indicating no Sn dots on the surface. For the samples
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Fig. 1. Cross-sectional TEM image of as-grown GeSn/Ge MQWs on Ge/Si virtual substrate (Inset is a magnified view of TEM image of GeSn/Ge interface region).
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Fig. 2. (a)-(h) AFM images (5 x 5 um?) of GeSn/Ge MQWs samples after RTA at different temperatures. (i) RMS surface roughness of GeSn/Ge MQWs samples as a
function of RTA temperature.

annealed higher than 500 °C, surface roughness increases dramatically In order to shed light on the crystal quality, (004) XRD scans were
because Sn dots appear on the surface, implying a severe loss of Sn atoms performed on the as-grown samples as shown by the black lines in Fig. 3.
in the GeSn layer. The existence of well-defined Pendellosung interference fringes
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Fig. 3. Measured and simulated symmetric (004) XRD curves of the
Gep.gg35n0.117/Ge MQWs grown on a relaxed Ge/Si virtual substrate. The two
main peaks correspond to Si substrate and Ge buffer.

demonstrates the abruptness of the GeSn/Ge MQWs interface and the
high quality of the epitaxial layers [33]. The periodic oscillations of the
satellite peaks represent the presence of periodicity and good epitaxial
layer thickness uniformity of the MQWs. The structure of the GeSn/Ge
MQWs is simulated with X’Pert Epitaxy software based on the structural
and compositional parameters calculated from the ®/20 scan of the
(004) reflection, and the blue line shows the results in Fig. 3. The
thicknesses of the GeSn well layer and the Ge barrier layer are deter-
mined to be 16 nm and 22 nm, respectively, in agreement with the
values obtained from TEM. The extracted Sn composition in the GeSn
well layer is about 11.7%.

Fig. 4 shows the XRD results of ®/26 scans of the (004) reflections for
the GeSn/Ge MQWs samples after treatment by RTA for 1 min in a Ny
atmosphere over a wide temperature range of 200°C-800 °C. Initially,
there is no distinguishable change in the position of the XRD peaks with
increasing RTA temperature. The peaks for samples with annealing
temperatures below 400 °C for 1 min are highly identical to the sample
without RTA, and the interference peaks remain well defined. For the
samples annealed below 400 °C, the results of the XRD and AFM mea-
surements almost remain unchanged, indicating that the crystal struc-
ture remained unchanged. This also indicates that the GeSn/Ge MQWs
have good thermal stability from 200 °C to 400 °C. Fig. 5 (a) and (b)
show the atomic distribution of Ge and Sn along the growth direction
from the surface to the Ge buffer layer for as-grown sample and sample
annealed at 400 °C. In the MQW region, periodic variations can be
observed in the atomic distributions of Ge and Sn, which correspond to
GeSn wells and Ge barriers. In addition, the thickness of each layer is in
agreement with our TEM results. The Sn concentration in the GeSn wells
is determined to be 11.6% based on the SIMS data (see the Supple-
mentary material), which is in agreement with the 11.7% Sn concen-
tration extracted from the XRD simulation. Both samples show the same
atomic distribution of Ge and Sn, indicating that there is no Sn segre-
gation and GeSn/Ge quantum well destruction, agreeing well with
previous AFM and XRD measurements. Intriguing changes are seen
when the RTA temperature is raised to 500 °C or higher. The interfer-
ence peaks start to vanish, showing that the RTA process leads to the
destruction of the MQWs caused by Sn segregation and interdiffusion of
Ge and Sn atoms [32]. At the same time, according to the AFM results, Sn
dots started to appear on the surface. As the annealing temperature in-
creases from 600 °C to 800 °C, GeSn peak merging with the Ge peak
appears as a shoulder of the Ge signal, pointing to the sudden appear-
ance of Sn segregation. After RTA at 800 °C, the XRD pattern remains the
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Fig. 4. (004) XRD scans of as-grown GeSn/Ge MQWs sample, and the samples
annealed ranging from 200 °C to 800 °C under a N, atmosphere by RTA for
1 min.

same as that of the 570 nm thick relaxed Ge virtual substrate sample,
which indicates severe Sn segregation.

Fig. 6 (a) shows the normalized Raman spectra of the as-grown, RTA
annealed samples and a bulk Ge (001) reference wafer. An intense peak
is observed in all samples, which is attributed to the Ge-Ge longitudinal
optical (LO) peak [36]. The broadening of the Ge-Ge peak is due to the
fluctuations in composition and the crystalline quality of the material
[37]. In Fig. 6 (b), the Ge-Ge peak and Ge-Sn peak from the as-grown
sample are observed and their positions are extracted by fitting a
multi-peak curve using a Gaussian function. The detailed Raman shift
values of the Ge-Ge and Ge-Sn peaks for all samples can be seen in Fig. 6
(). The Ge-Ge peak position around 300 cm ™! does not change for
samples with RTA temperatures up to 800 °C. For the samples annealed
at the temperature ranging from 500 °C to 700 °C, the Ge-Sn peak shifted
to 294 cm™! due to the Sn segregation. The Ge-Sn peak diminishes for
the sample annealed at 800 °C due to the severe Sn segregation. This
result is consistent with the XRD results of the sample annealed at
800 °C. Full width at half maximum (FWHM) is a significant parameter
that gives important information about the crystalline quality of thin
films [37]. Therefore, the FWHM of the measured peaks for all samples is
plotted as shown in Fig. 6 (d), where it can be seen that the FWHM
decreases with increasing RTA temperature. While the annealed samples
show lower values, the as-grown sample has the highest FWHM. The
annealed samples’ lower FWHM values show that the heat treatment has
improved the film’s crystalline quality. However, for the samples
annealed above 500 °C, the decrease in FWHM values is caused by Sn
segregation as verified by the AFM and XRD results. From the Raman
FWHM results, we can deduce that the crystalline quality of the GeSn/Ge
MQWs layers gradually improves without MQWs structure change and
Sn segregation when RTA temperature is below 400 °C. Therefore, an
appropriate heat treatment condition is essential to further enhance the
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Fig. 5. SIMS depth profile of Ge and Sn elements in the GeSn/Ge MQW structure from the surface to the Ge buffer layer of (a) as-grown sample and (b) sample
annealed at 400 °C under a N, atmosphere by RTA for 1 min.
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Fig. 6. (a) Raman spectra of bulk Ge, as-grown sample, and the samples annealed ranging from 200 °C to 800 °C (Inset shows a magnified view of the region
demonstrating the Raman shift difference among all samples); (b) A semi-log plot of the Raman spectrum of an as-grown sample with fitting results that resolve the
Ge-Ge peak at approximately 300 cm ™! and a clear shoulder at approximately 291 cm™!; (c) Detailed Ge-Ge peak and Ge-Sn peak as a function of RTA temperature;
(d) Corresponding full width at half maximum (FWHM) values of the measured peaks as a function of RTA temperature.

material quality while maintaining the structural integrity of the MQWs the XPS measurements. For the samples treated with HCI solution,
structure. 12.5% dilute HCl, acetone and isopropanol (IPA) were applied to the
Samples were stored in nitrogen atmosphere for two months prior to sample surface to remove surface oxides and contaminants before
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carbon (AdC) peak with carbon contamination on the surface depends
on the substrate, the environment, and the exposure time [38]. In our
study, we performed the binding energy referencing process by analyt-
ically examining the C ;5 peak of AdC comprehensively. The binding

transferring to the XPS chamber. The time required to transfer the HCI-
treated samples from the chemical solution to the XPS chamber was kept
below 30 min in order to minimize the substantial oxidative regenera-
tion. For materials exposed to the air, the nature of the adventitious
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Fig. 7. Overall XPS survey spectrum recorded from the Geg gg3Sng 117/Ge MQWs (a) as-grown sample, (b) sample annealed at 400 °C, (c) as-grown sample after HCL
solution treatment and (d) sample annealed at 400 °C after HCI solution treatment.
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energy (EB) of the C-C/C-H peak of AdC depends on the work functio-
n/electron affinity (®gs4) of the deposited sample. The sum of EB and ®gx
is a constant value, indicates that C ;5 does not change with respect to the
vacuum level [39]. The electron affinity of 11.7% GeSn alloys is around
4.32 [40]. The C ;5 peak of the AdC was then set to 289.58 - &gy eV
(285.26 eV) [41,42]. All core levels were calibrated referred to the C 15
component at 285.26 eV. All peaks were fitted using Avantage software.
Fig. 7 (a)-(d) show overall XPS survey spectrum recorded from the
Geg 8g3Sn0.117/Ge MQWs as-grown sample, sample annealed at 400 °C,
as-grown sample after HCI solution treatment and sample annealed at
400 °C after HCI solution treatment. The presence of only four elements
(Ge, Sn, C and O) on the surface is confirmed by the photoemission peak
patterns matching these elements. Fig. 8 (a)-(d) show the C 35, Ge 34, Sn
34 and O ;5 XPS spectra of the as-grown sample, the as-grown sample
after HCI solution treatment, the sample annealed at 400 °C and the
sample annealed at 400 °C after HCl solution treatment. XPS spectra of C
15» Ge 3q and Sn 34 were normalized on energy scales from 282 to 292 eV,
21-35 eV and 482-498 eV. In addition, Figs. S2-S5 in the supplemental
material show measured and fitted peaks for all major core-level spectra
including C 15, Ge 34, O 15 and Sn 34. As shown in Fig. 8 (a), the C ;5 peak
of the AdC was set to 285.26 eV. As can be seen from Fig. 8 (b) and (c),
after RTA treatment, the intensity of GeOx and SnOx peaks increased, an
indication of the growth of surface oxides and possible surface
contamination under RTA N gas treatment conditions. Meanwhile, the
HCI treatment can effectively remove the surface oxides and surface
contamination formed during the RTA process. The Ge 34 XPS spectra of
the as-grown sample and the sample annealed at 400 °C after HCl
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treatment showed the presence of one Ge 34 peak but the missing of GeOx
peak. A similar story is shown in the Sn 34 spectra, indicating the pres-
ence of the Sn 343/2 and Snzgs,2 peak but the absence of SnOy peak. Fig. 8
(d) shows that the intensity of the O ;5 peak is significantly reduced after
HCI solution treatment, which also implies that HCl solution treatment
can effectively remove the oxides from the surface. After HCI solution
treatment, the O ;5 peak still has a weak intensity, which may be
attributed to the brief time of exposure to air during transferring to the
XPS chamber after HCI solution treatment. From the above XPS mea-
surements, there is not much difference between as-grown sample after
HCI solution treatment and the sample annealed at 400 °C after HCL
solutions treatment, which indicates that the improvement of the
short-wave IR optical response comes from the change of the GeSn/Ge
MQWs material quality rather than from the effect of surface oxides and
surface contamination due to the RTA process.

3.2. Optical and optoelectronic properties

Fig. 9 shows absorption spectra for wavelengths ranging from 1.5 pm
to 2.6 pm. Because the edge of Ge absorption is around 1.85 pm [43], the
peak at 1.6 pm is considered as the absorption mainly from Ge epitaxial
layers. In addition, another broadened peak can be observed in the
wavelength range of 1.8 pm and 2.6 pm which is attributed to the GeSn
absorption. We can clearly see that the sample annealed at 400 °C has
the highest peak intensity, which indicates a higher absorption signature
in the wavelength range of 1.8 pm and 2.6 pm due to the crystal quality
improvement as compared to other samples, agreeing well with Raman’s
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FWHM results. The sample annealed at 400 °C exhibited an absorption
edge of about 2.5 pm while the as-grown sample and annealed at 200 °C,
300 °C and 500 °C exhibit a value of 2.40 pm. According to the PDs
responsivity results (to be shown in Fig. 11), the absorption edge for the
sample annealed at 400 °C is closer to the PDs responsivity cut-off
wavelength value. The difference in absorption and PDs responsivity
cutoff wavelengths for the as-grown sample and annealed at 200 °C,
300 °C and 500 °C may be due to the absorption signal at the wavelength
ranging from 2.4 pm to 2.6 pm being weaker than what the MCT de-
tector can detect. For samples annealed above 500 °C, as the annealing
temperature rises from 500 °C to 800 °C, the absorption peak gradually
disappears and the absorption edge gradually moves to shorter wave-
lengths (from 2.4 pm to 1.8 pm), which is attributed to the gradual
segregation of Sn, consistent with the above-mentioned AFM, XRD and
SIMS results.

The cross-sectional schematic of the GeSn/Ge MQWs MSM PDs is
shown in Fig. 10 (a). A top view microscope picture of a typical GeSn/Ge
MQWSs MSM PD is shown in Fig. 10 (b). Fig. 10 (c) presents the current-
voltage characteristics of the fabricated MSM PDs under dark condi-
tions. Fig. 10 (d) shows the dark currents of the GeSn/Ge MQWs PDs at 1
V bias. Among all the samples, the devices based on GeSn/Ge MQWs
annealed at 400 °C sample has the lowest dark current. The suppression
of the dark current is attributed to the improved material quality as
verified by the above-mentioned Raman, absorption and SIMS mea-
surements results.
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Fig. 10. (a) Cross-sectional schematic of the GeSn/Ge MQWs MSM PDs; (b) Microscope image of the top view of a GeSn/Ge MQWs MSM PD; (c) Current-Voltage
characteristics of the GeSn/Ge MQWs PDs under the dark condition; (d) Dark currents of the GeSn/Ge MQWs PDs at 1 V bias.
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Fig. 11. (a) Schematic measurement setup used to measure the spectral response of the GeSn/Ge MQWs MSM PDs. (b) Spectral response of the GeSn/Ge MQWs MSM
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The spectral photocurrents were measured in amplitude modulation
(AM) step-scan mode with an FTIR spectrometer fitted with an IR black
body source. A Calcium Fluoride (CaF3) beam splitter was selected
because of its favorable near-IR response. The samples were connected
in series with a matching resistor and received a DC bias voltage. A two-
inch parabolic mirror with a four-inch focal length focused the IR black
body source on the sample. The photocurrent from the GeSn/Ge MQWs
MSM PDs at the bias of 1 V was then transferred to a current amplifier.
The signal was then sent back to the external detector interface of the
FTIR. A mechanical chopper wheel tuned to 278 Hz was used to phase-
lock the photocurrent and suppress broadband noise, and the signal was
fed to the FTIR through the lock-in amplifier. The internal deuterated
triglycine sulfate (DTGS) in the FTIR which has a wavelength-
independent responsivity, was utilized to calibrate the relative in-
tensity of the IR blackbody light source. A Schematic diagram of the
spectral response measurement setup is shown in Fig. 11 (a). Spectral
responses of the photoconductors were characterized in the 1.4 pm-4.0
pm wavelength range. The devices’ responses were normalized at 1.5 pm
to facilitate the fair comparison at longer wavelengths. The obtained
normalized FTIR spectra are shown in Fig. 11 (b). For the samples
annealed below 400 °C, including the as-grown samples, the cutoff
photo-response wavelengths remained almost unchanged around 2.5
pm. This result is consistent with the absorption spectra, especially when
compared to the absorption edge for samples annealed at 400 °C (2.5
pm). However, as the annealing temperature increases from 500 °C to
800 °C, the cutoff wavelength gradually shifts from 2.5 pm to a shorter

wavelength of 1.85 pm. For the sample annealed at 800 °C, the cutoff
wavelength is close to that of the reported Ge material meaning that the
Sn is completely segregated, agreeing well with the XRD, Raman and
absorption results. In order to assess the photocurrent contribution from
GeSn alloys and suppress photocurrent contributions from absorption by
the Ge barrier layers and Ge virtual substrate, an undoped Ge wafer was
used as a filter in front of each sample in the FTIR beam path. The rest of
the experimental setup was kept the same as the response measurement
setup. From Fig. 11 (c), it is clear that the response of the samples
annealed from 200 °C to 400 °C is much improved compared to the as-
grown sample, especially for the samples annealed at 400 °C. However,
when we tried to observe the optical response of samples annealed
above 500 °C, it was too weak for our experimental setup to detect due
to the massive loss of Sn element in the GeSn layer. This phenomenon
implies that Sn segregation seriously impacts the optical response for
GeSn material. Fig. 11 (d) shows Photocurrent-Bias voltage character-
istics of the MSM PDs based on the as-grown sample, and the samples
annealed from 200 °C to 500 °C under incident light power Pj; = 5 mW
at A =1.55 pm. The photo-response of the samples annealed from 200 °C
to 400 °C (the sample at 400 °C in particular) at 1.55 pm is much higher
than that of the as-grown sample. The photo-response of the samples
annealed above 500 °C is severely degraded, implying that Sn segrega-
tion and the disruption of the MQWs structure have a severe impact on
the photo-response performance of the GeSn material, rather than just a
narrowing of the response range.

To quantitatively compare the performance of the fabricated devices,
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Fig. 12. (a)-(d) Comparison of responsivity between the as-grown sample and samples that are annealed at 200, 300, 400, and 500 °C, with the wavelength ranging

from 1.5 pm to 2.5 pm and at a bias voltage of 1 V.

Fig. 12 (a)-(d) show the responsivity comparison between the as-grown
and the annealed samples from 200 °C to 500 °C with 1.55 pm laser
calibration. It is clear to see that the sample annealed at 400 °C has the
highest responsivity among all the samples, indicating a higher ab-
sorption capability due to the crystal quality improvement in the
wavelength range of 1.5 pm and 2.5 pm compared to other samples. It is
thus evident that proper heat treatment can be applied to improve light
absorption and optical response. Compared to the sample without RTA,
the responsivity of the samples annealed at 400 °C shows a 415%
improvement at 1.55 pm, a 396% improvement at 1.8 pm and a 378%
improvement at 2.0 pm, respectively. This drastic responsivity
improvement contributed to the improvement of material quality,
consistent with the Raman FWHM and FTIR absorption results. How-
ever, for the samples annealed at 500 °C, the responsivity of the samples
annealed at 500 °C shows a 56.4% degradation at 1.55 pm, an 81%
degradation at 1.8 pm, and a 90.55% degradation at 2.0 pm, respec-
tively. This phenomenon is attributed to Sn segregation and the
disruption of the MQWSs structure. In order to further enhance the
responsivity of the GeSn/Ge MQWs MSM PDs while maintaining the
structural integrity of GeSn/Ge MQWs, an appropriate annealing con-
dition is required.

4. Conclusion

In Summary, high quality Geg gg3Sng.117/Ge MQWs structure was
grown on a Ge virtual substrate via low-temperature MBE techniques
followed by RTA. We have performed a systematic study about the effect
of RTA on the structural, optical and optoelectronic properties of the

10

GeSn/Ge MQWs. XRD, TEM, AFM, SIMS and Raman characterizations
manifest that the GeSn/Ge MQWs maintain coherently strained under
RTA at 400 °C and lower. At higher annealing temperature, Sn segre-
gation and interdiffusion of Ge and Sn atoms result in destruction of the
MQWs structure. It was observed that GeSn well layers exhibit a
maximum absorption window at 2.0-2.4 ym after RTA at 400 °C, and
the absorption edge gradually moves to shorter wavelengths as the RTA
temperature increases from 600 °C to 800 °C due to the severe Sn
segregation. It is found that crystalline quality is improved after RTA at
400 °C, exhibiting the lowest dark current. Furthermore, the respon-
sivity of the GeSn/Ge MQWs MSM PDs after RTA at 400 °C, with a cutoff
wavelength 2.5 pm, can be effectively improved by 4.15 and 3.78 folds
at 1.55 and 2 pm, capturing a wide range of the SWIR band. These
findings reveal that the RTA process can be an effective approach for
improving GeSn crystal quality and further enhancing the performance
of SWIR photonic devices. This research paves the path for the high-
performance monolithic and CMOS-compatible SWIR photonic devices.
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