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Thermal control of the topological edge flow
in nonlinear photonic lattices

Pawel S. Jung 1,2,6, Georgios G. Pyrialakos 1,6, Fan O. Wu 1, Midya Parto 1,
Mercedeh Khajavikhan 1,3, Wieslaw Krolikowski4,5 &
Demetrios N. Christodoulides 1

The chaotic evolution resulting from the interplay between topology and
nonlinearity in photonic systems generally forbids the sustainability of optical
currents. Here, we systematically explore the nonlinear evolution dynamics in
topological photonic lattices within the framework of optical thermo-
dynamics. By considering an archetypical two-dimensional Haldane photonic
lattice, we discover several prethermal states beyond the topological phase
transition point and a stable global equilibrium response, associated with a
specific optical temperature and chemical potential. Along these lines, we
provide a consistent thermodynamic methodology for both controlling and
maximizing the unidirectional power flow in the topological edge states. This
can be achieved by either employing cross-phase interactions between two
subsystems or by exploiting self-heating effects in disordered or Floquet
topological lattices. Our results indicate that photonic topological systems can
in fact support robust photon transport processes even under the extreme
complexity introduced by nonlinearity, an important feature for con-
temporary topological applications in photonics.

The recently discovered topological phases of matter have introduced
new frontiers in fermionic and bosonic systems by exposing a number
of intriguing and unconventional physical phenomena. In photonics,
the prevailing signature of non-trivial topological order is associated
with the emergence of unidirectional edge transport that in turn can
sustain itself against backscattering from defects or disorder1,2. This
effect has thus far been observed in a variety of arrangements, invol-
ving photonic crystals,waveguide arrays and coupled cavities, to name
a few3–9. These systems can exhibit diverse topological properties with
a variety of phases, including the archetypical Haldane model with
non-zero Chern invariants10, or more complex Floquet phases with
higher dimensionality and gaps that are classified by non-trivial
winding numbers11,12. Photonics has also provided an accessible route
to advance topological theories into different avenues that may
involve the presence of non-Hermiticity or nonlinear interactions13–17.

It has been recently shown in condensed matter physics that
effects arising from quantum correlations and interactions can lead to
anovel classof phase transitions that further broaden the classification
of topological systems18. This, in turn, trailblazed a similar path for
photonic topological arrangements where topological effects are
manifested through optical nonlinearities. It is currently known that
topological edge states can emerge in either fully linear systems or
persist as edge soliton solutions in environments that can support
such nonlinear formations19–30. Yet, as of now, the role of nonlinearity
in interacting topological photonic models13 has not been system-
atically investigated in the weakly non-linear regime, in domain, where
self-organized structures cannot appear such as breathers, vortices, or
solitons14–16,22,31. In this case, lattices are heavily multimoded and as
such the ensuing non-linear energy exchange among modes can be
exceedingly complex32–37. In this respect, one may pose a series of
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fundamental questions pertaining to the sustainability of the topolo-
gical edge currents under the influence of multi-wave mixing pro-
cesses. In other words, how will these “many-body” topological
systems asymptotically respond? More importantly, will they reach an
equilibrium state, and can this state be externally controlled? Due to
the omnipresence of nonlinearity in a number of contemporary set-
tings, like topological laser systems17,38,39, an answer to these questions
could be vital for the field of topological photonics.

In this Article, we derive a thermodynamic formalism capable of
describing theunderlyingnon-lineardynamics ofphotonic topological
insulators in theweakly non-linear regime.Our results indicate that, for
a given set of initial conditions, the topological system will always
maximize its optical entropy and thus reach an equilibrium state at a
specific optical temperature T and chemical potential μ. As such it will
attain a state governed by a Rayleigh-Jeans distribution in its modal
space that is characterized by a positive or negative optical tempera-
ture. Given that this statistical distribution is expressed in the eigen-
function space where all topological properties are defined, it
enables one to directly monitor the interplay of topology with the
thermalization process. In this respect, we find that such a system
preserves its topological structure and unambiguously presents a
signature of unidirectional transport at the edges. This property
reveals an exclusive path for controlling and maximizing the topolo-
gical edge flow in a nonlinear topological optical system by means of
thermodynamics. We examine two exemplary cases, an optical Hal-
dane lattice and a Floquet topological insulator, and demonstrate how
different reversible and irreversible processes can be deployed in a
variety of settings.

Results
Thermalized and prethermalized states in 2D nonlinear topo-
logical insulators
To exemplify our approach, let us begin by considering a honeycomb
lattice of M single-mode coupled optical elements, with real nearest
and complex next-nearest neighbor hopping amplitudes (Fig. 1a) that
can in principle vary in time. The optical non-linear dynamics are
governed by the following normalized discrete nonlinear Schrödinger

equation:

i
dan

dt
+Δnan + ∑

NN
κ1kðtÞak + κ2 ∑

NNN
aqe

�iϕ + ∣an∣
2an =0 ð1Þ

where, an represent the optical field amplitude on site n and t is the
time variable. Each element is directly coupled to its three nearest
neighbors with hoping amplitudes κ1k (for k = 1, 2, 3) as well as to its
next-nearest neighbors (NNN) (over sum q) with hoping amplitudes
κ2 (Fig. 1a). The phase factor ϕ is associated with the NNN exchange
and can be positive or negative for counterclockwise or clockwise
hoping, respectively. An energy offset Δ= ðΔA � ΔBÞ=2 between the
two sublattices A and B can also be used to break the spatial
inversion symmetry. Here, a Kerr nonlinearity is introduced in the
arrangement through the last term in Eq. (1). In what follows, we
focus on a Haldane lattice with κ1≠0,κ2≠0 and no time dependence.
A Floquet topological case with κ2 = 0 and κ1 time dependent may
also be considered. In either case the nonlinear dynamics are
expected to thermalize in a similar way if we ignore self-heating
effects (for fast enough periods of the drive) which will be
examined later.

In general, the nonlinear dynamics associated with Eq. (1) repre-
sent an utterly complex problem. For example, under non-linear con-
ditions, a system initially excited at a state that maximally couples to
the topological edgemodes, might inevitably allow energy to leak into
the bulk, and as a result, will not conserve its unidirectional light flow.
Here, we focus on theweaklynon-linear regimewherehigh-power non-
ergodic structures, like edge soliton formations, cannot manifest. We
tackle this problem through statistical mechanics40, in a phase space
defined by the linear modes of the system when two conserved
quantities or invariants are atplay41. In a conservative arrangement, the
first constant of the motion is given by the norm corresponding to the
optical power P =∑j ∣cj ∣

2, where cj denotes the occupancy strength of
the mode with eigenvalue εj. The second invariant corresponds to the
effective internal energy, given by the linear partU = �∑jεj ∣cj ∣

2 of the
total HamiltonianH =U +HNL, whereHNL = 1=2∑j ∣an∣

4 for the Kerr-type
nonlinearity. To guarantee that the optical energy remains invariant
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Fig. 1 | Thermalization of the nonlinear Haldane lattice. a A nonlinear Haldane
lattice (κ2 =0:2,φ= π

2 ,Δ=0) is excited with a uniform population amongst all
supermodes within the gray shaded region. During evolution it develops a pre-
thermal state, indicated by the red region (bottom panel), with a RJ distribution
predicted by accounting only the upper modal group. The entropy of this sub-
system (red curve) reaches a local maximum and then decreases when coupled to
the lower band. Eventually the system reaches global equilibrium (green region) by

maximizing its total entropy (blue curve). b When excited at both modal groups,
the same lattice prethermalizes into two separate local quasi-equilibrium states
with the same temperature but different chemical potentials. In this case, the
internal energy is rapidly exchangedwhile the total power is conservedwithin each
modal group. A truncated ribbon (c) and triangular (d) configuration will therma-
lize without the manifestation of prethermalization due to the presence of the
topological edge states that bridge the band gap.
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during propagation, we investigate this system exclusively in the
weakly nonlinear regime where the linear part of the energy (U)
dominates the nonlinear component (HNL). To do so, we appropriately
control the optical power level so as the normalized Kerr nonlinearity
in Eq. (1) is weak. Under the aforementioned conditions, one can show
that the “thermalized” modal occupancies, (for all modes, including
the topological edge states), obey a Rayleigh-Jeans law, i.e.
∣cj ∣

2 = � T=ðεj +μÞ42–45, a distribution that maximizes the underlined
optical entropy S=∑jlnð∣cj ∣2Þ (see Supplementary Note II). In addition,
the thermodynamic extensive variables (U, M, P) are related to the
intensive quantities T and μ, through a global equation of state
U � μP =MT , whereM is the total number ofmodes42. It is important to
note that the effective temperature T and chemical potential μ are
always uniquely determined from the initial excitation conditions of
the lattice, i.e. from U and P46 (see Supplementary Note III).

We begin our analysis by investigating the thermalization process
in the nonlinear Haldane lattice of Eq. (1) comprising M = 200 sites
(with an equal number of supermodes) in the topologically non-trivial
(κ2 = 0.5) phase, with zero detuning (Δ =0). We employ a torus geo-
metry which can host a collection of modes from the bulk spectrum
(for all discrete momenta that satisfy the periodic boundary condi-
tions) and can therefore serve as a proper representation of bulk
dynamics. Subsequently, this can provide a juxtaposition to the more
realistic case of a truncated system which involves a complete set of
topological edge states. We examine two examples by exciting in the
first case only the upper band group with a uniform occupation
strength amongst modes j 2 120� 150h i (Fig. 1a) and in the second
case both band groups at modes j 2 60� 90h i and j 2 110� 140h i
(Fig. 1b). To identify the complete asymptotic behavior of these two
systems we observe their dynamics over a long period of time, long
enough for an equilibrium state to be established. In Fig. 1a, b, the
green curves correspond to thefinal RJ distribution aspredicted by the
internal energy (U) associated with each excitation (in both cases
power P = 6). However, the presence of the topological gap does not
only slow down the thermalization process but also promotes the
development of a temporary prethermal state, outlined with a red
curve. This state is distinguished by a local RJ distribution and a new
temperature defined by accounting exclusively the respective modal
group, associated with either Chern number C = 1 or C = � 1, in the
calculation of the internal energy U. Seemingly, the life-time of this
state is directly correlated to the size of the topological gap, which can
be regulated by themagnitude of the coupling κ2. In the particular case
of Fig. 1b the two modal groups interact by exchanging power at a
much smaller rate that energy, ultimately reaching the same optical
temperature but different chemical potential. Eventually the system
will settle into the global RJ curve (in green) in a similar fashion
to Fig. 1a.

A similar prethermalization process can also be observed in a
trivial system where the sublattice symmetry is broken via the
parameterΔ. In this case, however, the topologically trivial andnon-
trivial phases are very different. In general, the gap size of a trivial
system does not depend on its configuration (torus or truncated)
and therefore the system is expected to thermalize in a similar
manner, if all other conditions are met. Conversely, in a non-trivial
topological lattice, the thermalization process is profoundly dif-
ferent depending on whether it unfolds in a torus or a truncated
system. In Fig. 1c, d, we replicate the non-trivial case of Fig. 1a, with
the same lattice parameters, but instead in a ribbon as well as a tri-
angular topological configuration. The helical edge states that
emerge in these arrangements bridge the band gap and lead to a
rapidthermalizationaspredictedbyaglobalRJdistribution,without
being preceded by a prethermal state. This is in stark contrast to the
bulk dynamics observed in a torus lattice (Fig. 1a), an effect that is
directly attributed to a thermal version of the bulk-edge corre-
spondence principle.

Topological currents at thermal equilibrium
Having studied the prethermalization and thermalization dynamics in
these nonlinear topological systems, we would like to next identify
their impact on topological currents. As we will see, under thermal
equilibrium conditions, the flow of an optical unidirectional edge
current still persists, in spite of the extreme complexity resulting from
the presence of nonlinear interactions. Given the fact that the relative
phases between modes vary in a stochastic fashion, the average dis-
crete current density Jn on a lattice site n at equilibrium, can be
expressed as an incoherent sum of the partial currents Ωn,j resulting
from each mode:

Jn = ∑
M

j
∣cj ∣

2Ωn, j = ∑
M

j

�T
εj +μ

Ψj ∣̂Jn∣Ψj

D E
ð2Þ

where |ψj〉 are the lattice eigenvectors and Ĵn denotes the local current
density operator defined by Ĵn =∑m

~δn,m tn,m � H:c:
� �

47. Here, tn,m and
~δn,m are the coupling coefficients and the vector displacement
between any site ni and nj, respectively.

We begin by examining a triangular Haldane configuration with
N = 61 sites and a zig-zag terminated edge when κ2 = 0.2 and ϕ= π

2. This
system will always settle into the predicted RJ distribution which
allows one to calculate from Eq. (2) the corresponding average
contribution Ωn,j to the total current JT =∑

N
n = 1 Jn circulating in the

lattice—a discrete version of the line integral
H
C J � dl, where C repre-

sents the outer contour of the topological lattice. In Fig. 2a we observe
the evolution of the total current for T =0.19 and μ = −4.85 as well as
the development of the total current contributions from the edge
states JE (which establish a unidirectional propagating channel at the
boundary) and the bulk modes JB (which contribute only through local
variations). A closer look into the non-equilibrium dynamics reveals
that at the beginning (t ≈0) the total current is largely dominated by
the edge state contribution. During evolution, the optical power is
“thermally” redistributed between edge and bulk states, thus estab-
lishing a competition between JE and JB. Surprisingly and counter-
intuitively, as the time progresses, while JE tends to initially decrease, it
eventually stabilizes to a new average value thus indicating that the
edge current is robust despite thermalization as induced by nonlinear
multi-wave mixing effects. Once the optical entropy reaches its max-
imum value, the average light transport changes direction (thus flip-
ping the sign of the current) and eventually attains its analytically
predicted negative value. Next, we calculate the average unidirectional
current density at each site n of the lattice by examining the same
system at various temperatures (Fig. 2b). From here, it becomes
apparent that the two contributions to JT are always associated with
opposite helicity. At T =∞ the two parts completely negate each other
resulting in a net zero average current while as temperature decreases,
JB becomes the dominant current contribution and JT attains a
finite value.

Having investigated various cases with specific optical tempera-
tures we must next explore the complete parameter space of the
system in order identify regimes where the total current is enhanced.
To address this issue, we explore the parameter space of Eq. (1) by
varying the internal energy U associated with the initial excitation
while keeping the total power P constant. Figure 2c illustrates the total
average current amplitude summed over all sites in the topological
Haldane lattice when the phase φ varies in the range �π ≤φ≤π and
Δ =0, κ1 = 1, κ2 = 0.2. The absolute maximum value is reached at a
relatively low temperatures where most of the power will occupy the
lower or upper energy states. Interestingly, at a positive temperature
(T ≈0.1), the total current displays two extrema atφ≈ ± 3π

4 , while in the
negative temperature regime (T ≈ −0.1) these extrema shift at φ≈± π

4.
By keeping, instead, the parameter value of φ constant, we can also
identify a particular point, at φ= π

2, where the temperature depen-
dence of the current displays a strictly symmetric behavior around
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T = 0. Conversely, Fig. 2d illustrates only edge states contribution
which, evidently, assumes its maximum value at infinite temperatures,
when power equipartition among modes takes place. At T ! ±1 the
amplitude varies periodically over φ, reaching a global maximum at
φ= π

2, as shown in the same figure.

Maximizing the topological edge flow via thermal processes
The topological current maps of Fig. 2 reveal a clean path for max-
imizing the topological currents through thermodynamic processes
that can induce a shift in theoptical temperature. A conventionalway to
perform this is via external means, i.e. using an optically hotter sec-
ondary lattice (which can be non-topological) to cool the primary sys-
tem under investigation. Alternatively, here, we explore the prospect
for nonlinear cross-interactions between two distinct species in a
topological Haldane system that can behave as two different optical
subsystems (with different temperatures). In this respect, the two
species could be for example the left (aL

n) or right-handed ðaL
nÞ circular

polarizations. Each polarization obeys separately Eq.(1) while interact-
ing with each other via cross-phase modulation terms (γ∣aL

n∣
2∣aR

n∣
2
). In

this case, we are interested in maximizing the total current using the
temperature curve of Fig. 2c. Figure 3a illustrates these results for a
triangular configuration both in the presence or absence of the cross-
phase modulation terms. In both cases, the modes with eigenvalues in
the range 1:3≤ ε≤ 2:97 and �1:07 ≤ ε≤ 1:49 are uniformly excited with
the same total power in the left and right-handed polarization. As one
would expect, in the absence of cross-phasemodulation (γ =0), the two
polarizations preserve their internal energy and optical power, ulti-
mately reachingdifferent equilibria,T =0.043 andμ = −2.87, for the left-

handed, and T =0.19 and μ = −4.85 for the right-handed. Eventually, the
currents for both subsystems, will reach their theoretically predicted
points on the J–T curve (Fig. 3a). When the cross-phase modulation is
engaged (γ = 2), the two polarizations exchange only their energies and
as a consequence they reach a common temperature (T =0.083). As a
result, the magnitude of the equilibrium current shifts at the top of the
J–T curve, located between the two initial points, assuming its max-
imum value in agreement with theoretical predictions.

Next, we consider methodologies to optimize the current flow
JE (contributed by the topological edge states) which as we saw
before (Fig. 2d.) it reaches a maximum at (positive or negative)
infinite temperatures. As we show below, this can be achieved by
means of an irreversible heating process, i.e., through a steady
absorption or removal of optical energy at negative and positive
temperatures respectively (which in our lattice system corre-
sponds to U = 0). In such a case, the entropy will increase in time,
eventually reaching itsmaximum in the S(U) curve (Fig. 3b). Such an
irreversible mechanism can be accomplished via either introducing
a time-varying disorder in a Chern topological system (such as a
Haldane lattice) or in periodically driven Floquet topological sys-
tems. For the latter case, we consider a honeycomb Floquet lattice
with time-periodic coupling variations (with a clockwise rotating
phase difference). It is generally known in classical thermo-
dynamics that time-periodic systems at positive temperatures tend
to continuously absorb heat until they reach an infinite tempera-
ture state48,49, a feature that we can successfully replicate within the
framework of optical thermodynamics. In the negative tempera-
ture regime, the converse is true. Here, we simulate both these
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Article https://doi.org/10.1038/s41467-022-32069-7

Nature Communications |         (2022) 13:4393 4



cases by exciting a uniform set of eigenvalues with a total power of
P = 2.8 and internal energyU = −3.1 (T = 0.1) and U = 1.7 (T = −0.2) for
the Haldane and the topological Floquet lattice, respectively. Fig-
ure 3 illustrates the adiabatic process of energy gain in the dis-
ordered Haldane lattice which allows the self-optimization of the
topological current through reshuffling of the optical power in the
linear modes due to random multi-wave mixing phenomena. In a
similar vein, the topological Floquet lattice optimizes its current
flow by driving the system from a prethermalized state (blue line)
into a state where equipartition occurs (red line), by continuously
shedding excess energy. In the Floquet case, the speed of time
modulation generally dictates the overall lifetime of the pre-
thermalized state (Fig. 3).

Discussion
In this work we have systematically investigated the thermo-
dynamic evolution of nonlinear photonic topological systems,
where several intriguing phenomena before and during thermal
equilibrium have been identified. In this regard we found that the
presence of prethermal states beyond the topological phase
transition point. Our analysis reveales for the first time that, under
thermal equilibrium conditions, optical unidirectional edge cur-
rents still persist in such topological systems, in spite of the
extreme complexity introduced by thermalization through multi-
wave mixing nonlinear interactions. Most importantly, we devel-
oped a self-consistent theoretical framework within which one can
precisely predict the magnitude of the thermalized currents in
nonlinear photonic topological insulators from arbitrary initial
conditions. In this respect this methodology can be effectively
deployed to control andmaximize the unidirectional power flow in
the topological edge states.

The results presented herein can be relevant to a broader class of
bosonic and fermionic topological configurations that can be appro-
priately described within the semiclassical domain. These may include
for example mean-field models of interacting many-body bosonic
systems such as Bose-Einstein condensates in optical (trapping) lat-
tices governed by the Gross-Pitaevski equation, or paired fermionic

arrangements that also exhibit condensation. In this respect, our
findings are general and canbe readily adapted todifferent topological
platforms that allow one to dynamically control the on-site potentials
in the weakly interacting regime.

Possible future direction of interest will be to expand the optical
thermodynamic theory into different regimes in order to more com-
prehensively describe topological settings in the presence of high
nonlinearities. In the weakly nonlinear regime, a thermodynamic
treatment is possible due to the emergence of ergodicity. Beyond this
domain, self-organized structures can appear such as breathers or
vortices, or in the case of topological systems, edge solitons. For
example, in topological systems, edge solitons can form at the
boundaries of the arrangement that retain the topological robustness
of regular edge states. Deciphering the statistics of fluctuating edge
solitons will unlock new possibilities in controlling the formation of
such topologically robust structures via the manipulation of their
thermodynamic phase transitions. In this respect, the thermal collapse
of edge solitons into a gas of photons (via a transition to the weakly
nonlinear regime) may provide new pathways in controlling the ther-
malization of photonic topological lattices. Finally, our findings
regarding prethermalization, could provide a new pathway for con-
trolling the thermal evolution of systems with multiple topological
gaps by employing different configurations with periodic or truncated
boundaries.

Quite recently, optical thermalization effects have been observed
for the first time in optical multimode fibers50,51 and time-synthetic
lattices52. In principle, photonic topological lattices can be inscribed in
silica glass4,9,53 or can be implemented in time-synthetic dimensions.
Given the long evolution times required to observe thermalization
effects, a possible platform to observe such thermalization phenom-
ena in 2D nonlinear topological lattices could be time-synthetic
arrangements along the lines discussed in Refs. 54,55. These 2D sys-
tems are typically implemented involving four fiber loops and allow
hundreds of exchange times—that is more than enough to observe
effects along the lines discussed in our paper. In general, ribbon like
geometries with periodic boundary conditions can also be imple-
mented in 2D time-synthetic lattices.
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2. At t =0, both polarizations have the same optical power PR =
PL = 2.8 but different internal energies UL = −1.77 and UR = −5.4. The upper panel
depicts the evolution of the two subsystems for γ = 2 which trace the red line
corresponding to the theoretical JT-Temperature curve, towards a common T at
equilibrium that maximizes the two currents. The middle panels depict the initial
(shaded regions) and equilibrium (line plots) modal occupancies for the left (red)
and right-handed (blue) polarizations for γ =0 (left panel) and γ = 2 (right panel).

The bottom panels show the conservation/exchange of the internal energy (U)
between polarizations for the case with/without cross-phase modulation. b Self-
heating of a disordered (left) and a Floquet (right) topological lattice. The middle
panel depict schematically the entropy at t =0 (red and blue dots) as well as at
equilibrium (green dot) after self-heating has occurred. The top-edge panels show
the gain and lose of the internal energy during self-heating until a zero value is
reached, where the edge current maximizes its value. During evolution, both lat-
tices first prethermalize at T =0.1 and T = −0.2 (for a Haldane and Floquet lattice,
respectively) and then adiabatically shift their temperatures until they reach a
T =∞ state.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from
D.N.C. upon reasonable request.
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