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We propose a symbolic execution method for programs that can draw random samples. In contrast to existing
work, our method can verify randomized programs with unknown inputs and can prove probabilistic properties
that universally quantify over all possible inputs. Our technique augments standard symbolic execution with
a new class of probabilistic symbolic variables, which represent the results of random draws, and computes
symbolic expressions representing the probability of taking individual paths. We implement our method on top
of the KLEE symbolic execution engine alongside multiple optimizations and use it to prove properties about
probabilities and expected values for a range of challenging case studies written in C++, including Freivalds’
algorithm, randomized quicksort, and a randomized property-testing algorithm for monotonicity. We evaluate
our method against Ps1, an exact probabilistic symbolic inference engine, and STORM, a probabilistic model
checker, and show that our method significantly outperforms both tools.
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1 INTRODUCTION

Symbolic execution (SE) [King 1976] is a highly successful method to automatically find bugs in
programs. In a nutshell, SE iteratively explores the space of possible program paths while treat-
ing program states as symbolic functions of program inputs (symbolic parameters). Whenever a
path to an error state is discovered, SE searches for a concrete setting of the symbolic param-
eters which realizes this path, thereby triggering the error. This basic bug-finding strategy has
proved to be a powerful technique, supporting some of the most effective tools for analyzing large
codebases [Bessey et al. 2010].

Researchers have adapted SE to many domains (e.g., [Borges et al. 2014; Farina et al. 2019;
Filieri et al. 2013; Geldenhuys et al. 2012; Kang et al. 2021; Kiezun et al. 2012; Sasnauskas et al.
2011, 2010]). In this work, we consider how to perform SE for randomized programs, which can
draw random samples from built-in distributions. These programs play a critical role in many
important applications today, from machine learning to security and privacy. However, randomized
programs, like all programs, are susceptible to bugs [Joshi et al. 2019]. Correctness properties are
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difficult to formally verify; existing methods typically require substantial manual effort and target
narrow properties. Moreover, randomized programs are difficult to test: the desired behavior is
not deterministic, and it may not be possible to detect that a program is producing an incorrect
distribution of outputs running the program.

Challenges and prior work. Accordingly, randomized programs are an attractive target for formal
verification methods. However, there are several challenges in developing a SE procedure for
randomized programs:

e Quantitative properties. Standard SE aims to check whether a bad program state is reachable.
In randomized programs, we are often more interested in whether a bad state is reached too often,
or whether a good state is reached often enough. Accordingly, SE for randomized programs must
be able to analyze the quantitative probability of reaching program states.

e Computing branch probabilities. A concrete execution of a non-probabilistic program follows
one branch at each branching instruction, since the branch condition is either true or false in
any program state. In probabilistic programs, the program can be thought of as transforming
a distribution of program states. Thus, a branch condition has some probability of being true
and some probability of being false in every probabilistic program state. A SE procedure for
probabilistic programs should be able to compute probabilities of branches and combine these
probabilities to reason about probabilities of whole paths.

e Handling unknown inputs. Like standard programs, randomized programs usually accept

input parameters. These unknown values are qualitatively different from the unknown results of
random sampling commands: there is no probability assigned to different settings of the inputs,
and the target correctness property universally quantifies over all possible inputs.
Prior work has considered SE for probabilistic programs [Geldenhuys et al. 2012; Sampson
et al. 2014], but unlike traditional SE, most existing methods do not treat the program inputs as
unknown values. Instead, existing methods typically consider probabilistic programs without
inputs [Sampson et al. 2014] or assume that the inputs are drawn from a known probability
distribution [Geldenhuys et al. 2012]. This simplification allows existing SE methods to compute
probabilities exactly using model counting or approximately using statistical sampling. However,
it significantly limits the kinds of programs and properties that can be analyzed.

Our work. We propose a symbolic execution method for randomized programs with unknown
inputs. These programs can be thought of as producing a family of output distributions, one for
each concrete input, with inputs ranging over a large, possibly infinite set. We consider two kinds
of properties:

e Probability bounds. For all inputs, the probability of reaching a program state is at most/at
least/exactly equal to some quantity, which may depend on the inputs. These properties are the
probabilistic analog of the reachability properties considered by traditional SE.

o Expectation bounds. For all inputs, the expected value of a program expression in the output is at
most/at least/exactly equal to some quantity, which may depend on the inputs. These properties
are useful for bounding expected resource usage or running time.

There are two key technical ingredients in our approach:

e Distinguishing between regular and probabilistic symbolic variables. Our method models
sampling statements by introducing a new kind of probabilistic symbolic variable. While regular
symbolic variables represent unknown inputs, probabilistic symbolic variables represent the
result from sampling a known distribution.

e Computing symbolic branch probabilities. Branch probabilities may depend on unknown
program inputs. Accordingly, we cannot use approaches like model counting to compute the
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branch probabilities since the probabilities are not constants. Instead, our method computes the
branch probability expressions symbolically.

Contributions and outline. After illustrating our method on an example (§2), we present our main
contributions:

e A symbolic execution method for probabilistic programs with unknown input parameters and a
formal proof of soundness for our method (§3).

e A collection of case studies from the randomized algorithms literature (§4), including bounding
the soundness probability of Freivalds’ algorithm [Freivalds 1977], the expected number of
comparisons for randomized quicksort, and the correctness probability of a randomized algorithm
for checking monotonicity [Goldreich 2017]. All examples have unknown input parameters.

e An optimized implementation of our approach called Prinko (§5). PLINkO is built on top of
the KLEE symbolic execution engine [Cadar et al. 2008], allowing PLINKO to perform symbolic
execution on real implementations of randomized programs written in any language that can
generate LLVM bytecode, while also faithfully modeling program states on real hardware (e.g.,
with overflowing arithmetic, arrays, etc.).

e A thorough experimental evaluation of our tool (§6). We show that our method significantly
outperforms two well-developed tools for analyzing probabilistic programs: Pst [Gehr et al. 2016,
2020], a leading tool for exact probabilistic symbolic inference, and STORM, a probabilistic model
checker [Hensel et al. 2022]. We also evaluate the factors affecting the performance of Prinko
and the effectiveness of our optimizations.

We conclude by discussing other potential optimizations (§7), related work (§8), and future directions
(§9). Source code for PLINKO and our case studies is available on Zenodo [Susag et al. 2022]. The
full version of this paper is available on arXiv, which contains full proofs and additional details.

2 OVERVIEW

The Monty Hall problem [Selvin 1975] is a classic probability puzzle based on the American
television show Let’s Make a Deal. The problem itself is simple:

You are a contestant on a game show. Behind one of three doors there is a car, and behind
the others, goats. You pick a door, and the host, who knows what is behind each of the doors,
opens a different door, behind which is a goat. The host then offers you the choice to switch to
the remaining closed door. Should you?

While it may seem counterintuitive, you should always switch doors: regardless of your original
door choice, you will win the car two-thirds of the time if you do switch and only a third of the
time if you do not. We model the Monty Hall problem as the probabilistic program in Figure 2.
The variable choice € [1, 3] represents the door that is originally chosen by the contestant, while
the boolean variable door_switch represents whether the contestant chooses to switch doors.
Regardless of the value of choice, if door_switch == true then monty_hall should return true
(i.e., the contestant wins) two-thirds of the time.

Our goal is to automate this reasoning. More generally, the problem we aim to solve is: given a
probabilistic program with discrete sampling statements and a target probability bound, how do
we verify that the program satisfies the bound? While the property for the Monty Hall problem
is possible to verify with existing methods due to its small input space (i.e., it is feasible to try
all possible inputs and verify the probability bound on each output distribution), more realistic
probabilistic programs often have an enormous space of inputs (e.g., randomized quicksort takes
an array of integers as input). We solve this problem by developing a symbolic execution method.
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Fig. 1. Symbolic execution tree for the Monty Hall Problem if the car is behind door 1.

In symbolic execution, program inputs are re-
placed by symbolic variables that can take on
any value. The program is then “run” on these
symbolic variables. When a branch is encoun-
tered (e.g., an if condition), execution proceeds
along both branches, and the branch’s guard is
recorded in that path’s path condition, denoted
by ¢. This yields a symbolic execution tree that
describes all possible paths through the pro-
gram.

To illustrate this idea, suppose we were
to use traditional symbolic execution to ana-
lyze the program in Figure 2 but fixed the car
behind door 1. The two inputs, choice and
door_switch, would become the symbolic vari-
ables « and f respectively. The execution tree
is shown in Figure 1. (Symmetric trees can be
made for the cases when the car is behind doors
2 and 3.). Each node contains the correspond-
ing line number and branch guard. Leaves sur-
rounded by a green dashed line (- -) denote
paths where the program returns true (i.e., the
contestant wins the car), and leaves surrounded
by a red dotted line (....) denote paths where
the program returns false (i.e., the contestant
wins a goat). A path condition ¢ is a conjunc-

bool monty_hall(int choice, bool door_switch) {

1
2 int car_door = uniform_int(1,3);
3 int host_door;

4 if (choice == car_door)

5 return !door_switch;

6 if (choice != 1 && car_door != 1)

7 host_door = 1;

g8 else if (choice != 2 && car_door != 2)
9 host_door = 2;

10 else

11 host_door = 3;

12 if (door_switch)

13 if (host_door == 1)

14 if (choice == 2)

15 choice = 3;

16 else

17 choice = 2;

18 else if (host_door == 2)

19 if (choice == 1)

20 choice = 3;

21 else

22 choice = 1;

23 else

24 if (choice == 1)

25 choice = 2;

26 else

27 choice = 1;

28 return choice == car_door;

29 }
Fig. 2. C code for the Monty Hall problem.

tion of all the ¢; between the root of the tree and a leaf.
For example, consider the bolded path in Figure 1. Execution begins on line 1 with an empty path

condition: ¢ = T. When the first if condition is reached on line 4, if (choice ==

car_door),

the path follows the false branch. We then conjoin the corresponding symbolic expression to ¢, i.e.,
¢ = a # 1. Execution along this path then jumps to line 6. However, the guard choice != 1 &&
car_door != 1 isalways false as car_door == 1. Since there is no ambiguity about which branch
to follow, ¢ remains unchanged. The next branch is on line 8, which is equivalent to checking
whether car_door != 2. The path takes the true branch, so we update ¢ with the new guard:
¢ = (a # 1) A (@ # 2). The last branch is on line 12, where the program checks whether the
contestant chose to switch doors. This guard ultimately determines whether the contestant wins
the car along this path as we previously determined that the contestant did not originally pick the
winning door. Here, switching wins the car while not switching only wins a goat. The entire path
condition ¢ can then be written as ¢ = (@ # 1) A (a # 2) A =f.
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Fig. 3. Symbolic execution tree for the Monty Hall Problem with probabilistic symbolic variables. p; and
py denote the probability expressions for taking the true and false branches of the if condition found on
line 4 of Figure 2. While every branch has an associated probability expression, we omit displaying them for
presentation purposes.

Given a setting of the input parameters, this analysis can tell us whether the contestant will win
the car when the car is behind door 1; however, it cannot tell us how likely winning the car is. In
principle, if we combined the tree shown in Figure 1 with the symmetric trees for the cases where
the car is behind doors 2 and 3, and if we knew how likely it was to take one branch over another,
we could extend this reasoning to determine how often we would reach a winning state.

To carry out this kind of quantitative reasoning within symbolic execution, our core idea is
to represent probabilistic samples as a new class of symbolic variables. We refer to these
variables as probabilistic symbolic variables in contrast to regular symbolic variables, which we
instead call universal symbolic variables. Just as in standard symbolic execution, universal symbolic
variables represent unknown program inputs. Since these program inputs are universally quantified
instead of being drawn from some assumed distribution, the name “universal” symbolic variable
is appropriate. In contrast, probabilistic symbolic variables represent the result of random draws.
During symbolic execution, instead of actually drawing a random sample, we represent the would-
be sample as a probabilistic symbolic variable and record the source distribution. Our method uses
this information to compute the (symbolic) probabilities of taking branches.

To demonstrate, let car_door be represented by the probabilistic symbolic variable, §. Instead
of branching solely on the universal symbolic variables & and 8, we additionally branch on the
probabilistic symbolic variable §. This execution tree is presented in Figure 3. We elide branches
where the current path condition shows that only one choice is feasible.

Since probabilistic symbolic variables are drawn from a distribution, we can compute the prob-
ability of taking a certain branch by simply counting how many values from the domain of the
distribution satisfy the guard condition. For example, to compute the probability of taking the true
branch in line 4 (denoted by p; in Figure 3), it suffices to count how many settings of § satisfy
a = 6 and divide by the total number of possible assignments to §, or 3, as car_door is uniformly
randomly chosen to be 1, 2, or 3. However, since « is a symbolic variable, we can only obtain a
probability expression over universal symbolic variables. Let [-] denote Iverson brackets, where
[Q] = 1if formula Q is true and 0 otherwise. Then, p; = ([a = 1] + [ =2] + [¢ =3])/3=1/3 as
0 € {1,2,3} and each setting is equally likely. Similarly, pr = ([ # 1]+ [a # 2] + [a # 3])/3 = 2/3.
We stress that in general these probabilities can be symbolic expressions as they may depend on the
universal symbolic variables. This feature is one of the key advantages of our technique over exist-
ing methods for probabilistic symbolic execution: it makes reasoning about the probabilities much
more complex, but it also allows us to prove properties for programs with truly unknown inputs.
In §3, we explain how our technique can automatically generate these probability expressions and,
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by using standard probability rules, combine them to construct probability expressions for entire
paths.

Returning now to our motivating question: if the contestant switches doors, do their chances
of winning the car exceed 1/3? Using the tree in Figure 3, we can limit our focus to just those
paths that lead to a win. Then, to find the probability of winning the car given the contestant
switches doors, we filter out those paths where —f is true and sum together the probabilities of the
remaining paths. Regardless of what « is, the resulting expression produces a probability of 2/3.

3 PROBABILISTIC SYMBOLIC EXECUTION

Now that we have described how our approach works at a high level, we can flesh out the details.
We begin with preliminary details (§3.1) and an overview of standard symbolic execution for non-
probabilistic programs (§3.2). Then, we present our symbolic execution approach for probabilistic
programs. Our approach has two steps: first, we augment standard symbolic execution to track
probabilistic information as paths are explored (§3.3). Then, we convert the program paths into
a logical query that encodes a probabilistic property (§3.4). Finally, we formalize our approach
mathematically and prove its soundness (§3.5).

3.1 Preliminaries

Our algorithm works on programs written in pWhile, a core imperative probabilistic programming
language. The statements of pWhile are described by the following grammar:

S:=x«e|x~d|S;;S;|if c then goto T | halt

Intuitively, the assignment statement x «— e assigns the result of evaluating the expression e to the
program variable x, while the sampling statement x ~ d draws a random sample from a distribution
d and assigns the result to the program variable x. Here, d is a discrete distribution expression
defining which distribution the sample should be drawn from; these distributions are primitives,
corresponding to mathematically standard distributions (e.g., uniform or coin flip distributions).
We interpret distributions as functions from values to the range [0, 1] (i.e., the probability of the
value occurring in the distribution). For example, UniformlInt(1, 6) is a uniform distribution that
selects a random integer between 1 and 6 (inclusive). For presentation purposes, we limit our focus
to uniform integer distributions, but our method can support other finite, discrete distributions,
such as the Bernoulli or uniform joint distributions.

Control flow is implemented by S;; Sz, which sequences two statements S; and S,, and if
¢ then goto T, which jumps execution to the statement referenced by the address/label T if
the guard ¢ holds, and otherwise falls through to the next instruction. We assume that high-level
constructs like loops and regular conditionals are compiled down to conditional branches. Finally,
halt marks the end of execution.

Our probabilistic symbolic execution algorithm will aim to answer the following question: What
is the maximum (or minimum) probability that a program, Prog, terminates in a state where a
predicate i holds? Formally, we are interested in computing

max {Pr{y] | u = Prog(X)}

where p is the distribution on outputs obtained by running Prog on inputs . Since this quantity is
difficult to compute in general, we will also be interested in proving bounds:

max {Pr[y] | p = Prog(x)} »< f(X)

where < € {<, >,=,...} is a comparison operator and f is a given function of the program inputs.
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Algorithm 1 Probabilistic Symbolic Execution Algorithm

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

40:

procedure SyMBEX(Prog : Program, X : Program Inputs, 1 : Predicate)

Es <[], Oinit < BINDToSYMBOLIC(X), Ency, < 0.0, Ency < 0.0
Iy < GETSTARTINSTRUCTION(Prog)
So « (Io, T, Oinit> 0, 1.0)
E.PusH(Sy)
while Es # 0 do
(Ie, ¢, 0,P, p) «— Es.Pop()
if UNSAT(p) then
continue
switch INsTTYPE(I;) do
case
I « GETNEXTINSTRUCTION(I)
o[x] « ole]
Sl «— (Il, @, 0, P,p)
E.PusH(S;)
case
I « GETNEXTINSTRUCTION(I.)
6 < Generate a fresh probabilistic symbolic variable
o1, Py « (o[x > 6],P[ — d])
Sl — (Ic, @, 01, Pl,p)
E.PusH(S1)
end case
Csym — olc]
Pt PF < PBranch (csym, ¢, P)
I « GeTINSTRUCTION(T)
I, < GETNEXTINSTRUCTION(I,)
St — I, @A Csym, 0, P, p “pr)
Sf (I, ¢ A —Csym, o, P, p - pf)
Es.Pusu(Sy)
Eg PusH(S;)

case
Ysym < o[¥]
if SAT(Ysym) then
P, pr < PBranch(Ysym, ¢, P)
Ency <« Ency +p
end if
Ency < Ency +p - o[v]
r < SowvE (Ency, Ency)
return r

Symbolic execution [King 1976] is a program analysis technique that iteratively explores the set

of paths through a given program. Since program paths may depend on potentially unknown input
variables, symbolic execution treats each input as a symbolic variable. All program operations are
redefined to manipulate these symbolic variables. We present a high-level description of symbolic
execution in Algorithm 1. The reader should ignore the portions in shaded boxes for now; these
are our extensions to handle probabilistic programs.

Symbolic execution tracks program state using the following data structures: the next instruction

I; a path condition ¢, which is a conjunctive formula consisting of the symbolic branch constraints
that are true for a particular path; and an expression map o, which maps program variables to
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symbolic expressions over constants and symbolic variables. To begin, Algorithm 1 initializes the
execution stack Es with an empty list and the expression map o with fresh symbolic variables for
each program input in the input vector X by calling BinpToSymBoLic, as shown on line 2. I is then
initialized with the first instruction of the program on line 3, and the initial state tuple Sy is created
on line 4 and appended to E;.

The core of Algorithm 1 iterates through all reachable states until Es is exhausted (lines 6 to 38).
For each iteration, we pop a state from E; (line 7), and, if the selected path condition ¢ is feasible,
the target instruction is analyzed based on the instruction’s form: line 11 for assignment statements,
and line 23 for branch statements.

For an assignment statement x <— e where e is a program expression, we first convert e into a
symbolic expression using the expression map o. We use the notation o[e] to denote the symbolic
expression ey, constructed by replacing each program variable in e with its corresponding symbolic
expression in o. For a branch statement if ¢ then goto T, Algorithm 1 forks by constructing the
corresponding path conditions for both branches, pushing the symbolic branch guard ¢y, in the
positive and negative form (for the true and false branches, respectively) to E;. Finally, symbolic
execution along a path terminates at a halt instruction, and information about the final symbolic
state is collected for subsequent analysis.

3.3 Probabilistic Symbolic Execution

To support random sampling instructions, our algorithm distinguishes between two categories of
symbolic variables:

o Universal symbolic variables: These are identical to those in traditional symbolic execution and
are used to model unknown program inputs.

e Probabilistic symbolic variables: These model a random sample from a known distribution. Fresh
probabilistic symbolic variables are created for each sampling statement to represent the result
of a random draw.

Symbolic execution becomes more challenging when both universal and probabilistic variables are
present as branches are taken with some quantitative probability dependent on the results of the
random samples and the universal symbolic variables. To track information about probabilistic
states, we use the following data structures:

o Distribution map (P): Analogous to o, this map from probabilistic symbolic variables to distribution
expressions tracks the distribution from which a probabilistic symbolic variable was originally
sampled from.

o Path probability (p): For each path, we maintain a path probability expression p over the universal
symbolic variables.

We can now define how symbolic execution handles sampling statements and how to compute
the probability of taking either side of a branch statement.

Sampling (Lines 16 to 22). On encountering a sampling statement x ~ d (line 16 of Algorithm 1),
we generate a fresh probabilistic symbolic variable § to model the random value sampled from the
distribution described by the distribution expression d. We update the expression map o to map
the program variable x to § and record §’s distribution in the distribution map P.

Branches (Lines 23 to 31). Similar to traditional symbolic execution, upon reaching a branch
statement our algorithm pushes the symbolic states corresponding to the true and false branches to
E;. Then, PBraNCH (Algorithm 2) computes probability expressions for the true and false branches.
PBrancH takes the following as inputs: an expression csym, which is the symbolic equivalent of
the program guard expression c; the current path condition ¢; and the current distribution map
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Algorithm 2 Probabilistic Branch Algorithm

1: function PBRANCH(Csyrm, ¢, P)
2: (51,...,5,1) <—d0m(P)
3 (di,....dn) < (P[61),....P[6n])
4 D« dom(dy) X ---xdom (dy)
D [(esym A )81 5 01, 85 > 0a}]
(v1,...,0n) €D
D lp{61 o 01 80 0a}]
(01.-0n) €D
6 pre—1—p;
7: return (pe, pl)

5: Pec <

P. It returns two probability expressions (p,, p..) representing the probabilities of taking the true
and false branches respectively. For simplicity, we present this subroutine in the simplified setting
where all sampling instructions are from discrete uniform distributions; handling general weighted
distributions is not much more complicated and is supported in our implementation.

To gain intuition for how we compute path probabilities, consider the case where the guard
condition contains only universal symbolic variables. Let ¢s,m = o[c] be the equivalent symbolic
expression for the guard ¢ and assume that ¢, does not mention any probabilistic symbolic
variables. In this case, the branch that is taken is entirely determined by the universal symbolic
variables. For a fixed setting of the universal symbolic variables, one branch must have a probability
of 1 and the other 0. Put another way, either csy, or ¢y, is satisfiable but never both. We use
Iverson brackets to represent the symbolic probability of taking the “true” and “false” branches,
namely [csym] and [—cgym] respectively.

For probabilistic branches—guards which contain probabilistic symbolic variables—computing
the branch probability is more involved. We give an intuitive justification here and defer the
proof of correctness to §3.5. When Algorithm 1 encounters a branch statement, recall that ¢
contains the necessary constraints on the symbolic variables that must hold in order to reach the
branch statement in question. Therefore, we can view the probability of taking either branch as a
conditional probability: the probability that ¢,y holds assuming that ¢ is satisfied. Formally, we
want to compute Pr{csym | ¢] = Prlcsym A @] /Pr[o].

Algorithm 2 builds p., a formula for Pr[csym | ¢]. Note that each probabilistic symbolic variable
¢ is mapped to precisely one distribution, d. Assuming there are n probabilistic symbolic variables
81 - .., 0, and n distributions dy, . . ., d, the set of all possible values for §;,...,8, is D (line 4).
Using our simplifying assumption that all probabilistic symbolic variables are drawn from uniform
distributions, each assignment (vy,...,v,) for (&1,...,d,) has equal probability. Thus, instead of
computing the conditional probability as a ratio of probabilities, we calculate the ratio of the number
of assignments from O which satisfy c;ym A ¢ and ¢ as shown on line 5 of Algorithm 2. We stress
that p. is a symbolic expression possibly containing universal symbolic variables. Finally, we use the
fact that the sum of the conditional probabilities of the branch outcomes is 1 to get the probability
of the false branch.

We can now compute the probability of an entire path ¢ A csym (0r ¢ A —c5ym). Since p; is the
conditional probability of cs,m, being true (line 25) and p is the probability of ¢, we can use the
standard rule Pr[A A B] = Pr[A | B] Pr[B], where A and B are any two events, to conclude that
Pr[¢ A csym] = p - ps. The same can be done for ¢ A —cgy, as shown on lines 28 and 29.

Example. Consider the program in Figure 4a, and suppose we wish to calculate the probability
of the program returning True. Following Algorithm 1, we generate fresh probabilistic symbolic
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1: X ~ UniformlInt(1, 3)
2: y ~ UniformlInt(1, 3)
3: if x > 1 then
4: if x <y then
5 return True
6: else

7: return False

(a) Example program. (b) Symbolic execution tree.

Fig. 4. Asample, randomized program and its associated symbolic execution tree annotated with probabilities.

variables §; and §; for x and y respectively, and record their originating distribution ¢/{1, 3}. Using
Algorithm 2 to process line 4 of Figure 4a, note that D = {1, 2,3} x {1,2,3} and

Pr[(8; < &) A (8, > 1)]

pczPr[51<5g|51>1]=

Pr[51 > 1]
DTG < &) A1 > V{61 o 01,8, - 05)]
_ (v1,09)€D _ l
D11 > D{ e o} 6

(v1,02) €D

Therefore, the probability of taking the true branch of the inner if condition is only 1/6, which
makes sense as x is restricted to be either 2 or 3, but y can be either 1,2, or 3; however, only one
setting of x and y will satisfy (x > 1) A (x < y), namely x = 2 and y = 3. We can use Algorithm 2
on the remaining branches in Figure 4a to yield the fully annotated symbolic execution tree in
Figure 4b.

3.4 Query Generation

Recall that our original goal was to prove bounds on the probability that a program Prog terminates
in a state where an arbitrary predicate i holds. We frame this question as a logical query using the
symbolic state found in the execution tree. In general, our queries are of the following form:

Yay,...,an . Ency > f(ay, ..., o) (1)

where aj, ..., ap are all the universal symbolic variables found in Prog, Ency is an expression
representing the probability that ¢ holds in Prog, »< is a binary relation (e.g., >, <, >, <), and f
is some lower/upper bound function of the universal symbolic variables that we want to prove
Prog does not violate. Another way of interpreting f is a function which computes the desired
probability of ¢ occurring in Prog (e.g., a maximum acceptable error rate) given a setting of the
universal symbolic variables.

We construct the expression Ency on lines 33 to 38 of Algorithm 1. Once a path reaches a halt
statement, { is converted into its corresponding symbolic expression sy, using the expression
map o. If s, is satisfiable, we use Algorithm 2 to calculate the probability of /., being true given
¢, denoted by p,. We then add p - py, the probability that we traversed ¢ and s, is true along
path ¢, to the current expression Ency. Note that some settings of the universal symbolic variables,
a, ..., ay, may not be reachable along path ¢. Since Algorithm 2 embeds the path condition ¢
into the probability expressions (p;, pr), if ¢ is falsified, then the probability of ¢ is 0. Once all
reachable states in E are exhausted, the total probability that ¢ holds for all reachable paths in
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Prog is Ency. SOLVE is then called on line 39, which takes in Ency, constructs (1), and calls and
automated decision procedure, such as an SMT solver, to answer the query.

The meaning of (1) depends on the termination condition of Algorithm 1. If all reachable paths
are explored, then Ency represents the exact probability that i holds in the output distribution,
parameterized by the unknown input variables. However, we will not always be able to explore
all paths. In this case, Ency, may not be equal to the true probability of ¥, but it is always a sound
lower bound of the true probability. While this may not be enough to verify typical correctness
properties, it can be useful for refuting certain kinds of correctness properties. For instance, if we
want to check that the probability of ¢ is at most f(ay, .. ., a,) for all settings of the input variables,
and Algorithm 1 produces a probability mass Ency, that exceeds f(ay, ..., a,) for some setting of
the input variables, then the original upper bound cannot hold.

Example. In §2 we introduced the Monty Hall problem. We wanted to prove that, if a contestant
always switched doors, their probability of winning the car is 2/3. We can frame this property as a
query of the form defined in (1). If « is the universal symbolic variable corresponding to choice, and
B is the universal symbolic variable corresponding to door_switch, let = f A monty_hall(«, ),
»a= =, and f = 2/3. Then, our full query is Va, 8 . Ency, = 2/3. Algorithm 1 then constructs the tree
found in Figure 3 and the probability expression for each path. If ¢; is the path condition for the
path ending in the ith-left-most leaf of Figure 3 and p; is the probability expression for ¢; as created
by Algorithm 1, then Ency = ps3 + ps + py. Lastly, SOLVE takes the query Ve, 8. p3 + ps + p7 = 2/3
and uses an external automated decision procedure to prove for each possible setting of a and
thatp3 +ps+pr = 2/3

3.4.1 Expected Value Queries. In addition to probability-bound queries, our technique can also
prove bounds on the expected value of any variable with only minor modifications. Suppose that
we want to find the expected value of an arbitrary program variable named v, denoted E [v]. Since
each path has a probability p; and an expression map o;, we can construct a symbolic expression
that computes E [v], namely )7, p; - 0;[v], as o3[ v] is the symbolic expression which is the value
of v along the i'M path (line 38 of Algorithm 1). Then, for SOLVE on line 39, we use an automated
tool to solve the query

Vai,...,ay . Ency > f(ag, ..., ay)

where ay, . .., ay are the universal symbolic variables representing the input variables of Prog.

3.5 Formalization

In this section, we state a series of soundness theorems for Algorithm 1.

3.5.1 Soundness Theorems. Note that, in Algorithm 1, we represent the symbolic program state
as the five-tuple S = (I, ¢, 0, P, p); however, in our abstraction R = (¢, o, P), we omit I and p. We
remove I as we prove soundness locally for each type of statement in pWhile rather than prove
soundness for the entirety of Algorithm 1, so there is no need to track what the current instruction
is. We begin by proving that p can be completely reconstructed using ¢ and P, so there is no need
to track it separately.

LEMMA 3.1 (EQUIVALENCY BETWEEN p AND (¢, P)). For all program statements, S in pWhile,
Algorithm 1 maintains

Z [p{61 > v1,...,0n > v,}]

|D|
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where {01, ...,0,} = dom (P) is the set of all the probabilistic symbolic variables in the program,
and D = dom (P[61]) X - - X dom (P[6,]) is the set of all assignments to the probabilistic symbolic
variables 61, . . ., Op,.

We prove soundness for Algorithm 1 by showing that our abstraction R respects the semantics for
each of the three main types of statements in pWhile, namely assignment, sampling, and branching.

THEOREM 3.2 (CORRECTNESS OF ASSIGNMENT (LINES 13 TO 14)). If a distribution p satisfies R =
(¢, 0,P) and Algorithm 1 reaches an assignment statement of the form x « e, then jy ., the
distribution of program memories after executing x < e, satisfies R’ = (¢, o', P).

THEOREM 3.3 (CORRECTNESS OF SAMPLING (LINES 19 To 20)). If a distribution u satisfies R =
(¢, 0, P) and Algorithm 1 reaches a sampling statement of the form x ~ d, then uy.q, the distribution
of program memories after executing x ~ d, satisfies R’ = (¢,0’, P’).

THEOREM 3.4 (CORRECTNESS OF BRANCHING (LINES 25, 28 AND 29)). If a distribution y satisfies
R = (¢, 0, P), and Algorithm 1 encounters a branching statement of the form if ¢ then goto T, then
Ye satisfies Ripye = (@ A Csym, 0, P) and pi- satisfies Reaise = (¢ A —Csym, 0, P) if all the distributions
in P are uniform. Additionally, for all ay € Ay,

play,m) = [pcllav  and >, p(ay,m) = [p;]lav
me{meM||[cm=1} me{meM|[c]|m=0}

where pl. =1 — p,.

4 CASE STUDIES

In this section, we introduce the case studies that we will use in our evaluation. For each case
study, we give a brief description of the algorithm and the target property we wish to verify.
Additionally, we specify which variables are concretized for our evaluation. Like other symbolic
execution methods, our tool requires fixing, or concretizing, some parameters, such as the lengths
of input arrays and loop bounds. We discuss in greater depth why concretization is necessary and
discuss the implications it has on performance in §6.

Freivalds’ Algorithm. Freivalds’ algorithm [Freivalds 1977] is a randomized algorithm used to
verify matrix multiplication. Given three n X n matrices A, B, and C, if AX B = C, then the algorithm
always returns true. However, if A X B # C, the probability that Freivalds’ algorithm returns true
(i.e., a false positive) is at most 1/2.

We want to verify that the false positive rate is at most 1/2. Letting

¥ = AX B # C A Freivalds(A, B,C, n) = true,
our query is then:
VA,B,C . Ency < 1/2
where n is concretized. To reduce the probability of false positives, Freivalds’ algorithm can be
run k times, returning true only if all calls return true, and false otherwise. Since each trial is

independent, the probability of a false positive given that A x B # C is at most (1/2)*. If we let
¥ £ Ax B # C A MultFreivalds(A, B,C, n, k) = true, our query then becomes: VA, B,C . Ency <

(1/2)k, where n and k are concretized.
The assertion A X B # C can be encoded as the following logical formula, SOMEOF¥:

n n
SoMEOFF £ (AxB);; #Ci;
J .J

i=1 j=1
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which asserts that at least one element differ between A X B and C.
We also consider two other encodings:

n n
Auorr £ A A (AxB);; #Ci; FIrsTOFF £ (A X B)og # Co
i=1 j=1

ALLOFF states that every element of A X B must be different from the corresponding element
in C, while FIRsTOFF states that the first element of each matrix is different. These conditions
imply SOMEOFF, so they give weaker guarantees: a program that satisfies the specification under
A1LLOFF or FIRsTOFF might fail to satisfy the specification under SOMEOFF. However, if a program
fails to satisfy the specification under ALLOFF or FIRSTOFF, then they must also fail to satisfy the
specification under SOMEOFF. These different encodings impact the performance of our tool; we
return to these details in §6.

Reservoir Sampling. Reservoir Sampling [Vitter 1985] is a classical, online algorithm which
produces a simple random sample S of k elements drawn from a population A of n elements. We
want to verify that the random samples returned by reservoir sampling are indeed simple, or that
each element of A has equal probability of being in S. To make this property easier to state, we
consider an equivalent property: if we assume all elements of A are distinct, then the probability
that any element of A is in S is exactly k/n. We assume that the elements of A are distinct because
if A contained duplicate elements, then it is only true that the probability that each element of A is
in S is at least k/n, which does not necessarily imply that S is a simple random sample of A.

We frame this property by asking what is the probability that the first element of A appears in S.
Lety = A[1] # --- # A[n] A A[1] € ReservoirSample(A, k). We then take the query:

VA . Ency = k/n,
where n and k are concretized.

Randomized Monotonicity Testing. Randomized monotonicity testing [Goldreich 2017] is a binary-
search-like algorithm to determine how far a function f : [n] — R is from being monotone
increasing, where [n] = {1,...,n} and R is some ordered set. If f is monotone, then the algorithm
will return true; if f is §-far from monotone, it will reject with probability greater than § [Goldreich
2017], where 6-far means that the value of f needs to be changed on at most § - n points in order to
arrive at a monotone function. Let DistToMono(f) be the number of elements whose order needs
to change to make f monotone, R = Z, and ¢ = MonotoneTest(f, n) = false. Our query is:

DistToMono(f)

Vf:[n] - Z.Ency > "

where n is concretized, and we universally quantify over all functions with domain [n] and codomain

Z.

Randomized Quicksort. Quicksort [Hoare 1961] is a popular sorting algorithm which uses parti-
tioning in order to achieve efficient sorting. While there are many ways of choosing a pivot element,
one effective way is randomly. Using this pivot method, the expected number of comparisons
required is approximately 1.386nlog,(n) where n is the length of the array. We use the method
described in §3.4.1 to compute E [num_comps], where num_comps is a program variable which is
initially set to 0 and is incremented whenever a comparison occurs for a concretized array length,
n.
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Bloom Filter. A Bloom filter [Bloom 1970] is a space-efficient, probabilistic data structure used to
rapidly determine whether an element is in a set by allowing for false positives. Bloom filters are
generally parameterized by the expected number of unique elements to be inserted, m, and a target
maximum false positive error rate after m insertions, e. We want to verify that after inserting m
elements, the actual probability of a false positive is at most ¢.

To capture this property, let xi, . .., x;, be m unique elements to be inserted into a Bloom filter B.
Note that a false positive occurs when BloomCheck(B, y) returns true wheny # x; A--- Ay # xppy
given that and xy, ..., x, were all previously inserted into B. Therefore, let y be such that y #
X1 A ANY # X, and

m
¥ £ B = BloomCreate(m, €) A /\ BloomlInsert(B, x;) | A BloomCheck(B,y) = true

i=1
and take the query to be Vx1,...,xm,y . Ency < ¢, where m and ¢ are concretized.

Count-min Sketch. A count-min sketch [Cormode and Muthukrishnan 2004] is another space-
efficient, probabilistic data structure which encodes a frequency table for a stream of data. To
reduce the space usage, the counts can be approximate: the reported estimate for the frequency of
an element, x, namely dy, has the property that d, < ¢- N with probability 1 —y, where N = 3, ax,
or the total number of elements seen in the sketch, and a, is the actual count for x. To appropriately
initialize the count-min sketch, most implementations are parameterized by the additive error
factor ¢ and the error probability y.

We want to prove that after inserting n distinct elements, the probability that the error is greater
than the additive bound ¢ is at most 1 — y. Assuming distinct elements simplifies the query, since
the actual counts for each element in the count-min sketch is exactly 1. It is possible to remove this
assumption, adjusting the following query to refer to the actual counts for each inserted element.

Similar to how we framed the Bloom filter query, let x4, . . ., x, be n unique elements to be inserted
into a count-min sketch C, parameterized by ¢ and y. If we let

¥y £ C = SketchCreate(s, y) A /\ SketchUpdate(C, x;) | A SketchEstimate(C,x;) > 1+¢ - n,
i=1

then the query becomes
Vxi,...,%Xn . Ency <y

where n, ¢, and y are concretized parameters.

5 IMPLEMENTATION

We implemented our method in a prototype tool called Prinko, building on top of the KLEE
symbolic execution engine [Cadar et al. 2008].! PLINKO constructs the queries described in §3.4,
and then dispatches them to the Z3 SMT solver [de Moura and Bjerner 2008]; we use the array,
bit-vector, and real number theories from SMT-LIB [Barrett et al. 2016]. If PLINKO is unable to prove
the query, it returns a counterexample consisting of an input along with the computed probability
of the target event. By using KLEE, PLINKO is able to directly analyze LLVM bytecode with primitive
calls for random sampling. Thus, PLINKO can analyze any program written in any programming
language that compiles down to LLVM intermediate representation (IR). We require that the end-
user annotate which variables should be universally quantified and which are probabilistic, along
with the associated distribution, using KLEE intrinsic functions.

1Source code for PLINkO and all case studies are freely available on Zenodo [Susag et al. 2022]
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x ~ UniformlInt(1, 3)
if x > 1 then

if x = 2 then

return True 01>1 ﬁ(al > l)
else ___/

y ~ UniformInt(0, 1) S1=21 |-(8 =2)

retaxrny=0 == -=--

else
return False

D A A A o e

(a) Program. (b) Symbolic execution tree.

Fig. 5. An example program and symbolic execution tree which exhibits path overlap.

We have also implemented several optimizations for PLINKO, which aim to decrease the size
and complexity of Ency, or the expression denoting the probability that the predicate i is true.
Specifically, we have designed three optimizations: precomputing the probability for simple guards,
applying algebraic simplifications, and compressing formulas by factoring out shared terms. We
discuss these optimizations here and in the next section (§6) evaluate their effectiveness on our
case studies.

Simple Guards. We define a simple guard as a predicate of the form § > k, where § is a probabilistic
symbolic variable, P[J] is a uniform integer distribution, = € {<, >, <, >,=,#}, and k is a constant.
For such guards, we can compute the probability of ¢ = (§ »< k) being true in constant time as
there exist closed-form solutions for the number of satisfying assignments to § which make c true.
This effectively allows us to avoid using Algorithm 2 to compute p. when ¢y, is a simple guard.

For example, reconsider the outermost conditional statement (line 3) presented in Figure 4a:
61 > 1 where §; ~ U{1, 3}. By default, PLINkO would use Algorithm 2 to construct ps,~; = [1 >
1] + [2 > 1] + [3 > 1]/3. This symbolic expression then gets simplified by Z3 to the constant 2/3.
However, for §; > 1, the numerator is just max{dom (2/{1,3})} — 1 = 2, and so the probability
of §; > 1 being true is simply 2/3. We have encoded these rewriting rules into Prinko for each
primitive binary relation.

Algebraic Simplifications. In order to reduce the work that Z3 must do, we can apply elementary
algebraic simplifications on Ency. For example, we leverage the associative, commutative, distribu-
tive properties of addition and multiplication, along with basic boolean algebra laws such as the
associativity and commutativity of conjunction and disjunction and De Morgan’s laws. We apply a
simple fixed-point algorithm to apply each of these laws on Ency as a preprocessing step before
solving the query.

Formula Sharing. The encoded probability Enc,, generated by our method is a sum of expressions,
one for each explored path. Since paths come from the same symbolic execution tree, terms
representing branch probabilities can be repeated multiple times in Ency across different paths
with a shared prefix. These repeated terms can be quite large and complex. Our optimization factors
out common terms in Ency by creating additional logical variables.

To gain intuition, consider the example program in Figure 5. There are two paths where the
program in Figure 5a returns true, namely ¢; = (8; > 1) A (81 = 2) and ¢, = (61 > 1) A (6 =
2) A (82 = 0). Note that ¢; and ¢, share a common conjunct, namely §; > 1 which is the bolded
node in Figure 5b. By default, Algorithm 1 would construct

Enc¢ =Pr[51 > 1]Pr[(51 =2 | 51 > 1]+PI’[51 > 1]Pr[51 * 2 I 51 > 1]Pr[52 =0 | 51 * 2/\61 > 1]

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 181. Publication date: October 2022.



181:16 Zachary Susag, Sumit Lahiri, Justin Hsu, and Subhajit Roy

However, since §; > 1 is a shared conjunct, we are able to factor out Pr[d; > 1] from both
probability expressions by creating a fresh variable, p; = Pr[§; > 1] and replacing every occurrence
of Pr[§; > 1] in Ency with p,. We take this idea one step further by observing that §; = 2 appears
in ¢1, while its negation appears in ¢,. Since for any event A, Pr[A] = 1 — Pr[—A], we can set
p2 =Pr[8; = 2| §; > 1] and again apply a substitution on Ency, resulting in

Enc¢=p1-p2+p1-(l—pg)-Pr[52=O|51¢2A51>1].

We then create assertions which assert the equality of p; and p, with their corresponding expres-
sions, and pass these along with Ency, to the SOLVE procedure.

6 EVALUATION
To evaluate PLINKO, we consider the following questions:

e (Q1) How efficiently can PLINKO prove probabilistic properties on complex programs?
e (Q2) How does PLINKO compare with other general purpose approaches?

e (03) What factors affect the performance of PLINKO?

¢ (Q4) How do our optimizations impact the performance of PLiNkO?

We conducted our experiments on a machine with a 3.3GHz Intel Core i7-5820K and 32 GB of RAM,
running Arch Linux with kernel 5.17.11.

(01) Discussion. We implemented each of our case studies presented in §4 in C++, and verified
them using PLINKo. We used publicly available implementations for the Bloom filter? and count-min
sketch® case studies.

Like other symbolic execution methods, our tool requires concretizing some parameters, such as
the sizes of input arrays and loop bounds. For instance, KLEE has limited support for unknown
(symbolic) array lengths and so it instead considers concrete array sizes when exploring paths.
Note that when an array length is concretized, the array contents remain symbolic. For example, if
the input array length is concretized to 5 in quicksort, PLINKO searches over all possible arrays of
length 5. The choice of concretization also has a large effect on the performance of PLINKO as larger
concrete parameters generally produce more program paths, thus requiring more time to verify
correctness. In a realistic verification setting where concrete parameters are not known ahead of
time, PLINKO could be used to consider longer and longer array inputs until it times out.

Table 1 summarizes our experimental results after verifying the target properties for each of the
case studies presented in §4. For each experiment, we report the following metrics: the amount of
time taken by PLINKO to explore the paths of the program and to generate the query, the amount of
time Z3 took to solve the query, the total amount of time elapsed, the number of lines in the C++
code, the number of paths PLiNKO explored, the number of random samples, and the maximum
values of the concretized variables such that the query can be proven or disproven in the time
allotted. (Recall that §4 describes the concretized parameters for each of our case studies.) All
properties were verified within 10 minutes, except for Bloom filter due to a bug in the reference
implementation. All results in Table 1 use the default version of PriNko (i.e., with only the simple
guards optimization turned on).

We make a few general observations about the results. First, the case studies showcase a range of
path counts and number of random samples. For example, even when we restricted the input array
to be of length 5, PriNxo still explored 120 paths containing 10 random samples when analyzing
quicksort. Second, the time Prinko takes to execute Algorithm 1 is usually much less than the time

Zhttps://github.com/jvirkki/libbloom
3https://github.com/alabid/countminsketch
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395

Table 1. Performance metrics for each of the case studies presented in §4. “Freivalds’” uses the SOMEOFF
specification over ints and “Freivalds’ (Multiple)” uses the FIRsTOFF specification over chars.

Timing (sec.)

Case Study KLEE Z3 Total Lines Paths Samples Concretizations
Freivalds’ 3 26 29 97 2 2 n=2

Freivalds’ (Multiple) 6 259 265 96 8 21 (n,k)=(3,7)
Reservoir Sampling 14 98 112 52 127 6 (nk)=(13,7)
Reservoir Sampling 460 1 461 52 4096 12 (n k) =(13,1)
Monotone Testing 6 384 390 69 36 1 n=27

Quicksort 14 114 128 65 120 10 n=5

Bloom Filter 18 395 413 386 83 8 (m,¢e) =(3,0.39)
Count-min Sketch 4 145 149 245 3 8 (me&y)=1(4,0.5,0.25)

Table 2. Performance metrics for each of the case studies presented in §4 under a 2-hour timeout. “Freivalds’
(Multiple)” uses the FIRSTOFF specification over chars.

Timing (sec.)

Case Study KLEE Z3 Total Lines Paths Samples Concretizations
Freivalds’ (Multiple) 7 2027 2034 96 6 21 (n,k) = (4,5)
Reservoir Sampling 5 85 90 52 15 3 (nk)=(41,38)
Reservoir Sampling 5 36 41 52 7 2 (n,k) =(100,98)
Monotone Testing 6 5883 5889 69 42 1 n=32

Z3 takes to solve the query. This suggests that the main bottleneck at the current scale of our case
studies is constraint solving, not path exploration.

Extended Length Experiments. To better understand the scaling of PLiNkO, we ran additional
experiments with a timeout of 2 hours. In Table 2 we report the performance results of these
experiments. The concretization settings reported are the highest such that the target property can
be successfully verified within 2 hours.

We first note that the concretization settings of Freivalds’ algorithm, quicksort, Bloom filter,
and count-min sketch could not be increased beyond those shown in Table 1. For Bloom filter
we only tried to increase m and for count-min sketch we only tried to increase n. Additionally,
only Freivalds’ algorithm with n = 3 reached the 2-hour timeout, whereas quicksort, Bloom filter,
and count-min sketch all ran out of memory before reaching the 2-hour timeout, at which point
they were terminated by the operating system. For reservoir sampling, we show two concretized
parameter settings with the highest resource usage (both time and memory). We note that the
difficulty of the problem increases as n increases and as k decreases. When (n, k) = (41, 38), we
observed PLINKO using a maximum of 17.8 GB of RAM, and when (n, k) = (100, 98), PLINKkO peaked
at 8.1 GB of RAM. On the other hand, Freivalds’ (Multiple) and monotone testing were both more
time constrained rather than memory constrained.

These extended experiments seem to suggest that memory usage is a large performance bottleneck
for PLinko. Generally, PLINKO consumes more memory as the number of paths and random samples
increase. Memory consumption also increases as the cardinality of the originating distribution’s
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domain increases since we compute path probabilities by summing over every possible assignment
to a random sample.

(02) Discussion. We compare PLINKO against two state-of-the-art systems: Ps1 [Gehr et al. 2016,
2020], an exact symbolic inference engine for probabilistic programs, and STorm [Hensel et al.
2022], a leading probabilistic model checker used to check properties on finite-state probabilistic
transition systems. We also discuss the differences between the input language of Prinko and those
of Pst and STORM.

Pst Comparison. To compare against Ps1 we first implemented each of our case studies as proba-
bilistic programs in the Ps1 language. Then, for each case study, we used Ps1 to produce a symbolic
expression eps; which encodes the joint posterior distribution of the program parameterized by
the input variables. We use eps; in place of Ency, in our general formula for probabilistic queries:
Vay,. .., ay.epsg > f(aq, ..., a,), where ay, . .., @, are universally quantified program inputs, and
then use Z3 to solve the query.

However, we were only able to evaluate Ps1 on four of our case studies: Freivalds’ (single and
multiple), reservoir sampling, and monotonicity testing. For the Bloom filter and count-min sketch
case studies, PsI returned an incorrect symbolic expression. Additionally, since Ps1 does not support
recursive functions, we were unable to encode a comparable version of quicksort into Psr.

In Figure 6, we present performance results directly comparing Ps1 and PLINKO on our first
four case studies. We ran Ps1 and PLINKO on our case studies with a range of concretized program
parameters—like our system, PsI requires that some input parameters (e.g., sizes of input arrays) be
concretized—and we report the end-to-end time for verification. For both tools, we used a 10-minute
timeout denoted by a horizontal dashed line. An “X” means that for that experiment either a timeout
was reached or the process ran out of memory. Recall that the default version of PrLinko only
employs the simple guards optimization.

Overall, we found that the performance of the default version of PLINKO scales significantly better
than Psr as the values of the concretized parameters increase. For monotone testing (Figure 6b)
in particular, we found that Psr could only solve the query when n = 3 or 4, and timed out for all
larger concretizations. For reservoir sampling, there are two parameters, n and k. Figure 6¢ shows
how the tools perform as k varies, fixing n = 7,9, and 11; we found similar results for other concrete
values of n. For smaller values of n (e.g., n = 7), Ps1 and PrLiNko have about equal performance;
however, as n increases we found that PLinko outperforms Psr. For instance, PLINKO can handle all
settings of kK when n = 11 while Psr timed out for all4 < k < 7.

The only case study where the stock version of PLINKO performs worse than Ps1 is Freivalds’
algorithm (Figure 6a). While Ps1 significantly outperforms the default version of PLINKO on this
benchmark, if we enable algebraic simplifications optimizations, denoted by the green line in
Figure 6a, PLINKO was approximately 55% faster than Ps1. We note that Ps1 performs similar
algebraic simplifications.

Additionally, the vast majority of the time PLINKO (Algebraic) spent was on executing KLEE
instead of Z3. For this reason we hypothesize that the performance discrepancy between Ps1 and
PLINKO on Freivalds’ algorithm is largely due to the relative ease KLEE has in exploring all paths,
whereas Ps1 appears to be constrained by the path explosion caused by higher settings of n.

In summary, we found that PLINKO is generally able to verify the evaluated benchmarks faster
and for larger input concretizations than Ps1. At the same time, we stress that Ps1 and PLINKO are
designed to solve different, yet complementary problems; the former performing exact probabilistic
inference on probabilistic programs, and the latter verifying probabilistic properties over universally
quantified input variables. One avenue for future work would be to explore how these two systems
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Fig. 6. Performance results comparing PLiNKO against the Psi inference engine on the Freivalds’ algorithm,
Monotone Testing, and Reservoir Sample case studies. All experiments were run under a 10-minute timeout.
An “X” marker means that an experiment either exceeded the timeout or ran out of memory.

could be merged such that PLiNko leverages Ps1’s simplification engine to reduce the complexity
and size of PLINKO’s symbolic expressions before calling Z3.

Storm Comparison. We compare the performance of PLINkO and STORM on two of our case
studies: Freivalds’ algorithm and reservoir sampling. These two case studies involve reasoning about
two different types of computations. Freivalds’ algorithm mostly involves arithmetic operations
(i.e., matrix-vector products), whereas reservoir sampling mainly copies and moves data.

While PLINKO can operate on programs written in mainstream languages (e.g., C++), STORM op-
erates on finite-state transition systems. Encoding our programs as transition systems is non-trivial.
While our examples do have a finite state space, the state space is extremely large. Furthermore, a
core aim of our work is to prove probabilistic properties that universally quantify over all possible
program inputs, but STorM does not directly support programs with unknown inputs.

To work around these difficulties, we encoded our examples as Markov decision processes (MDPs)
written in the PRISM format [Kwiatkowska et al. 2011]. To model a universal quantification over
the program inputs, our encoded MDPs use a non-deterministic choice over all possible inputs.
While the PRISM format made it easier to encode our imperative programs, the translation is not
exact. For instance, the generated transition system does not accurately model finite precision
arithmetic since the PRISM language does not support finite-width datatypes. Nevertheless, we
believe that our encoding is a fair transition-system proxy for our target examples.
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Fig. 7. STORM performance on Reservoir Sampling where k = 1, n = 2..6, and the array elements range from 1
to N. Note that the y-axis is on a logarithmic scale.

We discuss performance results, as well as the difference in guarantees that STorm and PLINKO
provide for both case studies below. For Freivalds’ algorithm we solely consider 2 X 2 matrices. In
our original C++ program, these matrices contain 32-bit integers. Due to the state space explosion,
we needed to drastically reduce the domain size in order for STorM to successfully terminate. For
example, when we allow the three matrices to only contain elements from the set {1, 2}, STorm
can verify the upper bound for false positives in approximately 3 seconds where the constructed
model contains roughly 42,000 states and 75,000 transitions. When we increased the domain to be
{1, 2,3}, however, we had to manually terminate the experiment after 14 hours had passed with
no result. In contrast, PLINKO is able to verify the property in 75 seconds where the input domain
consists of all 32-bit integers.

To rule out the chance that our encoding of Freivalds’ algorithm as a non-deterministic choice
over all possible inputs was not the bottleneck, we also ran STorRM on each possible concrete setting
of the three 2 X 2 input matrices over the domains {1, 2} and {1, 2, 3}. For the domain {1, 2}, this
method took substantially more time, finishing in just over 20 seconds, while the domain {1, 2, 3}
also took more than 12 hours before we manually terminated the experiment.

We saw similar behavior with reservoir sampling. To understand the dependence on the data
size, we considered five input domains {1,..., N}, where 2 < N < 6. For each input domain, we
ran STORM on five different settings of n and k, where k = 1 and 2 < n < 6. Figure 7 presents the
performance results from these experiments. Note that as the domain size increases linearly, the
time required to check the property increases exponentially. As we will show in (Q3), PLinko also
sees decreased performance as we increase the width of program variables, and we expect to see
similar exponential scaling if we continued increasing the size of variables. However, PLINKO is
able to check the property for all settings of n in approximately 3 seconds when the input domain
consists of all 32-bit integers.

Input Language Differences. We conclude our evaluation against Pst and STorM by discussing
the source language differences between these three tools. As stated in §5, PLiNkO consumes LLVM
bytecode which allows us to verify programs written in any language supported by the LLVM
front-end (e.g., C, C++, Objective C, Fortran, etc.). This broadens the applicability of our analysis as
most mainstream programming languages are able to compile down to LLVM; however, this also
significantly increases the verification complexity as LLVM IR uses more complex datatypes, such
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Table 3. Performance metrics of three different ways of specifying A x B # C in the query for Freivalds’
algorithm. Here, n = 2 and all elements of the matrices are C++ ints.

Timing (sec.)

Spec.for AXxB+#C KLEE Z3 Total Paths

ALLOFF 3 1 4 2
SOMEQOFF 3 26 29 2
FIRsTOFF 2 5 7 2

Table 4. Performance metrics for four different domains from which the elements of A, B, and C are drawn
from in the implementation for Freivalds’ Algorithm. We only consider 2 X 2 matrices for each data type and
use SOMEOFF to specify that A X B # C. In each variant, PLiNko explored 2 paths.

Timing (sec.)

Data Type KLEE Z3 Total

long int 4 684 688
int 3 26 29
short int 2 4 6
char 2 1 3

as machine integers, arrays, etc. In particular, PLINKO natively reasons over fixed-width bitvectors,
as opposed to infinite precision, mathematical integers, allowing PLINKO to detect bugs related to
integer overflow/underflow.

Pstand STORM, on the other hand, operate on more idealized core languages. Ps1 provides a custom
domain-specific language which does not support as many programming features as mainstream
languages, such as recursion and fixed-width integers, and can only be used in conjunction with
Psi (the programs themselves cannot be run, only analyzed by Ps1). STORM, as a probabilistic model
checker, requires the programmer to encode their programs as either a discrete- or continuous-time
Markov model instead of executable LLVM code. For our evaluation, we use Markov decision
processes (MDPs), which exactly encodes a probabilistic program with (a) a bounded, finite space
of inputs and (b) exact arithmetic with infinite precision. While this is not an exact match for
the semantics of our programming language, it is unclear how to generate MDPs that match the
semantics of LLVM bytecode. In any case, we do not believe that increasing the realism of the MDP
encoding would significantly improve the performance of STorm.

(03) Discussion. Recall that Freivalds’ algorithm efficiently determines whether A X B = C,
where A, B, and C are n X n matrices; however, the algorithm has a false positive error rate of at
most 1/2 if AX B # C. In order to verify this error rate, we must first assume that A X B # C, and we
propose three different encodings: ALLOFF, SOMEOFF, and FIRSTOFF. To determine the performance
impact for each specification we ran Freivalds’ algorithm where k = 1 with 2 X 2 matrices which
each contain 32-bit integers. We present these performance results in Table 3.

In general, the results in Table 3 suggest that simpler and more specific encodings of AX B # C
increase performance at the cost of missing potential bugs. The strongest and best performing
specification was ALLOFF, whereas the most general and worst performing specification was
SoMEOFF. Intuitively, this makes sense as ALLOFF restricts the search space considerably more
than the other specifications, whereas SOMEOFF requires Z3 to reason about all matrices A, B, and
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Fig. 8. Performance metrics comparing the default, unoptimized version of PLiNko, PLINKO with the formula
sharing (“Sharing”), and PLinko with algebraic simplifications (“Algebraic”). An “X” means that the experiment

either exceeded the 10-minute timeout, or ran out of memory.

C such that A X B # C. Therefore, while performing the worst, SOMEOFF provides the strongest
guarantee out of all the other variants, followed by FIRSTOFF, and then finally, ALLOFF.

We also consider how the size of the domain (i.e., the C++ datatype) of the matrix elements
impacts performance. If each element of the matrix is only a single byte, there are only 2% possible
2 X 2 matrices, as opposed to elements of eight bytes, of which there are 22°¢ possible matrices. For
each data type, we again restrict ourselves to 2 X 2 matrices and specify that A X B # C using the
SoMEOFF encoding. The performance results are presented in Table 4. On the evaluating machine,
long ints are eight bytes, ints are four bytes, short ints are two bytes, and chars are a single
byte.
Unsurprisingly, we found a direct correspondence between the size of the integer and the time
it took to verify the property. The time it took to verify Freivalds’ algorithm with each data
type seems to increase exponentially with the corresponding increase in integer size. We must
note, however, that using chars provides the weakest guarantee whereas long ints provides the
strongest. Although, for many applications, analyzing variants of the program with smaller data
types might already provide sufficient confidence of correctness, or may surface bugs.
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(04) Discussion. We consider the performance impacts of our three main optimizations: pre-
computing the probability of taking branches containing simple guards, applying algebraic simpli-
fications, and sharing formulas to exploit any overlap between paths.

The simple guard optimization had a large effect on our two case studies with simple guards:
reservoir sampling and monotone testing. Without this optimization, we could only verify the
target properties for reservoir sampling when (n, k) = (10, 5) and monotone testing when n = 23
in 128 seconds and 356 seconds, respectively. Increasing the concretized values any higher caused
solving to either exceed the 10-minute timeout, or to run out of memory. Comparatively, we are able
to explore larger concretizations under the same time limit ((n, k) = (13, 7), and n = 27) with this
optimization. These results show that it is possible to compute path probabilities more compactly,
and suggest that further optimizations in this style may be possible.

To evaluate the effectiveness of the remaining two optimizations, we ran PLINKO on the first
four case studies (we excluded the Bloom filter and count-min sketch case studies due to the
number of concretized variables) with the default version of Prinko, PLinko with the algebraic
simplifications optimization (“Algebraic”), and Prinko with the formula sharing optimization
(“Sharing”). Performance results for each of the case studies are summarized in Figure 8.

The results show that these two optimizations are not always effective on all programs, however,
they can have a significant impact on performance, as showcased by the algebraic simplifications
optimization on Freivalds’ algorithm (Figure 8a). At the same time, we see that this optimization’s
impact is not always positive, as is the case with reservoir sampling and quicksort. This is not so
surprising as performance gains from this optimization can only occur in programs with large
amounts of arithmetic, e.g., Freivalds’ algorithm in the form of matrix-vector products. The other
case studies involve more comparisons and memory manipulations so the overhead of enabling this
optimization is present without any of the benefits. The sharing optimization increases performance
slightly on the monotone testing case study, but otherwise saw around equal performance when
compared to the stock version of PLINKO.

In general, Figure 8 suggests that optimizations can significantly improve performance, but
they are ultimately heuristics. Accordingly, we envision that in order to get the most out of the
optimizations, PLINKO should be run in parallel with different combinations enabled. We hope to
both refine and create more optimizations in future work.

7 FURTHER POSSIBLE OPTIMIZATIONS: TOWARDS PATH FILTERING

In our evaluation, (Q4) shows how simplifying the query generated by PLINKo can lead to significant
performance gains. In this section, we consider a different route for optimizations: path filtering.
We ask: of the paths explored by Algorithm 1, is there a small subset of paths that contain most
of the probability mass? Clearly, we cannot hope for this to be so for all probabilistic programs;
however, our experiments do suggest that such a subset does exist for some realistic probabilistic
programs. This does not immediately yield an optimization for Algorithm 1—it is not clear how to
prune paths automatically. Still, it does indicate that a path pruning heuristic could further improve
the performance of Algorithm 1.

Path partitioning. Here we develop a path filtering scheme which aims to remove low-probability
paths by selecting a subset of paths which account for the majority of the target probability mass.
This leads to smaller formulas that are hopefully faster to solve. While the goal is simple, there are
a few technical challenges. First, the probability of a path may depend on the setting of the input
variables—the same path may have high probability for some inputs, and low probability for other
inputs. Second, the space of program inputs can be very large, potentially even infinite.
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1: function CoinFriprs(by, b2)
Ay - 41904 43617 69852 30337
2:  heads < 0 40000
3: fori« 1,3do
4: t; ~ UniformInt(0, 5) 45321 0000
5: ty ~ Uniformint(0, 5)
6: if t; > by then 40000
Ay - 93505 75292 0
7: heads < heads + 1
8: if tp > by then 20000
9: heads < heads + 1 4; - 0
10:  return heads

(a) The CoIiNFLIPs program. (b) Frequency count heatmap.

S$1un0) Aouenbaig WNWIXERY YIeg DESqY

Fig. 9. The CoINnFLIPs program along with a heatmap showing the frequency counts for each of the 16 abstract
paths defined by T.

To address these issues, we first partition all paths into a bounded set of abstract paths using a user-
provided partitioning function, ' : Ay XA, — N, where Ay is the set of all assignments of universal
symbolic variables (i.e., program inputs) to values, and A, is the set of all assignments of probabilistic
symbolic variables to values. Note that a pair of assignment functions (ay, a,) € Ay X A, fully
determine which path a program will follow. So, we define I'(av, a,) = n to mean that the program
path described by ay and a, belongs to the abstract path n.

Referencing program paths using ay and a, is not a one-to-one mapping, however, as it is quite
possible that there exist alternative assignment functions, a;, and aj, that produce the same path as
ay and ay,. For this reason we require I to be path disjoint: if (av, ap) and (a,, aj,) produce the same
path, then T'(ay, a,) = F(a({, a;,). Additionally, T should ideally induce an asymmetric distribution,
meaning that I" should partition the abstract paths such that most of the target probability mass is
concentrated in a few abstract paths, allowing us to prune away a greater number of low-probability
paths.

Now that we have partitioned all paths into a number of abstract paths, we need to determine
which abstract paths to filter out. We do this by estimating which abstract paths have high-
probability mass using statistical sampling and counting. For each abstract path n we randomly
sample ky assignment functions of the input variables ay, .. I\;"
where F(av, ap) = n. In other words, we randomly sample settings of the program inputs such
that it is possible to classify the resulting path as a member of the abstract path n. Then, for each
a@, we apply the substitution ai, on the input variables, execute the program k, times, and record

.,a,’ such that there exists an a,

. . e e . k,
the resulting assignments of the probabilistic variables, namely ajl,, e, ap" . We then count how
many of the produced probabilistic assignments result in the abstract path n. In other words, we

compute C(a{,) £ Z [F(av, p)] where [-] are Iverson brackets. We estimate how often the

abstract path n occurs by calculating max; <;<g, C(a{,) /kp. Lastly, we prune all abstract paths that
have a probability of occurring less than some user-defined threshold.

Example. To illustrate, consider the program in Figure 9a. This program generates samples from
two biased coin-flip distributions three times each and returns the total number of heads. The
program inputs by, b, € [0, 5] determine the bias of the two biased coins. We would like to verify
that the maximum expected value of heads is 6 (i.e., when by = b; = 0, or both coins always return
heads).

First, we have to define our partitioning function I'. Let A € {A,,...,As} be a set of input
variable classes, B = {Bi, ..., B3} be a set of probabilistic variable classes, and t{ and tzi be the
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corresponding random samples of iteration i of Figure 9a, where 1 < i < 3. Each input variable
class corresponds to a set of assignments to the input variables, and each probabilistic variable
class similarly corresponds to a set of assignment to the probabilistic variables. In particular,

Ag 2 by >t Aby > 1) By2S>4AS<6
A 2 by <tPAby <t By %S=
Ay 2 by <tV ADy > 1) B,2S=2vS=1
A3 2 by >t)Aby < ) B; 2S5=0

where S = Z;jji gij and g;; = 0 if t{ > b; and 1 otherwise. We then define an abstract path to be
a pair of input variable and probabilistic variable classes (A;, Bj) € A X B. Therefore, I'(ay, a,) =
(Ai,Bj) ifav € A; and ap € Bj.

We show the maximum frequency counts for each of the 16 abstract paths as a heatmap in Fig-
ure 9b. Note that many of the abstract paths hold little probability mass, particularly those defined
using Bs. Using path filtering, we were able to verify that the maximum expected number of heads
is indeed 6 using just 6 of the 16 abstract paths defined by I'. We stress that we are able to eliminate
the remaining 10 abstract paths because I' induces an asymmetric distribution on the abstract paths.
An alternative partitioning function I’ which did not induce an asymmetric distribution required
12 abstract paths to verify the same property.

Experimental results. We invoked path filtering with hand-crafted partitioning functions on our
case studies, and measured the percentage speedup, path reduction, and error compared to baseline
Algorithm 1. To measure error, we found the minimum additive bound ¢ such that for all inputs the
probability expression Ency, is off by at most £ from the target bound. Some experiments saw large
speedups (30.2% for Bloom filter, 96.0% speedup for monotone testing) and significant decreases in
the number of paths (32.5% for Bloom filter to 50.4% for reservoir sampling), while incurring a small
additive error bound ¢ (ranging from 0.0 to 0.18). These results suggest that given a sufficiently
good partitioning scheme, path filtering can produce significant performance gains for Algorithm 1.
The main challenge is finding the partitioning automatically, which we leave for future work.

8 RELATED WORK

Probabilistic Symbolic Execution. Geldenhuys et al. [2012] first proposed a method for probabilistic
symbolic execution. Given a standard, non-probabilistic program (i.e., programs without random
sampling statements), their technique assumes all inputs are drawn from a discrete uniform
distribution, and then computes the probabilities of program paths using model counting. Their
tool then produces the posterior distribution parameterized by the return values of the programs
which they use for bug finding and testing purposes.

While our technique and theirs both use a form of probabilistic symbolic variables and symbolic
execution, there are a few crucial differences. First, PLINKO operates on randomized programs with
random sampling statements throughout the program instead of standard, deterministic programs
with randomized inputs. Second, PLINKO treats input variables as universally quantified, rather
than assuming that inputs are uniformly distributed. Just like typical properties of deterministic
programs, target properties of randomized programs usually quantify over all input variables.
Supporting universally-quantified inputs makes symbolic execution more challenging. While branch
probabilities in Geldenhuys et al. [2012]’s setting are numeric constants, which allow Geldenhuys
et al. [2012] to leverage methods like model counting and volume estimation, branch probabilities
in our setting are symbolic expressions that can mention program inputs. Accordingly, reasoning
about path probabilities is more difficult in our setting. Since all of our benchmarks aim to verify
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properties in the presence of unknown inputs, they cannot be handled using existing probabilistic
symbolic execution methods. Finally, PLINkO’s main application is to verify probabilistic properties
(e.g., false positive rates, expected value bounds) whereas Geldenhuys et al. [2012] uses probabilistic
symbolic execution as a bug-finding tool by automatically calculating, but manually analyzing,
path probabilities.

Later works use this idea for different applications: analyzing software reliability [Borges et al.
2014; Filieri et al. 2013], quantifying software changes [Filieri et al. 2015], generating performance
distribution [Chen et al. 2016], and evaluating worst-case input distributions [Kang et al. 2021].
Recent schemes apply volume computation instead of model counting, which is a performance
bottleneck [Albarghouthi et al. 2017; Sankaranarayanan et al. 2013].

Existing methods work with probabilistic programs where program inputs are either known
constants, or sampled from known distributions (often, the uniform distribution). In contrast, our
technique quantifies over all unknown inputs, rather than assuming they are drawn from fixed
distributions.

Symbolic inference. Probabilistic programming languages (PPLs) are languages enriched with both
sampling and conditioning operations. These two features allow probabilistic programs to encode
complex distributions. In fact, many models of interest in machine learning can be expressed in
this way. A basic task is inference: given an assertion P, what is the probability that P holds in the
distribution described by the program? Researchers have considered a variety of approaches, from
weighted model counting [Holtzen et al. 2020], to analyzing Bayesian networks [Sampson et al.
2014], to applying computer algebra systems [Claret et al. 2013; Gehr et al. 2016, 2020].

Most existing probabilistic programming languages assume that inputs are drawn from known
distributions—this is a natural simplification since PPLs are typically concerned with analyzing
a single complex distribution, rather than a family of distributions—so they cannot be applied to
prove our properties of interest. Some recent PPLs do support reasoning about programs with
unknown parameters. Probably the most relevant such system is Ps1 [Gehr et al. 2016, 2020]. Like
PrINKO, Psr is designed for answering exact, symbolic queries about distributions generated by
probabilistic programs. Furthermore, Ps1 supports programs with unknown parameters, much like
our target programs. This is not a typical use-case of Psi—these features aren’t documented in the
main paper, and we encountered cases where Psi failed to compute the correct probabilities—but
Pst1 is capable of analyzing some of our benchmarks. As our evaluation in §6 shows, PLINKO enjoys
significantly better performance and scaling when verifying probabilistic programs.

Overall, the comparison with PPLs is imperfect because PPLs are optimized for reasoning about
programs which use conditioning, an operation that is not supported by Prinko. While conditioning
is rarely used as an operation in randomized algorithms—precisely because of its computational
intractability—it would be interesting to extend our work to handle conditioning.

Other automated methods for probabilistic programs. Automated verification of probabilistic
programs is an active and diverse area of research; we briefly survey several main lines of work.

AXPRroF [Joshi et al. 2019] uses statistical testing to analyze probabilistic programs, by running
the target program multiple times on concrete inputs in order to estimate probabilities and expected
values. AXPRrOF is highly efficient and supports programs with unknown inputs. Unlike our work,
however, it can only explore a small subset of the input space and cannot provide logical guarantees.

Probabilistic model checking is a well-developed method for checking logical formulas on proba-
bilistic transition systems [Baier et al. 1997, 2018; Hensel et al. 2022; Kwiatkowska et al. 2011]. These
techniques can check properties that are not easily handled by probabilistic symbolic execution,
since assertions can be written in a variety of temporal logics. However, our evaluation (cf. (Q2))
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shows that probabilistic model checkers perform much worse than our approach on our target
programs and properties.

Abstract interpretation and algebraic program analysis methods have been developed for prob-
abilistic programs [Cousot and Monerau 2012; Wang et al. 2018]. These methods abstract the
probabilistic state, trading precision in exchange for tractable analysis. Our method computes path
probabilities exactly in a symbolic form. It would be interesting to see if we can leverage abstract
interpretation ideas to avoid concretizing loop bounds and unrolling loops.

There are also many domain-specific automated analyses for specific probabilistic properties, such
as termination and resource analysis [Chatterjee et al. 2016; Moosbrugger et al. 2021; Wang et al.
2021], accuracy [Chakarov and Sankaranarayanan 2013; Smith et al. 2019], reliability [Carbin et al.
2012], differential privacy [Albarghouthi and Hsu 2018b; Barthe et al. 2021] and other relational
properties [Albarghouthi and Hsu 2018a; Farina et al. 2021], and long-run properties of probabilistic
loops [Bartocci et al. 2019, 2020]. Our approach aims to create a general-purpose analysis.

Deductive verification for probabilistic programs. Finally, there is a wide variety of manual and
semi-automated methods for verifying probabilistic programs, which we cannot hope to fully survey
here. Perhaps the most well-developed method is Morgan and Mclver’s weakest pre-expectation
calculus [Gretz et al. 2014; Morgan et al. 1996], which manipulates quantitative assertions for
probabilistic programs [Kozen 1985]. In contrast to our method, this is not easy to automate (though
there have been some efforts [Bao et al. 2022; Gretz et al. 2013]), and targets the core probabilistic
language PGCL rather than a real implementation language. Interested readers can consult the
recent monograph [Barthe et al. 2020] for an overview of other methods.

9 CONCLUSION AND FUTURE DIRECTIONS

We have presented a symbolic execution method for randomized programs to in order to automati-
cally verify probabilistic properties which quantify over all unknown inputs. Going forward, we
see at least two promising directions for further investigation.

Optimizing probabilistic symbolic execution. In this work, we have made only preliminary efforts
to optimize our symbolic execution method. One natural direction is to develop heuristics for
exploring paths. Our experiments in §7 suggest that path filtering can reduce the number of
paths that must be explored. Another possibility is to develop better methods for simplifying path
probability expressions, along the lines of the three optimizations presented in §5.

Analyzing more complex probabilistic programs. So far, we have evaluated our implementation on
standard randomized programs. Both KLEE and Z3 support richer programs and hardware features.
For instance, Z3 has support for reasoning about floating-point arithmetic. Recent work develops
an extension of KLEE that works on unbounded integers [Kapus et al. 2019]; it could be interesting
to see if this technique has better performance when verifying randomized algorithms, which often
work with mathematical integers.
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