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Optical systems offer several attractive features for experimen-
tal studies of exotic physical phenomena. First, they can be 
precisely and diversely engineered, and their characteristic 

scale (approximately micrometre) makes it possible for even com-
plex optical systems to be manufactured. Second, the separation of 
characteristic frequencies allows optical phenomena to be isolated, 
so experiments can be accurately described by theoretical models 
that neglect lower-frequency thermal, electromagnetic or mechani-
cal excitations. A partial list of phenomena for which linear optical 
systems have uniquely enabled clean observations include localiza-
tion and coherent transport in disordered media1, PT-symmetric 
physics2, as well as a variety of topological processes3. These endeav-
ours are enabled by the design of multimode structures and linear 
mode-coupling, which is analogous to designing potentials and per-
turbations for the Schrödinger equation (Box 1), but including both 
conservative (Hermitian) and dissipative (non-Hermitian) effects.

Techniques to control the modes, dispersion and mode-coupling 
in fabricated structures are available both in the form of design 
paradigms (such as photonic crystals and graded-index structur-
ing) and platforms (such as free-space cavities, fibre optics and inte-
grated nanophotonics), which usually benefit from the low-cost, 
high-quality components available for imaging or telecommunica-
tions. Modes and mode-coupling properties may also be controlled 
in a reconfigurable manner, for example, by the use of spatial light 
modulators (SLMs) and electro- and acousto-optic modulators, 
such that experiments can today easily achieve millions of adjust-
able degrees of freedom. In short, experiments with multimode 
linear optical systems are limited mainly by imagination, and have 
therefore been intensively, if not yet exhaustively, explored.

In contrast, the physics of multimode nonlinear optical 
(MMNLO) systems remains comparatively unexplored, even 
though experiments can be constructed from the same scaffold 
as linear optical systems, and therefore enjoy most of the same 
advantages. Notable exceptions to this statement include soliton 
mode-locking in lasers4 and microresonators5, lasing in multi-
mode resonators (both ordered and disordered) and many forms of 
quantum optical-state generation. Considering the substantial and 
far-reaching impacts these excursions into highly MMNLO physics 
have had, it is natural to ask questions such as ‘What has limited the 

study of MMNLO systems to date?’ and ‘What is known, and what 
remains unresolved?’.

What has limited the broader study of MMNLO systems? Perhaps 
the most important factor is dimensionality. Techniques suitable for 
theoretical analysis—analytical, numerical and even conceptual 
reasoning frameworks—that apply to linear or to low-dimensional 
nonlinear systems generally do not scale well to highly MMNLO 
systems. Experimentally, a similar challenge exists. MMNLO 
systems feature so many meaningful dimensions to control and 
observe that traditional experimental tools often prove insufficient. 
Low-dimensional measurements frequently fail to directly resolve 
the signatures of multimode nonlinear phenomena, for example, 
by averaging over too many dimensions. For the semiclassical wave 
physics that is the focus of this Review, the weakness of optical 
nonlinearities is rarely a limitation. By combining the intensity of 
modern pulsed lasers with low-loss propagation in optical resona-
tors or fibre waveguides, and/or by using laser gain to compensate 
losses, highly multimode nonlinear wave propagation can easily be 
observed, with essentially no limit to evolution time or distance.

What is known about the physics of MMNLO systems, and 
what remains stubbornly unresolved? Early studies of lasing in the 
1960s necessarily considered the multimode nonlinear physics of 
interacting lasing modes, a pursuit that led to the understanding of 
mode competition and the discovery of mode-locking6. Early work 
involving optical fibres in the 1970s and 1980s followed a similar 
trajectory7–9. However, in both domains, research soon focused 
on single-mode systems, in which disorder could be neglected, 
and for which vastly simpler, one-dimensional (1D) models could  
be applied.

MMNLO wave propagation re-emerged as a prominent research 
topic through studies of light propagation in disordered media, 
mainly between 2003 and 2013. In complete analogy with elec-
trons, depending on the degree of randomness in the medium, light 
transport can range from ballistic to diffusive10, or even undergo 
Anderson localization1,11–13. Unlike diffusion, which is possible even 
under dynamic scattering conditions, because it is an interference 
effect Anderson localization requires the random potential itself to 
remain invariant during propagation. Disordered multimode opti-
cal structures provide ideal testbeds14–18 to explore wave localization 
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Box 1 | Introduction to spatiotemporal nonlinear wave propagation in multimode optical systems

Light propagation in a multimode waveguide or resonator (see the 
figure in this Box) can be understood through a formalism mathe-
matically analogous to the Schrödinger wave formulation of quan-
tum mechanics, considering the classical envelope of the electric 
field A rather than the wavefunction. In this formalism, pulse 
propagation is described by a generalized nonlinear Schrödinger 
equation:

∂zA = D̂(kx, ky, ω)A+ Ŵ(x, y, ω)A+ N̂(x, y, t)A. (1)

In equation (1), each term affects the electric-field envelope A 
in the indicated domains (space/wavevector, time/frequency) of 
the operator. The linear dispersion/diffraction operator D̂, which 
acts on A in frequency and wavevector space, is

D̂(kx, kx, ω)

= i
[√

β2
eff(ω)− k2x − k2y − βeff(ω0)− (ω − ω0)/vref

]
,

(2)

where βeff is the wavenumber and defines a phase velocity refer-
ence, kx, y are transverse wavevector components, and ω0 is the 
centre radial frequency. Time coordinate of equation (1) is in a 
moving reference frame, with a group velocity vref chosen for 
convenience. The waveguide operator Ŵ  defines the space- and 
frequency-dependent linear potential:

where n is the refractive index and neff is the refractive index at the 
centre of the waveguide. Finally, the nonlinear operator N̂ , where

N̂(x, y, t) = iγ|A(x, y, t, z)|2, (4)

acts as a self-induced spatiotemporal potential, which may, similar 
to Ŵ , confine and steer the propagating wave(s).

Equation (1) is qualitatively similar to the Schrödinger equation, 
∂tψ = i∇2ψ − iVψ, and specifically to the Gross–Pitaevskii equation 
used to describe trapped Bose–Einstein condensates. In suitable 
units, equation (1)’s first term can be approximated as i∇2A, and 
the second and third terms can be approximated together as a 
nonlinear potential term, iV(x, y, z, A)A. A key difference is that 
equation (1)’s evolution coordinate is not time t but rather z, the 
distance along the propagation axis of the waveguide or cavity.

In the optical systems considered here, light is confined 
more strongly in the transverse dimensions (x, y) than in other 
dimensions. When this is true, we can perform a change-of-basis 
operation on equation (1), expressing A(x, y, t, z) at any point 
in space–time by a linear complex combination of transverse  
modes32,33,37:

A(x, y, t, z) =
M∑

m=1
am(t, z)Fm(x, y). (5)

In equation (5), the transverse modes Fm(x, y) are eigenfunctions 
of equation (1) without the final nonlinear term, for a 
monochromatic field at ω0 and assuming longitudinally invariant 
n(x, y, ω0). Changing the basis from Cartesian coordinates  
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A pulsed beam described by an envelope A(x, y, t, z = 0) is coupled into a multimode waveguide. Subsequent evolution along z of this waveform is 
described by equation (1), in (x, y, t) coordinates, or equation (6), in mode space. The structure of the multimode waveguide influences the physics by 
modifying all terms in equation (6), but the effects on β(m)

0  and β(m)

1  are most pronounced. In parabolic graded-index (GRIN) fibres, the refractive index 
profile is a cylindrically symmetric parabolic potential. This potential’s modes form degenerate groups whose eigenvalues are equally spaced. β(m)

1  are 
also closely clustered in GRIN fibres; in other words, the modal dispersion is small. By contrast, other designs generally exhibit less symmetric modal 
structures, with more varied β(m)

1 . The figure shows the intensity distribution |Fm(x, y)|2 of modes 1 to 10.

Ŵ(x, y, ω, z) = i βeff(ω)

2

[(
n(x, y, ω, z)

neff(ω)

)2
− 1

]
, (3)
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phenomena in both the classical and quantum domains19–21. Many 
studies have focused on how nonlinear processes affect Anderson 
localization in random systems. In general, for strong linear disor-
der, the extended Bloch modes of a lattice morph into highly local-
ized states22. Meanwhile, nonlinearity itself (for example, the Kerr 
nonlinearity) can also underlie confined optical entities known as 
discrete solitons or breathers23. The question naturally arises as to 
whether these two different processes can be synergistic or antago-
nistic. To address this, experiments have been carried out in disor-
dered photonic lattices, where Anderson localization effects appear 
to be enhanced by self-focusing nonlinearities19,20,24. However, at 
this point, it is not clear if asymptotically (in infinite lattices) the 
interplay between nonlinearity and disorder can eventually spoil or 
enhance Anderson localization25, nor if a concise, general answer is 
even possible.

Today, the study of MMNLO wave propagation has been revi-
talized. This new research phase has been enabled and shaped by 
developments that have matured since 2010. New theoretical con-
cepts and experimental methods, driven by applications in imaging 
and telecommunications, have enabled advances in understand-
ing and controlling multimode waves. These include principal 
modes26,27 and related concepts28,29, wavefront shaping with SLMs, 
and mode-multiplexing techniques, to mention just a few. These are 
treated in other articles in this issue30,31. Meanwhile, relatively effi-
cient techniques for simulating the propagation of intense pulses in 
multimode waveguides have emerged32,33. Applying these and other 
techniques has led to a research trend that has—so far—emphasized 
the role of nonlinearity relative to disorder.

In this Review we will overview progress mainly within this 
recent wave of activity and highlight open questions and challenges 
that may finally be resolved with the benefit of nascent technol-
ogy and techniques. Our aim here is a high-level overview; read-
ers interested in exhaustive reviews of recent work may consult  
refs. 34–36, whereas readers who desire more detailed tutorials may 
refer to refs. 34,37–39. Recent work has primarily utilized multimode 
optical fibres and fibre resonators, so we will focus on these settings 
before discussing progress and prospects in other platforms.

Spatial self-organization
When light propagates linearly in a highly multimode waveguide, 
the complex interference of many modes generally leads to a dis-
ordered pattern (Fig. 1a); one of the most unexpected observations 
of recent experiments has been that, with nonlinearity present, a 
completely different outcome occurs: the field ‘self-cleans’ into a 
bell-shaped beam (Fig. 1b)40. Experiments by several groups soon 
verified that, across a range of conditions41,42, the optical power in 

a GRIN multimode fibre irreversibly migrates toward lower-order 
modes even at modest levels (Fig. 1). These observations incited a 
debate as to what is behind the self-cleaning mechanism. Clearly, 
the power was not enough to induce nonlinear self-focusing effects, 
and beam self-cleaning manifested itself well before any Raman lines 
appeared in the spectrum. Instead, it seems that this effect stems 
from the conservative component of the Kerr nonlinearity that 
allows the waveguide modes to exchange power via four-wave mix-
ing40,43. Although nonlinear attractors that result in ‘cleaned’ beams 
with reduced disorder are known, such as in Raman beam clean-
ing44 or self-cleaning in fibres with heterogeneous dissipation45, dis-
sipation is a fundamental part of these processes. The experiments  
by Krupa et al.40 and others instead presented a perplexing mys-
tery—robust, attractor-like behaviour, including the possibility of 
disorder reduction, but without dissipation.

Subsequent investigations resolved this mystery. Systematic 
experiments showed that, although energy flows on average towards 

(that is, real space) into mode space by applying equation (2) to 
equation (1), one obtains the multimode nonlinear Schrödinger 
equations (MMNLSE):

∂zam(t, z) = iβ(m)

0 am − β
(m)

1 ∂tam −

iβ(m)
2
2 ∂ttam

+

M∑
j=1

Lmj(z)aj + iγ
M∑
j=1

M∑
k=1

M∑
l=1

Γmjklaja∗k al
. (6)

Equation (6) is a system of coupled 1D equations for waves 
within each of the waveguide’s transverse modes. The first and 
second terms on the right side describe the phase and group 
velocity, and the third describes group velocity dispersion. The 
second-last term can be used to describe linear coupling between 

modes due to weak, possibly z-dependent, perturbations to the 
fixed linear potential, n(x, y, ω0), such as disordered manufacturing 
imperfections. In multimode nonlinear optical systems, the 
last term, which describes the tensorial coupling between 
modes by the Kerr nonlinearity, is typically the most important. 
The terms in this sum include self-phase modulation terms, 
∼i|am (t, z)|2am(t, z), which act as self-induced potentials for pulses 
in each mode, cross-phase modulation terms, ∼i

∣∣aj (t, z)
∣∣2am(t, z), 

which allow pulses in different modes to steer or confine light in 
other modes, and four-wave mixing terms, ∼iaja∗k al, which allow 
energy to be exchanged between modes. The description here 
is simplified, but representative. Other effects, such as Raman 
scattering or saturable gain or loss, can be incorporated by similar  
techniques.

Fig. 1 | Beam self-cleaning in GRIN multimode fibre. Low-intensity light 
that propagates linearly in a multimode waveguide typically displays a 
speckled, multi-peaked beam due to the complex interference of many 
modes. However, recently, many experiments have observed that, when 
intense light is launched into a GRIN multimode waveguide, the beam 
profile (circles) gradually evolves towards a ‘clean’ bell-shaped  
beam40–42,45–48,54,56,167. Figure adapted with permission from ref. 40,  
Springer Nature Limited.

Box 1 | Introduction to spatiotemporal nonlinear wave propagation in multimode optical systems (Continued)
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Box 2 | Introduction to optical thermodynamics

Following the tenets of statistical mechanics, in building an opti-
cal thermodynamic theory, one has to first identify the invariants 
associated with these particular systems. In highly transparent 
(lossless) optical waveguides, two conservation laws can be ascer-
tained. These are (1) the total optical power P propagating in the 
guide channel and (2) the total electrodynamic Minkowski mo-
mentum density U (the internal energy of the system) flowing in 
the waveguide168. Against the backdrop of these two constants, we 
next invoke the ergodic hypothesis, which asserts that the non-
linear multimode system will explore, in a fair manner (with the 
same probability), all its accessible microstates in its phase space 
that lie on the constant energy (U) and power (P) manifolds169. In 
this regard, if a nonlinear multimode optical system has been ini-
tially positioned somewhere in its phase space (see panel a in the 
figure in this Box), it is expected to evolve along a chaotic path (see 
panel b in the figure in this Box), and in doing so it will increase 
its entropy. At this point, the question is ‘Where will the system 
macroscopically relax?’ In particular, how will the optical power 
be redistributed within the various modes (say M modes) in such a 
nonlinear multimode optical configuration? To address this ques-
tion, we invoke the second law of thermodynamics, which implies 
that, at equilibrium, the entropy S of the system must be maxi-
mized under the constraints imposed by the two conservation 

laws, P =

M∑
i=1

|ci|2 and U = −

M∑
i=1

β
(i)
0 |ci|2, where the modal occu-

pancy |ci|2 represents the optical power conveyed in the ith mode, 
and β(i)

0  denotes the associated propagation constant (eigenvalue). 
With these assumptions in mind, one finds that the mode power 
distribution is governed by Bose–Einstein statistics. Given that, 
and if the number of ‘photons’ is much larger than the number 

of modes M, one can then show that, at equilibrium, the power  
allocation |ci|2 obeys the celebrated Rayleigh–Jeans law51,55,170,171. 
The entropy S associated with this distribution is also given  
as follows:

|ci|2 =
−T

βi + μ
; S =

M∑

i=1
ln|ci|2, (7)

where the quantities T and μ appearing in equation (4) represent, 
respectively, the temperature and chemical potential of this optical 
system at equilibrium. In a way analogous to the standard thermo-
dynamics of an ideal classical gas, we can also derive the universal 
equation of state U − μP = MT (ref. 51). From this latter equation, 
one can uniquely determine the final T and μ, once the initial con-
ditions are known172. In other words, the collective dynamics of 
a complex nonlinear multimode optical system are fully predict-
able (in a statistical manner after an ensemble average52) by using 
the formalism of optical thermodynamics (see panel c in the fig-
ure in this Box). More importantly, one can formally show that T 
and μ act as actual thermodynamic forces that govern the energy 
(momentum) and power exchange among subsystems (ΔU, ΔP), 
in full accord with the second law of thermodynamics51,52 (see 
panel d in the figure in this Box). It is worth emphasizing that the 
optical temperature T is not measured in kelvins and has nothing 
to do with the actual temperature of the environment in which the 
optical system is embedded; rather, it is a measure of the disorder 
of the optical field. To better illustrate these concepts, panel e in 
the figure in this Box provides a correspondence between vari-
ables and relations for classical (standard) statistical mechanics 
and the optical thermodynamic theory outlined here.
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the fundamental mode and, as a result, the beam looks cleaner, 
the output beam quality does not actually improve as the power 
increases46,47. Other studies also demonstrated that a correlation 
exists between dissipation or disorder effects and the rate at which 
beam self-cleaning can occur45,48,49.

Theoretical understanding of this phenomenon has meanwhile 
required the development of new strategies that can globally and 
universally describe the dynamics that unfold in dissipationless 
highly multimode nonlinear systems. Even though global or mul-
timode nonlinear wave solvers32,50 (Box 1) can be used to simulate 
these phenomena, these calculations are time-consuming and yield 
limited physical understanding.

To this end, an optical thermodynamic theory was put forward 
that can self-consistently describe, by means of statistical mechan-
ics, the complex processes of energy/power exchange in multimode 
systems under weak nonlinear conditions51,52 (Box 2). These results 
are universal to any conservative multimode optical configuration. 
In this theory, the multimode wave is a kind of dilute photon gas 
whose temperature has nothing to do with the actual thermal envi-
ronment in which the optical multimode arrangement is embedded. 
Instead, it is inherent to the optical system itself, given that photons 
are nonlinearly reallocated among modes in a probabilistic fash-
ion without involving phonons as in traditional thermodynamics. 
Intuitively, one may say that the optical temperature characterizes 
the randomness of an optical beam, with higher temperatures cor-
responding to more speckled intensity patterns.

This approach reveals that optical thermalization plays an 
important role in understanding beam self-cleaning effects. Recent 
experiments suggest that in such a scenario the power among 
modes is redistributed based on the Rayleigh–Jeans law that favours 
the lower-order modes under positive temperature. This outcome 

is distinct from earlier predictions that viewed beam cleaning as a 
condensation phenomenon53. These two perspectives have recently 
been reconciled by a combination of statistical mechanics and  
systematic experiments, revealing the relationship between  
descriptions of beam cleaning as either a thermalization or conden-
sation process54.

Beyond beam cleaning, the optical thermodynamic theory 
should support a variety of devices designed to manipulate highly 
multimode waves. As initial examples, the laws that govern opti-
cal isentropic processes were obtained and the prospect of Carnot 
cycles was also proposed51.

A central concept behind statistical mechanics is ergodicity, by 
means of which a system explores its phase space in a fair manner55. 
In general, ergodic behaviour in nonlinear multimode systems is 
enabled by chaotic nonlinear power exchanges among the various 
modes. Whereas the unequally spaced eigenvalues in step-index 
fibres promote chaotic and ergodic dynamics, this is more than 
offset by the resulting poor phase matching of four-wave mixing 
compared to that in GRIN fibres. Clearly, in situations where ergo-
dicity is suppressed, such as in strongly nonlinear configurations 
where solitons form56, the applicability of such statistical formula-
tions will be limited. Although the theory’s predictions are accu-
rate even in real experiments with weak loss and finite propagation 
length, the extent to which non-equilibrium statistical methods  
can be employed in arrangements where dissipation or gain is  
substantial57,58 is currently a point of debate.

Spatiotemporal self-organization
Solitons. Solitons in passive fibres. Solitons are particle-like local-
ized waves that do not disperse because of a balance between linear 
and nonlinear processes. Temporal solitons in single-mode optical 
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fibres (SMFs) are remarkable for their ability to propagate robustly 
over a million kilometres59. Just as important, solitons often act like 
eigenmodes in nonlinear systems; complex fields can be decom-
posed into soliton and radiation components60. Many complex 
phenomena in SMF or 1D systems, such as continuum generation, 
rogue waves, and mode-locking in lasers, can be understood in 
terms of soliton dynamics. In optics, stable 2D spatial solitons can 
form only in materials with particular nonlinear properties61, and 
3D or spatiotemporal solitons have not been observed in homoge-
neous media. Higher-dimensional soliton dynamics is thus a largely 
unexplored frontier.

Solitons in multimode waveguides combine the multidimen-
sional freedom of higher-dimensional spatial and spatiotemporal 
solitons with the rich, long-lived dynamics of 1D fibre solitons. 
The first systematic experimental studies of solitons in multimode 
fibre62–67 observed a surprisingly wide variety of distinct soliton-like 
waves. In these multimode solitons (here, we use the ‘soliton’ ter-
minology loosely), the self-focusing nonlinear potential due to 
each pulse causes pulses in different modes to mutually trap one 
another in time, forming a kind of bound state (Fig. 2b). This 
mutual self-focusing results in frequency shifts of each mode such 
that at steady state the multimode wavepacket propagates without  
dispersing. Because the different spatial modes within the wave-
packet have different propagation constants, a multimode soli-
ton undergoes rapid spatiotemporal oscillations as its constituent 
modes interfere (Fig. 2b).

A high-intensity pulse launched into a multimode fibre under-
goes fission, a spatiotemporal process through which the pulse 
decomposes into a multitude of distinct multimode solitons66,67 
and multimode dispersive radiation64,68. The most intense solitons 
formed from fission are sensitive to stimulated Raman scattering 
(SRS), through which the soliton dissipates energy into the medium, 
resulting in a redshifting centre frequency. As SRS results in a spec-
trally isolated multimode soliton, it has proven valuable in isolating 
single multimode solitons by simple bandpass-filtering. Study of  

these isolated multimode Raman solitons revealed an intriguing 
relationship between the soliton’s energy and spatiotemporal vol-
ume, which reflects the internal balance of the processes63.

Although initial studies of spatiotemporal soliton fission con-
sidered only the transient, short-lived multimode soliton products, 
which approximate the intuitive picture in Fig. 2a,b, multimode 
fibres permit nonlinear wave propagation over kilometres, cor-
responding to thousands of characteristic lengths. Whereas 
stable single-mode solitons comprise a continuous family of 
arbitrary-energy wavepackets, the constraints imposed by inter-
nally balancing modal dispersion limits multimode solitons to 
much more limited configurations69; indeed, formation of a multi-
mode soliton is only possible if the pulses in the constituent modes 
have adequate bandwidth and energy70,71. Over longer distances, 
even these metastable multimode solitons appear to collapse into 
the fundamental mode72 (Fig. 2c). Although the mechanisms of this 
process are still not understood, observations of long-term energy 
localization are—though seemingly paradoxical—a remarkably 
common feature of multimode nonlinear wave propagation even 
beyond the regime of beam cleaning described previously, arising 
not only from purely conservative40–42 but also from dissipative44,45 
nonlinear intermodal interactions.

Solitons in resonators. Optical solitons in the driven-dissipative set-
ting of a laser or coherently driven cavity73–77 display an even richer 
scope of behaviours. Synchronized (that is, phase-locked) collec-
tive states of the cavity’s longitudinal modes underlie mode-locked 
lasers4 and microresonator frequency combs5. In addition to solitons 
formed in cavities with anomalous dispersion, which resemble soli-
tons of the 1D nonlinear Schrödinger equation, normal-dispersion 
soliton pulses, solutions of the cubic-quintic complex Ginzburg–
Landau equation, are also possible in the dissipative setting78.

Investigations into mode-locking in fibre lasers with multiple trans-
verse modes resulted in the discovery of spatiotemporal mode-locking 
(STML)—the formation of stable, multimode dissipative solitons79,80. 
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The conceptual prototype is a laser constructed with multimode gain 
fibre, spatial and spectral filters, and components that act as a spa-
tiotemporal saturable absorber (Fig. 2d). Considering the number 
of independent controls in such a laser, it may not seem surprising 
that certain special configurations could admit stable spatiotemporal 
pulses. However, decades of effort have shown that high-dimensional 
solitons are typically fragile, prone to disintegration at the slightest 
symmetry breaking. The discovery of STML was surprising not only 
because the observed multimode dissipative solitons persist stably 
indefinitely, but because these new solitons display remarkable diver-
sity and complexity. Many such solitons robustly maintain a complex 
pattern of internal coherence, even in the presence of considerable 
intracavity disorder and perturbations, and across a wide range of 
experimental parameters79–83. Although there are many distinct mech-
anisms through which multimode dissipative solitons form80, in gen-
eral they result from a dynamic balance between saturable absorption 
and spectral and spatial filtering (which tend to shorten the multimode 
pulse) and nonlinearity, gain and dispersions (which tend to broaden  
the pulse).

Spatiotemporal instabilities
Instabilities are perhaps the most fundamental processes of non-
linear wave physics. They influence phenomena that range from 
short-term dynamics to steady-state pattern formation. Exchange 
of energy between waves by four-wave mixing underlies many 
instabilities. One wave grows at the expense of another—the first 
wave experiences gain whereas the second decays and is therefore 
unstable. That gain is a strong function of the wavevector and fre-
quency. In experiments, components of unavoidable noise with 
wavevector k and frequency ω at the peak of the instability gain 
function typically grow dramatically and determine the spatiotem-
poral characteristics of the resulting field. This energy exchange 
requires momentum and energy conservation, with the former 
implying the coupling requires wavevector or phase matching, 
∑
i
ki(ωi) = 0, where ki(ωi) are the propagation constants of the par-

ticipating modes. Alternatively, waves can be coupled if some other 
process, acting as an additional virtual wave with wave vector kp, 
makes up any difference between the wavevectors of the coupled 
waves, that is, ∑

i
ki(ωi) = kp.

Spatiotemporal wavevector matching. Spatial (that is, modal) 
dispersion can compensate for chromatic dispersion, in a simi-
lar manner to what occurs in spatiotemporal modulation insta-
bility (STMI) in homogeneous media84. Nanosecond-duration 
pulses launched into multiple modes of a GRIN fibre can undergo 
beam self-cleaning owing to the Kerr nonlinearity as mentioned  
above, and the cleaning is enhanced by stimulated Raman scat-
tering44. This state is a spatial attractor (the system is dissipative) 
for a wide range of multimode input fields. However, the attrac-
tor is unstable against STMI (Fig. 3a); four-wave mixing subse-
quently mediates the transfer of power from the fundamental to 
higher-order modes in new frequency bands7,45,85–88 (Fig. 3b,c). In 
other multimode fibres, the manifestation of STMI depends on the 
details of the fibre’s structure89–92. However, STMI always produces 
a steady-state field in which different frequency components have 
different spatial profiles.

Self-imaging wavevector matching. In a GRIN fibre, superposi-
tions of modes undergo periodic spatial compression and expansion  
(Fig. 2b). Through the Kerr nonlinearity, this results in an effective 
longitudinal refractive index grating that includes virtual wavevec-
tors with magnitudes that are multiples of 2π/Zp, where Zp is the 
grating period. The self-induced grating thus allows wavevector 
matching of new processes via a route that is fundamentally dis-
tinct from STMI36,64,87,93,94. So-called parametric instabilities arise in 

many physical settings when a parameter of the medium is mod-
ulated in time (equivalently, along the longitudinal direction in  
passive waveguides).

If the modulation arises from collective oscillations rather 
than from a periodic drive or perturbation, the instability is 
referred to as geometric parametric instability (GPI). The strong 
self-imaging evolution in GRIN fibres is an example of such a  
periodic self-modulation, which allows coupling between waves  
with different frequencies and the same transverse mode.  
GPI based on this coupling was observed by launching 900-ps 
pulses at 1,064 nm, where the dispersion is normal, into 
GRIN fibre93. With a peak input power of 50 kW, the out-
put consists of a series of non-uniformly spaced spectral peaks 
between 450 and 730 nm (Fig. 3e). The output beams look 
‘cleaned’, with a bell-shaped profile consisting of the funda-
mental mode (together with a background of higher-order 
modes) that maintains the self-imaging evolution (Fig. 3f).  
The similarity of the spatial profiles of each frequency component is 
a signature of self-imaging-based wavevector matching.

Soliton instabilities. Qualitatively similar processes to those that 
destabilize quasi-continuous waves can also cause a soliton to adjust 
its shape, which can include undergoing fission, and dissipate 
energy into one or more dispersive waves. Through spatiotempo-
ral wavevector matching, the soliton can induce formation of the 
dispersive wave by intermodal four-wave mixing95 or cross-phase 
modulation96. In GRIN fibres, self-imaging wavevector matching 
enables resonant energy transfer from femtosecond multimode 
fields to dispersive waves that extend over hundreds of nanometres 
of wavelength64,65,68.

Wavefront-shaping for control of multimode nonlinear 
waves
It was observed, early on, that, by manually controlling the modes 
excited in a multimode fibre, the ensuing nonlinear processes could 
be dramatically affected7,85. A similar strategy was taken to explore 
the dynamics of multimode solitons and supercontinuum65,97. The 
millions of degrees of spatial control offered by modern SLMs 
offer an enticing opportunity for extending this exploratory 
strategy with fully automated, computer-driven optimization of 
MMNLO wave propagation. Mirroring the typical configuration 
of wavefront-shaping experiments in disordered media and linear 
multimode waveguides, Tzang and colleagues launched intense 
nanosecond pulses into highly multimode, normal-dispersion 
GRIN fibre after reflection from an SLM98. They used a genetic 
algorithm to adjust the phase applied to the SLM to optimize objec-
tive functions defined by measurements of the light exiting the  
fibre, such as maximizing the energy produced in a particular  
frequency band.

Similar strategies have been employed to control light propaga-
tion in multimode fibre amplifiers99, as well as to explore differ-
ent regimes of beam self-cleaning100 and multimode fibre lasers101. 
Aside from controlling features of nonlinear wave interactions in 
passive or driven-dissipative settings, high-dimensional wavefront 
shaping also offers a route to utilizing complex nonlinear dynamics 
in multimode waveguides for information processing102, extending 
prior work using linear random media103. So far, all these studies 
have relied on translating an SLM-pixel basis to a multimode fibre, 
usually in a way that prevents easy interpretation of experiments. 
To move beyond these blackbox perspectives, fully mode-resolved 
excitation and measurement will be helpful104.

Outlook
Towards spatiotemporal solitons. Although a variety of spatiotem-
poral soliton physics have been observed in multimode fibres, no 
observations constitute what we would describe as spatiotemporal 
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solitons (STSs). By STSs, we mean solitons whose propagation is 
characterized by a simultaneous balance of both spatial diffrac-
tion and temporal dispersion by nonlinear self-focusing, waves 
first envisioned as ‘light bullets’ by Silberberg105. Instead, the soli-
tons observed so far are metastable complexes of mutually trapped 
pulses, more multimodal soliton molecules or soliton-conical 
wave106 hybrids than STSs. Indeed, after formation, the spatial con-
finement for observed multimode solitons is almost completely 
provided by the waveguide potential. Pulses resembling STSs in 
multimode waveguides have, however, been theoretically predicted 
in both passive107–111 and active112,113 settings, although not all theo-
retical predictions consider solitons whose self-confinement is pre-
dominantly due to nonlinearity. To observe such unusual solitons, 
researchers will need to consider wave propagation with relatively 
weak confinement, as in multipass cells114. Although multimode 
STS could perhaps exist in conservative settings, we expect that 
saturable dissipation115 will play an important role in stability and 
excitation, as in most work on multidimensional cavity solitons73–77.

Role of disorder in nonlinear multimode systems. Recent work on 
MMNLO physics has emphasized nonlinearity relative to disorder. 
However, the coherent wave propagation in beam self-cleaning and 
spatiotemporal mode-locking occurs despite disorder and, indeed, 
these self-organization processes are evidently enhanced by disor-
der40,45,48,49,79,80. Studies of nonlinear multimode systems with disor-
der ranging from negligible to dominant should offer insight—and 
perhaps even resolution—on the relationship between disorder and 
nonlinearity that has long fascinated the field.

For this, multimode solitons offer one promising platform. 
Multimode soliton formation and propagation as described above 
do not involve disorder at all. Remarkably however, in the so-called 
Manakov limit of strong disordered mode-coupling, temporal mul-
timode solitons with the particle-like properties of solitons of the 
1D nonlinear Schrödinger equation re-emerge34,116–118. Disorder 
causes fast intermodal energy exchange within the envelope of 
these Manakov solitons, which minimizes modal dispersion and 
four-wave mixing, similar to the rapid phase variations that exist 
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within the envelope of an incoherent soliton61. However, despite this 
pivotal role of disorder, the temporal multimode Manakov soliton is 
a completely coherent wave structure. Realization of the Manakov 
limit remains a challenge, but the experimental observation of mul-
timode Manakov solitons would be an important milestone.

Between the regime of perturbative disorder and the Manakov 
limit should lie a regime of smooth but non-negligible disorder119, 
analogous to the branched-flow regime120. If processes like disper-
sion and nonlinearity are comparable to this smooth disorder, we 
expect physics—and perhaps soliton-like structures—that is funda-
mentally a product of all factors. One hypothetical possibility, which 
would generalize the concept of a soliton in disordered multimode 
systems, would be principal nonlinear eigenmodes or principal 
mode solitons, a fusion of the soliton and linear principal mode26 
concepts. Like multimode STS, the dissipative selection of a mul-
timode laser provides one enticing route to clean observations of 
these nonlinear waves80.

New experimental platforms. Most studies of MMNLO waves have 
opportunistically relied on commercially available fibres. Although 
the low cost of these fibres has benefited early development, they 
have also biased and limited research. Thus, critical goals for the 
field ought to be to observe new phenomena and enable appli-
cations by utilizing or exploring MMNLO concepts in existing 
photonic platforms besides commercial solid-core fibres, and by 
developing new photonic structures designed specifically to access 
new regimes and enable practical applications of MMNLO wave 
propagation (Fig. 4c).

So far, the most immediately clear application of MMNLO is 
generating very-high-brightness supercontinuum; for this, a seem-
ingly straightforward innovation comprises multimode fibres 
that are suitable for efficient and broader supercontinuum121. To 
achieve this with glasses beyond fused silica can, however, require 
completely novel fibre designs, because conventional methods for 
graded-index doping are not possible122. More work, involving, for 
example, tapered fibres123,124 or chalcogenide glasses125, could extend 
these results, perhaps even into the long-wave infrared or soft UV 
regimes. For this and other aims, hollow-core fibres offer another 
compelling platform. As hollow-core fibres guide light primarily 
in a pressurized gas, extreme, ultrabroadband pulse propagation, 
where ionized plasma and self-focusing play pivotal roles, can be 
safely studied126–130. Nonlinear wave propagation in cavities or mul-
tipass cells114,131 may also explore highly multimode regimes. By 
controlling the dispersion of the mirrors or by changing the opti-
cal media placed within the cavity (for example, adding gain)—or 
both—a range of regimes could be explored. Intracavity or intracell 
SLMs could permit dynamic control of intracavity coupling and 
mode characteristics across 107 degrees of freedom132.

Although few-mode nonlinear optical physics in integrated plat-
forms, such as silicon nitride-on-insulator, have been studied133,134, 
the potential for highly multimode nonlinear wave physics in these 
devices remains unexamined. Traditionally, single-mode structures 
have been employed for strong transverse confinement, but GRIN 
or GRIN-like structures could allow for confined modes with lower 
sidewall overlap, leading to lower propagation losses135. Designs 
that reliably control multimode nonlinear physics are challenging, 
but emerging strategies such as inverse design136 could allow for 
integrated multimode nonlinear photonics structures that leverage 
multimode phenomena to outperform traditional devices.

New platforms may also offer solutions to control the effect of 
disorder on MMNLO phenomena. Some phenomena—like beam 
self-cleaning or STML—appear to be resilient to disorder, but disor-
der can still pose practical challenges. Methods used in the broader 
field of complex photonics (discussed elsewhere in this issue) to 
coherently control light in disordered media are worth pursuing, 
in part because of the rich questions inherent in generalizing them 

to nonlinear systems137. However, a more pragmatic approach—
especially for developing tools to be used by non-specialists—is to 
design multimode structures in which disorder is intrinsically sup-
pressed by choice of the mode structure or topology138,139, or by use 
of inflexible photonic structures, including rod-like waveguides, 
integrated chips and bulk optical systems such as multipass cells.

To study dissipative MMNLO dynamics, waveguides providing 
high optical gain are necessary. Initial works on multimode non-
linear waves in fibre lasers and amplifiers used custom Yb-doped 
fibres, which are not commercially available79,80,99,140 and whose rar-
ity has hindered research progress. However, these fibres are not 
necessary, or even optimal, for studying dissipative MMNLO or 
for developing useful multimode mode-locked laser systems. For 
example, high-quality pulse formation with diffraction-limited 
beam quality and energy far beyond single-mode limits has been 
predicted in widely available step-index multimode gain fibres, 
although this requires a strong saturable absorber80. Initial steps to 
observe this regime have been made81. Fibres with optimized inho-
mogeneous loss in addition to refractive index may also facilitate 
novel forms of STML112. Bulk laser systems, based on high-gain 
laser or parametric141 processes, are also appealing for studying and 
applying dissipative MMNLO. For fibre-based STML meanwhile, 
amplifiers being developed for mode-division multiplexed commu-
nication142–144 may soon offer a convenient solution.

Experimental techniques for multimode nonlinear physics. The 
multidimensional complexity of MMNLO underlies many aspects 
of its fundamental interest, but also some of its experimental chal-
lenges. In the context of MMNLO, the measurement challenge is 
how to efficiently obtain all the information needed to adequately 
describe broadband, highly multimode states of light. Efficient 
measurements must minimize measurement time as well as experi-
mental cost and complexity, but should still facilitate unambiguous 
comparisons with theory, both for decisive science and to quantita-
tively inform design optimization and control.

Techniques to measure complex spatiotemporal optical fields 
are too plentiful, and feature trade-offs that are too numerous, 
to exhaustively discuss here—readers may consult refs. 145,146 and 
others. A variety of measurements used in MMNLO also involve 
scanning or sampling the multimode field using a single-mode 
fibre (for example, refs. 147–149), which can be convenient and use-
ful qualitatively, but do not always allow direct comparison  
with theory.

For MMNLO, comparison of experiments and theory benefits 
from measurement of the complex field amplitude in each relevant 
mode. Moreover, a well-chosen or calibrated modal basis can maxi-
mize both the interpretability and efficiency of measurements. Modal 
bases are effectively exploited by physical mode-demultiplexing 
measurements104,150, in which a field is physically separated into 
modal components, for example by phase plates, and then measured 
by single-mode measurement devices. However, this approach is 
currently complex to implement, especially for highly multimode 
fields. An alternative is to measure the entire spatiotemporal electric 
field and then perform mode decomposition directly at each wave-
length (for example, ref. 151). This is often experimentally simpler, 
but will usually be less time-efficient.

Looking forward, we expect that broadband modal decompo-
sition should be possible with simple optical set-ups by extending 
monochromatic numerical mode decomposition techniques (for 
example, refs. 57,152–155). Sufficient information for reconstruction 
might be obtained from images of the near-field and far-field beams 
after diffraction from gratings, or by using a tunable spectral fil-
ter to acquire wavelength-dependent beam profiles. For MMNLO, 
we believe that physical mode-resolved measurements are the ideal 
choice. Although the equipment requirements for these measure-
ments are not intense (a single SLM is sufficient), regular application 
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of these techniques will require efforts to improve their accessi-
bility, such as open-source instrumentation and self-calibration 
procedures.

Theoretical techniques for multimode nonlinear physics. Many 
regimes of MMNLO physics remain challenging to model due to 
the number of interacting modes, the heterogeneous, nonlinear or 
nonlocal quality of interactions, and the frequent lack of ergodic-
ity and conservative equilibrium. These challenges are ubiquitous 
throughout physics, limiting our understanding from network 
physics to many-body quantum systems, and even intergalactic 
and biological phenomena. Compared to these settings, the acces-
sibility of multimode nonlinear optics experiments is both remark-
able and exciting. In the past, multimode optical experiments have 
provided the means to experimentally isolate complex phenomena, 
such as replica symmetry breaking in nonlinear wave propagation156 
or localization in passive or active disordered optical media. Thus, 
looking to the future, MMNLO systems may provide a testbed to 
develop theories and techniques to understand complex physical 
phenomena well beyond optical waves157–159.

To this end, MMNLO systems are ideal subjects for techniques 
that combine traditional physics models, such as the coupled-mode 
(Box 1) or thermodynamic (Box 2) theories, with machine learning 
models. Like the many-body quantum systems to which neural net-
work techniques have been effectively applied160, MMNLO systems 
contain emergent high-dimensional phenomena, which—though 
not always intuitive—should form the basis for understandable 
compressed models. The relative ease of acquiring enormous quan-
tities of experimental data and of controlling millions of degrees 
of freedom further supports the promise of these methods. Initial 
work applying machine learning techniques to linear multimode 
propagation is encouraging161–163, but extensions to nonlinear mul-
timode optical systems have been inspiring but less effective than 
anticipated98,164.

We expect that major improvements will be possible by applying 
physics-informed models165, by better controlling or learning exper-
imental noise and drift, by controlling input fields in both space and 
time166, and by considering richer dynamical settings such as the 
anomalous dispersion regime65. Besides providing an ideal testbed 
for data-driven techniques that achieve both physical insight and 
accurate predictions, data-assisted methods will probably prove 
essential in achieving systematic control over highly multimode 
nonlinear dynamics.
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