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Physics of highly multimode nonlinear optical
systems
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Linear multimode optical systems have enabled clean experimental observations and the applications of numerous phenom-
ena that continually extend the boundaries of wave physics. The infrastructure that has enabled these studies facilitates the
study of an even richer world of nonlinear multimode optical systems. Multimode nonlinear optical physics is full of emergent
phenomena, including robust spatial attractors, multimode wave instabilities, and conservative and dissipative multimode soli-
tons. Many of these effects push the limits of existing theoretical techniques, demanding new insights and approaches that
could emerge from other fields, such as statistical mechanics, physics-informed machine learning, network science and beyond.
Here we provide an overview of recent investigations of wave propagation in highly multimode nonlinear systems, principally
multimode fibre waveguides and laser cavities. These systems, with their multifaceted control, low cost, scalability and ultra-
high bandwidth, are ideal physical platforms for exploring—and ultimately applying—high-dimensional nonlinear physics, from

orderly but elusive objects like spatiotemporal solitons to dynamical complexity itself, both near and far from equilibrium.

tal studies of exotic physical phenomena. First, they can be

precisely and diversely engineered, and their characteristic
scale (approximately micrometre) makes it possible for even com-
plex optical systems to be manufactured. Second, the separation of
characteristic frequencies allows optical phenomena to be isolated,
so experiments can be accurately described by theoretical models
that neglect lower-frequency thermal, electromagnetic or mechani-
cal excitations. A partial list of phenomena for which linear optical
systems have uniquely enabled clean observations include localiza-
tion and coherent transport in disordered media’, PT-symmetric
physics?, as well as a variety of topological processes®. These endeav-
ours are enabled by the design of multimode structures and linear
mode-coupling, which is analogous to designing potentials and per-
turbations for the Schrodinger equation (Box 1), but including both
conservative (Hermitian) and dissipative (non-Hermitian) effects.

Techniques to control the modes, dispersion and mode-coupling
in fabricated structures are available both in the form of design
paradigms (such as photonic crystals and graded-index structur-
ing) and platforms (such as free-space cavities, fibre optics and inte-
grated nanophotonics), which usually benefit from the low-cost,
high-quality components available for imaging or telecommunica-
tions. Modes and mode-coupling properties may also be controlled
in a reconfigurable manner, for example, by the use of spatial light
modulators (SLMs) and electro- and acousto-optic modulators,
such that experiments can today easily achieve millions of adjust-
able degrees of freedom. In short, experiments with multimode
linear optical systems are limited mainly by imagination, and have
therefore been intensively, if not yet exhaustively, explored.

In contrast, the physics of multimode nonlinear optical
(MMNLO) systems remains comparatively unexplored, even
though experiments can be constructed from the same scaffold
as linear optical systems, and therefore enjoy most of the same
advantages. Notable exceptions to this statement include soliton
mode-locking in lasers* and microresonators’, lasing in multi-
mode resonators (both ordered and disordered) and many forms of
quantum optical-state generation. Considering the substantial and
far-reaching impacts these excursions into highly MMNLO physics
have had, it is natural to ask questions such as ‘What has limited the

O ptical systems offer several attractive features for experimen-

study of MMNLO systems to date?” and ‘What is known, and what
remains unresolved?’

What has limited the broader study of MMNLO systems? Perhaps
the most important factor is dimensionality. Techniques suitable for
theoretical analysis—analytical, numerical and even conceptual
reasoning frameworks—that apply to linear or to low-dimensional
nonlinear systems generally do not scale well to highly MMNLO
systems. Experimentally, a similar challenge exists. MMNLO
systems feature so many meaningful dimensions to control and
observe that traditional experimental tools often prove insufficient.
Low-dimensional measurements frequently fail to directly resolve
the signatures of multimode nonlinear phenomena, for example,
by averaging over too many dimensions. For the semiclassical wave
physics that is the focus of this Review, the weakness of optical
nonlinearities is rarely a limitation. By combining the intensity of
modern pulsed lasers with low-loss propagation in optical resona-
tors or fibre waveguides, and/or by using laser gain to compensate
losses, highly multimode nonlinear wave propagation can easily be
observed, with essentially no limit to evolution time or distance.

What is known about the physics of MMNLO systems, and
what remains stubbornly unresolved? Early studies of lasing in the
1960s necessarily considered the multimode nonlinear physics of
interacting lasing modes, a pursuit that led to the understanding of
mode competition and the discovery of mode-locking®. Early work
involving optical fibres in the 1970s and 1980s followed a similar
trajectory’~’. However, in both domains, research soon focused
on single-mode systems, in which disorder could be neglected,
and for which vastly simpler, one-dimensional (1D) models could
be applied.

MMNLO wave propagation re-emerged as a prominent research
topic through studies of light propagation in disordered media,
mainly between 2003 and 2013. In complete analogy with elec-
trons, depending on the degree of randomness in the medium, light
transport can range from ballistic to diffusive', or even undergo
Anderson localization™'""*. Unlike diffusion, which is possible even
under dynamic scattering conditions, because it is an interference
effect Anderson localization requires the random potential itself to
remain invariant during propagation. Disordered multimode opti-
cal structures provide ideal testbeds''* to explore wave localization
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Box 1| Introduction to spatiotemporal nonlinear wave propagation in multimode optical systems

Light propagation in a multimode waveguide or resonator (see the
figure in this Box) can be understood through a formalism mathe-
matically analogous to the Schrodinger wave formulation of quan-
tum mechanics, considering the classical envelope of the electric
field A rather than the wavefunction. In this formalism, pulse
propagation is described by a generalized nonlinear Schrodinger
equation:

0.A = D(ky, ky, ®)A + W(x, y, )A+ N(x, y, HA. (1)

In equation (1), each term affects the electric-field envelope A
in the indicated domains (space/wavevector, time/frequency) of
the operator. The linear dispersion/diffraction operator D, which
acts on A in frequency and wavevector space, is

D(k, ky, @)

) (2)
= ’[ gff(w) -k - k% — Pege(@0) — (@ — @0)/Vres | »

where f; is the wavenumber and defines a phase velocity refer-
ence, kw are transverse wavevector components, and @, is the
centre radial frequency. Time coordinate of equation (1) is in a
moving reference frame, with a group velocity v, chosen for
convenience. The waveguide operator W defines the space- and

frequency-dependent linear potential:
2
2) - 1], ®
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where 7 is the refractive index and n, is the refractive index at the
centre of the waveguide. Finally, the nonlinear operator N, where

N(x, y, t) = iy|A(x, 3, 8, z)|2, 4)
acts as a self-induced spatiotemporal potential, which may, similar
to W, confine and steer the propagating wave(s).

Equation (1) is qualitatively similar to the Schrodinger equation,
0w =1iV2y—iVy, and specifically to the Gross—Pitaevskii equation
used to describe trapped Bose-Einstein condensates. In suitable
units, equation (1)’s first term can be approximated as iV?A, and
the second and third terms can be approximated together as a
nonlinear potential term, iV(x, y, z, A)A. A key difference is that
equation (1)’s evolution coordinate is not time f but rather z, the
distance along the propagation axis of the waveguide or cavity.

In the optical systems considered here, light is confined
more strongly in the transverse dimensions (x, y) than in other
dimensions. When this is true, we can perform a change-of-basis
operation on equation (1), expressing A(x, y, t, z) at any point
in space-time by a linear complex combination of transverse
modes32,33,37:

(5)

In equation (5), the transverse modes F,,(x, y) are eigenfunctions
of equation (1) without the final nonlinear term, for a
monochromatic field at @, and assuming longitudinally invariant
n(x, y, w,). Changing the basis from Cartesian coordinates

A pulsed beam described by an envelope A(x, y, t, z=0) is coupled into a multimode waveguide. Subsequent evolution along z of this waveform is
described by equation (1), in (x, y, t) coordinates, or equatlon (6), |n mode space. The structure of the multimode waveguide influences the physics by
modifying all terms in equation (6), but the effects on ﬂ ™ and ﬂ ) are most pronounced. In parabolic graded-index (GRIN) fibres, the refractlve index
profile is a cylindrically symmetric parabolic potential. This potential’'s modes form degenerate groups whose eigenvalues are equally spaced. ﬂ ™ are
also closely clustered in GRIN fibres; in other words, the modal dispersion is small. By contrast, other designs generally exhibit less symmetric modal
structures, with more varied ﬁ1(m). The figure shows the intensity distribution |Fm(x, y)|? of modes 1to 10.
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Box 1| Introduction to spatiotemporal nonlinear wave propagation in multimode optical systems (Continued)

(that is, real space) into mode space by applying equation (2) to
equation (1), one obtains the multimode nonlinear Schrédinger
equations (MMNLSE):

. p(m)
Detim(t, 2) = i am — B dam — B duam

M M M M . (6)
+Y Lmj(2)aj + > 32 Y Dwjnaiaga
j=1 j=lk=1l=1

Equation (6) is a system of coupled 1D equations for waves
within each of the waveguide’s transverse modes. The first and
second terms on the right side describe the phase and group
velocity, and the third describes group velocity dispersion. The
second-last term can be used to describe linear coupling between

phenomena in both the classical and quantum domains'*-*'. Many
studies have focused on how nonlinear processes affect Anderson
localization in random systems. In general, for strong linear disor-
der, the extended Bloch modes of a lattice morph into highly local-
ized states”. Meanwhile, nonlinearity itself (for example, the Kerr
nonlinearity) can also underlie confined optical entities known as
discrete solitons or breathers®. The question naturally arises as to
whether these two different processes can be synergistic or antago-
nistic. To address this, experiments have been carried out in disor-
dered photonic lattices, where Anderson localization effects appear
to be enhanced by self-focusing nonlinearities'*****. However, at
this point, it is not clear if asymptotically (in infinite lattices) the
interplay between nonlinearity and disorder can eventually spoil or
enhance Anderson localization®, nor if a concise, general answer is
even possible.

Today, the study of MMNLO wave propagation has been revi-
talized. This new research phase has been enabled and shaped by
developments that have matured since 2010. New theoretical con-
cepts and experimental methods, driven by applications in imaging
and telecommunications, have enabled advances in understand-
ing and controlling multimode waves. These include principal
modes®>”” and related concepts®**, wavefront shaping with SLMs,
and mode-multiplexing techniques, to mention just a few. These are
treated in other articles in this issue’>’'. Meanwhile, relatively effi-
cient techniques for simulating the propagation of intense pulses in
multimode waveguides have emerged’*. Applying these and other
techniques has led to a research trend that has—so far—emphasized
the role of nonlinearity relative to disorder.

In this Review we will overview progress mainly within this
recent wave of activity and highlight open questions and challenges
that may finally be resolved with the benefit of nascent technol-
ogy and techniques. Our aim here is a high-level overview; read-
ers interested in exhaustive reviews of recent work may consult
refs. *~%°, whereas readers who desire more detailed tutorials may
refer to refs. *-*°. Recent work has primarily utilized multimode
optical fibres and fibre resonators, so we will focus on these settings
before discussing progress and prospects in other platforms.

Spatial self-organization

When light propagates linearly in a highly multimode waveguide,
the complex interference of many modes generally leads to a dis-
ordered pattern (Fig. 1a); one of the most unexpected observations
of recent experiments has been that, with nonlinearity present, a
completely different outcome occurs: the field ‘self-cleans” into a
bell-shaped beam (Fig. 1b)*. Experiments by several groups soon
verified that, across a range of conditions*"**, the optical power in
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modes due to weak, possibly z-dependent, perturbations to the
fixed linear potential, n(x, y, @,), such as disordered manufacturing
imperfections. In multimode nonlinear optical systems, the
last term, which describes the tensorial coupling between
modes by the Kerr nonlinearity, is typically the most important.
The terms in this sum include self-phase modulation terms,
~ilam (t, 2)[*am(t, z),whichactasself-induced potentials for pulses
in each mode, cross-phase modulation terms, ~i|aj (t, 2) |2am(t, z),
which allow pulses in different modes to steer or confine light in
other modes, and four-wave mixing terms, ~ia;a; a;, which allow
energy to be exchanged between modes. The description here
is simplified, but representative. Other effects, such as Raman
scattering or saturable gain or loss, can be incorporated by similar
techniques.

=~

Fig. 1| Beam self-cleaning in GRIN multimode fibre. Low-intensity light
that propagates linearly in a multimode waveguide typically displays a
speckled, multi-peaked beam due to the complex interference of many
modes. However, recently, many experiments have observed that, when
intense light is launched into a GRIN multimode waveguide, the beam
profile (circles) gradually evolves towards a ‘clean’ bell-shaped
beam?0-4245-4854.561¢7 Figyre adapted with permission from ref. “°,
Springer Nature Limited.

a GRIN multimode fibre irreversibly migrates toward lower-order
modes even at modest levels (Fig. 1). These observations incited a
debate as to what is behind the self-cleaning mechanism. Clearly,
the power was not enough to induce nonlinear self-focusing effects,
and beam self-cleaning manifested itself well before any Raman lines
appeared in the spectrum. Instead, it seems that this effect stems
from the conservative component of the Kerr nonlinearity that
allows the waveguide modes to exchange power via four-wave mix-
ing*>*. Although nonlinear attractors that result in ‘cleaned” beams
with reduced disorder are known, such as in Raman beam clean-
ing* or self-cleaning in fibres with heterogeneous dissipation®, dis-
sipation is a fundamental part of these processes. The experiments
by Krupa et al.*” and others instead presented a perplexing mys-
tery—robust, attractor-like behaviour, including the possibility of
disorder reduction, but without dissipation.

Subsequent investigations resolved this mystery. Systematic
experiments showed that, although energy flows on average towards
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Box 2 | Introduction to optical thermodynamics

Following the tenets of statistical mechanics, in building an opti-
cal thermodynamic theory, one has to first identify the invariants
associated with these particular systems. In highly transparent
(lossless) optical waveguides, two conservation laws can be ascer-
tained. These are (1) the total optical power P propagating in the
guide channel and (2) the total electrodynamic Minkowski mo-
mentum density U (the internal energy of the system) flowing in
the waveguide'®. Against the backdrop of these two constants, we
next invoke the ergodic hypothesis, which asserts that the non-
linear multimode system will explore, in a fair manner (with the
same probability), all its accessible microstates in its phase space
that lie on the constant energy (U) and power (P) manifolds'®. In
this regard, if a nonlinear multimode optical system has been ini-
tially positioned somewhere in its phase space (see panel a in the
figure in this Box), it is expected to evolve along a chaotic path (see
panel b in the figure in this Box), and in doing so it will increase
its entropy. At this point, the question is ‘Where will the system
macroscopically relax?” In particular, how will the optical power
be redistributed within the various modes (say M modes) in such a
nonlinear multimode optical configuration? To address this ques-
tion, we invoke the second law of thermodynamics, which implies
that, at equilibrium, the entropy S of the system must be maxi-
mized under the constraints imposed by the two conservation

M M
laws, P = " |¢j|* and U = — Zﬂ(()l)|ci|2’ where the modal occu-
=i =i

pancy |¢;|* represents the optical power conveyed in the ith mode,

and ﬂé’) denotes the associated propagation constant (eigenvalue).
With these assumptions in mind, one finds that the mode power
distribution is governed by Bose-Einstein statistics. Given that,
and if the number of ‘photons’ is much larger than the number
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of modes M, one can then show that, at equilibrium, the power
allocation |¢;|* obeys the celebrated Rayleigh-Jeans law?-*717!,
The entropy S associated with this distribution is also given
as follows:

M
-T
il = g S = Dl )
g i=1

where the quantities T and y appearing in equation (4) represent,
respectively, the temperature and chemical potential of this optical
system at equilibrium. In a way analogous to the standard thermo-
dynamics of an ideal classical gas, we can also derive the universal
equation of state U—uP=MT (ref. °"). From this latter equation,
one can uniquely determine the final T and , once the initial con-
ditions are known'””. In other words, the collective dynamics of
a complex nonlinear multimode optical system are fully predict-
able (in a statistical manner after an ensemble average™) by using
the formalism of optical thermodynamics (see panel c in the fig-
ure in this Box). More importantly, one can formally show that T
and y act as actual thermodynamic forces that govern the energy
(momentum) and power exchange among subsystems (AU, AP),
in full accord with the second law of thermodynamics™ (see
panel d in the figure in this Box). It is worth emphasizing that the
optical temperature T is not measured in kelvins and has nothing
to do with the actual temperature of the environment in which the
optical system is embedded; rather, it is a measure of the disorder
of the optical field. To better illustrate these concepts, panel e in
the figure in this Box provides a correspondence between vari-
ables and relations for classical (standard) statistical mechanics
and the optical thermodynamic theory outlined here.

a > C e
C.
Icsl 50
2 = Input
) 40 3 Equilibrium Optical Standard
% 30 thermodynamics | thermodynamics
— Ic,l? g 20
. = Power Number of particles
8 Initial 2 10 P N
(<} (o]
_..é o
G 1 35 7 9 111315 EM momentum Energy
b aQ o Nonlinear interactions Mode number u E
> C3
£ ds>0 d Number of modes Volume
% % M v
(¢] Equilibrium
5 Equation of state | Equation of state
[c,l U-uP=MT PV = NkgT
Interactions: Interactions:
I, |2 optical nonlinearity  molecular forces

uy =10

a,b, Phase space of a nonlinear multimode optical system in the intensity domain with only the first three axes shown here for illustration purposes.
Due to nonlinear modal interactions, starting from the point indicated (a, red spot), the system evolves chaotically (b, blue path) on the constant U,

P manifolds (brown surface), to maximize its entropy S. ¢, In equilibrium, the modal occupancies settle into a Rayleigh-Jeans distribution that can be
uniquely predicted using only the U and P invariants, regardless of the specific modes that are initially excited. d, When two optical systems interact
through nonlinearity, energy always flows from a hot subsystem (with higher optical temperature T) to the colder one. Meanwhile, the subsystem with
the higher chemical potential always supplies power to the other, until their temperatures and chemical potentials equalize. e, Fundamental variables
and relations in optical thermodynamics and their counterparts in standard statistical mechanics. Panel d adapted with permission from ref. *', Springer

Nature Limited.
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Fig. 2 | Multimode solitons and spatiotemporal dynamics in multimode waveguides and cavities. a, With low optical intensity, pulses launched into a
multimode waveguide disperse due to group velocity dispersion within each mode, and pulses within each mode walk off from one another due to modal
dispersion. b, In a multimode soliton, pulses within multiple transverse modes synchronize in time to form a non-dispersing wavepacket®%3°657%%72 |n the
multimode solitons observed so far, periodic breathing due to modal interference is still present. ¢, Over long distances, multimode solitons in passive fibre
decay, with energy becoming localized in the fundamental mode®’?. d,e, A multimode laser cavity consists of a gain medium (here, a multimode fibre doped
with rare-earth media and optically pumped by a diode laser), as well as other linear and nonlinear elements used to shape the periodic evolution of light
within the cavity (d), which can be thought of as an infinite periodic medium (e). f, In highly multimode laser cavities, a variety of dissipative multimode

solitons can be observed’®-, a few of which are shown. Left, modal composition, with U, the energy in mode number i; middle, optical spectrum; right,
output beam profiles. Panel d adapted with permission from ref. %, Springer Nature Limited. Panels reproduced with permission from: ¢, ref. °°, under a

Creative Commons licence CC BY 4.0; f, ref. 2%, Springer Nature Limited.

the fundamental mode and, as a result, the beam looks cleaner,
the output beam quality does not actually improve as the power
increases*>”. Other studies also demonstrated that a correlation
exists between dissipation or disorder effects and the rate at which
beam self-cleaning can occur®*%,

Theoretical understanding of this phenomenon has meanwhile
required the development of new strategies that can globally and
universally describe the dynamics that unfold in dissipationless
highly multimode nonlinear systems. Even though global or mul-
timode nonlinear wave solvers*>*’ (Box 1) can be used to simulate
these phenomena, these calculations are time-consuming and yield
limited physical understanding.

To this end, an optical thermodynamic theory was put forward
that can self-consistently describe, by means of statistical mechan-
ics, the complex processes of energy/power exchange in multimode
systems under weak nonlinear conditions’** (Box 2). These results
are universal to any conservative multimode optical configuration.
In this theory, the multimode wave is a kind of dilute photon gas
whose temperature has nothing to do with the actual thermal envi-
ronment in which the optical multimode arrangement is embedded.
Instead, it is inherent to the optical system itself, given that photons
are nonlinearly reallocated among modes in a probabilistic fash-
ion without involving phonons as in traditional thermodynamics.
Intuitively, one may say that the optical temperature characterizes
the randomness of an optical beam, with higher temperatures cor-
responding to more speckled intensity patterns.

This approach reveals that optical thermalization plays an
important role in understanding beam self-cleaning effects. Recent
experiments suggest that in such a scenario the power among
modes is redistributed based on the Rayleigh-Jeans law that favours
the lower-order modes under positive temperature. This outcome
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is distinct from earlier predictions that viewed beam cleaning as a
condensation phenomenon®. These two perspectives have recently
been reconciled by a combination of statistical mechanics and
systematic experiments, revealing the relationship between
descriptions of beam cleaning as either a thermalization or conden-
sation process™.

Beyond beam cleaning, the optical thermodynamic theory
should support a variety of devices designed to manipulate highly
multimode waves. As initial examples, the laws that govern opti-
cal isentropic processes were obtained and the prospect of Carnot
cycles was also proposed™.

A central concept behind statistical mechanics is ergodicity, by
means of which a system explores its phase space in a fair manner™.
In general, ergodic behaviour in nonlinear multimode systems is
enabled by chaotic nonlinear power exchanges among the various
modes. Whereas the unequally spaced eigenvalues in step-index
fibres promote chaotic and ergodic dynamics, this is more than
offset by the resulting poor phase matching of four-wave mixing
compared to that in GRIN fibres. Clearly, in situations where ergo-
dicity is suppressed, such as in strongly nonlinear configurations
where solitons form™, the applicability of such statistical formula-
tions will be limited. Although the theory’s predictions are accu-
rate even in real experiments with weak loss and finite propagation
length, the extent to which non-equilibrium statistical methods
can be employed in arrangements where dissipation or gain is
substantial®*® is currently a point of debate.

Spatiotemporal self-organization

Solitons. Solitons in passive fibres. Solitons are particle-like local-
ized waves that do not disperse because of a balance between linear
and nonlinear processes. Temporal solitons in single-mode optical
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Spatiotemporal (intermodal) wavevector-matched instability
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Self-imaging wavevector-matched instability
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Fig. 3 | Spatiotemporal instabilities of nonlinear waves in multimode waveguides. a-c, Spatiotemporal, or intermodal, wavevector
matching’34584-8689-9195%6 can give rise to sidebands with distinct spatial profiles from the pump (). The figure® shows a multimode beam at 532 nm,
which is first attracted to the fundamental mode, and then experiences STMI, resulting in spectral sidebands, shown in b and ¢. The large, asymmetric
sideband in b from ~400 to 600 THz originates in part from cascaded Raman scattering, rather than only STMI. d, Coupled with the Kerr nonlinearity,
periodic breathing in parabolic GRIN fibre (Fig. 2a) facilitates energy transfer between sideband waves of different frequencies but with similar modal
composition®**, e, When intense pulses are launched into a GRIN multimode fibre, this leads to a series of distinct spectral peaks®. f, The beam profile of
the beam exiting the fibre (i, i’) at low power, (ii, ii’) at high intensity at the pump wavelength of 1,064 nm, and (iii-vi, iii’-vi’) at the first four anti-Stokes
sidebands 750, 650, 600 and 550 nm, which are similar in shape to the pump (ii, ii")?*. Figure adapted with permission from: b,c, ref. *°, Springer Nature

Limited; e f, ref. °, APS.

fibres (SMFs) are remarkable for their ability to propagate robustly
over a million kilometres™. Just as important, solitons often act like
eigenmodes in nonlinear systems; complex fields can be decom-
posed into soliton and radiation components®. Many complex
phenomena in SMF or 1D systems, such as continuum generation,
rogue waves, and mode-locking in lasers, can be understood in
terms of soliton dynamics. In optics, stable 2D spatial solitons can
form only in materials with particular nonlinear properties®', and
3D or spatiotemporal solitons have not been observed in homoge-
neous media. Higher-dimensional soliton dynamics is thus a largely
unexplored frontier.

Solitons in multimode waveguides combine the multidimen-
sional freedom of higher-dimensional spatial and spatiotemporal
solitons with the rich, long-lived dynamics of 1D fibre solitons.
The first systematic experimental studies of solitons in multimode
fibre®” observed a surprisingly wide variety of distinct soliton-like
waves. In these multimode solitons (here, we use the ‘soliton’ ter-
minology loosely), the self-focusing nonlinear potential due to
each pulse causes pulses in different modes to mutually trap one
another in time, forming a kind of bound state (Fig. 2b). This
mutual self-focusing results in frequency shifts of each mode such
that at steady state the multimode wavepacket propagates without
dispersing. Because the different spatial modes within the wave-
packet have different propagation constants, a multimode soli-
ton undergoes rapid spatiotemporal oscillations as its constituent
modes interfere (Fig. 2b).

A high-intensity pulse launched into a multimode fibre under-
goes fission, a spatiotemporal process through which the pulse
decomposes into a multitude of distinct multimode solitons®>*’
and multimode dispersive radiation® . The most intense solitons
formed from fission are sensitive to stimulated Raman scattering
(SRS), through which the soliton dissipates energy into the medium,
resulting in a redshifting centre frequency. As SRS results in a spec-
trally isolated multimode soliton, it has proven valuable in isolating
single multimode solitons by simple bandpass-filtering. Study of
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these isolated multimode Raman solitons revealed an intriguing
relationship between the soliton’s energy and spatiotemporal vol-
ume, which reflects the internal balance of the processes®.

Although initial studies of spatiotemporal soliton fission con-
sidered only the transient, short-lived multimode soliton products,
which approximate the intuitive picture in Fig. 2a,b, multimode
fibres permit nonlinear wave propagation over kilometres, cor-
responding to thousands of characteristic lengths. Whereas
stable single-mode solitons comprise a continuous family of
arbitrary-energy wavepackets, the constraints imposed by inter-
nally balancing modal dispersion limits multimode solitons to
much more limited configurations®; indeed, formation of a multi-
mode soliton is only possible if the pulses in the constituent modes
have adequate bandwidth and energy’®”'. Over longer distances,
even these metastable multimode solitons appear to collapse into
the fundamental mode” (Fig. 2c). Although the mechanisms of this
process are still not understood, observations of long-term energy
localization are—though seemingly paradoxical—a remarkably
common feature of multimode nonlinear wave propagation even
beyond the regime of beam cleaning described previously, arising
not only from purely conservative-* but also from dissipative***
nonlinear intermodal interactions.

Solitons in resonators. Optical solitons in the driven-dissipative set-
ting of a laser or coherently driven cavity””~” display an even richer
scope of behaviours. Synchronized (that is, phase-locked) collec-
tive states of the cavity’s longitudinal modes underlie mode-locked
lasers’ and microresonator frequency combs®. In addition to solitons
formed in cavities with anomalous dispersion, which resemble soli-
tons of the 1D nonlinear Schrédinger equation, normal-dispersion
soliton pulses, solutions of the cubic-quintic complex Ginzburg-
Landau equation, are also possible in the dissipative setting’®.
Investigations into mode-locking in fibre lasers with multiple trans-
verse modes resulted in the discovery of spatiotemporal mode-locking
(STML)—the formation of stable, multimode dissipative solitons”*".

1023


http://www.nature.com/naturephysics

NATURE PHYSICS

REVIEW ARTICLE | INSIGHT

The conceptual prototype is a laser constructed with multimode gain
fibre, spatial and spectral filters, and components that act as a spa-
tiotemporal saturable absorber (Fig. 2d). Considering the number
of independent controls in such a laser, it may not seem surprising
that certain special configurations could admit stable spatiotemporal
pulses. However, decades of effort have shown that high-dimensional
solitons are typically fragile, prone to disintegration at the slightest
symmetry breaking. The discovery of STML was surprising not only
because the observed multimode dissipative solitons persist stably
indefinitely, but because these new solitons display remarkable diver-
sity and complexity. Many such solitons robustly maintain a complex
pattern of internal coherence, even in the presence of considerable
intracavity disorder and perturbations, and across a wide range of
experimental parameters”*. Although there are many distinct mech-
anisms through which multimode dissipative solitons form®, in gen-
eral they result from a dynamic balance between saturable absorption
and spectral and spatial filtering (which tend to shorten the multimode
pulse) and nonlinearity, gain and dispersions (which tend to broaden
the pulse).

Spatiotemporal instabilities

Instabilities are perhaps the most fundamental processes of non-
linear wave physics. They influence phenomena that range from
short-term dynamics to steady-state pattern formation. Exchange
of energy between waves by four-wave mixing underlies many
instabilities. One wave grows at the expense of another—the first
wave experiences gain whereas the second decays and is therefore
unstable. That gain is a strong function of the wavevector and fre-
quency. In experiments, components of unavoidable noise with
wavevector k and frequency w at the peak of the instability gain
function typically grow dramatically and determine the spatiotem-
poral characteristics of the resulting field. This energy exchange
requires momentum and energy conservation, with the former
implying the coupling requires wavevector or phase matching,

S"ki(w;) = 0, where k(w)) are the propagation constants of the par-

tilcipating modes. Alternatively, waves can be coupled if some other
process, acting as an additional virtual wave with wave vector k,,
makes up any difference between the wavevectors of the coupled
waves, that is, S ki(w;) = k-

1

Spatiotemporal wavevector matching. Spatial (that is, modal)
dispersion can compensate for chromatic dispersion, in a simi-
lar manner to what occurs in spatiotemporal modulation insta-
bility (STMI) in homogeneous media®™. Nanosecond-duration
pulses launched into multiple modes of a GRIN fibre can undergo
beam self-cleaning owing to the Kerr nonlinearity as mentioned
above, and the cleaning is enhanced by stimulated Raman scat-
tering*. This state is a spatial attractor (the system is dissipative)
for a wide range of multimode input fields. However, the attrac-
tor is unstable against STMI (Fig. 3a); four-wave mixing subse-
quently mediates the transfer of power from the fundamental to
higher-order modes in new frequency bands™**-* (Fig. 3b,c). In
other multimode fibres, the manifestation of STMI depends on the
details of the fibre’s structure®—>. However, STMI always produces
a steady-state field in which different frequency components have
different spatial profiles.

Self-imaging wavevector matching. In a GRIN fibre, superposi-
tions of modes undergo periodic spatial compression and expansion
(Fig. 2b). Through the Kerr nonlinearity, this results in an effective
longitudinal refractive index grating that includes virtual wavevec-
tors with magnitudes that are multiples of 2x/Z, where Z, is the
grating period. The self-induced grating thus allows wavevector
matching of new processes via a route that is fundamentally dis-
tinct from STMI**+8793%4 So-called parametric instabilities arise in
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many physical settings when a parameter of the medium is mod-
ulated in time (equivalently, along the longitudinal direction in
passive waveguides).

If the modulation arises from collective oscillations rather
than from a periodic drive or perturbation, the instability is
referred to as geometric parametric instability (GPI). The strong
self-imaging evolution in GRIN fibres is an example of such a
periodic self-modulation, which allows coupling between waves
with different frequencies and the same transverse mode.
GPI based on this coupling was observed by launching 900-ps
pulses at 1,064nm, where the dispersion is normal, into
GRIN fibre”. With a peak input power of 50kW, the out-
put consists of a series of non-uniformly spaced spectral peaks
between 450 and 730nm (Fig. 3e). The output beams look
‘cleaned, with a bell-shaped profile consisting of the funda-
mental mode (together with a background of higher-order
modes) that maintains the self-imaging evolution (Fig. 3f).
The similarity of the spatial profiles of each frequency component is
a signature of self-imaging-based wavevector matching.

Soliton instabilities. Qualitatively similar processes to those that
destabilize quasi-continuous waves can also cause a soliton to adjust
its shape, which can include undergoing fission, and dissipate
energy into one or more dispersive waves. Through spatiotempo-
ral wavevector matching, the soliton can induce formation of the
dispersive wave by intermodal four-wave mixing” or cross-phase
modulation®. In GRIN fibres, self-imaging wavevector matching
enables resonant energy transfer from femtosecond multimode
fields to dispersive waves that extend over hundreds of nanometres
of wavelength® 6>,

Wavefront-shaping for control of multimode nonlinear
waves

It was observed, early on, that, by manually controlling the modes
excited in a multimode fibre, the ensuing nonlinear processes could
be dramatically affected”®. A similar strategy was taken to explore
the dynamics of multimode solitons and supercontinuum®>”. The
millions of degrees of spatial control offered by modern SLMs
offer an enticing opportunity for extending this exploratory
strategy with fully automated, computer-driven optimization of
MMNLO wave propagation. Mirroring the typical configuration
of wavefront-shaping experiments in disordered media and linear
multimode waveguides, Tzang and colleagues launched intense
nanosecond pulses into highly multimode, normal-dispersion
GRIN fibre after reflection from an SLM™*. They used a genetic
algorithm to adjust the phase applied to the SLM to optimize objec-
tive functions defined by measurements of the light exiting the
fibre, such as maximizing the energy produced in a particular
frequency band.

Similar strategies have been employed to control light propaga-
tion in multimode fibre amplifiers™, as well as to explore differ-
ent regimes of beam self-cleaning'® and multimode fibre lasers'"'.
Aside from controlling features of nonlinear wave interactions in
passive or driven-dissipative settings, high-dimensional wavefront
shaping also offers a route to utilizing complex nonlinear dynamics
in multimode waveguides for information processing'®, extending
prior work using linear random media'®”. So far, all these studies
have relied on translating an SLM-pixel basis to a multimode fibre,
usually in a way that prevents easy interpretation of experiments.
To move beyond these blackbox perspectives, fully mode-resolved
excitation and measurement will be helpful'*.

Outlook

Towards spatiotemporal solitons. Although a variety of spatiotem-
poral soliton physics have been observed in multimode fibres, no
observations constitute what we would describe as spatiotemporal
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waveguides, the number of modes is scaled by increasing the transverse dimensions or refractive potential depth (numerical aperture). Disorder can
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important. Dissipation can be controlled by introducing optical filters and compensating with optical gain. The high gain possible with fibre amplifiers
(>20dB per pass) in particular enables the study of strongly dissipative persistent phenomena, such as multimode dissipative solitons. b, Different
phenomena have been observed, or are hypothesized to exist, in different regimes. ¢, To explore new phenomena, different physical platforms provide
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(top to bottom): ref. 2%, Springer Nature Limited; ref. "¢, The Optical Society; ref. '*¢, Springer Nature Limited; ref. =°, Wiley.

solitons (STSs). By STSs, we mean solitons whose propagation is
characterized by a simultaneous balance of both spatial diffrac-
tion and temporal dispersion by nonlinear self-focusing, waves
first envisioned as ‘light bullets’ by Silberberg'®. Instead, the soli-
tons observed so far are metastable complexes of mutually trapped
pulses, more multimodal soliton molecules or soliton-conical
wave'% hybrids than STSs. Indeed, after formation, the spatial con-
finement for observed multimode solitons is almost completely
provided by the waveguide potential. Pulses resembling STSs in
multimode waveguides have, however, been theoretically predicted
in both passive'”"""" and active''>'"’ settings, although not all theo-
retical predictions consider solitons whose self-confinement is pre-
dominantly due to nonlinearity. To observe such unusual solitons,
researchers will need to consider wave propagation with relatively
weak confinement, as in multipass cells''*. Although multimode
STS could perhaps exist in conservative settings, we expect that
saturable dissipation'”® will play an important role in stability and
excitation, as in most work on multidimensional cavity solitons”*~"".
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Role of disorder in nonlinear multimode systems. Recent work on
MMNLO physics has emphasized nonlinearity relative to disorder.
However, the coherent wave propagation in beam self-cleaning and
spatiotemporal mode-locking occurs despite disorder and, indeed,
these self-organization processes are evidently enhanced by disor-
der*#>449750_Studies of nonlinear multimode systems with disor-
der ranging from negligible to dominant should offer insight—and
perhaps even resolution—on the relationship between disorder and
nonlinearity that has long fascinated the field.

For this, multimode solitons offer one promising platform.
Multimode soliton formation and propagation as described above
do not involve disorder at all. Remarkably however, in the so-called
Manakov limit of strong disordered mode-coupling, temporal mul-
timode solitons with the particle-like properties of solitons of the
1D nonlinear Schrédinger equation re-emerge’''*''s. Disorder
causes fast intermodal energy exchange within the envelope of
these Manakov solitons, which minimizes modal dispersion and
four-wave mixing, similar to the rapid phase variations that exist
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within the envelope of an incoherent soliton®'. However, despite this
pivotal role of disorder, the temporal multimode Manakov soliton is
a completely coherent wave structure. Realization of the Manakov
limit remains a challenge, but the experimental observation of mul-
timode Manakov solitons would be an important milestone.

Between the regime of perturbative disorder and the Manakov
limit should lie a regime of smooth but non-negligible disorder'”,
analogous to the branched-flow regime'”. If processes like disper-
sion and nonlinearity are comparable to this smooth disorder, we
expect physics—and perhaps soliton-like structures—that is funda-
mentally a product of all factors. One hypothetical possibility, which
would generalize the concept of a soliton in disordered multimode
systems, would be principal nonlinear eigenmodes or principal
mode solitons, a fusion of the soliton and linear principal mode*
concepts. Like multimode STS, the dissipative selection of a mul-
timode laser provides one enticing route to clean observations of
these nonlinear waves®.

New experimental platforms. Most studies of MMNLO waves have
opportunistically relied on commercially available fibres. Although
the low cost of these fibres has benefited early development, they
have also biased and limited research. Thus, critical goals for the
field ought to be to observe new phenomena and enable appli-
cations by utilizing or exploring MMNLO concepts in existing
photonic platforms besides commercial solid-core fibres, and by
developing new photonic structures designed specifically to access
new regimes and enable practical applications of MMNLO wave
propagation (Fig. 4c).

So far, the most immediately clear application of MMNLO is
generating very-high-brightness supercontinuum; for this, a seem-
ingly straightforward innovation comprises multimode fibres
that are suitable for efficient and broader supercontinuum'?'. To
achieve this with glasses beyond fused silica can, however, require
completely novel fibre designs, because conventional methods for
graded-index doping are not possible'”. More work, involving, for
example, tapered fibres'*>'** or chalcogenide glasses'*, could extend
these results, perhaps even into the long-wave infrared or soft UV
regimes. For this and other aims, hollow-core fibres offer another
compelling platform. As hollow-core fibres guide light primarily
in a pressurized gas, extreme, ultrabroadband pulse propagation,
where ionized plasma and self-focusing play pivotal roles, can be
safely studied'**"*. Nonlinear wave propagation in cavities or mul-
tipass cells''*"”' may also explore highly multimode regimes. By
controlling the dispersion of the mirrors or by changing the opti-
cal media placed within the cavity (for example, adding gain)—or
both—a range of regimes could be explored. Intracavity or intracell
SLMs could permit dynamic control of intracavity coupling and
mode characteristics across 107 degrees of freedom'*.

Although few-mode nonlinear optical physics in integrated plat-
forms, such as silicon nitride-on-insulator, have been studied'**'*,
the potential for highly multimode nonlinear wave physics in these
devices remains unexamined. Traditionally, single-mode structures
have been employed for strong transverse confinement, but GRIN
or GRIN-like structures could allow for confined modes with lower
sidewall overlap, leading to lower propagation losses'””. Designs
that reliably control multimode nonlinear physics are challenging,
but emerging strategies such as inverse design'* could allow for
integrated multimode nonlinear photonics structures that leverage
multimode phenomena to outperform traditional devices.

New platforms may also offer solutions to control the effect of
disorder on MMNLO phenomena. Some phenomena—like beam
self-cleaning or STML—appear to be resilient to disorder, but disor-
der can still pose practical challenges. Methods used in the broader
field of complex photonics (discussed elsewhere in this issue) to
coherently control light in disordered media are worth pursuing,
in part because of the rich questions inherent in generalizing them
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to nonlinear systems'”’. However, a more pragmatic approach—
especially for developing tools to be used by non-specialists—is to
design multimode structures in which disorder is intrinsically sup-
pressed by choice of the mode structure or topology'**'¥, or by use
of inflexible photonic structures, including rod-like waveguides,
integrated chips and bulk optical systems such as multipass cells.

To study dissipative MMNLO dynamics, waveguides providing
high optical gain are necessary. Initial works on multimode non-
linear waves in fibre lasers and amplifiers used custom Yb-doped
fibres, which are not commercially available’*>*>'** and whose rar-
ity has hindered research progress. However, these fibres are not
necessary, or even optimal, for studying dissipative MMNLO or
for developing useful multimode mode-locked laser systems. For
example, high-quality pulse formation with diffraction-limited
beam quality and energy far beyond single-mode limits has been
predicted in widely available step-index multimode gain fibres,
although this requires a strong saturable absorber®. Initial steps to
observe this regime have been made®. Fibres with optimized inho-
mogeneous loss in addition to refractive index may also facilitate
novel forms of STML'?. Bulk laser systems, based on high-gain
laser or parametric'*! processes, are also appealing for studying and
applying dissipative MMNLO. For fibre-based STML meanwhile,
amplifiers being developed for mode-division multiplexed commu-
nication'**"'* may soon offer a convenient solution.

Experimental techniques for multimode nonlinear physics. The
multidimensional complexity of MMNLO underlies many aspects
of its fundamental interest, but also some of its experimental chal-
lenges. In the context of MMNLO, the measurement challenge is
how to efficiently obtain all the information needed to adequately
describe broadband, highly multimode states of light. Efficient
measurements must minimize measurement time as well as experi-
mental cost and complexity, but should still facilitate unambiguous
comparisons with theory, both for decisive science and to quantita-
tively inform design optimization and control.

Techniques to measure complex spatiotemporal optical fields
are too plentiful, and feature trade-offs that are too numerous,
to exhaustively discuss here—readers may consult refs. '*>'*¢ and
others. A variety of measurements used in MMNLO also involve
scanning or sampling the multimode field using a single-mode
fibre (for example, refs. '*-'*°), which can be convenient and use-
ful qualitatively, but do not always allow direct comparison
with theory.

For MMNLO, comparison of experiments and theory benefits
from measurement of the complex field amplitude in each relevant
mode. Moreover, a well-chosen or calibrated modal basis can maxi-
mize both the interpretability and efficiency of measurements. Modal
bases are effectively exploited by physical mode-demultiplexing
measurements'**'®’, in which a field is physically separated into
modal components, for example by phase plates, and then measured
by single-mode measurement devices. However, this approach is
currently complex to implement, especially for highly multimode
fields. An alternative is to measure the entire spatiotemporal electric
field and then perform mode decomposition directly at each wave-
length (for example, ref. '*'). This is often experimentally simpler,
but will usually be less time-efficient.

Looking forward, we expect that broadband modal decompo-
sition should be possible with simple optical set-ups by extending
monochromatic numerical mode decomposition techniques (for
example, refs. °7°>%%), Sufficient information for reconstruction
might be obtained from images of the near-field and far-field beams
after diffraction from gratings, or by using a tunable spectral fil-
ter to acquire wavelength-dependent beam profiles. For MMNLO,
we believe that physical mode-resolved measurements are the ideal
choice. Although the equipment requirements for these measure-
ments are not intense (a single SLM is sufficient), regular application
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of these techniques will require efforts to improve their accessi-
bility, such as open-source instrumentation and self-calibration
procedures.

Theoretical techniques for multimode nonlinear physics. Many
regimes of MMNLO physics remain challenging to model due to
the number of interacting modes, the heterogeneous, nonlinear or
nonlocal quality of interactions, and the frequent lack of ergodic-
ity and conservative equilibrium. These challenges are ubiquitous
throughout physics, limiting our understanding from network
physics to many-body quantum systems, and even intergalactic
and biological phenomena. Compared to these settings, the acces-
sibility of multimode nonlinear optics experiments is both remark-
able and exciting. In the past, multimode optical experiments have
provided the means to experimentally isolate complex phenomena,
such as replica symmetry breaking in nonlinear wave propagation'*®
or localization in passive or active disordered optical media. Thus,
looking to the future, MMNLO systems may provide a testbed to
develop theories and techniques to understand complex physical
phenomena well beyond optical waves'>’~">’.

To this end, MMNLO systems are ideal subjects for techniques
that combine traditional physics models, such as the coupled-mode
(Box 1) or thermodynamic (Box 2) theories, with machine learning
models. Like the many-body quantum systems to which neural net-
work techniques have been effectively applied'*’, MMNLO systems
contain emergent high-dimensional phenomena, which—though
not always intuitive—should form the basis for understandable
compressed models. The relative ease of acquiring enormous quan-
tities of experimental data and of controlling millions of degrees
of freedom further supports the promise of these methods. Initial
work applying machine learning techniques to linear multimode
propagation is encouraging'®'-'®, but extensions to nonlinear mul-
timode optical systems have been inspiring but less effective than
anticipated”'®".

We expect that major improvements will be possible by applying
physics-informed models'®, by better controlling or learning exper-
imental noise and drift, by controlling input fields in both space and
time'®, and by considering richer dynamical settings such as the
anomalous dispersion regime®. Besides providing an ideal testbed
for data-driven techniques that achieve both physical insight and
accurate predictions, data-assisted methods will probably prove
essential in achieving systematic control over highly multimode
nonlinear dynamics.
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