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Thermodynamic optical pressures in tight-binding
nonlinear multimode photonic systems
Nikolaos K. Efremidis 1,2✉ & Demetrios N. Christodoulides 3

Optical forces are known to arise in a universal fashion in many and diverse physical settings.

As such, they are successfully employed over a wide range of applications in areas like

biophotonics, optomechanics and integrated optics. While inter-elemental optical forces in

few-mode photonic networks have been so far systematically analyzed, little is known, if any,

as to how they manifest themselves in highly multimoded optical environments. In this work,

by means of statistical mechanics, we formally address this open problem in optically ther-

malized weakly nonlinear heavily multimode tight-binding networks. The outlined thermo-

dynamic formulation allows one to obtain in an elegant manner analytical results for the

exerted thermodynamic pressures in utterly complex arrangements-results that are either

computationally intensive or impossible to obtain otherwise. Thus, we derive simple closed-

form expressions for the thermodynamic optical pressures displayed among elements, which

depend only on the internal energy as well as the coupling coefficients involved. In all cases,

our theoretical results are in excellent agreement with numerical computations. Our study

may pave the way towards a deeper understanding of these complex processes and could

open up avenues in harnessing radiation forces in multimode optomechanical systems.
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The advent of Maxwell’s electrodynamics was, from its very
start, instrumental in understanding and predicting
radiation pressure effects1,2. Yet, it was not until the

invention of the laser that these processes received widespread
attention. The pioneering work of Ashkin and colleagues ushered
an era in utilizing optical forces for trapping and manipulating
micro-particles and even individual atoms-effects that are
nowadays extensively used in biology, biophotonics, soft matter,
and atomic physics3–5. In such environments, optical radiation
forces arise because of scattering that tends to alter the electro-
magnetic momentum balance as imposed by the incident
wave6–8. As such, these forces are typically analyzed by invoking
the Maxwell stress tensor formalism once the vectorial electro-
magnetic field has been determined. In 2005, the prospect of
observing a class of radiation forces was suggested9,10. Unlike
scattering arrangements, the optical force between two evanes-
cently coupled parallel waveguide elements or optical micro-
cavities can now be either attractive or repulsive depending on the
modal excitation conditions9,10. These intriguing evanescent
“optical bonding” forces were subsequently observed in a series of
experimental works involving coupled dielectric waveguides and
free-standing lightguides on top of dielectric substrates11–13. Over
the years, a variety of other experimental setups was also pursued
to study optical bonding forces. In14,15, evanescent coupling from
a waveguide to a high-Q whispering-gallery resonator was sug-
gested and utilized. In addition, optical bonding forces have been
theoretically and experimentally investigated in vertically coupled
ring resonators16–19, in photonic crystal photomechanical
cavities20, as well as in coupled microring systems21. As indicated
in several studies, the use of such optomechanical forces may be
of fundamental importance for integrated photonic
applications22,23. Such applications could range from optical
routing17 and optical information storage24, to precision
measurements25, photothermal sensing26, and actuators12,13,27, to
mention a few. Along the theoretical front, several works have
considered similar situations on the basis of the Maxwell stress
tensor and different realizations have been suggested28–34.

At this point, it is important to note, that so far, research in this
area has been exclusively conducted in optomechanical arrange-
ments consisting of only two evanescently coupled optical com-
ponents, such as coupled resonators or waveguides. In this case,
the optical pressure is then computed from the very distribution
of the optical fields, given that the in-phase supermode leads to
attractive forces while the out-of-phase to repulsive interactions
between the two elements of the system. Beyond these few-mode
optical configurations, there is currently little, if any, knowledge
as to how such forces manifest themselves. Clearly of importance
will be to develop pertinent methodologies that are capable of
analyzing radiation pressure effects in much more complex set-
tings that could, in principle, involve hundreds or thousands
of modes.

In this work, we investigate for the first time to the best of our
knowledge, radiation pressure effects in thermalized highly-
multimoded weakly nonlinear tight-binding optical systems. By
thermalization, we mean the process of reaching thermal equili-
brium, through equipartition of energy and uniform temperature
that maximizes the system entropy. Since our system is not
connected to a thermal bath, thermal equilibrium is obtained via
nonlinear interactions. The thermodynamic pressure, as exerted
collectively by all the modes, is obtained using a statistical
mechanical formulation35,36, and is analyzed in pertinent pho-
tonic discrete systems (comprised of optical waveguides or
microresonators) that have attained Rayleigh-Jeans thermal
equilibrium conditions. Our formalism is used to study both one-
and two-dimensional discrete lattices. These effects are investi-
gated under zero and periodic boundary conditions,

corresponding to linear geometric configurations and circular
arrays, respectively. In deploying our approach, a grand-canonical
description is used, whereby the thermodynamic pressure is
defined as the conjugate intensive variable with respect to varia-
tions in the separation distance between adjacent elements in the
lattice. Importantly, we find that the thermodynamic pressure
between the array elements can be elegantly expressed as a
function of the optical energy and the underlying coupling
coefficients. In two transverse dimensions, the pressure along
each direction is, in principle, different. Depending on the
internal energy and the ensued optical temperature, the pressure
can be positive, negative, or even zero. By using the equilibrated
power mode occupancies, our approach can accurately provide
the interwaveguide, or more generally, interelemental pressures,
for different types of boundary conditions. For periodic bound-
aries, the thermodynamic pressure is equal to all the interele-
mental pressures. Thus, all the optomechanical forces in a circular
array have the same magnitude, which is thermodynamically
determined. On the other hand, for zero-boundary conditions,
the interelemental pressure, in general, varies along the array. In
all cases, the thermodynamic pressure is found to be equal to the
average value of the interwaveguide pressures. Importantly, in our
work, we provide a complete statistical mechanical formulation of
thermalized discrete optical systems, including expressions for the
total energy and its differential. A Gibbs-Duhem equation that
defines the relation between variations in the intensive para-
meters of the system is also presented. Our results may be useful
in predicting optomechanical forces in utterly complex multi-
component discrete optical settings that could be realized on a
variety of integrated photonic platforms.

Results
Optical thermodynamic pressures in one-dimensional non-
linear tight-binding photonic lattices. Let us first consider that
the system under examination is a, regularly spaced, one-
dimensional lattice of waveguides or resonators, as shown sche-
matically in the first two columns of Fig. 1. For simplicity, each
element of the lattice is selected to be single-mode and, thus, the
total number of supermodes M, is equal to the number of ele-
ments or nodes in the lattice. Using a tight-binding
approximation37–39, we find that the Hamiltonian of the system
satisfies

H ¼ � ∑
M

m¼1
κu�mðumþ1 þ um�1Þ þ γ

um
�� ��4
2

" #
;

where um is the nodal amplitude of single-mode element m, κ is
the coupling coefficient between adjacent waveguides, and γ
determines the strength of the nonlinearity due to the Kerr
effect40. The discrete nonlinear Schrödinger (DNLS) equation
i _um þ κðumþ1 þ um�1Þ þ γ um

�� ��2um ¼ 0 is derived from _um ¼
fH; umg by utilizing the Poisson brackets fum; u�m0g ¼ iδm;m0 and
fum; um0g ¼ fu�m; u�m0g ¼ 0. Such a coupled-mode theory analysis
applies in the weakly guided regime37 (∣κ∣ ≪ ω in the temporal
domain and ∣κ∣ ≪ β in the spatial domain). In our simulations,
both 1D and 2D tight-binding lattices were found to thermalize to
the theoretically predicted Rayleigh-Jeans distribution. Kinetic
nonequilibrium theories can be utilized to theoretically analyze
the process of thermalization41,42. In a recent study of beam-
cleaning in multimode fibers, the condensate fraction and che-
mical potential are infered from the intensity profiles43. Using
statistical mechanics, the non-trivial task of thermalization to the
Rayleigh-Jeans distribution and beam self-cleaning have been
observed in multimode fibers44,45.
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Our focus from this point on in this work is going to be
concentrated on waveguide arrays, where _um ¼ dum=dz and z is
the propagation distance. However, the same analysis can be
directly applied for coupled resonators in which case
_um ¼ dum=dt, where t is time. The boundary conditions can
either be periodic in the case of a circular configuration, with the
nodes being the vertices of a normal polygon [Fig. 1a], or zero for
a linear geometric arrangement [Fig. 1b]. Specifically, the
propagation constants of the modes are εðlÞ ¼ �2κ cosð2πl=MÞ
for periodic and εðlÞ ¼ �2κ cosðπl=ðM þ 1ÞÞ for zero-boundary
conditions. Due to the Hermitian nature of the Hamiltonian, the
respective supermodes are orthogonal. Since the density of states
inside the band when M is large is the same in both cases, the
boundary conditions do not affect the overall equilibrium
thermodynamic behavior of these systems. The propagation
constants are linear functions of the coupling coefficient, κ, which
depends on the geometric and index characteristics of the
medium. Assuming waveguides with radially symmetric index
profile, then κ= κ(s), where s is the spacing between successive
waveguides. For M≫ 1, the length of the lattice, for both types of
boundary conditions, is L ≈Ms.

We utilize a recently developed weakly nonlinear optical
thermodynamic theory with a supermodal basis46. Subsequently,
different aspects of this problem have been examined47,48. Here,
in order to be able to define pressure, we follow an approach
similar to ref. 49, that takes into account the additional system
parameters and their conjugate variables. For one-dimensional
geometries, this additional parameter is the length L of the array.
The detailed derivations are presented in the Methods section.
We decompose the optical wave into the supermodes uðlÞm of the
lattice, umðzÞ ¼ ∑M

l¼1 c
ðlÞðzÞuðlÞm , where HðuðlÞm ; γ ¼ 0Þ ¼ εðlÞuðlÞm , ε

(l)

is the eigenvalue or the propagation constant of uðlÞm , and c(l)(z) is
the respective z-dependent amplitude. The optical system
conserves the total power N=∑ln(l), where nðlÞ ¼ cðlÞ

�� ��2 is the
power occupation number of mode l, as well as the Hamiltonian

H. In the weakly nonlinear regime, we assume that the major
contribution to the Hamiltonian originates from the linear part.
Thus the total energy per unit length along the longitudinal
direction is U=∑lε(l)n(l)/ω, where ω is the frequency of the
electromagnetic wave.

Following the calculations, we find that the power occupation
numbers follow a Rayleigh-Jeans distribution n(l)= 1/(α+ βε(l)/
ω), where we denote by ε the set ε= {ε(1),…, ε(M)} and
εðlÞ ¼ ε n fεðlÞg. In addition, the equation of state that relates the
internal energy, the power, and the number of modes, with the
optical temperature (or temperature) T and the chemical
potential μ is given by U− μN=MT. Note that the expressions
for the distribution and the equation of state are identical to those
derived in46 (where a microcanonical ensemble is utilized) and do
not seem to be affected by the presence of the extra parameter L.
Equivalently, assuming that the number of waveguides of the
lattice is fixed, it can be more convenient to define this additional
parameter as the spacing between adjacent waveguides s= L/M.
Importantly, the thermodynamic variable that is conjugate to L, is
the actual optomechanical electromagnetic pressure that is
applied between the waveguides of the lattice. Following the
calculation [see Methods section], we can express the pressure in
the form

p ¼ �∑
l

nðlÞ

ω

∂εðlÞ

∂L

� �
M

: ð1Þ

Since the propagation constants are linearly dependent on the
coupling coefficients, the above formula becomes

p ¼ � U
M

d log κ
ds

: ð2Þ

Equation (2) is a surprisingly simple expression that relates the
actual thermodynamic pressure with the internal energy and the
coupling coefficient by taking into account all the partial
pressures exerted by each supermode. Specifically, we see that
the pressure depends on two terms: It is proportional to

a b c

d e f

Fig. 1 Schematic showing typical multimoded optical settings where out theory can be applied to derive a thermodynamic pressure. A one-dimensional
array consisting of evanescently coupled single-mode waveguides in a a circular (normal polygon with the waveguide at the vertices) and b a linear
geometric configuration. c A two-dimensional waveguide array forming a rectangular lattice. A one-dimensional coupled resonator array in d a circular and
e a vertical ring arrangement. f A two-dimensional rectangular lattice of ring resonators. In the first column, the boundary conditions are periodic, whereas
in the second and the third columns, the boundary conditions are zero.
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the average internal energy per waveguide U/M and the
logarithmic derivative of the coupling coefficient. For a coupling
coefficient that decays exponentially κ(s)= κ0e−γs, the pressure
takes the form p= γU/M. In general, as long as κ(s) is derived
analytically, a closed-form expression is obtained for the
thermodynamic pressure.

From Eq. (2), we can determine the optomechanical pressure,
or the force per unit of propagation length that is exerted on the
waveguides, due to the gradient optical forces. Since dκ/dL < 0,
Es. (2) predicts that U and p have the same sign (The
propagation constants are shifted with respect to the middle of
the band. As a result, the total energy can become positive, zero,
or negative). Positive (negative) pressure is associated with a
repulsive (attractive) force between adjacent waveguides. In the
low and high energy condensation limits, the system approaches
the in-phase and out-of-phase modes. The respective energies,
temperatures, and pressures can be analytically computed and
are given by U=− 2Nκ/ω, T= 0+, p= (2N/(ωM))dκ/ds and
U= 2Nκ/ω, T= 0−, p=− (2N/(ωM))dκ/ds. In the middle of
the band U= 0, T→ ±∞ and the average pressure is zero,
p= 0. As we can see in Fig. 2, according to the Rayleigh-Jeans
distribution, when U < 0 the lower-order modes have higher
occupation numbers. The distribution is inverted when U > 0,
resulting in larger occupation numbers for the higher-order
modes. Taking into account the phase profile of the super-
modes, we can say that the array is biased towards an in-phase
(out-of-phase) structure when U < 0 (U > 0), leading to
attractive (repulsive) forces, respectively. In Fig. 2, we
summarize our results concerning the pressure that is exerted
between two adjacent waveguides in a one-dimensional
waveguide array. In particular, we depict the variations in the
pressure and the temperature as a function of the total energy,
as well as the associated power modal occupation numbers. The
forces exerted between adjacent waveguides are schematically
shown. The total force on a waveguide is determined by
vectorially adding all the interwaveguide pressures.

In addition to pressure, we have derived expressions that
determine the thermodynamic state of an optically thermalized

(or thermalized) system. In particular, our calculations show that

dU ¼ TdS� pMdsþ μdN � RdM; ð3Þ
a formula that shows how the internal energy is modified due to
variations in the spacing between waveguides, the power, or the
number of modes of the system. In Eq. (3), R= T(∂q/∂M)μ,T,s is
the conjugate variable to the number of modes and q is the q-
potential that is directly related to the grand-canonical partition
function [see Methods]. In the case of one transverse dimension,
waveguide arrays constitute an extensive system46,49 meaning
that the entropy S, is a homogeneous function of degree one, with
respect to U, M, N, or S(λU, λM, λN)= λS(U, M, N). As a result,
we are able to integrate the extensive variables while keeping the
intensive quantities constant in Eq. (3), leading to the following
relation for the total or internal energy

U ¼ TSþ μN � RM: ð4Þ
We see that we can decompose U into three terms involving the
entropy, the power, and the number of modes, with the respective
conjugate variables being T, μ, and R. Note that in classical
thermodynamics, the energy decomposition contains a term that
is proportional to the pressure. However, here this is not the case.
In particular, the pressure-volume term is replaced with the RM
product. To highlight the similarity of R with the pressure of
classical thermodynamics, we define R as the “internal pressure”.
The internal pressure physically describes how much the internal
energy is modified when an additional mode is introduced to the
system. However, we are not able to see any observable physical
significance of this term in discrete photonic systems. Another
consequence of the extensive character of the entropy is the
following simplified expression for the internal pressure
R= qT/M. Finally, from Eqs. (3), (4), we derive the Gibbs-
Duhem equation36

SdT þ pMdsþ Ndμ�MdR ¼ 0; ð5Þ
which shows that the four intensive parameters T, s, μ, and R are
interdependent.

Energy

Pressure

− 2κN
ω

2κN
ω

0+ +∞ −∞ 0−T

n(l)

attractive

. . . . . .

n(l)

. . . . . .

neutral

n(l)

. . . . . .

repulsive

Fig. 2 Relation between the pressure and the internal energy in 1D waveguide arrays. Schematic showing the linear dependence of the optomechanical
pressure from the total or internal energy of the electromagnetic field, under thermal equilibrium conditions [see Eq. (2)] in one-dimensional arrays of
evanescently coupled waveguides. Lower values of the energy are associated with negative pressure ensuing attractive forces between the waveguides. In
addition, the optical temperature is positive and the power modal occupation numbers satisfy a Rayleigh-Jeans distribution that favors the lower-order
modes. Note that there is a particular value of the energy where the distribution of the power occupation numbers becomes uniform, in which case the
temperature is infinite, and the effective pressure between waveguides is zero. For higher values of energy, the pressure is positive, and thus the forces
between waveguides become repulsive. The optical temperature is negative and the power modal occupation numbers satisfy a Rayleigh-Jeans distribution
that favors the higher-order modes. The forces exerted between adjacent waveguides in an array are illustrated at the bottom.
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Radiation pressures in thermalized two-dimensional discrete
array systems. Our results can be generalized in the case of two-
dimensional evanescently coupled discrete optical configurations.
Here, for simplicity, we assume a two-dimensional rectangular
arrangement of single-mode waveguides [Fig. 1c] and account for
the coupling between first neighbors. Thus, the Hamiltonian of
the system takes the form

H ¼ �∑
m

u�mðκ1Δ1um þ κ2Δ2umÞ þ γ
um
�� ��4
2

" #
;

where m= (m1, m2), mj= 1, …, Mj, with j= 1, 2,
Δ1um ¼ um1þ1;m2

þ um1�1;m2
, Δ2um ¼ um1;m2þ1 þ um1;m2�1, and

M=M1M2. The spectrum of the linear modes is given by

εðlÞ ¼ εðl1Þ0 ðM1; s1Þ þ εðl2Þ0 ðM2; s2Þ, where ε
ðljÞ
0 ðMj; sjÞ ¼ �2κj

cosðπlj=ðMj þ 1ÞÞ, l= (l1, l2), κj= κ(sj) is the coupling coefficient
and sj the distance between adjacent elements of the lattice along
the jth direction. Assuming that the major contribution to the
Hamiltonian arises from the linear terms, then U=U1+U2,

where Uj ¼ ∑lε
ðljÞ
0 nðlÞ=ω is the part of the energy per unit of

propagation length associated with coupling along the jth trans-
verse direction. We can express the two energy components as
Uj ¼ MκjU j. Importantly, we can define the electromagnetic

pressure along the two transverse directions as pj ¼
�∑2

j¼1 ∑
M
l¼1ðnðlÞ=ωÞð∂ε

ðljÞ
0 =∂AÞM1;M2;s3�j

; where A=M1M2d1d2 is

the transverse area occupied by the lattice, and j= 1, 2 are the x,
and y directions, respectively. Then, for example, the pressure
p1= px describes the applied force per unit area in the y− z
plane. The above expression can be simplified due to the linear
dependence of the propagation constants from the coupling
coefficients as

pj ¼ �Uj

M
1
s3�j

d log κj
dsj

: ð6Þ

This formula is a direct generalization of Eq. (2). We see that the
pressure is proportional to two terms: The first is the total energy
due to coupling along the jth direction per waveguide, while the
second is the logarithmic derivative of the coupling coefficient
with respect to the area of the primitive cell s1s2 due to variations
along the jth direction. From Eq. (6), we see that the pressures
along each direction are, in general, different depending, for
example, on the spacing sj. In addition, we find that the differ-
ential of the internal energy is given by

dU ¼ TdSþ μdN � p1Ms2ds1 � p2Ms1ds2 � R1M2dM1 � R2M1dM2;

ð7Þ
where the internal pressure is Rj ¼ ðT=M3�jÞð∂q=∂MjÞM3�j;μ;T;s

.
Note that Eq. (7), in general, can not be integrated. For

example, when the number of waveguides along one direction is
small, even if the total number of waveguides M is large, the array
exhibits non-extensive corrections. It is only in the limit where
both M1 and M2 are large enough that the system asymptotically
behaves as extensive, meaning that S(λU, λN, λM)= λS(U, N, M)
(see a detailed discussion in ref. 49). There are several
consequences of extensivity that simplify the resulting thermo-
dynamic description. In particular, when the system reaches
thermal equilibrium, due to equidistribution of the energy, and in
agreement with our simulations, U1 ¼ U2 ¼ U and, thus, the
total energy can be written as U ¼ ðκ1 þ κ2ÞMU . In addition, the
internal pressures along each direction are equalized
R= R1= R2= qT/M, and the differential of the internal energy

is written as

dU ¼ TdSþ μdN � p1Ms2ds1 � p2Ms1ds2 � RdM: ð8Þ
Equation (8) can then be directly integrated into U= TS+ μN−
RM. Combining the previous expressions, we derive a Gibbs-
Duhem equation

SdT þ Ndμþ p1Ms2ds1 þ p2Ms1ds2 �MdR ¼ 0 ð9Þ
that relates to the intensive variables of the system. We can
express the pressure along the jth direction in terms of U as
pj ¼ �ðU=s3�jÞðdκj=dsjÞ: However, it is physically relevant to also
define the force per unit of propagation length that is exerted on a
single waveguide along the jth direction p̂j (rather than the force
per unit of transverse area). This is simply the product pjs3j or

p̂j ¼ �U dκj
dsj

: ð10Þ

Thus, for an extensive system, the pressure is the same along the
two transverse directions only if the lattice is square (s1= s2). In
addition, since the sign of the pressure depends on the sign of U ,
the pressures along both directions should always have the
same sign.

Below, we analyze the pressure distributions under zero and
periodic boundary conditions. In both cases, the average value of
the pressure is equal to the thermodynamic pressure. Further-
more, in the case of periodic boundary conditions, the magnitude
of the interwaveguide pressures are all equal to the thermo-
dynamic pressure. The differences between these two types of
boundary conditions are associated with the symmetries of the
system and are rendered in the respective modal distributions.

Interwaveguide thermodynamic optical pressures in tight-
binding lattices. In the remaining part of this paper, we will
investigate the effect of boundary conditions on the actual pres-
sure that is exerted between all adjacent waveguides of a lattice.
We will focus on the case of one-dimensional lattices, although
the same principles apply to two-dimensional configurations.
Importantly, we are going to determine how the thermodynamic
pressure given by Eq. (2) compares to these interwaveguide
pressures pj, between the waveguide elements j and j+ 1, for both
zero and periodic (Born-von Karman type) boundary conditions.

We directly compute the interwaveguide pressure pj, by
decomposing the lattice into a set of virtual directional couplers.
For each one of these couplers, we apply the results of ref. 29.
Adapting these expressions to our formulation, we determine that
the pressure for the two modes of the jth coupler is given by

pj;± ¼ ±
Nj;±

ω

dκ
ds

; ð11Þ

where the plus (minus) sign accounts for the in-phase (out-of-
phase) mode, and Nj,± is the respective power. Any arbitrary
amplitude profile of a virtual coupler can then be written as a
superposition of these two modes. By adding the partial pressures,
we compute the total pressure pj= pj,++ pj,− between wave-
guides j and j+ 1. Note that since we are utilizing a statistical
mechanical formulation, pj, j= 1, …, M− 1, are actually the
average values of an ensemble under thermal equilibrium.

Note that configurations, such as those shown in Fig. 1, can be
utilized to observe optomechanical forces. In order for the
waveguides or resonators to move almost freely, techniques used
in two-component systems11–21 can be adapted to minimize
mechanical stiffness without sacrificing mechanical stability. For
example, the waveguide arrays depicted in the first row of Fig. 1
might be suspended and clamped from both sides.
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Interwaveguide thermodynamic optical pressures under zero-
boundary conditions. When the boundary conditions of the
system are zero [see the first two columns of Fig. 1], then the
amplitude profile of the modes can be highly anisotropic. Speci-
fically, in the case of one-dimensional lattices which are termi-
nated on both sides, i.e. u0= uM+1= 0, the supermodes are given
by uðlÞm ¼ ð2=ðM þ 1ÞÞ1=2 sinðπlm=ðM þ 1ÞÞ. The effect of these
boundaries is more prominent close to the condensation limits,
where mainly the uð1Þm (or the uðMÞ

m ) mode is excited. We have
numerically computed the pressure distribution along the array
pj, as well as the thermodynamic pressure p from Eq. (2). We have
limited ourselves to negative and zero energies U ≤ 0 or equiva-
lently to T ≥ 0. The case U > 0 can be trivially obtained from U < 0
through the transformations U→−U, T→− T, p→− p, pj→
− pj, n(l)→ n(M−l+1).
A series of numerical results, as obtained by directly solving the

coupled-mode theory equations, are shown [Fig. 3a-o]. We use
normalized units and set ω= κ= 1. Since we want our results to
be independent of the specific waveguide system that we use, we
chose to measure the thermodynamic pressure in the form

p/(−dκ/ds) [and respectively the interwaveguide pressures as pj/
(−dκ/ds)]. We use an array with M= 20 waveguides, and select
the input power to be N= 0.4. Thus, the internal energy can take
values in the range of −0.8 ≤U ≤ 0.8. In the three rows of Fig. 3,
we can see the distribution of the power occupation numbers, the
interwaveguide pressures, and the total force per unit of
propagation length applied in each waveguide. The latter is
computed by subtracting the respective left and the right
pressures Fj/[(− dκ/ds)zm]= (pj−1− pj)/(−dκ/ds), where zm is
the length of the array.

In the first column of Fig. 3, U=−0.784, and thus we are very
close to the condensation limit. Almost all of the power relaxes to
the lowest order mode of the array. The pressure between
waveguides is stronger at the center of the array as compared to
the edges, and the resulting actual forces per unit of propagation
length tend to compress the array. Specifically, the attractive
forces become maximum close to n= 5 and n= 15, and are
minimized at the center and the edges of the lattice. In the second
column, we increase the energy to U=−0.7, a value which is still
close to the condensation limit. The main difference here is that
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Fig. 3 Pressure in a linear arrangement of waveguides having zero-boundary conditions. Distributions of pressure and applied forces in a one-
dimensional photonic lattice with M= 20 waveguides, zero-boundary conditions, and power N= 0.4. In the first row (a–e), we see the power occupation
numbers which obey Rayleigh-Jeans distributions. In the second row (f–j), the interwaveguide pressures pj, obtained by taking an ensemble average (blue
circles), and the thermodynamic pressure (red line) are presented and compared. In the third row (k–o), we depict the total force per unit of propagation
length applied to each particular waveguide of the lattice. In the five columns, the internal energy is increased from the condensation limit (first column) to
U= 0, where the Rayleigh-Jeans distribution becomes uniform (as T→ ±∞). In the first three rows, we focus on the case of negative energies. Results with
U > 0 can be directly derived from those with negative U via a simple transformation, as described in the main text. p The thermodynamic pressure is in
excellent agreement with the average value of the intewaveguide pressures p ¼ ð1=ðM� 1ÞÞ∑M�1

j¼1 pj. q Schematic of the forces exerted within the lattice.
When U < 0 or T > 0 (top), the forces are attractive, whereas when U > 0 or T < 0 (bottom), the forces are repulsive.
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the force as a function of the waveguide number tends to behave
in a quasi-linear fashion. Thus the forces are maximum at the
edges of the array and minimum close to the center. In the third
and fourth columns, U=−0.5 and U=−0.3, respectively, and
the Rayleigh-Jeans distribution results in power occupation
numbers that are non-negligible for all the modes of the system.
When U=−0.5, the thermodynamic pressure is almost constant
along the array except close to the edges, where the pressure is
reduced (in terms of absolute values). This leads to almost zero
forces in the bulk of the array, and significant attractive forces at
the edges (mainly on the first two and last two waveguides).
When U=−0.3, the pressure is almost constant everywhere in
the array, and thus attractive forces are effectively applied only on
the first and the last waveguide of the lattice. Finally, when the
internal energy is increased to U= 0, the modal distribution
becomes uniform, the pressure is zero on average, and thus all the
net forces on the array are zero. The red lines in the second row of
Fig. 3 are the values of the thermodynamic pressure obtained
from Eq. (2). As we can see in Fig. 3p, the thermodynamic
pressure is in excellent agreement with the average value of the
interwaveguide pressures p ¼ ð1=ðM � 1ÞÞ∑M�1

j¼1 pj. In Fig. 3q, we
can see a schematic of the applied forces along the array. When
U < 0, the forces tend to compress the array, whereas when U > 0,
the forces are repulsive. Except very close to the condensation
limit, the absolute value of the forces are significantly increased as
we approach the edges.

Radiation pressures in thermalized suspended circular arrays:
periodic boundary conditions. When the boundary conditions
are periodic, then due to symmetry, the statistical properties of all
the elements of the lattice are identical. As a result, the average
value of the interwaveguide pressure pj is independent of j and
equal to the thermodynamic pressure pj= p, j= 1, …, M− 1, as
confirmed by direct numerical simulations. Thus, without the
need for additional calculations, from the thermodynamic pres-
sure given by Eq. (2), we can determine all the interwaveguide
forces in the array. In this section, we are going to present a
detailed example pertaining to a suspended circular array using
physically relevant parameters.

We assume an evanescently coupling waveguide array in a
circular configuration, with the waveguide elements being the
vertices of a regular M-sided polygon, as shown in Fig. 1a. The
array is suspended in an index-matching fluid and double-
clamped at z= 0 and at z= zm. The applied forces are going to
displace each waveguide, with the maximum displacement
observed at the center of the suspended section z= zm/2, (see,
for example, ref. 9). The calculations for the coupling coefficient
between such weakly guided circular waveguides are presented in
the Supplementary Note. For a normal polygon with M sides, the
vectorial sum of the two forces per unit of propagation length
exerted in a single waveguide is equal to

f ¼ F
zm

¼ 2p sin
π

M
êr: ð12Þ

When M≫ 1 the above expression takes the form
f � ð2πp=MÞêr .

As an example, we consider a circular array with core index
nco= 1.5 suspended in an index-matching fluid with ncl= 1.49. The
radius of each core is ρ= 3.2 μm, and the distance between successive
elements of the lattice is s= 3ρ= 9.6 μm. On average, each single-
mode waveguide is loaded with N/M= 1 kW of power, while the
system is operated at a wavelength of λ= 1.55 μm. A number of
M= 20 waveguides is more than sufficient for a thermodynamic
description to be applicable49. Depending on the temperature, or,
equivalently, on the internal energy, the pressure can take values in the
range −0.587 nN μm−1 ≤ p≤ 0.587 nN μm−1. Close to these two
limiting values of the pressure, we reach the condensation limits.
Taking p=−0.3 nN μm−1, a value far from condensation, we find
that the total force applied in each waveguide is
f ¼ �0:0938êr nN μm�1. A schematic representation of the pressure
distribution as a function of the internal energy is shown in Fig. 4.

Conclusion
In conclusion, following a coupled-mode theory approach, we
have derived a complete thermodynamic description for discrete
optical systems, such as waveguide arrays and coupled micro-
resonators in one- and two-dimensional arrangements, in the
weakly nonlinear regime. Focusing on the case of arrays of eva-
nescently coupled waveguides, we have computed the

ffff
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− 2κN
ω 0 2κN
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Fig. 4 Pressure in a circular arrangement of waveguides having periodic boundary conditions. a Attractive, b zero, and c repulsive forces in circular
discrete optical systems. The light gray arrows (shown indicative only on the waveguide located to the right) represent forces exerted due to the
interwaveguide pressures. The vectorial sum of these forces in each waveguide are depicted with black arrows. When U < 0 and thus T > 0, the
forces are attractive, whereas when U > 0 and thus T < 0, the forces are repulsive. In between, we have U= 0 and T= ±∞ leading to zero net
interwaveguide forces.
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interwaveguide pressures exerted between adjacent elements of
the lattice, for both zero and periodic boundary conditions.
Importantly, we have found compact closed-form expressions for
the average thermodynamic pressure. The formalism developed
here can also be utilized in effectively any physical setting where
optical thermodynamics is applicable. These include polyatomic,
topological, and non-Hermitian lattices, as well as tight-binding
configurations where each element is multimodal. We expect that
our results might be useful in predicting optomechanical forces in
integrated photonic systems.

Methods
Calculations for one-dimensional photonic lattices. In what follows, we use a
grand-canonical approach similar to ref. 49, that takes into account the additional
system parameters and their conjugate variables. For one-dimensional geometries,
this parameter is the spacing between adjacent waveguides s, or equivalently, the
total length of the array L. We expand the optical wave in modal space as

umðzÞ ¼ ∑
M

l¼1
cðlÞðzÞuðlÞm ;

where HðuðlÞm ; γ ¼ 0Þ ¼ εðlÞuðlÞm , uðlÞm is the linear eigenmode with index l and pro-
pagation constant or eigenvalue ε(l), and c(l)(z) is the respective z-dependent
amplitude. The DNLS equation conserves the total power

N ¼ ∑ln
ðlÞ;

where nðlÞ ¼ cðlÞ
�� ��2 is the power occupation number of mode l, as well as the

Hamiltonian H. In the weakly nonlinear regime, we assume that the major con-
tribution to the Hamiltonian originates from the linear part46. Thus the total
energy per unit length along the longitudinal direction is

U ¼ ∑l
εðlÞnðlÞ

ω
; ð13Þ

where ω is the frequency of the electromagnetic wave.
The probability of an optical wave with power occupation numbers {n(1), n(2),

…} is calculated by minimizing the entropy subject to the two conservation laws35

ρ ¼ exp �q� α∑
l
nðlÞ � β

ω
∑
l
εðlÞnðlÞ

� �
;

where α, β are the Lagrange multipliers,

q ¼ logQ
is the q-potential, and

Q ¼
Z YM

l¼1

ρdnðlÞ ¼
YM
l¼1

1
αþ βεðlÞ=ω

is the grand-canonical partition function. Since the propagation constants are
functions of M and κ(s), we can express the q-potential as q= q(α, β, M; ε(M, s)).
From the partial derivatives of q, we find that the power occupation numbers
follow a Rayleigh-Jeans distribution46

hnðlÞi ¼ �ω

β

∂q
∂εðlÞ

� �
α;β;M;εðlÞ

¼ 1
αþ βεðlÞ=ω

; ð14Þ

where we denote by ε the set ε= {ε(1), …, ε(M)} and εðlÞ ¼ ε n fεðlÞg. Furthermore

hNi ¼ � ∂q
∂α

� �
β;M;s

¼ ∑
M

l¼1
hnðlÞi; ð15Þ

hUi ¼ � ∂q
∂β

� �
α;M;s

¼ 1
ω
∑
M

l¼1
hnðlÞiεðlÞ; ð16Þ

and

Q ¼
YM
l¼1

hnðlÞi:

From this point on, we will omit the bracket notation (〈⋯〉) that denotes
ensemble averaging. Substituting Eq. (14) to Eqs. (15, 16), we can derive the
following equation of state

αN þ βU ¼ M: ð17Þ
Taking the differential of q

dq ¼ ∂q
∂α

� �
β;s;M

dαþ ∂q
∂β

� �
α;s;M

dβþ ∂q
∂s

� �
α;β;M

dsþ ∂q
∂M

� �
α;β;s

dM

and following the calculations, one can show that

dðqþ αN þ βUÞ ¼ β
α

β
dN þ dU þ pMdsþ RdM

� �
:

By interpreting the above equation as the equivalent to the first law of
thermodynamics, we find that the Lagrange multipliers can be written in terms of
an optical temperature T and a chemical potential μ as β= 1/T and α=−μ/T.
Thus Eq. (17) becomes46

U � μN ¼ MT; ð18Þ
an expression that relates the two conservation laws and the number of modes with
the optical temperature and the chemical potential. In addition, we find that the
entropy is associated with the q-potential via

S ¼ qþ αN þ βU ¼ qþM; ð19Þ
while, the differential of U is given by

dU ¼ TdS� pMdsþ μdN � RdM: ð20Þ
In Eq. (20), we have defined

R ¼ T
∂q
∂M

� �
μ;T;s

ð21Þ

to be the conjugate variable to the number of modes.
We define the pressure as the conjugate variable to the length L=Ms of the

array

p ¼ T
∂q
∂L

� �
μ;T;M

¼ �∑
l

nðlÞ

ωM
∂εðlÞ

∂s

� �
M

: ð22Þ

Note that this is a different definition, in comparison to all the previous works (see
for example refs. 46,49), where the pressure was considered to be the variable that is
conjugate to the number of modes M and thus determined by Eq. (21). Since the
propagation constants are linearly dependent from the coupling coefficients, the
above formula takes the form

p ¼ � U
κM

dκ
ds

: ð23Þ

Assuming that the coupling coefficient decays exponentially with the distance
between adjacent waveguides

κðsÞ ¼ κ0e
�γs; ð24Þ

we obtain

p ¼ γκU; ð25Þ
where U ¼ U=ðMκÞ is the total energy per waveguide divided by the coupling
coefficient. Interestingly, if we follow a similar grand-canonical approach and
ignore the dependence κ(s), i.e., q= q(α, β, M; ε(M, κ)), then U is found to
represent a normalized expression for the stress.

In regular one-dimensional tight-binding photonic lattices, the dynamics of the
optical wave in the presence of Kerr nonlinearity satisfies the discrete nonlinear
Schrödinger equation

i _um þ κðumþ1 þ um�1Þ þ γjumj2um ¼ 0;

where γ is the Kerr nonlinear coefficient, and κ is the coupling coefficient. In the
linear limit with periodic boundary conditions, the modes (or supermodes) of the
system are

uðlÞm ¼ 1ffiffiffiffiffi
M

p exp i
2πkm
M

� �
;

with eigenvalues

εðlÞ ¼ �2κ cos
2πl
M

:

On the other hand, for zero-boundary conditions, the modes

uðlÞm ¼ 2
M þ 1

� �1=2

sin
πlm

M þ 1

are associated with the eigenvalues

εðlÞ ¼ �2κ cos
πl

M þ 1
:

Data availability
All the data that support the plots and the other findings of this study are available from
the corresponding author upon reasonable request.
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