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Optical forces in dielectric structures are typically analyzed by utilizing either the Maxwell stress tensor
or energy-based methods from which they can be derived by means of the eigenfrequencies and the effective
refractive indices involved. While the equivalence of these two methods has been discussed in several studies,
it would seem that a general electrodynamic proof of this aspect is still lacking. In this work, we provide
a rigorous electrodynamic derivation based on the Minkowski-Helmholtz formula and the electromagnetic
variation theorem, from which one can directly conclude that under Hermitian conditions these two approaches
are formally equivalent to each other. The results of our study universally apply to any dielectric waveguide or
cavity configuration. In addition, this methodology can be employed in graded index systems that do not exhibit
sharp interfaces. Importantly, our analysis offers a straightforward route for predicting optical forces in a variety
of photonic arrangements, including dielectric scatterers and multielement array configurations.

DOI: 10.1103/PhysRevA.106.033517

I. INTRODUCTION

Electrodynamic forces exerted on or among dielectric
structures are manifested in a ubiquitous manner in many and
diverse photonic arrangements. Such forces can readily arise
in a variety of optical environments like optical gradient and
scattering forces on dielectric scatterers [1–4] and forces in-
duced between evanescently coupled waveguides and cavities
[5,6] (Fig. 1). These same electromagnetic forces are also at
play in settings where the refractive index can vary gradually
in space, for example, in graded-index fibers and liquids [7,8].
Over the last two decades or so, the electromagnetic forces
between two dielectric elements (cavities or waveguides) have
been theoretically analyzed by relying mainly on the fol-
lowing two approaches: (a) the use of the Maxwell stress
tensor formalism [9] and (b) an energy-based method from
which one can extract the force among two elements from
the spatial gradient of the respective eigenvalues [10–18]. In
this regard, the bonding and antibonding forces between two
waveguides were first investigated by Povinelli et al. [10],
who found numerically that these two methodologies are,
indeed, consistent with each other. In this pioneering study,
the electromagnetic problem was theoretically addressed by
effectively embedding the two-core waveguide system under
consideration within a virtual optical cavity, from which the
forces can be evaluated through the variation of the cor-
responding eigenfrequencies. In this same spirit, the same
problem was systematically studied in subsequent works us-
ing the response theory of optical forces, transformation optics
schemes, and numerical simulations [11–20]. At this junc-
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ture, the following question arises. Given that waveguides are
broadband systems and hence by nature lack eigenfrequen-
cies, to what extent will such a hybrid treatment (involving
a virtual cavity) indeed be applicable, and if it is, how does
it formally reconcile with the Maxwell stress tensor? Quite
recently, this assertion was proved for one-dimensional planar
waveguides using the Hellmann-Feynman theorem [21]. Yet
at this point, it would seem that a general and formal elec-
trodynamic proof of the aforementioned equivalence is still
lacking.

In this paper, we rigorously prove that under Hermitian
conditions, the energy-based method [10] is fully equivalent to
the Maxwell stress tensor formalism. This is made possible by
employing the Minkowski-Helmholtz formula in conjunction
with the electromagnetic variation theorem—a by-product of
the Lorentz reciprocity theorem. Our theoretical results are
general and therefore applicable to any arbitrary dielectric
system involving optical cavities and waveguides. In addition,
the Minkowski-Helmholtz formalism can be readily deployed
to analyze more complex arrangements like optical scatter-
ers, multielement cavities, and waveguide arrays, as well as
graded-index guiding elements. Finally, this same approach
can serve as a powerful tool with which one can intuitively
understand the way optical forces act in complex photonic
settings that go beyond the two-element structures considered
so far in the literature. Numerical simulations corroborate our
theoretical analysis.

II. THEORETICAL ANALYSIS OF THE INDUCED
OPTICAL FORCES

We begin this work by invoking the Helmholtz formula
in electrodynamics, which provides an alternative route for
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FIG. 1. Optical forces are exerted between two evanescently cou-
pled (a) dielectric waveguides and (b) optical cavities. (c) Optical
force acting on a dielectric spherical scatterer induced by a plane
wave.

analyzing the induced force density in a material with con-
stitutive parameters ε(r) = ε0εr (r) and µ(r) = µ0µr (r). The
Helmholtz components, as derived from energetic consider-
ations, can then be recast in the so-called Minkowski force
density fM (force per unit volume), which, on average, for
time-harmonic fields is given by [22–25]

〈 fM〉 = 1
2 Re

(
ρ f E∗ + j f × B∗ − 1

2 |E|2∇ε − 1
2 |H|2∇µ

)
.
(1)

In the Minkowski-Helmholtz formula [Eq. (1)], ρ f and j f
represent the free electric charge and current density, re-
spectively, while E and H denote the time-harmonic electric
and magnetic fields. Meanwhile, |E|2 = E · E∗, and |H|2 =
H · H∗. The first two terms in Eq. (1) correspond to the
Lorentz force density, whereas the last two contribute to the
optical force through the inhomogeneity or discontinuity of
the medium itself. From this point forward in this paper, we
will assume that the dielectric system is lossless (Hermitian)
and µr = 1. For a typical dielectric nonmagnetic material and
in the absence of any free currents and charges, Eq. (1) is
reduced to the following simple expression:

〈 fM〉 = − |E|2∇ε

4
, (2)

which indicates that the force density results only from the
inhomogeneities or discontinuities in the electric permittivity.
Note that the Minkowski-Helmholtz force density is for-
mally related to the Maxwell stress tensor via 〈 fM〉 = ∇ · 〈T

↔
〉,

where 〈Ti j〉 = 1
2 Re[εEiE∗

j + µHiH∗
j − 1

2δi j (ε|E|2 + µ|H|2)].
It will be important to first understand how the Minkowski-
Helmholtz force can be described in the presence of sharp
boundaries or index [εr (r) = n2(r)] discontinuities [Fig. 2(a)].
At an abrupt interface (n1, n2), the boundary conditions for
the tangential and normal electric-field components imply
E1,t = E2,t and D1,n = D2,n [Fig. 2(b)]. In this case, the sharp
dielectric boundary can be described by a Heaviside step
function, εr (r) = εr1 (r) + [εr2 (r) − εr1 (r)]H (r − r0), where r0
represents a position vector on the boundary. From here, the
optical force acting on the infinitesimal surface da = dan̂
can be evaluated from the integral of 〈 fM〉 over a selected
volume enclosed by the surface σ , as shown in Fig. 2(a). In

FIG. 2. (a) An arbitrary optical dielectric element with a
sharp permittivity index discontinuity. (b) The electromagnetic-field
boundary conditions on the infinitesimal surface da. The tangential
components of the electric field Et and the normal components of the
electric displacement Dn are continuous.

this respect, the optical force involves two components arising
from the tangential and normal electric fields. In general, we
can write ∇ε along the normal unit vector of the surface n̂
as ∇ε = n̂dε/dr = (ε2 − ε1)δ(r − r0)n̂. Therefore, the force
per unit area acting on the surface is fM = fM n̂, where

fM = −1
4

(∫ r+
0

r−
0

|Et |2
dε

dr
dr +

∫ r+
0

r−
0

|Dn|2

ε2

dε

dr
dr

)

= −1
4

[∫ r+
0

r−
0

|Et |2
dε

dr
dr −

∫ r+
0

r−
0

|Dn|2
d
dr

(
1
ε

)
dr

]

= 1
4

[
(ε1 − ε2)(|Et |2)r=r0 +

(
1
ε2

− 1
ε1

)
(|Dn|2)r=r0

]
.

(3)
The expression above is general in the sense that it can be
utilized to analyze optical forces in any arbitrary photonic
arrangement with sharp index discontinuities in the absence
of any surface charges (D1,n = D2,n), i.e., dielectric scatterers,
multielement array configurations, cavities, etc.

To calculate the electrodynamic forces, we here use the
principle of virtual work. In this respect, the optical force
exerted on the dielectric object can be derived from the virtual
work δW produced when a virtual displacement δξ [as shown
in Fig. 3(b)] occurs,

δW = F · δξ. (4)

In the formalism used in this study, the virtual work δW
between, say, two dielectric structures [Figs. 3(a) and 3(b)]
can now be directly evaluated with the Minkowski-Helmholtz
force density, i.e.,

δW = δξ ·
∫∫∫

〈 fM〉 dv = −1
4

∫∫∫
|E|2∇ε · δξ dv. (5)

As shown in Fig. 3(c), by virtually displacing, for example,
the left element, the electric-permittivity profile undergoes
a virtual change δε, i.e., δε = ε(r − δξ) − ε(r) = −∇ε · δξ.
Therefore, one can deduce that

δW = 1
4

∫∫∫
|E|2δε dv. (6)
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FIG. 3. (a) Schematic of a coupled waveguide system in which
radiation forces are exerted. (b) One waveguide element in (a) is
virtually displaced by δξ. (c) The permittivity change δε resulting
from the virtual displacement δξ. The blue and red lines denote the
permittivity profiles before and after this displacement. (d) Optical
forces emerging in an arbitrary multielement dielectric structure.

In order to complete this electrodynamic proof concerning
the equivalence between the Maxwell stress tensor formal-
ism and the energy-based method, we will next consider
two versions of the electromagnetic variation theorem, corre-
sponding to either waveguide systems [26] or cavity structures
[27,28]. In this regard, without any loss of generality, let
us first investigate an arbitrary dielectric waveguide arrange-
ment like that depicted in Fig. 3(a). Assuming that wave
propagation takes place along the z direction [Fig. 3(a)],
the time-harmonic electromagnetic modes are described by
E(r) = E0(x, y)eiβz and H (r) = H0(x, y)eiβz, where E0(x, y)
and H0(x, y) represent the waveguide electric and magnetic
spatial eigenmodes with a propagation constant β. If a vari-
ation δε is performed on the permittivity profile of this
waveguide arrangement [because of a virtual displacement δξ,
as in Fig. 3(c)], then the fields are also perturbed according
to δE = (δE0 + izδβE0)eiβz and δH = (δH0 + izδβH0)eiβz,
and hence, ∇ × δE = iωµδH , and ∇ × δH = −iωδ(εE ).
By combining these latter expressions with the vector iden-
tity ∇ · (A × B) = (∇ × A) · B − A · (∇ × B) and after using
Maxwell’s equations, we obtain

∇ · (E∗ × δH + δE × H∗) = iωδε|E|2. (7)

After inserting the corresponding field expressions into
Eq. (7), we find

∇ · (E0
∗ × δH0 + δE0 × H0

∗ + 4izδβS) = iωδε|E0|2, (8)

where S(x, y) = Sz ẑ = 1
2 Re(E × H∗) = 1

4 (E0 × H0
∗ +

E0
∗ × H0) denotes the time-averaged Poynting vector. In this

case, Eq. (8) can be rewritten as

∇t · g + 4iδβSz = iωδε|E0|2, (9)

where g = E0
∗ × δH0 + δE0 × H0

∗ + 4izδβS. After integrat-
ing Eq. (9) over a cross section z = const of this waveguide,
we find

∫∫
(∇t · g + 4iδβSz ) dx dy =

∫∫
iωδε|E0|2 dx dy. (10)

By using the divergence theorem on the left-hand side of
Eq. (10), we obtain

∫∫
∇t · gdx dy =

∮
C g · et dl , where the

line integral is taken over an infinitely large contour C en-
closing the waveguide cross section, where et is a unit vector
that is normal to the contour. Given that the modal fields
E0 and H0 are associated with bound modes that vanish at
infinity, this line integral is equal to zero. Thus, Eq. (10)
can be further reduced to 4iδβP =

∫∫
iωδε|E0|2 dx dy, where

P =
∫∫

Sz dx dy is the time-averaged power conveyed by the
corresponding mode. To this end, we can obtain the change in
the propagation constant δβ = k0δneff due to this perturbation
δε from [26]

δβ =
ω

∫∫
δε|E0|2 dx dy

4P
. (11)

We note that δε in Eq. (11) is again given by δε = ε(r −
δξ) − ε(r) = −∇ε · δξ, and in this waveguide arrangement,
the volume integral in Eq. (6) can be expressed as

∫∫∫
dv =

L
∫∫

dxdy, where L is the length of the waveguide. In this
respect, by combining Eqs. (4), (6), and (11), we obtain

F · δξ = PL
c

δneff . (12)

This latter expression can now be rewritten as

F = PL
c

dneff

dξ
, (13)

where F = F · δξ̂ and δξ̂ is the unit vector associated with
δξ. The relation expressed in Eq. (13) is identical to that
previously obtained using energy-based methods [10,11,14].
This completes the proof for waveguide configurations. In
essence, by utilizing the electromagnetic variation theorem in
conjunction with the Minkowski-Helmholtz formula, we have
rigorously shown that the Maxwell stress tensor formalism
is formally equivalent to previously developed energy-based
methods [10,11,14]. Our result is general and applies to any
multiwaveguide arrangement provided that the elements are
all electromagnetically coupled [Fig. 3(d)], where neff denotes
the effective refractive index of a particular supermode in this
configuration.

Our analysis can be readily extended to cavity setups
[27,28]. The electromagnetic modes of a cavity resonator
can be written as E(r) = E0(r)e−iωt and H (r) = H0(r)e−iωt ,
where E0(r) and H0(r) represent the cavity eigenmodes,
while ω stands for their corresponding eigenfrequency.
As before, we assume that one of the cavity elements
is virtually displaced by δξ, producing work δW = F ·
δξ. In turn, this virtual displacement leads to a variation
in the eigenmode fields (δE0, δH0) and eigenfrequencies
δω due to a change in the permittivity profile δε =
−∇ε · δξ. Electrodynamically, these variations obey ∇ ×
δE0 = iδ(ωµH0) = i[H0δ(ωµ) + ωµδH0] and ∇ × δH0 =
−iδ(ωεE0) = −i[E0δ(ωε) + ωεδE0]. As before, by using
the vector identity ∇ · (A × B) = (∇ × A) · B − A · (∇ × B)
and Maxwell’s equations, we find that

∇ · (E0
∗ × δH0 + δE0 × H0

∗)

= i
[
δ(ωε)|E0|2 + δ(ωµ)|H0|2

]
. (14)
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FIG. 4. Coupled slab waveguides and the resulting attractive and
repulsive forces for the (a) even and (b) odd supermodes. The black
outline represents the refractive index distribution, while the colored
lines denote the mode intensity profiles.

By applying the divergence theorem to Eq. (14), we quickly
obtain

∫
O
∫

(E0
∗ × δH0 + δE0 × H0

∗) · da

= i
∫∫∫

[δ(ωε)|E0|2 + δ(ωµ)|H0|2] dv. (15)

Here, the surface integral extends over a virtual infinitely
large closed surface a surrounding the cavity. Since E0 and
H0 represent bound modes that vanish at infinity, the surface
integral in Eq. (15) is zero. For a nonmagnetic dielectric
material, Eq. (15) can now provide the shift (variation) in the
eigenfrequency δω in this cavity system,

δω = −
ω

∫∫∫
δε|E0|2 dv

4U
, (16)

where U is the time-averaged energy stored in the cavity that
is given by U = [

∫∫∫
(ε|E0|2 + µ|H0|2) dv]/4. In the same

vein, using Eqs. (4) and (6), we can obtain

F · δξ = −U
ω

δω, (17)

or, equivalently,

F = −U
ω

dω

dξ
, (18)

where F = F · δξ̂. Equation (18) is identical to the expres-
sion previously obtained by Povinelli et al. through quantum
arguments [10,11]. This now completes the proof for cavity
arrangements.

III. ELECTRODYNAMIC FORCES IN VARIOUS COMPLEX
ARRANGEMENTS

It is worth emphasizing that the Minkowski-Helmholtz
formula can provide an intuitive understanding of how optical
forces act on multielement structures. To demonstrate this
aspect, we will next consider a simple configuration consisting
of two planar step index waveguides, as shown in Fig. 4. The
arrangement is centered at the origin, and the waveguides
extend between −b < x < −a and a < x < b, thus guiding
optical waves along the z direction. The cladding refractive
index is assumed to be n0, while in the guiding layers it is n1.
Here, the optical force exerted on each isolated waveguide can
now be analyzed using the Minkowski-Helmholtz formula. If

FIG. 5. (a) A linear array structure composed of N step-index
weakly guiding elements. (b) Numerical simulation results for eight
elements using finite-element methods. The arrows represent the
force exerted on each element, as evaluated from Eq. (22).

we consider the waveguide on the right in Fig. 4, the force per
unit area is given by f =

∫ b+

a− (− 1
4 |E|2∇ε) dx. From Eq. (3),

for a transverse-electric mode, for example, this expression is
reduced to

f = ε0

4

(
n2

1 − n2
0

)
[(|Ey|2)|x=b − (|Ey|2)|x=a]x̂. (19)

Evidently, for an even mode, as depicted in Fig. 4(a), the field
amplitude at the inner edge of the slab is larger than that
at the outer edge, i.e., (|Ey|2)|x=a > (|Ey|2)|x=b, and hence,
according to Eq. (19), this leads to an attractive force. On
the other hand, for an odd mode [Fig. 4(b)], the presence
of a node at the origin leads to (|Ey|2)|x=a < (|Ey|2)|x=b,
which in turn results in a repulsive force. In this regard,
the Minkowski-Helmholtz formula provides an intuitive tool
to predict both the magnitude and direction of the optical
force exerted on each component of this coupled photonic
arrangement.

In general, the Minkowski-Helmholtz formula can be em-
ployed to analyze optical forces in more complex photonic
arrangements that go beyond two-element structures. For ex-
ample, let us consider a linear waveguide array comprising
N step-index circular guiding elements, each one of them
evanescently coupled to its nearest neighbors, as depicted in
Fig. 5(a). Each waveguide is assumed to be single moded; that
is, it supports only the LP01 mode. The core radius of each
element is a, and the distance between any two waveguides
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is D. By adopting the formalism of coupled mode theory, the
supermode field distribution can be approximately expressed
as

ψm(x, y) =
∑

n

cm
n G0(x − nD, y). (20)

In this expression, cm
n denotes the supermode field ampli-

tude at each site, i.e., cm
n =

√
2/(N + 1) sin [mnπ/(N + 1)]

[29], where the integers m, n = 1, 2, . . . , N stand for the su-
permode and the local site indices, respectively. Meanwhile,
G0(x, y) represents the local LP01 mode profile in each ele-
ment. Within the tight-binding approximation, the field at the
nth waveguide can be obtained through the superposition of
the local mode profiles, that is, φm

n (x, y) =
∑k=n+1

k=n−1 cm
k G0(x −

kD, y). For simplicity, we now place the origin of the coor-
dinate system at the center of the selected waveguide. From
the Minkowski-Helmholtz formula, the optical force per unit
length F can be evaluated from a contour integral over the
boundary,

F = aε0

4

(
n2

1 − n2
0

)[
x̂

∫ 2π

0

∣∣(φm
n

)
r=a

∣∣2
cos θ dθ

+ ŷ
∫ 2π

0

∣∣(φm
n

)
r=a

∣∣2
sin θ dθ

]
, (21)

where, again, n1 and n0 denote the refractive index of the
core and cladding medium, respectively. Clearly, because of
symmetry, the net force along y is zero. In this regard, Eq. (21)
is reduced to

F = x̂
aε0

4

(
n2

1 − n2
0

)
[∫ 2π

0

(
k=n+1∑

k=n−1

∣∣cm
k G0,k

∣∣2

)

r=a

cos θ dθ

+
∫ 2π

0




∑

k (= j

cm
k cm

j G0,kG∗
0, j





r=a

cos θ dθ



. (22)

By substituting cm
n into Eq. (22), we find (see Appendix A)

F = x̂Q sin
(

2mnπ

N + 1

)
, (23)

where Q is a proportionality constant that can be obtained
from the overlap integrals. We would like to note that the
forces in this system, as expressed by Eq. (23), cannot
be directly obtained from Eq. (13) given that they vary
considerably across the waveguide array. Yet, interestingly,
Eq. (13) can be used to evaluate the coefficient Q (Ap-
pendix B). In this respect, it turns out that Q can be obtained
from

Q = C
sin q sin (q/2)

N sin(Nq) − (N − 1) sin [(N + 1)q] − sin q
, (24)

where the constant C is given by C =
−4[PL/(k0c)](

√
2,/a2)(U 2W/V 3)[K1(W D/a)/K2

1 (W )],
q = 2mπ/(N + 1). Here, V = k0an1

√
2, is the waveguide

V number, Kj (x) is a modified Bessel function of order j, and

the quantities U and W are defined as U = a
√

k2
0n2

1 − β2 and

W = a
√

β2 − k2
0n2

2 [30,31]. These results are now compared
to the force distribution resulting in a linear waveguide array

FIG. 6. Numerical simulations of the optical force exerted on a
Mie particle. The optical force is calculated via the Maxwell stress
tensor formalism (blue line), the Minkowski-Helmholtz formula
(green line), and the analytic expression for a Mie particle (red line)

involving eight single-mode elements. In this system, the
core radius a = 5.3 µm, and the distance between elements
is D = 20 µm. Moreover, n1 = 1.5, while n0 = n1(1 − ,),
where , is 2 × 10−3. In all cases, we assume that the power
flowing in each supermode is 1 W. From finite-element
computations (based on either the Maxwell stress tensor or
the Minkowski-Helmholtz formula), we find that Eqs. (23)
and (24) provide a good description of the force distribution,
with an error that is less than 7%. This error is attributed
to the validity of the coupled-mode theory itself. Yet given
the complexity of the system, Eqs. (23) and (24) do provide
valuable information about the stress variation across the
lattice.

As indicated before, optical forces also manifest them-
selves in scattering configurations. In this respect, the
Minkowski-Helmholtz formula can be utilized to evaluate the
optical force exerted on a dielectric scatterer such as a Mie
particle. To demonstrate this aspect, we consider, for sim-
plicity, a plane wave that is incident in vacuum on a particle
of refractive index n = 3.5 and radius a = 200 nm, i.e., E =
x̂E0 exp(ik0z), where E0 = 106 V/m. Numerical simulations
were carried out using finite-element schemes over a range
of wavelengths (1–2 µm). In Fig. 6, we compare the optical
force obtained via three different methods: the Minkowski-
Helmholtz formula, the Maxwell stress tensor formalism [9],
and the analytic expression for the optical force on a Mie parti-
cle, given by F = (1 − 〈cos θ〉)σsc〈S〉/c [32–34]. In the latter
expression, 〈S〉 represents the time-averaged Poynting vector,
〈cos θ〉 is the so-called average cosine function, c is the speed
of light, and σsc denotes the particle’s scattering cross section.
As Fig. 6 reveals, these three procedures produce exactly the
same results. We would like to emphasize that in deploying
the Minkowski-Helmholtz formula, the numerical algorithm
utilizes only the electric field vector on the surface, while
the Maxwell stress tensor approach involves, in addition, the
magnetic field.

As previously indicated, electromagnetic forces are also at
play in settings where the refractive index changes gradually
in space. For example, in a graded-index (GRIN) parabolic
fiber of radius a, the refractive index varies with the radius
r according to εr (r) = n2(r) = n2

1[1 − 2,(r/a)2]. In weakly
guiding parabolic fibers, the dominant transverse electric field
of a Laguerre-Gauss mode (LGlm) carrying zero orbital angu-
lar momentum is given by Elm ∝ ηl e−η2/2Ll

m−1(η2) cos(lθ +

033517-5



HUIZHONG REN et al. PHYSICAL REVIEW A 106, 033517 (2022)

FIG. 7. Minkowski-Helmholtz force density 〈 fM〉 corresponding
to (a) the LG01 mode and (b) the LG11 mode.

ψ ), where η =
√

V (r/a), V = k0n1a
√

2,, and Ll
m−1(η2) are

generalized Laguerre polynomials [30,31]. From Eq. (2), we
can then readily obtain the Minkowski-Helmholtz force den-
sity 〈 fM〉 within the core region corresponding to various
LGlm modes. The force densities associated with the LG01
and LG11 modes are depicted in Fig. 7. In all cases, they
pointing radially outwards. At this point, we may ask how
the Minkowski-Helmholtz formula can deduce the result of
Eq. (13) in this more complex arrangement. To address this
issue, let us assume the radius of a fiber a is adiabatically
increased by δa. Notice that in this process, the displacement
must vary in a self-similar manner so that the parabolic index
profile is maintained. To satisfy this last condition, at each
point the virtual displacement must vary according to δξ(r) =
r̂rδa/a. In this case, the virtual work is

δW = L
∫ 2π

0
dθ

∫ a

0
rdr f (r) · δξ(r)

= 2πLδa
a

∫ a

0
r2dr

(
−1

4
|E|2∇ε

)
· r̂. (25)

To establish the equivalence of Eq. (25) to Eq. (13), we car-
ried out numerical simulations in a weakly guiding GRIN
parabolic fiber with a = 25 µm, n1 = 1.5, and , ≈ 1 ×
10−3. The operating wavelength was taken to be 1 µm, and
the total power is P = 1 W. Note that the effective re-
fractive index neff for the LGlm mode is given by neff,lm =
n1

√
1 − [2(2m + l − 1)

√
2,]/(k0an1). In this case, for the

same virtual enlargement δa, we find that the ratio of vir-
tual works [as obtained from Eqs. (13) and (25)] is 1.0006
and 1.0024 for the LG01 and LG11 modes, respectively. This
clearly shows that indeed, Eqs. (13) and (25) yield iden-
tical results. The small departure from unity is attributed
to the nonvectorial paraxial treatment of the multimode
parabolic waveguide. Finally, we would like to emphasize
that while Eqs. (13) and (25) are logistically equivalent under
an adiabatic expansion, they have little physical relevance.
Physically, the structural deformation of a waveguide will
be dictated by the Minkowski-Helmholtz force density 〈 fM〉
when taken in conjunction with the elastic properties of the
material system [35]. For example, from Fig. 7(b), we will
expect from Eq. (2) that the actual fiber will be elliptically
elongated, something that cannot be directly captured from
Eq. (13). If the force density 〈 fM〉 is also coupled with the
photoelastic properties of the underlying materials, it could
also be useful for analyzing stimulated Brillouin scattering
processes [36].

IV. CONCLUSION

In this work, we have presented a rigorous proof con-
cerning the equivalence between energy-based methodologies
and the Maxwell stress tensor formalism. This proof was
based on the Minkowski-Helmholtz formula and the elec-
tromagnetic variation theorem as they apply in a lossless or
Hermitian system. Our theoretical analysis is general and
can be used in any arbitrary dielectric system involving el-
ements like optical cavities and waveguides. In addition,
we showed that the Minkowski-Helmholtz formula can pro-
vide an elegant way to compute optical forces emerging in
a variety of diverse and complex arrangements. These in-
clude multielement waveguide arrays, dielectric scatterers,
and graded-index waveguides. As indicated in our work, the
Minkowski-Helmholtz formula not only offers a powerful in-
tuitive tool for understanding optical forces but also provides
a straightforward avenue to compute these forces in more
involved settings where energetic approaches cannot account
for optically induced internal stresses. Finally, it will be of
interest to investigate how these concepts can be extended in
the case of non-Hermitian configurations like those associated
with parity-time symmetry that could, in principle, display
exceptional points [37].
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APPENDIX A

We here derive Eq. (23) from Eq. (22). By substituting cm
n

into Eq. (22), we obtain

F = x̂
aε0

4

(
n2

1 − n2
0

) 2
N + 1

×
∫ 2π

0
dθ cos θ

[
n+1∑

k=n−1

sin2
(

mkπ

N + 1

)
(|G0,k|2)r=a

+
∑

k (= j

sin
(

mkπ

N + 1

)
sin

( m jπ
N + 1

)
(G0,kG∗

0, j )r=a



 (A1)
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By keeping in mind that G0 represents the local LP01 mode
profile in each lossless element (G0 = G∗

0 ) and because of
symmetry, we find

∫ 2π

0
(|G0,n|2)r=a cos θdθ = 0,

∫ 2π

0
(|G0,n−1|2)r=a cos θdθ

= −
∫ 2π

0
(|G0,n+1|2)r=a cos θdθ ,

∫ 2π

0
(G0,n−1G0,n)r=a cos θdθ

= −
∫ 2π

0
(G0,n+1G0,n)r=a cos θdθ ,

∫ 2π

0
(G0,n−1G0,n+1)r=a cos θdθ = 0. (A2)

From here, Eq. (A1) can be reduced to

F = x̂
aε0

2(N + 1)

(
n2

1 − n2
0

){∫ 2π

0

(
sin2

[
m(n + 1)π

N + 1

]

− sin2
[

m(n − 1)π
N + 1

])
(|G0,n+1|2)r=a cos θdθ

+
∫ 2π

0
2 sin

( mnπ

N + 1

)(
sin

[
m(n + 1)π

N + 1

]

− sin
[

m(n − 1)π
N + 1

])
(G0,nG0,n+1)r=a cos θdθ

}

= x̂
aε0

2(N + 1)

(
n2

1 − n2
0

)[
sin

(
2mnπ

N + 1

)
sin

(
2mπ

N + 1

)

×
∫ 2π

0

(
|G0,n+1|2

)
r=a cos θdθ + 2 sin

(
2mnπ

N + 1

)

× sin
( mπ

N + 1

) ∫ 2π

0
(G0,nG0,n+1)r=a cos θdθ

]

= x̂
aε0

N + 1

(
n2

1 − n2
0

)
sin

(
2mnπ

N + 1

)
sin

( mπ

N + 1

)

×
[

cos
( mπ

N + 1

) ∫ 2π

0
(|G0,n+1|2)r=a cos θdθ

+
∫ 2π

0
(G0,nG0,n+1)r=a cos θdθ

]
. (A3)

By introducing the quantity

Q = aε0

N + 1

(
n2

1 − n2
0

)
sin

( mπ

N + 1

)

×
[

cos
( mπ

N + 1

) ∫ 2π

0
(|G0,n+1|2)r=a cos θdθ

+
∫ 2π

0
(G0,nG0,n+1)r=a cos θdθ

]
, (A4)

FIG. 8. A uniform virtual expansion of a linear waveguide array.
(a) and (b) represent the structure before and after the virtual dis-
placement δD.

Eq. (A3) can now be rewritten as

F = x̂Q sin
(

2mnπ

N + 1

)
. (A5)

APPENDIX B

In this Appendix, we will show that Eq. (13) can be uti-
lized to evaluate the overlap integrals in Eq. (A5) and hence
the quantity Q. From coupled-mode theory, the propagation
constant of each supermode is given by [30]

βm = β0 + 2κ cos
( mπ

N + 1

)
, (B1)

where m = 1, 2, 3, . . . , N denotes the supermode index. As
indicated in the main text, each waveguide element is here
assumed to be cylindrical (of radius a) and single moded,
i.e., supporting only the LP01 mode. The distance between
core centers is D. In this case, the coupling strength between
successive elements is given by

κ =
√

2,

a
U 2

V 3

K0(W D/a)
K2

1 (W )
, (B2)

where , = (n1 − n0)/n1 is the normalized waveguide in-
dex difference, V = k0an1

√
2, is the V number, and Kj (x)

is a modified Bessel function of order j. The quanti-

ties U and W are defined as U = a
√

k2
0n2

1 − β2 and W =

a
√

β2 − k2
0n2

2 and can be determined from the eigenvalue
equation UJ1(U )/J0(U ) = W K1(W )/K0(W ) [30,31]. From
Eq. (B1), we can obtain the effective index neff of each
supermode, i.e., neff,m = βm/k0. If the distance between
successive elements is virtually altered by δD, then the vir-
tual work performed can be obtained from Eq. (12), that
is, δW = (PL/c)(dneff/dD)δD = [2PL/(k0c)] cos[mπ/(N +
1)](dκ/dD)δD. From here, we find that

δW = −2
PL
k0c

cos
( mπ

N + 1

)√
2,

a2

U 2W
V 3

K1(W D/a)
K2

1 (W )
δD.

(B3)
If we assume the first element is kept fixed while the dis-
tance between adjacent elements changes from D to D + δD
(as shown in Fig. 8), each waveguide will be displaced by
δξn = x̂(n − 1)δD. In this respect, the work produced by the
system is given by

δW =
∑

n

Fn · δξn. (B4)
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By substituting Eq. (A5) into Eq. (B4), we find

δW =
N∑

n=1

x̂Q sin
(

2mnπ

N + 1

)
· x̂(n − 1)δD

= QδD
N∑

n=1

sin
(

2mnπ

N + 1

)
(n − 1). (B5)

Given that
n∑

k=1

sin (kx) = sin [(n + 1)x/2] sin (nx/2)
sin (x/2)

(B6)

and
n∑

k=1

k sin (kx) = sin (nx)

4 sin2 (x/2)
− n cos [(2n + 1)x/2]

2 sin (x/2)
, (B7)

Eq. (B5) can now be rewritten as

δW = QδD
{

sin (Nq)

4 sin2 (q/2)
− N cos [(2N + 1)q/2]

2 sin (q/2)

− sin [(N + 1)q/2] sin (Nq/2)
sin (q/2)

}

= QδD
{

sin (Nq) − sin q

4 sin2 (q/2)
−

(N − 1) cos [(2N + 1)q/2]
2 sin (q/2)

}

= QδD
{

N sin (Nq) − (N − 1) sin [(N + 1)q] − sin q

4 sin2 (q/2)

}
,

(B8)

where q = 2mπ/(N + 1). By combining Eqs. (B3) and (B8),
we obtain

Q
{

N sin (Nq) − (N − 1) sin [(N + 1)q] − sin q

4 sin2 (q/2)

}

= −2
PL
k0c

cos
(q

2

)√
2,

a2

U 2W
V 3

K1(W D/a)
K2

1 (W )
, (B9)

from which we can determine the value of Q [Eqs. (23) and
(24)],

Q = −4
PL
k0c

√
2,

a2

U 2W
V 3

K1(W D/a)
K2

1 (W )

×
{

sin q sin (q/2)
N sin (Nq) − (N − 1) sin [(N + 1)q] − sin q

}
.

(B10)
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