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Abstract

Predicting gene expression divergence is integral to understanding the emergence of new biological functions and associated
traits. Whereas several sophisticated methods have been developed for this task, their applications are either limited to du-
plicate genes or require expression data from more than two species. Thus, here we present Predicting eXpression dlvergence
(Pix1i), the first machine learning framework for predicting gene expression divergence between single-copy orthologs in
two species. Pixi models gene expression evolution as an Ornstein-Uhlenbeck process, and overlays this model with mul-
ti-layer neural network (NN), random forest, and support vector machine architectures for making predictions. It outputs the
predicted class “conserved” or “diverged” for each pair of orthologs, as well as their predicted expression optima in the two
species. We show that PiXi has high power and accuracy in predicting gene expression divergence between single-copy
orthologs, as well as high accuracy and precision in estimating their expression optima in the two species, across a wide range
of evolutionary scenarios, with the globally best performance achieved by a multi-layer NN. Moreover, application of our best-
performing Pixi predictor to empirical gene expression data from single-copy orthologs residing at different loci in two
species of Drosophila reveals that approximately 23% underwent expression divergence after positional relocation.
Further analysis shows that several of these “diverged” genes are involved in the electron transport chain of the mitochon-
drial membrane, suggesting that new chromatin environments may impact energy production in Drosophila. Thus, by pro-
viding a toolkit for predicting gene expression divergence between single-copy orthologs in two species, Pixi can shed light
on the origins of novel phenotypes across diverse biological processes and study systems.
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Significance

Gene expression divergence is often used as an important indicator of evolutionary change. However, there is currently a
paucity of methods for accurately predicting gene expression divergence. Here, we develop the first machine learning
approach for this task, Predicting eXpression divergence (Pix1i), demonstrating its exceptional performance on simu-
lated data and application to empirical data in fruit flies. Pixi has been implemented as an open-source R package,
providing a powerful toolkit for researchers investigating gene expression divergence in a wide range of taxonomic
groups.
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Introduction

Determining whether gene functions have diverged be-
tween species is a problem of central importance in evolu-
tionary genomics. In particular, researchers are often
interested in assaying inter-species functional divergence
for a specific set of genes, such as those that have under-
gone a mutation event or are involved in a biological pro-
cess that is being studied (Gu 1999; Lynch and Force
2000; Gu 2001; Kondrashov et al. 2002; Blanc and Wolfe
2004, Li et al. 2005; Chain et al. 2008; Lopez-Bigas et al.
2008; Lynch and Wagner 2008; Assis et al. 2012; Assis
and Bachtrog 2013, 2015; Assis 2016; Fuller et al. 2016;
Wheeler et al. 2016; Hart et al. 2018; Assis 2019b; Jiang
and Assis 2019; Meng et al. 2019; Assis 2021; Zhong
etal. 2021; Sarwar et al. 2022). In these scenarios, a major
guestion to address is whether the functions of these genes
are conserved or have diverged as a result of the mutation
event or biological process under consideration. For cases
of functional divergence, one may also want to know
how and to what extent gene functions differ from one an-
other. Answering these questions is critical not only for
learning about the functional divergence of a specific set
of genes, but also for generating testable hypotheses about
their contributions to the origins of complex phenotypes
and species.

The classical approach to this common problem in evolu-
tionary genomics is to quantify sequence divergence be-
tween orthologous genes, or those that arose from the
same common ancestor, in related species (Gu 1999,
2001; Kondrashov et al. 2002; Chain et al. 2008;
Lopez-Bigas et al. 2008; Wheeler et al. 2016; Hart et al.
2018; Assis 2019b; Zhong et al. 2021; Sarwar et al.
2022). Though such analyses enable estimations of the
types and strengths of natural selection acting on a set of
genes, they are limited in their abilities to detect functional
divergence. Specifically, natural selection acts directly on
gene functions, and therefore indirectly on their underlying
sequences. With this in mind, several modern studies have
assayed functional divergence from gene expression data
(Blanc and Wolfe 2004; Li et al. 2005; Chain et al. 2008;
Assis et al. 2012; Assis and Bachtrog 2013, 2015; Assis
2016; Fuller et al. 2016; Perry and Assis 2016; Hart et al.
2018; Assis 2019b; Jiang and Assis 2019; Meng et al.
2019; Zhong et al. 2021; Sarwar et al. 2022), which are
now widely available for many conditions (e.qg., tissues, de-
velopmental stages, or disease states) in diverse species
(Kapushesky et al. 2010; Consortium 2012; Petryszak
et al. 2013). Because expression measurements provide in-
formation about activity levels of a gene across multiple
conditions, they are often considered ideal proxies for func-
tion (Wray et al. 2003; Carroll 2005; Nehrt et al. 2011; Assis
and Bachtrog 2013; De Smet et al. 2017). Further, gene ex-
pression is easily quantified and compared, and also

strongly correlated with a number of other important genic
properties, including protein-coding sequence divergence
(Makova and Li 2003; Nuzhdin et al. 2004; Lemos et al.
2005; Hunt et al. 2012; Assis 2014; Assis and Kondrashov
2014; Mahler et al. 2017; Assis 2019a) and protein—protein
interactions (Bhardwaj and Lu 2005; Lemos et al. 2005;
Assis and Bachtrog 2013; Assis and Kondrashov 2014;
Musungu et al. 2016; Mahler et al. 2017; Assis 2019a).

In recent years, Ornstein-Uhlenbeck (OU) processes have
been used to develop many sophisticated methods for
modeling expression evolution of orthologous genes along
phylogenetic trees (Hansen 1997; Butler and King 2004;
Kalinka et al. 2010; Brawand et al. 2011; Perry et al.
2012; Rohlfs et al. 2014; Rohlfs and Nielsen 2015;
DeGiorgio and Assis 2021). Because OU processes model
Brownian motion with a pull toward an optimal state,
they have a natural application to evolution, in which
phenotypic drift is analogous to Brownian motion, selection
to pull, and the fittest phenotype to optimal state (Hansen
1997; Butler and King 2004). Whereas most of these
OU-based methods can also be used to assay expression di-
vergence (Hansen 1997; Butler and King 2004; Brawand
et al. 2011; Rohlfs et al. 2014; Rohlfs and Nielsen 2015;
DeGiorgio and Assis 202 1), they are limited in their applic-
ability to problems generally encountered in evolutionary
genomics. Specifically, these methods either require gene
expression data from more than two species (Hansen
1997; Butler and King 2004; Brawand et al. 2011; Rohlfs
et al. 2014; Rohlfs and Nielsen 2015), which researchers
typically do not have access to, or are tailored to genes
that underwent duplication events (DeGiorgio and Assis
2021). Thus, there are currently few options for predicting
gene expression divergence between single-copy orthologs
in two species.

Here, we present Predicting eXpression dlvergence
(Pix4i), an OU model-based machine learning framework
for predicting gene expression divergence between single-
copy orthologs in two species. As in a recent method de-
signed for duplicate genes, CLOUD (DeGiorgio and Assis
2021), we choose machine learning for prediction due to
several advantages over traditional likelihood ratio tests
previously used for single-copy genes (Kalinka et al. 2010;
Brawand et al. 2011; Perry et al. 2012; Rohlfs et al. 2014;
Rohlfs and Nielsen 2015). First, training of machine learning
algorithms minimizes discrepancies between model predic-
tions and observations, optimizing model fit to the data
(Hastie et al. 2009). Second, testing of machine learning al-
gorithms enables direct evaluation of performance metrics,
such as power and accuracy, on a dataset that is independ-
ent of that used for training (Hastie et al. 2009). Third, ma-
chine learning algorithms are tailored to making predictions
from data representing many correlated or conflicting fea-
tures of varying levels of importance (Hastie et al. 2009),
which is a critical consideration when using gene
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expression data from multiple conditions and species. Last,
CLOUD demonstrates high power and accuracy in predict-
ing both expression divergence and evolutionary para-
meters of duplicate genes in two species (DeGiorgio and
Assis 2021), suggesting that taking a similar approach
with single-copy genes may yield favorable performance
as well.

Thus, Pixi employs an adaptation of the multi-layer
neural network (NN) of CLOUD (DeGiorgio and Assis
2021), as well as two additional machine learning architec-
tures—random forest (RF) and support vector machine
(SVM)—to account for different linear and nonlinear rela-
tionships in the input data. Specifically, PiXi uses each ma-
chine learning architecture to classify the expression of
single-copy orthologs into two species as either “con-
served” or “diverged,” and to also estimate their expres-
sion optima in the two species. Application of PixXi to
simulated data shows that all of its machine learning archi-
tectures have high power and accuracy in predicting ex-
pression divergence and high accuracy and precision in
predicting expression optima across a wide range of evolu-
tionary scenarios, with the multi-layer NN globally outper-
forming other architectures. Moreover, application of
Pixi to empirical data in Drosophila reveals that approxi-
mately 23% of positionally relocated genes undergo ex-
pression divergence, many of which are involved in
cellular energy production. PiXi has been implemented
as an open-source R package, which is available at http:/
assisgroup.fau.edu/software.html and https:/github.com/
rassis/PiXi. Input data can include gene expression measure-
ments in a single or in multiple conditions, making Pixi
applicable to studying expression divergence in both single-
and multicellular organisms.

Results

Construction of PiXi

PiXi is constructed on an OU model of gene expression evo-
lution (Hansen 1997; Butler and King 2004; Kalinka et al.
2010; Brawand et al. 2011; Perry et al. 2012; Rohlfs et al.
2014; Rohlfs and Nielsen 2015; DeGiorgio and Assis 2021).
In particular, suppose we have gene expression data from
multiple conditions for single-copy orthologs in two species,
Species 1 and Species 2. We model the expression evolution
of these orthologs along the phylogeny relating the two spe-
cies as an OU process, in which expression is pulled toward op-
tima 67 in Species 1 and 6, in Species 2 through selection with
strength a, and randomly fluctuates through phenotypic drift
with strength ¢2. In this study, we assume that Species 1 has
the same expression optimum as the common ancestor of the
two species, and our goal is to evaluate whether there is a shift
toward a different expression optimum in Species
2. Therefore, we consider two scenarios for the expression

optima in Species 1 and Species 2: 6, = 65, which should re-
sult in “conserved” gene expression between the species,
and 071 # 0,, which should result in “diverged” gene expres-
sion between the species.

Following Brawand et al. (2011), gene expression in the
two species e = (e4, e;) under this OU process is distributed
as multivariate normal with mean

= (Eey], Eles] = [(1 - e—a)gz +e7%f, ] cR?
1

and covariance matrix

COV[61,92]} 02|: 1 9_2“:|GR2x2

Coviey, e1]  Varle,] |~ 2al|e2¢ 1

[ Varle;]
Note that the asymmetry in means is due to our assumption
that 6 represents the ancestral optimum, and that we are
evaluating a potential shift in 6,. Thus, Species 1 should be
designated as the species with the ancestral state, and
Species 2 as the species with the derived state, as in our em-
pirical application here (see Application of Pixi to empir-
ical data from Drosophila). Further, though we assume
here that gene expression is independent across conditions,
this approach can be extended to account for an expression
covariance structure (Revell and Harmon 2008; Revell and
Collar 2009; Eastman et al. 2011; Clavel et al. 2015).

Here, we let the input feature vector
x=(e1, €1, ..., €1m, €2m) € R*™

be the expression vector for a pair of orthologous genes,
where ej is the log-transformed expression measurement
for species j € {1, 2} and condition k € {1, 2, ..., m}. We
seek to predict the output response y from x. When perform-
ing classification to predict expression divergence between a
pair of orthologs, y is the label for K = 2 classes “conserved”
and “diverged.” In contrast, when performing regression to
predict expression optima of the orthologs, y is the quantita-
tive response for K = 2m parameter estimates in each of the
m conditions, where in each condition we obtain parameter
estimates for the expression optima 6y and 6,. To account
for a diversity of linear and nonlinear relationships, we imple-
ment three machine learning architectures for performing
these classification and regression tasks: multi-layer neural
network (NN), random forest (RF), and support vector ma-
chine (SVM) (see Materials and methods).

Prediction Performance of Pixi on Simulated Data

To evaluate the prediction performance of Pixi, we
trained and tested its three machine learning architectures
on independent balanced datasets of orthologous genes si-
mulated under “conserved” and “diverged” expression
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Fic. 1.—Classification performance of three machine learning architectures of Pixi that were trained on data simulated under uniform distributions of
parameters log,q (@) € [0, 3] and log, (6%) € [ — 2, 3], and then applied along with a distance-based classifier to test data simulated under uniform distribu-
tions of parameters in the same ranges. (A) Receiver operating characteristic curves showing the power of each method across the full range of false positive
rates, with a black triangle depicting the cutoff chosen by cross-validation for the distance-based classifier. (B) Confusion matrices depicting classification rates

of the two classes for each method.

classes (see Materials and methods). The training set con-
sisted of 20,000 observations (10,000 for each class),
and the test set consisted of 2,000 observations (1,000
for each class). Evolutionary parameters for each
dataset were drawn independently and uniformly at ran-
dom across many orders of magnitude, with
01, 6, €10, 5], log;q (@) € [0, 3], and |Og10(02) el[-2, 3]
These large ranges were chosen to capture the full distribu-
tions of their potential values, so as not to inflate model per-
formance. Specifically, the range for 6; and 6, was
matched to that observed from genome-wide expression
measurements in an empirical dataset on which we later
applied PiXi (see Application of PiXi to empirical data in
Drosophila), and those for a and o2 to those used by previ-
ous studies (Hansen 1997; Butler and King 2004; Rohlfs
et al. 2014, Rohlfs and Nielsen 2015; DeGiorgio and Assis
2021). We set m = 6 conditions to match the number of tis-
sues in an empirical dataset on which we later applied PiXi
(see Application of PiXi to empirical data in Drosophila),
yielding 24 random parameters drawn per simulated repli-
cate and p = 2m = 12 features used for training the NN, RF,
and SVM. We trained and tested the three machine learn-
ing architectures of Pixi on these datasets to enable direct
comparisons of their performance.

We first assessed the performance of the NN, RF, and
SVM architectures of Pixi in classifying gene expression

as either “conserved” or “diverged” between two species.
For comparison, we also followed previous studies in con-
structing another expression distance-based classifier
(Assis and Bachtrog 2013; Perry and Assis 2016), using
5-fold cross-validation to select a cutoff for defining expres-
sion divergence with this classifier (see Materials and meth-
ods). Analysis of the resulting classifications reveals that all
machine learning architectures of PixXi outperform the
distance-based classifier, with the best overall performance
achieved by a NN composing two hidden layers (fig. 1; see
Materials and methods). In particular, across the wide par-
ameter space explored, classification power is highest for
the NN, slightly lower for the RF, substantially lower for
the SVM, and lowest for the distance-based classifier (fig.
1A). Similarly, classification accuracy is approximately
94.25% for the NN, 91.85% for the RF, 79.3% for the
SVM, and 77.95% for the distance-based classifier.
Further, all machine learning architectures of PiXi exhibit
more balanced classification rates than the distance-based
classifier, with the highest balance observed for the NN (fig.
1B). Specifically, correct predictions of the two classes are
approximately 94.7% and 93.8% for the NN, 92.3% and
91.4% for the RF, 80.8% and 77.8% with the SVM, and
89.5% and 66.4% for the distance-based classifier (main
diagonals of fig. 1B). However, it is important to note
that the choice of cutoff with the distance-based classifier
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may impact the classification rate of the balance observed.
Hence, though the cutoff chosen by cross-validation leads
to unbalanced classification with a strong skew toward
the “conserved” class, both balance and direction of the
observed skew may differ for other less optimal cutoffs.
Next, we evaluated whether classification performance
is affected by unbalanced training or test sets. Training on
an unbalanced dataset may decrease the classification per-
formance on a balanced test set, as there may not be en-
ough examples of the under-represented class. Testing on
an unbalanced dataset when the model has been trained
on a balanced dataset is unlikely to reduce classification
performance, as the large balanced training set provides
adequate examples of both classes. However, we also
wanted to evaluate this problem because real data are likely
to exhibit an imbalance of classes, which we indeed observe
in our empirical analysis (see Application of PiXi to empirical
data in Drosophila). Therefore, we created two new data-
sets with a similar level of imbalance as observed in our em-
pirical analysis: a “conserved-biased” dataset with 16,000
observations in the “conserved” class and 4,000 observa-
tions in the “diverged” class, and a “diverged-biased” da-
taset with 4,000 observations in the “conserved” class and
16,000 observations in the “diverged” class. Then, we ex-
amined performance when training on each of these unba-
lanced datasets and testing on the balanced dataset
(supplementary figs. S1 and S2, Supplementary Material
online), as well as when training on the balanced dataset
and testing on each of these unbalanced datasets
(supplementary figs. S3 and S4, Supplementary Material
online). Classification power is minimally affected by train-
ing or testing on unbalanced datasets (supplementary figs.
S1A-S4A, Supplementary Material online). However, when
training on unbalanced datasets, classification accuracy de-
creases slightly for the NN (from 94.25% to 91.8% and
92.4%), substantially for the RF (from 91.85% to 68.8%
and 67.55%), and moderately for the SVM (from 79.3%
10 69.45% and 72.05%), with no changes for the distance-
based classifier because it is not impacted by modifying the
training dataset. As expected, decreased accuracies of
methods are attributed to less balanced classification rates,
with larger skews toward the dominant training class
(supplementary figs. S1B and S2B, Supplementary
Material online). In contrast, when testing on unbalanced
datasets, classification accuracy is largely unaffected for
the NN (from 94.25% to 94.95% and 95.2%), RF (from
91.85% to 89.94% and 90.9%), SVM (from 79.3% to
77.8% and 78.25%), and distance-based classifier applied
to the “conserved-biased” test set (from 77.95% to
78.15%), whereas there is a substantial drop in accuracy
for the distance-based classifier applied to the “diverged-
biased” test set (from 77.95% to 66.35%) composing a
majority of the “diverged” class on which the distance-
based classifier performs poorly. However, none of the

methods exhibit changes in the balance of their class
predictions  (supplementary  figs. S3B and S4B,
Supplementary Material online). Thus, the NN still globally
outperforms all methods when training or testing on unba-
lanced datasets, demonstrating only a small loss of per-
formance when training on unbalanced datasets, and
maintaining its performance when testing on unbalanced
datasets that are likely to be found in nature.

Additionally, we investigated whether classification per-
formance is affected by prior distributions of evolutionary
parameters. To address this question, we independently
drew all parameters from the same wide ranges of values,
but this time not on log scales so as to generate non-uniform
distributions. Analysis of classification performance reveals
moderate losses in both power and accuracy across methods
(supplementary fig. S5, Supplementary Material online).
However, classification power remains highest with the
NN, slightly lower with the RF, substantially lower with the
SVM, and lowest with the distance-based classifier
(supplementary fig. S5A, Supplementary Material online).
Similarly, classification accuracy is still highest at approxi-
mately 87.5% (down from 94.25%) for the NN, relative to
83.7% (down from 91.85%) for the RF, 73.95% (down
from 79.3%) for the SVM, and 69.85% (down from
77.95%) for the distance-based classifier. Decreased accur-
acy is associated with larger losses in accuracy for predicting
the “diverged” class for all machine learning architectures,
and a larger loss in accuracy for predicting the “conserved”
class for the distance-based approach (supplementary fig.
S5B, Supplementary Material online). Yet, though all ma-
chine learning architectures lose power and accuracy in
this scenario, they still outperform the distance-based classi-
fier in both metrics, with the NN maintaining its superiority to
all other methods when the prior distribution of parameters
does not match that of test data.

Last, we explored how the classification performance of
all methods varies across smaller regions of the parameter
space with combinations of strengths of selection (a) and
phenotypic drift (6%) representing specific evolutionary
scenarios (supplementary figs. S6-S11, Supplementary
Material online). In general, the methods have higher clas-
sification power and accuracy when selection is strong
(large a) or phenotypic drift is weak (small ¢2), and lower
classification power and accuracy when selection is weak
(small a) or phenotypic drift is strong (large ¢2). However,
even under evolutionary scenarios for which classification
is difficult (small o or large &), all machine learning archi-
tectures of Pixi still have substantially higher power and
accuracy than the distance-based classifier, consistent
with previous findings for the CLOUD predictor of duplicate
gene expression divergence (DeGiorgio and Assis 2021).
However, in contrast to our findings when considering
the entire parameter space, all machine learning architec-
tures show comparable classification performance when
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Fic. 2.—Regression performance of three machine learning architectures of PiXi that were trained on data simulated under uniform distributions of
parameters log,, (@) € [0, 3] and log,q (62) € [ — 2, 3]. Violin plots display distributions of prediction errors across the m = 6 conditions for each simulated

test dataset.

the parameter space is restricted, with similar classification
power and accuracy for each combination of a and o? ex-
amined. This may be due to similarities in values of features
across conditions when test data derive from a limited par-
ameter space. Further, all machine learning architectures of
PiXi produce balanced classification rates for every region
of the parameter space, whereas the distance-based classi-
fier appears to be swayed by phenotypic drift, preferentially
choosing “conserved” when it is weak (small ¢2) and “di-
verged” when it is strong (large ¢?).

Aside from improved classification performance relative
to a distance-based classifier, an advantage of the machine
learning framework of Pix1i is its ability to predict the ex-
pression optima of the orthologs, 67 and 6,, as this provides
information about expression levels and extent of
expression divergence between the two species. Hence,
we next assessed the accuracy of each machine learning
architecture in predicting 6; and 6, on the same dataset
used for classification. To compare prediction accuracy
among the machine learning architectures of Pixi, as
well as between class labels, we examined distributions of
prediction errors for 8, and 6, across the six tissues (fig.
2). This analysis reveals that all machine learning

architectures yield accurate and precise estimates of 6,
and 6,, with prediction errors centered on zero. Further,
predictions of #; and 6, are more precise for the “con-
served” class, likely due to the additional degree of free-
dom in estimating these parameters for the “diverged”
class. Despite these general trends, the NN globally out-
performs the RF and SVM architectures in parameter pre-
diction, in that it displays the highest precision for both
classes. As with classification, 6; and 6, prediction accur-
acies of all machine learning architectures of PiXi vary
similarly across smaller regions of the parameter space re-
presenting specific evolutionary scenarios (supplementary
figs. S12-S14, Supplementary Material online). In particu-
lar, estimates of #; and 6, tend to be more precise when
selection is strong (large a) or phenotypic drift is weak
(small ¢2), and less precise when selection is weak (small
a) or phenotypic drift is strong (large ¢2). These findings
mirror those observed with CLOUD (DeGiorgio and Assis
2021). Finally, whereas all machine learning architectures
demonstrate comparable performance in predicting 6,
and 6, in most evolutionary scenarios, the NN slightly out-
performs the others in some instances, generally display-
ing less precision when phenotypic drift is strong (large
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E Optimal expression in Species 1 (61)

H Optimal expression in Species 2 (82)

Conserved

Diverged

Estimate

B4 02

Fic. 3.—Predicted expression optima from application of the Pixi Neural Network to empirical data from positionally relocated orthologs in two species
of Drosophila (Hart et al. 2018; Assis 2019b). Box plots overlaid onto strip plots show distributions of estimates for each class. Note that six estimates, corre-
sponding to the six tissues in the empirical dataset, are plotted for each parameter.

6%) and more precision when phenotypic drift is weak
(small o?).

Application of Pixi to Empirical Data from Drosophila

Our simulation experiments demonstrate that Pixi has
high power and accuracy in predicting gene expression di-
vergence between orthologs and high accuracy and preci-
sion in predicting their expression optima, with the
globally best performance achieved through its NN archi-
tecture (see Materials and methods). Thus, we next applied
the NN architecture of PiXi to predict expression diver-
gence and expression optima of 102 positionally relocated
single-copy orthologs in two species of Drosophila (Hart
et al. 2018) from their expression measurements in six tis-
sues (Assis 2019b) (see Materials and methods). We chose
this dataset because positional relocations may lead to ex-
pression divergence by introducing genes to new chroma-
tin  environments, which strongly influence their
expression patterns and functions (Kleinjan and van
Heyningen 1998; Cohen et al. 2000; Boutanaev et al.
2002; Lercher et al. 2003; Hurst et al. 2004; Williams and
Bowles 2004; Michalak 2008; Weber and Hurst 2011;
Assis 2016). The positional relocations in this dataset oc-
curred between chromosomal arms and were polarized,
with 53 and 49 inferred to have relocated in the
Drosophila melanogaster and Drosophila pseudoobscura
lineages, respectively (Hart et al. 2018). Hence, to enable

comparisons of optimal expression states before and after
positional relocations, we set “Species 1" as the species
with the gene on the ancestral chromosomal arm and ex-
pression optimum #;, and “Species 2" as the species with
the gene on the derived chromosomal arm and expression
optimum 6,.

Of the 102 positionally relocated orthologs in our empir-
ical dataset, 23 were classified as “diverged” by PiXi
(supplementary table S1, Supplementary Material online).
Moreover, examinations of distributions of estimates of 6,
and 6, reveal three clear distinctions between “conserved”
and “diverged” classes (fig. 3). First, estimates of 6; and 6,
are similar for the “conserved” class and different for the
“diverged” class, consistent with expectations under these
two class scenarios of our OU model (see Construction of
PiXi). Second, estimates of 6; and 6, tend to be larger for
the “diverged” class, suggesting that orthologs that under-
went expression divergence after positional relocation in
Drosophila are expressed at higher levels. Third, estimates
of 6, are generally larger than those of 6, for the “diverged”
class, indicating that optimal expression levels are higher for
orthologs residing on derived chromosomal arms.

Investigations of the 23 Drosophila genes in the “di-
verged” class did not uncover any significant biases in the
lineage in which positional relocations occurred (P = 0.56,
binomial test), in either ancestral or derived chromosomal
arm distributions (P=0.83 and P=0.84, respectively,
Fisher's exact tests), or in movements between X
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chromosomes and autosomes (P=0.64, Fisher's exact
test), relative to expectations based on frequencies in the
original dataset (Hart et al. 2018) (see Materials and meth-
ods). However, it is important to note that the small sample
size of the “diverged” class may limit our power to detect
such biases. Therefore, to better understand the biological
factors that may contribute to gene expression divergence
after positional relocation in Drosophila, we also analyzed
functional annotations of orthologs classified as “con-
served” and “diverged” (see Materials and methods).
Unfortunately, no results were statistically significant after
multiple testing corrections, again perhaps as a result of
small sample sizes. Yet, several genes in the “conserved”
class are involved in the regulation of transcription and
post-translational  modifications in  the  nucleus
(supplementary table S2, Supplementary Material online).
In contrast, a few genes in the “diverged” class participate
in the electron transport chain in the mitochondrial mem-
brane, and particularly in the processes of ubiquinol cyto-
chrome c reductase activity and oxidative phosphorylation
(supplementary table S3, Supplementary Material online).
This distinction illustrates that the functions of genes may
dictate their evolutionary fates after positional relocations.
Specifically, perhaps cellular energy production is more
malleable than transcription and translation in Drosophila,
and genes with such functions are therefore more likely
to experience divergence after positional relocation.

For further analysis, we performed a case study of the
UQCR-11L gene (supplementary table S1, Supplementary
Material online; FBgn0050354 in D. melanogaster,
FBgn0086842 in D. pseudoobscura) in the "diverged”
class. We chose this gene, as it demonstrated the largest
difference between expression optima 8, and 6, in the “di-
verged” class. UQCR-11L, or Ubiquinol cytochrome ¢ re-
ductase 11kDa subunit-like, underwent a positional
relocation from the Muller E chromosomal arm to the
Muller C chromosomal arm in the D. melanogaster lineage.
Intriguingly, a previous study revealed that the positional
relocation of UQCR-11L in the D. melanogaster lineage re-
sulted in its insertion into the intron of another gene, Acsl,
or Acyl-CoA synthetase long-chain (Assis 2016). Due to
transcriptional interference, such “nested” genes were
found to experience rapid sequence and expression diver-
gence (Assis 2016), consistent with our classification of
UQCR-11L expression as “diverged.” Further, UQCR-T7L
is one of the handful of genes from our functional annota-
tion analysis that participate in ubiquinol cytochrome c re-
ductase activity in mitochondrial electron transport. Thus,
UQCR-11L represents an interesting example for which
positional relocation resulted in gene nesting, rapid se-
guence and expression divergence likely driven by strong
selection against transcriptional interference, and perhaps
corresponding functional divergence altering cellular en-
ergy production in D. melanogaster.

Discussion

In this work, we present Pixi, an OU model-based ma-
chine learning framework for predicting expression diver-
gence between single-copy orthologs and their
expression optima in two species. Pixi implements three
machine learning architectures for its predictions: NN, RF,
and SVM. We demonstrate that each of these machine
learning architectures has high power and accuracy in dis-
criminating between “conserved” and “diverged” expres-
sion classes, as well as high accuracy and precision in
estimating expression optima, with the overall best per-
formance for both tasks achieved by the NN. Moreover,
these three machine learning architectures all globally out-
perform a distance-based classifier, which has the lowest
classification power and accuracy, as well as an inability
to predict expression optima. Hence, PiXi represents a sig-
nificant advancement for the widespread problem of assay-
ing expression divergence between single-copy orthologs
in two species. Though here we focused on usage with
gene expression data from multiple conditions, PiXi can
also be employed with expression data from a single condi-
tion, enabling its application to studies of gene expression
divergence in both single- and multicellular organisms.
We chose to incorporate NN, RF, and SVM machine learn-
ing architectures in Pixi to allow for different types of linear
and nonlinear relationships, as well as for variation in other
properties, of the input data. In particular, the NN is linear
when the number of hidden layers L = 0 and nonlinear other-
wise, the RF is always nonlinear, and the SVM behaves as linear
when the y hyperparameter of its RBF kernel is small and as
nonlinear otherwise. Further, though the NN outperformed
the other architectures in our study, the RF and SVM architec-
tures may be advantageous for properties of input data that
we did not consider. For example, the RF may be beneficial if
expression data are absent for some genes or conditions due
to its robustness to missing data, whereas the SVM may be
beneficial if expression data are measured in one or few con-
ditions due to its ability to expand the dimensionality of the
data. Thus, we kept all three machine learning architectures
in the final version of PiXi to provide users with the flexibility
to select an architecture that is best suited to their data.
Regardless of architecture, it is important that users of
PiXi train models with wide ranges of parameters as we
have done here, with the goal of capturing the full distribu-
tions of their potential values and many possible evolution-
ary scenarios. Specifically, we recommend that users follow
our approach in selecting ranges of 6; and 6, that are based
on minimum and maximum expression measurements ob-
served in their empirical data. Though Pixi performance
will be optimal if simulations are performed under the
true ranges of o and ¢?, these parameters cannot be esti-
mated directly from the data. Therefore, we recommend
that users employ the large ranges that we used in our
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study (default in the Pixi software), as these span many
orders of magnitude and were chosen based on our exam-
inations of previous evolutionary studies (Hansen 1997,
Butler and King 2004; Rohlfs et al. 2014; Rohlfs and
Nielsen 2015; DeGiorgio and Assis 2021). Moreover,
through testing restricted parameter spaces, we showed
that Pixi performance was excellent for large o (strong se-
lection) and small ¢ (weak drift) for which expression va-
lues are maintained close to their optima 6; and 6, (i.e.,
excessively high signal-to-noise ratio in data), and that per-
formance was poor for small a (weak selection) and large o?
(strong drift) for which expression values have high variabil-
ity with little constraint to their optima (i.e., excessively low
signal-to-noise ratio in data). Hence, it is best to train mod-
els with large training sample sizes across wide parameter
ranges so that they perform well globally, as restricting
the parameter space for training can lead to erroneous find-
ings when these methods are applied to empirical data.

We also considered performing predictions with a max-
imum likelihood framework, which has been used for other
studies of expression evolution with OU models (Kalinka
et al. 2010; Brawand et al. 2011; Perry et al. 2012; Rohlfs
et al. 2014; Rohlfs and Nielsen 2015). Specifically, given
gene expression data for pairs of orthologs in Species 1
and Species 2, one can use maximum likelihood to estimate
the set of parameters {6, 6>, a, 6%} from an OU model of
expression evolution for the two classes, with constraints
61 = 0, for the “conserved” class and 0y # 6, for the "di-
verged” class. Then one can employ a likelihood ratio test
to discriminate between classes, with the “conserved” class
representing the null hypothesis and the “diverged” class
representing the alternative hypothesis. However, there
are two major obstacles to this approach. First, it would
be highly dependent on underlying model assumptions,
such as independence among conditions. Second, the “di-
verged” class, which has four free parameters per condi-
tion, would be over-parameterized without the inclusion
of genes from outgroup species. Hence, we believe that
using machine learning for predictions is ideal for the par-
ticular evolutionary problem at hand.

As an empirical study, we applied the best-performing NN
architecture of PixXi to gene expression data (Assis 2019b)
from 102 positionally relocated single-copy orthologs in two
species of Drosophila (Hart et al. 2018). Of these orthologs,
23 were classified as “diverged,” supporting the hypothesis
that the movement of genes to new chromatin environ-
ments can lead to modification of their expression profiles.
There were also some interesting distinctions between esti-
mated expression optima of “conserved” and “diverged”
orthologs, together suggesting that genes that undergo ex-
pression divergence tend to have higher optimal expression
levels before relocation and even higher optimal expression
levels after relocation. Our follow-up analyses also revealed

that several “conserved” genes are involved in transcription-
al and post-transcriptional regulation, whereas several “di-
verged” genes are involved in the electron transport chain,
perhaps indicating that expression divergence tends to im-
pact cellular energy production. Further, our case study of
the “diverged” gene with the largest difference between ex-
pression optima #; and 6, of its orthologs revealed it to be
among the handful of genes that participate in the electron
transport chain, as well as a “nested” gene that relocated
into an intron of another gene. Hence, our empirical study
illustrates that application of Pixi can yield novel and inter-
esting insights into the evolutionary trajectories and forces
acting on single-copy genes.

Materials and Methods
Design of NN, RF, and SVM Architectures for pixi

In constructing the NN architecture for PiXi, we follow the
approach of DeGiorgio and Assis (2021), tailoring it to our
problem where appropriate. In particular, we consider a
dense feed-forward NN with L € {0, 1, 2, 3} hidden layers,
in which the first hidden layer has p[1] = 256 hidden units,
and hidden layer ¢ €{1, 2, ..., L} has p[¢] = 256/2¢" hid-
den units, such that each hidden layer contains half the
number of hidden units as the previous hidden layer
(DeGiorgio and Assis 2021). To simplify our notation, we
set the input layer as hidden layer zero, such that p[0] = p =
2m is the number of input features, and the output layer as
hidden layer L + 1, such that p[L + 1] = K. The values at unit
ke{1,2, ..., ple]} of hidden layer ¢ € {0, 1, 2, ..., L} are
defined by its activation a[k“. Because hidden layer zero is
the input layer and hidden layer L + 1 is the output layer,
the activations are related to the input and output as

85(0] = Xk

and

_ AlL+1]
yk—ak .

Continuing to follow the approach of DeGiorgio and Assis
(2021), we define the activation for unit k of hidden layer
¢ e{1,2, ..., }asanonlinear transformation of the linear
combination of the activations for the previous hidden
layers. Specifically, we apply the rectified linear unit
(ReLU, Goodfellow et al. 2016) function defined as
ReLU(x) = max (0, x), such that the activation for unit k in
hidden layer # is

ple-11
el _ [e-1] [e-1]5[e-1]
ak_ReLU<WO + E Wi g )
=1
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where W[“ € Ris the weight (parameter) from unitjin layer

£ to unit k in layer £+ 1, and w is the bias for layer #

(Goodfellow et al. 2016). The output layer takes inputs
from layer L, and has a different form depending on
whether we consider the classification or the regression
problem. For classification, we use the softmax activation
function (Goodfellow et al. 2016), such that the output
for class k € {1, 2} is the probability

exp (W [L] Zp[L] [L] [L]

[L] p[L] L] [L]
Zt—1 exp Z /t j

Yk =

For regression, we use the linear activation function
(Goodfellow et al. 2016), such that the output for param-
eter prediction k € {1, 2, ..., 2m}is

plL]
_ Al [L] 5[L]
Wy +ijka/. .
j=1

When L =0, the NN simplifies to a linear model with logistic
regression for the classification problem and to linear re-
gression for the regression problem (Hastie et al. 2009).

In designing the RF architecture for Pixi, we implement
Breiman'’s algorithm (Breiman 2001) with p = 2m features
and n =500 trees. RF is an ensemble learner that makes
predictions from a “forest” of n randomly constructed trees
(Breiman 2001). To construct each tree in the RF, a boot-
strap training set of 20,000 observations is created through
random sampling with replacement from the 20,000 obser-
vations in the original training set. Then, for each splitin the
tree, a subset of size g = ,/p of the features is selected uni-
formly at random (Wright and Ziegler 2017), and the node
is split on one of these q features by minimizing node im-
purity, which is computed with the Gini index (Gini 1936)
for classification and the estimated response variances
(Wright et al. 2017) for regression. The tree is grown with-
out pruning (Breiman 2001), with a minimum node size of
ten for classification and five for regression. This process is
repeated to construct each of the 500 trees in the forest
(Breiman 2001). For classification, each tree contains esti-
mated class probabilities (Malley et al. 2012), and the out-
put class k € {1, 2} is chosen as the class with the larger
mean estimated probability across the 500 trees (Breiman
2001). For regression, the output parameter prediction k €
{1,2, ..., 2m} is given by the mean parameter estimate
across the 500 trees (Breiman 2001).

In developing the SVM architecture for PiXi, we use a
radial basis function (RBF) kernel (Hastie et al. 2009) of form

K(x;, i) = exp (= yllx; — x:113),

with p=2m features and 11 y €[0.001, 5] hyperpara-
meters uniformly chosen on a logarithmic scale. Though
the RBF kernel is nonlinear, it behaves as a linear kernel
when y is small (Hastie et al. 2009), thereby enabling us
to capture both linear and nonlinear relationships in the in-
put data. Using this kernel to transform the feature space,
the SVM identifies the maximum margin hyperplane (Hastie
et al. 2009) defined by x € R such that

(x, x) =0,

ﬁO + Z#,}//

where S, is the intercept and pq, s, ..., uy are the coeffi-
cients of the support vectors (i.e., those x; with g; > 0) in the
Lagrange dual function that maximize the margin, or the
distance between training observations and the hyperplane
(Hastie et al. 2009).

For classification, the maximum margin hyperplane re-
sults in optimal separation of classes (Cortes and Vapnik
1995), and the output class k € {1, 2} is selected based
on the sign of y, which specifies on which side of the hyper-
plane it lies. Here, the training observations take response
values y € {— 1, 1} to signify the two classes. For regres-
sion, the maximum margin hyperplane results in optimal
fit to the training data (Drucker et al. 1997), with the mar-
gin in this case representing the maximum unpenalized re-
sidual ¢, or difference between observed and predicted
parameters k € {1, 2, ..., 2m} given by the value of y;.

All described machine learning architectures were imple-
mented in R (2021). We used Keras (Chollet et al. 2017)
with a TensorFlow backend (Abadi et al. 2015) for the
NN, ranger (Wright and Ziegler 2017) for the RF, and
liquidSVM (Steinwart and Thomann 2017) for the SVM.
Note that when training the regression models, the NN
was allowed to jointly estimate all K=2m model para-
meters, whereas a separate regression was performed for
each parameter within the RF and SVM frameworks.

Training PiXi on Simulated Data

To train the three machine learning architectures, we first
generated a balanced simulated dataset with N =20, 000
training observations, 10,000 from each of the two classes.
We assumed independence among conditions, and that
there were a total of m=6 conditions as in an empirical
gene expression dataset from Drosophila (Assis 2019b) on
which we later applied our method (see Application of
PiXi to empirical data in Drosophila), for a total of p=
12 input features. To ensure that the simulated dataset
was realistic, we drew model parameters 6, 6, € [0, 5] to
match the range observed in the empirical gene expression
dataset (Assis 2019b), and a from log; (@) € [0, 3] and &2
from log,,(6?) € [—2, 3] to consider wide ranges of
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potential strengths for selection and phenotypic drift, as in
several previous studies (Hansen 1997; Butler and King
2004; Rohlfs et al. 2014; Rohlfs and Nielsen 2015;
DeGiorgio and Assis 2021). The class k was determined to
be “conserved” when 6; =6, and "diverged” when
01 # 6;. Then, we simulated gene expression data e’
R?™ for replicate i under model parameters for a given class
k, generating Ny simulated replicates of parameter values.

To train the NN, we followed DeGiorgio and Assis (2021)
by minimizing the elastic net (Zou and Hastie 2005) pena-
lized cost function

L
2NN = A,

where W is the set of parameter estimates, L is the number
of hidden layers, A is a tuning parameter that reduces the
complexity of the fitted model by shrinking the weights
to zero, y € [0, 1] is a tuning parameter that determines
the influence of the Ly- and L,-norm penalties for simultan-

eous feature selection, and WE-? € R is the weight (param-

eter) from unit j in layer # to unit k in layer ¢ + 1. As in
DeGiorgio and Assis (2021), we estimated the set of para-
meters W from a number of hidden layers L conditional
on the pair of regularization tuning parameters A and vy
using the Adam optimizer (Kingma and Ba 2014) with
learning rate 1073 and exponential decay rates for the first
and second moment estimates of g, = 0.9 and #, = 0.999
(Kingma and Ba 2014). Similarly, we also used mini-batch
optimization with a batch size of 5,000 observations for
500 epochs, and five-fold cross-validation (Hastie et al.
2009) to estimate L, A, and y (DeGiorgio and Assis 2021).
In particular, here we used 16,000 (80%) observations for
training, with the remaining 4,000 (20%) held out for val-
idation. We also balanced each sample dataset, with equal
numbers of observations from each class in the training
(8,000) and validation (2,000) sets. Following DeGiorgio
and Assis (2021), we considered values of L € {0, 1, 2, 3}
andy € {0, 0.1, ..., 1.0}, as well as 25 values of A chosen
uniformly across logq, (1) € [ — 12, — 3]. Given the optimal

cross-validation estimates f, ;1\ and 7 for L, X, and v,
respectively, we estimated the NN model parameters

w={w, W% .. W} using all 20,000 training observa-
tions. Consistent with the findings of DeGiorgio and Assis
(2021), a NN with L =2 hidden layers provided the best
cross-validation performance for both classification and re-
gression, with a validation loss of approximately 0.249 with
optimal tuning parameters Z ~ 4.327 x 10~* and 5= 1 for
classification, and a validation loss of approximately 0.274

with optimal tuning parameters 1~7.499x 1075 and
7=1. These values of y= 1 imply that the L;-norm penalty
was solely and mostly employed by our elastic net regular-
ization in the classification and regression settings respect-
ively, which encouraged sparse models with maximal
feature selection.

To train the RF, we performed bagging (Breiman 1996)
in tandem with random feature selection, as described by
Breiman (2001). In particular, a bootstrap sample training
set consisting of 20,000 observations was constructed
through random sampling with replacement from the
20,000 observations in the original training set. Due to
bootstrapping, approximately 1/3 of observations in the
original training set were left out (Efron 1979). We used
the bootstrap sample to build a RF with n =500 trees to
predict classes and evolutionary parameters. Each tree in
the RF was grown such that on every split, we let the tree
choose among the g = ,/p features that minimize node im-
purity, with a minimum node size of ten for classification
and five for regression.

To train the SVM, we maximized the Lagrangian dual
function (Hastie et al. 2009)

N N N

~ 1

Luy, 13, -~-:ﬂ/\/)=§ ﬂ/—§§ E ity - KXi, Xi)
p

=1 k=1
subject to the constraint
0< Wi < C

where u;, wy, ..., uy are the dual function parameters that
maximize the margin M of the support vectors (x; with
u; > 0), K(x;, x¢) is the RBF kernel function with hyperpara-
meter y that influences the width of the kernel function,
and Cis a tuning parameter that defines penalization of ob-
servations that violate M. As with our NN, we used five-fold
cross-validation (Hastie et al. 2009) to estimate y and C,
again with 16,000 (80%) observations for training and
the remaining 4,000 (20%) held out for validation.
Similarly, we balanced each dataset, with equal numbers
of observations from each class in the training (8,000)
and validation (2,000) sets.

Testing PiXi on Simulated Data

After model training, we evaluated the performance of the
three machine learning architectures of PixXi on an inde-
pendent balanced test dataset of 2,000 simulated observa-
tions, 1,000 from each of the two classes. As when
generating our training dataset, we assumed m =6 inde-
pendent tissues and drew OU model parameters uniformly
at random, with 64, 6, € [0, 5] to match the range ob-
served in the empirical Drosophila expression data (Assis
2019b), and o from log,,(@) €10, 3] and o® from
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logyo (6?) € [ - 2, 3] to consider wide ranges of potential
strengths for selection and phenotypic drift from several
previous studies (Hansen 1997; Butler and King 2004;
Rohlfs et al. 2014; Rohlfs and Nielsen 2015; DeGiorgio
and Assis 2021). The class k was determined to be “con-
served” when 6y = 6, and “diverged” when 6; # 0,, and
gene expression data e’ € R?™ were generated for repli-
cate / under model parameters for a given class k, resulting
in 1,000 simulated replicates of parameter values.

We also examined the performance of each machine
learning architecture of Pixi on test datasets drawn
from restricted regions of the parameter space. In particu-
lar, we used the same approach outlined above to simulate
test data sets of 2,000 observations, 1,000 from each class,
for three distinct ranges of a €1, 10], [10, 100], and
[100, 1, 000], and five distinct ranges of ¢® € [0.01, 0.1],
[0.1, 1],[1, 10],[10, 100], and [100, 1, 000]. For each com-
bination of a range of a and a range of ¢?, we sampled o
and ¢? uniformly at random, matching the simulation set-
ting used for generating the training data.

For evaluation of the classification performance of these
machine learning architectures, we constructed another
distance-based classifier with a cutoff ¢ for selecting the
output class k. In particular, we first computed Euclidean
and Manhattan distances between absolute and relative ex-
pression levels across m = 6 conditions in the training data-
set that was used by the machine learning architectures. For
each of these four sets of distances, we uniformly selected
100 cutoff values from the range of distances, and used
five-fold cross-validation to select the value of ¢ that maxi-
mized validation accuracy. Then, we constructed four clas-
sifiers, each with a different distance metric and optimal
value of c. We compared the power and accuracy of these
four classifiers by applying them to the test dataset that we
used for the three machine learning architectures. Of these
distance-based classifiers, the classifier with Manhattan dis-
tances between absolute expression levels and with ¢~
7.26 selected by cross-validation had the highest power
and accuracy (supplementary fig. S15, Supplementary
Material online). Thus, we used this best distance-based
classifier for comparisons with the three machine learning
architectures of Pixi.

Analysis of Empirical Data from Drosophila

We applied Pixi with the two-layer NN architecture that
demonstrated optimal performance (see Testing machine
learning architectures on data simulated from OU
processes) to empirical data consisting of positionally
relocated single-copy orthologs in D. melanogaster and
D. pseudoobscura (Hart et al. 2018) and their expression
abundances measured in the same six tissues from each
species (Assis 2019b). To produce this input dataset, we
first obtained 127 positionally relocated single-copy genes

in D. melanogaster and D. pseudoobscura from Hart et al.
(2018). Hart et al. (2018) identified positionally relocated
single-copy genes through curation of previously anno-
tated inter-chromosomal-arm positional relocations that
occurred along the lineages leading to D. melanogaster
and D. pseudoobscura (Hahn et al. 2007; Meisel et al.
2009), and inferred their ancestral and derived chromo-
somal arms through comparisons to the chromosomal
arms of their orthologs in D. willistoni, D. virilis, and D. grim-
shawi genomes.

Next, we obtained gquantile-normalized gene expression
abundances for carcass, female head, ovary, male head,
testis, and accessory gland tissues in D. melanogaster and
D. pseudoobscura from the Dryad dataset associated with
Assis (2019b) at https:/doi.org/10.5061/dryad.742564m.
Briefly, ~ Assis  (2019b)  downloaded paired-end
RNA-sequencing reads from modENCODE (Celniker et al.
2009) at https:/www.modencode.com, aligned these
reads to the reference transcriptomes of each species
with Bowtie 2 (Langmead et al. 2009), computed expres-
sion abundances of genes in fragments per kilobase of
exon per million fragments mapped (FPKM) (Trapnell
et al. 2013) with eXpress (Roberts and Pachter 2013), and
quantile-normalized and log-transformed these FPKM va-
lues in R (2021). We removed all Hart et al. (2018) genes
for which the Assis (2019b) quantile-normalized FPKM <1
in all six tissues for either D. melanogaster or D. pseudoobs-
cura, yielding 102 positionally relocated single-copy genes
and corresponding gene expression abundances on which
we applied Pixi.

We trained Pixi with a two-layer NN architecture
through five-fold cross-validation (Hastie et al. 2009) on a
balanced simulated dataset with N = 20, 000 observations,
setting the regularization tuning parameters asi~ 4.327 x
104 and 7= 1 for classification, and 1 ~ 7.499 x 10~° and
7 = 1forregression (see Training machine learning architec-
tures on data simulated from OU processes). Then, we ap-
plied the trained model to the 102 positionally relocated
orthologs in Drosophila to predict their expression as either
“conserved” or “diverged,” as well as their expression op-
tima 6y and 6,.

We used the DAVID Functional Annotation Tool (Huang
et al. 2009a, 2009b) to assay functions of orthologs classi-
fied as “conserved” and “diverged.” Specifically, we ran
this tool twice, each time using the list of D. melanogaster
orthologs from either the “conserved” or “diverged” pre-
dicted class as our gene list, and all other genes in the D.
melanogaster genome as the background list. We also as-
sessed lineage-specific biases in the “diverged” class with
a two-tailed exact binomial test, in which we set the num-
ber of successes x =13 to represent the number of “di-
verged” genes that underwent positional relocations in
the D. melanogaster lineage, the number of trials n =23
to represent the total number of “diverged” genes, and
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the probability of success p =53/102 to represent the ex-
pected frequency of “diverged” genes that underwent pos-
itional relocations in the D. melanogaster lineage if it is
equal to the total frequency of positional relocations in
this lineage. Finally, we assayed biases in ancestral and de-
rived chromosomal arm distributions, as well as in reloca-
tions between sex chromosomes and autosomes with
two-tailed Fisher’s exact tests, in which we compared ob-
served distributions of the “diverged” class to those ex-
pected based on their frequencies in the full dataset of
positional relocations. All statistical analyses were per-
formed in the R software environment (R Core Team 2021).

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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