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Abstract

Predicting gene expression divergence is integral to understanding the emergence of new biological functions and associated 
traits. Whereas several sophisticated methods have been developed for this task, their applications are either limited to du
plicate genes or require expression data from more than two species. Thus, here we present PredIcting eXpression dIvergence 
(PiXi), the first machine learning framework for predicting gene expression divergence between single-copy orthologs in 
two species. PiXi models gene expression evolution as an Ornstein-Uhlenbeck process, and overlays this model with mul
ti-layer neural network (NN), random forest, and support vector machine architectures for making predictions. It outputs the 
predicted class “conserved” or “diverged” for each pair of orthologs, as well as their predicted expression optima in the two 
species. We show that PiXi has high power and accuracy in predicting gene expression divergence between single-copy 
orthologs, as well as high accuracy and precision in estimating their expression optima in the two species, across a wide range 
of evolutionary scenarios, with the globally best performance achieved by a multi-layer NN. Moreover, application of our best- 
performing PiXi predictor to empirical gene expression data from single-copy orthologs residing at different loci in two 
species of Drosophila reveals that approximately 23% underwent expression divergence after positional relocation. 
Further analysis shows that several of these “diverged” genes are involved in the electron transport chain of the mitochon
drial membrane, suggesting that new chromatin environments may impact energy production in Drosophila. Thus, by pro
viding a toolkit for predicting gene expression divergence between single-copy orthologs in two species, PiXi can shed light 
on the origins of novel phenotypes across diverse biological processes and study systems.
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Significance
Gene expression divergence is often used as an important indicator of evolutionary change. However, there is currently a 
paucity of methods for accurately predicting gene expression divergence. Here, we develop the first machine learning 
approach for this task, PredIcting eXpression dIvergence (PiXi), demonstrating its exceptional performance on simu
lated data and application to empirical data in fruit flies. PiXi has been implemented as an open-source R package, 
providing a powerful toolkit for researchers investigating gene expression divergence in a wide range of taxonomic 
groups.

© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Introduction
Determining whether gene functions have diverged be
tween species is a problem of central importance in evolu
tionary genomics. In particular, researchers are often 
interested in assaying inter-species functional divergence 
for a specific set of genes, such as those that have under
gone a mutation event or are involved in a biological pro
cess that is being studied (Gu 1999; Lynch and Force 
2000; Gu 2001; Kondrashov et al. 2002; Blanc and Wolfe 
2004; Li et al. 2005; Chain et al. 2008; Lopez-Bigas et al. 
2008; Lynch and Wagner 2008; Assis et al. 2012; Assis 
and Bachtrog 2013, 2015; Assis 2016; Fuller et al. 2016; 
Wheeler et al. 2016; Hart et al. 2018; Assis 2019b; Jiang 
and Assis 2019; Meng et al. 2019; Assis 2021; Zhong 
et al. 2021; Sarwar et al. 2022). In these scenarios, a major 
question to address is whether the functions of these genes 
are conserved or have diverged as a result of the mutation 
event or biological process under consideration. For cases 
of functional divergence, one may also want to know 
how and to what extent gene functions differ from one an
other. Answering these questions is critical not only for 
learning about the functional divergence of a specific set 
of genes, but also for generating testable hypotheses about 
their contributions to the origins of complex phenotypes 
and species.

The classical approach to this common problem in evolu
tionary genomics is to quantify sequence divergence be
tween orthologous genes, or those that arose from the 
same common ancestor, in related species (Gu 1999, 
2001; Kondrashov et al. 2002; Chain et al. 2008; 
Lopez-Bigas et al. 2008; Wheeler et al. 2016; Hart et al. 
2018; Assis 2019b; Zhong et al. 2021; Sarwar et al. 
2022). Though such analyses enable estimations of the 
types and strengths of natural selection acting on a set of 
genes, they are limited in their abilities to detect functional 
divergence. Specifically, natural selection acts directly on 
gene functions, and therefore indirectly on their underlying 
sequences. With this in mind, several modern studies have 
assayed functional divergence from gene expression data 
(Blanc and Wolfe 2004; Li et al. 2005; Chain et al. 2008; 
Assis et al. 2012; Assis and Bachtrog 2013, 2015; Assis 
2016; Fuller et al. 2016; Perry and Assis 2016; Hart et al. 
2018; Assis 2019b; Jiang and Assis 2019; Meng et al. 
2019; Zhong et al. 2021; Sarwar et al. 2022), which are 
now widely available for many conditions (e.g., tissues, de
velopmental stages, or disease states) in diverse species 
(Kapushesky et al. 2010; Consortium 2012; Petryszak 
et al. 2013). Because expression measurements provide in
formation about activity levels of a gene across multiple 
conditions, they are often considered ideal proxies for func
tion (Wray et al. 2003; Carroll 2005; Nehrt et al. 2011; Assis 
and Bachtrog 2013; De Smet et al. 2017). Further, gene ex
pression is easily quantified and compared, and also 

strongly correlated with a number of other important genic 
properties, including protein-coding sequence divergence 
(Makova and Li 2003; Nuzhdin et al. 2004; Lemos et al. 
2005; Hunt et al. 2012; Assis 2014; Assis and Kondrashov 
2014; Mähler et al. 2017; Assis 2019a) and protein–protein 
interactions (Bhardwaj and Lu 2005; Lemos et al. 2005; 
Assis and Bachtrog 2013; Assis and Kondrashov 2014; 
Musungu et al. 2016; Mähler et al. 2017; Assis 2019a).

In recent years, Ornstein-Uhlenbeck (OU) processes have 
been used to develop many sophisticated methods for 
modeling expression evolution of orthologous genes along 
phylogenetic trees (Hansen 1997; Butler and King 2004; 
Kalinka et al. 2010; Brawand et al. 2011; Perry et al. 
2012; Rohlfs et al. 2014; Rohlfs and Nielsen 2015; 
DeGiorgio and Assis 2021). Because OU processes model 
Brownian motion with a pull toward an optimal state, 
they have a natural application to evolution, in which 
phenotypic drift is analogous to Brownian motion, selection 
to pull, and the fittest phenotype to optimal state (Hansen 
1997; Butler and King 2004). Whereas most of these 
OU-based methods can also be used to assay expression di
vergence (Hansen 1997; Butler and King 2004; Brawand 
et al. 2011; Rohlfs et al. 2014; Rohlfs and Nielsen 2015; 
DeGiorgio and Assis 2021), they are limited in their applic
ability to problems generally encountered in evolutionary 
genomics. Specifically, these methods either require gene 
expression data from more than two species (Hansen 
1997; Butler and King 2004; Brawand et al. 2011; Rohlfs 
et al. 2014; Rohlfs and Nielsen 2015), which researchers 
typically do not have access to, or are tailored to genes 
that underwent duplication events (DeGiorgio and Assis 
2021). Thus, there are currently few options for predicting 
gene expression divergence between single-copy orthologs 
in two species.

Here, we present PredIcting eXpression dIvergence 
(PiXi), an OU model-based machine learning framework 
for predicting gene expression divergence between single- 
copy orthologs in two species. As in a recent method de
signed for duplicate genes, CLOUD (DeGiorgio and Assis 
2021), we choose machine learning for prediction due to 
several advantages over traditional likelihood ratio tests 
previously used for single-copy genes (Kalinka et al. 2010; 
Brawand et al. 2011; Perry et al. 2012; Rohlfs et al. 2014; 
Rohlfs and Nielsen 2015). First, training of machine learning 
algorithms minimizes discrepancies between model predic
tions and observations, optimizing model fit to the data 
(Hastie et al. 2009). Second, testing of machine learning al
gorithms enables direct evaluation of performance metrics, 
such as power and accuracy, on a dataset that is independ
ent of that used for training (Hastie et al. 2009). Third, ma
chine learning algorithms are tailored to making predictions 
from data representing many correlated or conflicting fea
tures of varying levels of importance (Hastie et al. 2009), 
which is a critical consideration when using gene 
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expression data from multiple conditions and species. Last, 
CLOUD demonstrates high power and accuracy in predict
ing both expression divergence and evolutionary para
meters of duplicate genes in two species (DeGiorgio and 
Assis 2021), suggesting that taking a similar approach 
with single-copy genes may yield favorable performance 
as well.

Thus, PiXi employs an adaptation of the multi-layer 
neural network (NN) of CLOUD (DeGiorgio and Assis 
2021), as well as two additional machine learning architec
tures—random forest (RF) and support vector machine 
(SVM)—to account for different linear and nonlinear rela
tionships in the input data. Specifically, PiXi uses each ma
chine learning architecture to classify the expression of 
single-copy orthologs into two species as either “con
served” or “diverged,” and to also estimate their expres
sion optima in the two species. Application of PiXi to 
simulated data shows that all of its machine learning archi
tectures have high power and accuracy in predicting ex
pression divergence and high accuracy and precision in 
predicting expression optima across a wide range of evolu
tionary scenarios, with the multi-layer NN globally outper
forming other architectures. Moreover, application of 
PiXi to empirical data in Drosophila reveals that approxi
mately 23% of positionally relocated genes undergo ex
pression divergence, many of which are involved in 
cellular energy production. PiXi has been implemented 
as an open-source R package, which is available at http:// 
assisgroup.fau.edu/software.html and https://github.com/ 
rassis/PiXi. Input data can include gene expression measure
ments in a single or in multiple conditions, making PiXi 
applicable to studying expression divergence in both single- 
and multicellular organisms.

Results

Construction of PiXi

PiXi is constructed on an OU model of gene expression evo
lution (Hansen 1997; Butler and King 2004; Kalinka et al. 
2010; Brawand et al. 2011; Perry et al. 2012; Rohlfs et al. 
2014; Rohlfs and Nielsen 2015; DeGiorgio and Assis 2021). 
In particular, suppose we have gene expression data from 
multiple conditions for single-copy orthologs in two species, 
Species 1 and Species 2. We model the expression evolution 
of these orthologs along the phylogeny relating the two spe
cies as an OU process, in which expression is pulled toward op
tima θ1 in Species 1 and θ2 in Species 2 through selection with 
strength α, and randomly fluctuates through phenotypic drift 
with strength σ2. In this study, we assume that Species 1 has 
the same expression optimum as the common ancestor of the 
two species, and our goal is to evaluate whether there is a shift 
toward a different expression optimum in Species 
2. Therefore, we consider two scenarios for the expression 

optima in Species 1 and Species 2: θ1 = θ2, which should re
sult in “conserved” gene expression between the species, 
and θ1 ≠ θ2, which should result in “diverged” gene expres
sion between the species.

Following Brawand et al. (2011), gene expression in the 
two species e = (e1, e2) under this OU process is distributed 
as multivariate normal with mean

μ = (E[e1], E[e2]) =
(1 − e−α)θ2 + e−αθ1

θ1

􏼔 􏼕

∈ R2 

and covariance matrix

Σ =
Var[e1] Cov[e1, e2]

Cov[e2, e1] Var[e2]

􏼔 􏼕

=
σ2

2α
1 e−2α

e−2α 1

􏼢 􏼣

∈ R2×2 

Note that the asymmetry in means is due to our assumption 
that θ1 represents the ancestral optimum, and that we are 
evaluating a potential shift in θ2. Thus, Species 1 should be 
designated as the species with the ancestral state, and 
Species 2 as the species with the derived state, as in our em
pirical application here (see Application of PiXi to empir
ical data from Drosophila). Further, though we assume 
here that gene expression is independent across conditions, 
this approach can be extended to account for an expression 
covariance structure (Revell and Harmon 2008; Revell and 
Collar 2009; Eastman et al. 2011; Clavel et al. 2015).

Here, we let the input feature vector

x = (e11, e21, . . . , e1m, e2m) ∈ R2m 

be the expression vector for a pair of orthologous genes, 
where e jk is the log-transformed expression measurement 
for species j ∈ {1, 2} and condition k ∈ {1, 2, . . . , m}. We 
seek to predict the output response y from x. When perform
ing classification to predict expression divergence between a 
pair of orthologs, y is the label for K = 2 classes “conserved” 
and “diverged.” In contrast, when performing regression to 
predict expression optima of the orthologs, y is the quantita
tive response for K = 2m parameter estimates in each of the 
m conditions, where in each condition we obtain parameter 
estimates for the expression optima θ1 and θ2. To account 
for a diversity of linear and nonlinear relationships, we imple
ment three machine learning architectures for performing 
these classification and regression tasks: multi-layer neural 
network (NN), random forest (RF), and support vector ma
chine (SVM) (see Materials and methods).

Prediction Performance of PiXi on Simulated Data

To evaluate the prediction performance of PiXi, we 
trained and tested its three machine learning architectures 
on independent balanced datasets of orthologous genes si
mulated under “conserved” and “diverged” expression 
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classes (see Materials and methods). The training set con
sisted of 20,000 observations (10,000 for each class), 
and the test set consisted of 2,000 observations (1,000 
for each class). Evolutionary parameters for each 
dataset were drawn independently and uniformly at ran
dom across many orders of magnitude, with 
θ1, θ2 ∈ [0, 5], log10 (α) ∈ [0, 3], and log10 (σ2) ∈ [ − 2, 3]. 
These large ranges were chosen to capture the full distribu
tions of their potential values, so as not to inflate model per
formance. Specifically, the range for θ1 and θ2 was 
matched to that observed from genome-wide expression 
measurements in an empirical dataset on which we later 
applied PiXi (see Application of PiXi to empirical data in 
Drosophila), and those for α and σ2 to those used by previ
ous studies (Hansen 1997; Butler and King 2004; Rohlfs 
et al. 2014; Rohlfs and Nielsen 2015; DeGiorgio and Assis 
2021). We set m = 6 conditions to match the number of tis
sues in an empirical dataset on which we later applied PiXi 
(see Application of PiXi to empirical data in Drosophila), 
yielding 24 random parameters drawn per simulated repli
cate and p = 2m = 12 features used for training the NN, RF, 
and SVM. We trained and tested the three machine learn
ing architectures of PiXi on these datasets to enable direct 
comparisons of their performance.

We first assessed the performance of the NN, RF, and 
SVM architectures of PiXi in classifying gene expression 

as either “conserved” or “diverged” between two species. 
For comparison, we also followed previous studies in con
structing another expression distance-based classifier 
(Assis and Bachtrog 2013; Perry and Assis 2016), using 
5-fold cross-validation to select a cutoff for defining expres
sion divergence with this classifier (see Materials and meth
ods). Analysis of the resulting classifications reveals that all 
machine learning architectures of PiXi outperform the 
distance-based classifier, with the best overall performance 
achieved by a NN composing two hidden layers (fig. 1; see 
Materials and methods). In particular, across the wide par
ameter space explored, classification power is highest for 
the NN, slightly lower for the RF, substantially lower for 
the SVM, and lowest for the distance-based classifier (fig. 
1A). Similarly, classification accuracy is approximately 
94.25% for the NN, 91.85% for the RF, 79.3% for the 
SVM, and 77.95% for the distance-based classifier. 
Further, all machine learning architectures of PiXi exhibit 
more balanced classification rates than the distance-based 
classifier, with the highest balance observed for the NN (fig. 
1B). Specifically, correct predictions of the two classes are 
approximately 94.7% and 93.8% for the NN, 92.3% and 
91.4% for the RF, 80.8% and 77.8% with the SVM, and 
89.5% and 66.4% for the distance-based classifier (main 
diagonals of fig. 1B). However, it is important to note 
that the choice of cutoff with the distance-based classifier 

FIG. 1.—Classification performance of three machine learning architectures of PiXi that were trained on data simulated under uniform distributions of 
parameters log10 (α) ∈ [0, 3] and log10 (σ2) ∈ [ − 2, 3], and then applied along with a distance-based classifier to test data simulated under uniform distribu
tions of parameters in the same ranges. (A) Receiver operating characteristic curves showing the power of each method across the full range of false positive 
rates, with a black triangle depicting the cutoff chosen by cross-validation for the distance-based classifier. (B) Confusion matrices depicting classification rates 
of the two classes for each method.
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may impact the classification rate of the balance observed. 
Hence, though the cutoff chosen by cross-validation leads 
to unbalanced classification with a strong skew toward 
the “conserved” class, both balance and direction of the 
observed skew may differ for other less optimal cutoffs.

Next, we evaluated whether classification performance 
is affected by unbalanced training or test sets. Training on 
an unbalanced dataset may decrease the classification per
formance on a balanced test set, as there may not be en
ough examples of the under-represented class. Testing on 
an unbalanced dataset when the model has been trained 
on a balanced dataset is unlikely to reduce classification 
performance, as the large balanced training set provides 
adequate examples of both classes. However, we also 
wanted to evaluate this problem because real data are likely 
to exhibit an imbalance of classes, which we indeed observe 
in our empirical analysis (see Application of PiXi to empirical 
data in Drosophila). Therefore, we created two new data
sets with a similar level of imbalance as observed in our em
pirical analysis: a “conserved-biased” dataset with 16,000 
observations in the “conserved” class and 4,000 observa
tions in the “diverged” class, and a “diverged-biased” da
taset with 4,000 observations in the “conserved” class and 
16,000 observations in the “diverged” class. Then, we ex
amined performance when training on each of these unba
lanced datasets and testing on the balanced dataset 
(supplementary figs. S1 and S2, Supplementary Material
online), as well as when training on the balanced dataset 
and testing on each of these unbalanced datasets 
(supplementary figs. S3 and S4, Supplementary Material
online). Classification power is minimally affected by train
ing or testing on unbalanced datasets (supplementary figs. 
S1A–S4A, Supplementary Material online). However, when 
training on unbalanced datasets, classification accuracy de
creases slightly for the NN (from 94.25% to 91.8% and 
92.4%), substantially for the RF (from 91.85% to 68.8% 
and 67.55%), and moderately for the SVM (from 79.3% 
to 69.45% and 72.05%), with no changes for the distance- 
based classifier because it is not impacted by modifying the 
training dataset. As expected, decreased accuracies of 
methods are attributed to less balanced classification rates, 
with larger skews toward the dominant training class 
(supplementary figs. S1B and S2B, Supplementary 
Material online). In contrast, when testing on unbalanced 
datasets, classification accuracy is largely unaffected for 
the NN (from 94.25% to 94.95% and 95.2%), RF (from 
91.85% to 89.94% and 90.9%), SVM (from 79.3% to 
77.8% and 78.25%), and distance-based classifier applied 
to the “conserved-biased” test set (from 77.95% to 
78.15%), whereas there is a substantial drop in accuracy 
for the distance-based classifier applied to the “diverged- 
biased” test set (from 77.95% to 66.35%) composing a 
majority of the “diverged” class on which the distance- 
based classifier performs poorly. However, none of the 

methods exhibit changes in the balance of their class 
predictions (supplementary figs. S3B and S4B, 
Supplementary Material online). Thus, the NN still globally 
outperforms all methods when training or testing on unba
lanced datasets, demonstrating only a small loss of per
formance when training on unbalanced datasets, and 
maintaining its performance when testing on unbalanced 
datasets that are likely to be found in nature.

Additionally, we investigated whether classification per
formance is affected by prior distributions of evolutionary 
parameters. To address this question, we independently 
drew all parameters from the same wide ranges of values, 
but this time not on log scales so as to generate non-uniform 
distributions. Analysis of classification performance reveals 
moderate losses in both power and accuracy across methods 
(supplementary fig. S5, Supplementary Material online). 
However, classification power remains highest with the 
NN, slightly lower with the RF, substantially lower with the 
SVM, and lowest with the distance-based classifier 
(supplementary fig. S5A, Supplementary Material online). 
Similarly, classification accuracy is still highest at approxi
mately 87.5% (down from 94.25%) for the NN, relative to 
83.7% (down from 91.85%) for the RF, 73.95% (down 
from 79.3%) for the SVM, and 69.85% (down from 
77.95%) for the distance-based classifier. Decreased accur
acy is associated with larger losses in accuracy for predicting 
the “diverged” class for all machine learning architectures, 
and a larger loss in accuracy for predicting the “conserved” 
class for the distance-based approach (supplementary fig. 
S5B, Supplementary Material online). Yet, though all ma
chine learning architectures lose power and accuracy in 
this scenario, they still outperform the distance-based classi
fier in both metrics, with the NN maintaining its superiority to 
all other methods when the prior distribution of parameters 
does not match that of test data.

Last, we explored how the classification performance of 
all methods varies across smaller regions of the parameter 
space with combinations of strengths of selection (α) and 
phenotypic drift (σ2) representing specific evolutionary 
scenarios (supplementary figs. S6–S11, Supplementary 
Material online). In general, the methods have higher clas
sification power and accuracy when selection is strong 
(large α) or phenotypic drift is weak (small σ2), and lower 
classification power and accuracy when selection is weak 
(small α) or phenotypic drift is strong (large σ2). However, 
even under evolutionary scenarios for which classification 
is difficult (small α or large σ2), all machine learning archi
tectures of PiXi still have substantially higher power and 
accuracy than the distance-based classifier, consistent 
with previous findings for the CLOUD predictor of duplicate 
gene expression divergence (DeGiorgio and Assis 2021). 
However, in contrast to our findings when considering 
the entire parameter space, all machine learning architec
tures show comparable classification performance when 
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the parameter space is restricted, with similar classification 
power and accuracy for each combination of α and σ2 ex
amined. This may be due to similarities in values of features 
across conditions when test data derive from a limited par
ameter space. Further, all machine learning architectures of 
PiXi produce balanced classification rates for every region 
of the parameter space, whereas the distance-based classi
fier appears to be swayed by phenotypic drift, preferentially 
choosing “conserved” when it is weak (small σ2) and “di
verged” when it is strong (large σ2).

Aside from improved classification performance relative 
to a distance-based classifier, an advantage of the machine 
learning framework of PiXi is its ability to predict the ex
pression optima of the orthologs, θ1 and θ2, as this provides 
information about expression levels and extent of 
expression divergence between the two species. Hence, 
we next assessed the accuracy of each machine learning 
architecture in predicting θ1 and θ2 on the same dataset 
used for classification. To compare prediction accuracy 
among the machine learning architectures of PiXi, as 
well as between class labels, we examined distributions of 
prediction errors for θ1 and θ2 across the six tissues (fig. 
2). This analysis reveals that all machine learning 

architectures yield accurate and precise estimates of θ1 

and θ2, with prediction errors centered on zero. Further, 
predictions of θ1 and θ2 are more precise for the “con
served” class, likely due to the additional degree of free
dom in estimating these parameters for the “diverged” 
class. Despite these general trends, the NN globally out
performs the RF and SVM architectures in parameter pre
diction, in that it displays the highest precision for both 
classes. As with classification, θ1 and θ2 prediction accur
acies of all machine learning architectures of PiXi vary 
similarly across smaller regions of the parameter space re
presenting specific evolutionary scenarios (supplementary 
figs. S12–S14, Supplementary Material online). In particu
lar, estimates of θ1 and θ2 tend to be more precise when 
selection is strong (large α) or phenotypic drift is weak 
(small σ2), and less precise when selection is weak (small 
α) or phenotypic drift is strong (large σ2). These findings 
mirror those observed with CLOUD (DeGiorgio and Assis 
2021). Finally, whereas all machine learning architectures 
demonstrate comparable performance in predicting θ1 

and θ2 in most evolutionary scenarios, the NN slightly out
performs the others in some instances, generally display
ing less precision when phenotypic drift is strong (large 

FIG. 2.—Regression performance of three machine learning architectures of PiXi that were trained on data simulated under uniform distributions of 
parameters log10 (α) ∈ [0, 3] and log10 (σ2) ∈ [ − 2, 3]. Violin plots display distributions of prediction errors across the m = 6 conditions for each simulated 
test dataset.
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σ2) and more precision when phenotypic drift is weak 
(small σ2).

Application of PiXi to Empirical Data from Drosophila

Our simulation experiments demonstrate that PiXi has 
high power and accuracy in predicting gene expression di
vergence between orthologs and high accuracy and preci
sion in predicting their expression optima, with the 
globally best performance achieved through its NN archi
tecture (see Materials and methods). Thus, we next applied 
the NN architecture of PiXi to predict expression diver
gence and expression optima of 102 positionally relocated 
single-copy orthologs in two species of Drosophila (Hart 
et al. 2018) from their expression measurements in six tis
sues (Assis 2019b) (see Materials and methods). We chose 
this dataset because positional relocations may lead to ex
pression divergence by introducing genes to new chroma
tin environments, which strongly influence their 
expression patterns and functions (Kleinjan and van 
Heyningen 1998; Cohen et al. 2000; Boutanaev et al. 
2002; Lercher et al. 2003; Hurst et al. 2004; Williams and 
Bowles 2004; Michalak 2008; Weber and Hurst 2011; 
Assis 2016). The positional relocations in this dataset oc
curred between chromosomal arms and were polarized, 
with 53 and 49 inferred to have relocated in the 
Drosophila melanogaster and Drosophila pseudoobscura 
lineages, respectively (Hart et al. 2018). Hence, to enable 

comparisons of optimal expression states before and after 
positional relocations, we set “Species 1” as the species 
with the gene on the ancestral chromosomal arm and ex
pression optimum θ1, and “Species 2” as the species with 
the gene on the derived chromosomal arm and expression 
optimum θ2.

Of the 102 positionally relocated orthologs in our empir
ical dataset, 23 were classified as “diverged” by PiXi 
(supplementary table S1, Supplementary Material online). 
Moreover, examinations of distributions of estimates of θ1 

and θ2 reveal three clear distinctions between “conserved” 
and “diverged” classes (fig. 3). First, estimates of θ1 and θ2 

are similar for the “conserved” class and different for the 
“diverged” class, consistent with expectations under these 
two class scenarios of our OU model (see Construction of 
PiXi). Second, estimates of θ1 and θ2 tend to be larger for 
the “diverged” class, suggesting that orthologs that under
went expression divergence after positional relocation in 
Drosophila are expressed at higher levels. Third, estimates 
of θ2 are generally larger than those of θ1 for the “diverged” 
class, indicating that optimal expression levels are higher for 
orthologs residing on derived chromosomal arms.

Investigations of the 23 Drosophila genes in the “di
verged” class did not uncover any significant biases in the 
lineage in which positional relocations occurred (P = 0.56, 
binomial test), in either ancestral or derived chromosomal 
arm distributions (P = 0.83 and P = 0.84, respectively, 
Fisher’s exact tests), or in movements between X 

FIG. 3.—Predicted expression optima from application of the PiXi Neural Network to empirical data from positionally relocated orthologs in two species 
of Drosophila (Hart et al. 2018; Assis 2019b). Box plots overlaid onto strip plots show distributions of estimates for each class. Note that six estimates, corre
sponding to the six tissues in the empirical dataset, are plotted for each parameter.
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chromosomes and autosomes (P = 0.64, Fisher’s exact 
test), relative to expectations based on frequencies in the 
original dataset (Hart et al. 2018) (see Materials and meth
ods). However, it is important to note that the small sample 
size of the “diverged” class may limit our power to detect 
such biases. Therefore, to better understand the biological 
factors that may contribute to gene expression divergence 
after positional relocation in Drosophila, we also analyzed 
functional annotations of orthologs classified as “con
served” and “diverged” (see Materials and methods). 
Unfortunately, no results were statistically significant after 
multiple testing corrections, again perhaps as a result of 
small sample sizes. Yet, several genes in the “conserved” 
class are involved in the regulation of transcription and 
post-translational modifications in the nucleus 
(supplementary table S2, Supplementary Material online). 
In contrast, a few genes in the “diverged” class participate 
in the electron transport chain in the mitochondrial mem
brane, and particularly in the processes of ubiquinol cyto
chrome c reductase activity and oxidative phosphorylation 
(supplementary table S3, Supplementary Material online). 
This distinction illustrates that the functions of genes may 
dictate their evolutionary fates after positional relocations. 
Specifically, perhaps cellular energy production is more 
malleable than transcription and translation in Drosophila, 
and genes with such functions are therefore more likely 
to experience divergence after positional relocation.

For further analysis, we performed a case study of the 
UQCR-11L gene (supplementary table S1, Supplementary 
Material online; FBgn0050354 in D. melanogaster, 
FBgn0086842 in D. pseudoobscura) in the “diverged” 
class. We chose this gene, as it demonstrated the largest 
difference between expression optima θ1 and θ2 in the “di
verged” class. UQCR-11L, or Ubiquinol cytochrome c re
ductase 11 kDa subunit-like, underwent a positional 
relocation from the Muller E chromosomal arm to the 
Muller C chromosomal arm in the D. melanogaster lineage. 
Intriguingly, a previous study revealed that the positional 
relocation of UQCR-11L in the D. melanogaster lineage re
sulted in its insertion into the intron of another gene, Acsl, 
or Acyl-CoA synthetase long-chain (Assis 2016). Due to 
transcriptional interference, such “nested” genes were 
found to experience rapid sequence and expression diver
gence (Assis 2016), consistent with our classification of 
UQCR-11L expression as “diverged.” Further, UQCR-11L 
is one of the handful of genes from our functional annota
tion analysis that participate in ubiquinol cytochrome c re
ductase activity in mitochondrial electron transport. Thus, 
UQCR-11L represents an interesting example for which 
positional relocation resulted in gene nesting, rapid se
quence and expression divergence likely driven by strong 
selection against transcriptional interference, and perhaps 
corresponding functional divergence altering cellular en
ergy production in D. melanogaster.

Discussion
In this work, we present PiXi, an OU model-based ma
chine learning framework for predicting expression diver
gence between single-copy orthologs and their 
expression optima in two species. PiXi implements three 
machine learning architectures for its predictions: NN, RF, 
and SVM. We demonstrate that each of these machine 
learning architectures has high power and accuracy in dis
criminating between “conserved” and “diverged” expres
sion classes, as well as high accuracy and precision in 
estimating expression optima, with the overall best per
formance for both tasks achieved by the NN. Moreover, 
these three machine learning architectures all globally out
perform a distance-based classifier, which has the lowest 
classification power and accuracy, as well as an inability 
to predict expression optima. Hence, PiXi represents a sig
nificant advancement for the widespread problem of assay
ing expression divergence between single-copy orthologs 
in two species. Though here we focused on usage with 
gene expression data from multiple conditions, PiXi can 
also be employed with expression data from a single condi
tion, enabling its application to studies of gene expression 
divergence in both single- and multicellular organisms.

We chose to incorporate NN, RF, and SVM machine learn
ing architectures in PiXi to allow for different types of linear 
and nonlinear relationships, as well as for variation in other 
properties, of the input data. In particular, the NN is linear 
when the number of hidden layers L = 0 and nonlinear other
wise, the RF is always nonlinear, and the SVM behaves as linear 
when the γ hyperparameter of its RBF kernel is small and as 
nonlinear otherwise. Further, though the NN outperformed 
the other architectures in our study, the RF and SVM architec
tures may be advantageous for properties of input data that 
we did not consider. For example, the RF may be beneficial if 
expression data are absent for some genes or conditions due 
to its robustness to missing data, whereas the SVM may be 
beneficial if expression data are measured in one or few con
ditions due to its ability to expand the dimensionality of the 
data. Thus, we kept all three machine learning architectures 
in the final version of PiXi to provide users with the flexibility 
to select an architecture that is best suited to their data.

Regardless of architecture, it is important that users of 
PiXi train models with wide ranges of parameters as we 
have done here, with the goal of capturing the full distribu
tions of their potential values and many possible evolution
ary scenarios. Specifically, we recommend that users follow 
our approach in selecting ranges of θ1 and θ2 that are based 
on minimum and maximum expression measurements ob
served in their empirical data. Though PiXi performance 
will be optimal if simulations are performed under the 
true ranges of α and σ2, these parameters cannot be esti
mated directly from the data. Therefore, we recommend 
that users employ the large ranges that we used in our 
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study (default in the PiXi software), as these span many 
orders of magnitude and were chosen based on our exam
inations of previous evolutionary studies (Hansen 1997; 
Butler and King 2004; Rohlfs et al. 2014; Rohlfs and 
Nielsen 2015; DeGiorgio and Assis 2021). Moreover, 
through testing restricted parameter spaces, we showed 
that PiXi performance was excellent for large α (strong se
lection) and small σ2 (weak drift) for which expression va
lues are maintained close to their optima θ1 and θ2 (i.e., 
excessively high signal-to-noise ratio in data), and that per
formance was poor for small α (weak selection) and large σ2 

(strong drift) for which expression values have high variabil
ity with little constraint to their optima (i.e., excessively low 
signal-to-noise ratio in data). Hence, it is best to train mod
els with large training sample sizes across wide parameter 
ranges so that they perform well globally, as restricting 
the parameter space for training can lead to erroneous find
ings when these methods are applied to empirical data.

We also considered performing predictions with a max
imum likelihood framework, which has been used for other 
studies of expression evolution with OU models (Kalinka 
et al. 2010; Brawand et al. 2011; Perry et al. 2012; Rohlfs 
et al. 2014; Rohlfs and Nielsen 2015). Specifically, given 
gene expression data for pairs of orthologs in Species 1 
and Species 2, one can use maximum likelihood to estimate 
the set of parameters {θ1, θ2, α, σ2} from an OU model of 
expression evolution for the two classes, with constraints 
θ1 = θ2 for the “conserved” class and θ1 ≠ θ2 for the “di
verged” class. Then one can employ a likelihood ratio test 
to discriminate between classes, with the “conserved” class 
representing the null hypothesis and the “diverged” class 
representing the alternative hypothesis. However, there 
are two major obstacles to this approach. First, it would 
be highly dependent on underlying model assumptions, 
such as independence among conditions. Second, the “di
verged” class, which has four free parameters per condi
tion, would be over-parameterized without the inclusion 
of genes from outgroup species. Hence, we believe that 
using machine learning for predictions is ideal for the par
ticular evolutionary problem at hand.

As an empirical study, we applied the best-performing NN 
architecture of PiXi to gene expression data (Assis 2019b) 
from 102 positionally relocated single-copy orthologs in two 
species of Drosophila (Hart et al. 2018). Of these orthologs, 
23 were classified as “diverged,” supporting the hypothesis 
that the movement of genes to new chromatin environ
ments can lead to modification of their expression profiles. 
There were also some interesting distinctions between esti
mated expression optima of “conserved” and “diverged” 
orthologs, together suggesting that genes that undergo ex
pression divergence tend to have higher optimal expression 
levels before relocation and even higher optimal expression 
levels after relocation. Our follow-up analyses also revealed 

that several “conserved” genes are involved in transcription
al and post-transcriptional regulation, whereas several “di
verged” genes are involved in the electron transport chain, 
perhaps indicating that expression divergence tends to im
pact cellular energy production. Further, our case study of 
the “diverged” gene with the largest difference between ex
pression optima θ1 and θ2 of its orthologs revealed it to be 
among the handful of genes that participate in the electron 
transport chain, as well as a “nested” gene that relocated 
into an intron of another gene. Hence, our empirical study 
illustrates that application of PiXi can yield novel and inter
esting insights into the evolutionary trajectories and forces 
acting on single-copy genes.

Materials and Methods

Design of NN, RF, and SVM Architectures for PiXi

In constructing the NN architecture for PiXi, we follow the 
approach of DeGiorgio and Assis (2021), tailoring it to our 
problem where appropriate. In particular, we consider a 
dense feed-forward NN with L ∈ {0, 1, 2, 3} hidden layers, 
in which the first hidden layer has p[1] = 256 hidden units, 
and hidden layer ℓ ∈ {1, 2, . . . , L} has p[ℓ] = 256/2ℓ−1 hid
den units, such that each hidden layer contains half the 
number of hidden units as the previous hidden layer 
(DeGiorgio and Assis 2021). To simplify our notation, we 
set the input layer as hidden layer zero, such that p[0] = p = 
2m is the number of input features, and the output layer as 
hidden layer L + 1, such that p[L + 1] = K. The values at unit 
k ∈ {1, 2, . . . , p[ℓ]} of hidden layer ℓ ∈ {0, 1, 2, . . . , L} are 
defined by its activation a[ℓ]

k . Because hidden layer zero is 
the input layer and hidden layer L + 1 is the output layer, 
the activations are related to the input and output as

a[0]
k = xk 

and

yk = a[L+1]
k .

Continuing to follow the approach of DeGiorgio and Assis 
(2021), we define the activation for unit k of hidden layer 
ℓ ∈ {1, 2, . . . , L} as a nonlinear transformation of the linear 
combination of the activations for the previous hidden 
layers. Specifically, we apply the rectified linear unit 
(ReLU, Goodfellow et al. 2016) function defined as 
ReLU(x) = max (0, x), such that the activation for unit k in 
hidden layer ℓ is

a[ℓ]
k = ReLU w[ℓ−1]

0 +
􏽘p[ℓ−1]

j=1

w[ℓ−1]
jk a[ℓ−1]

j

􏼠 􏼡

, 
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where w[ℓ]
jk ∈ R is the weight (parameter) from unit j in layer 

ℓ to unit k in layer ℓ + 1, and w[ℓ]
0 is the bias for layer ℓ 

(Goodfellow et al. 2016). The output layer takes inputs 
from layer L, and has a different form depending on 
whether we consider the classification or the regression 
problem. For classification, we use the softmax activation 
function (Goodfellow et al. 2016), such that the output 
for class k ∈ {1, 2} is the probability

yk =
exp (w[L]

0 +
􏽐p[L]

j=1 w[L]
jk a[L]

j )
􏽐K

t=1 exp (w[L]
0 +

􏽐 p[L]
j=1 w[L]

jt a[L]
j )
.

For regression, we use the linear activation function 
(Goodfellow et al. 2016), such that the output for param
eter prediction k ∈ {1, 2, . . . , 2m} is

yk = w[L]
0 +

􏽘p[L]

j=1

w[L]
jk a[L]

j .

When L = 0, the NN simplifies to a linear model with logistic 
regression for the classification problem and to linear re
gression for the regression problem (Hastie et al. 2009).

In designing the RF architecture for PiXi, we implement 
Breiman’s algorithm (Breiman 2001) with p = 2m features 
and n = 500 trees. RF is an ensemble learner that makes 
predictions from a “forest” of n randomly constructed trees 
(Breiman 2001). To construct each tree in the RF, a boot
strap training set of 20,000 observations is created through 
random sampling with replacement from the 20,000 obser
vations in the original training set. Then, for each split in the 
tree, a subset of size q = ��

p
√

of the features is selected uni
formly at random (Wright and Ziegler 2017), and the node 
is split on one of these q features by minimizing node im
purity, which is computed with the Gini index (Gini 1936) 
for classification and the estimated response variances 
(Wright et al. 2017) for regression. The tree is grown with
out pruning (Breiman 2001), with a minimum node size of 
ten for classification and five for regression. This process is 
repeated to construct each of the 500 trees in the forest 
(Breiman 2001). For classification, each tree contains esti
mated class probabilities (Malley et al. 2012), and the out
put class k ∈ {1, 2} is chosen as the class with the larger 
mean estimated probability across the 500 trees (Breiman 
2001). For regression, the output parameter prediction k ∈ 
{1, 2, . . . , 2m} is given by the mean parameter estimate 
across the 500 trees (Breiman 2001).

In developing the SVM architecture for PiXi, we use a 
radial basis function (RBF) kernel (Hastie et al. 2009) of form

K(xi, xi′ ) = exp ( − γ‖xi − xi′ ‖
2
2), 

with p = 2m features and 11 γ ∈ [0.001, 5] hyperpara
meters uniformly chosen on a logarithmic scale. Though 
the RBF kernel is nonlinear, it behaves as a linear kernel 
when γ is small (Hastie et al. 2009), thereby enabling us 
to capture both linear and nonlinear relationships in the in
put data. Using this kernel to transform the feature space, 
the SVM identifies the maximum margin hyperplane (Hastie 
et al. 2009) defined by x ∈ Rp such that

β0 +
􏽘N

i=1

μiyi · K(x, xi) = 0, 

where β0 is the intercept and μ1, μ2, . . . , μN are the coeffi
cients of the support vectors (i.e., those xi with μi > 0) in the 
Lagrange dual function that maximize the margin, or the 
distance between training observations and the hyperplane 
(Hastie et al. 2009).

For classification, the maximum margin hyperplane re
sults in optimal separation of classes (Cortes and Vapnik 
1995), and the output class k ∈ {1, 2} is selected based 
on the sign of y, which specifies on which side of the hyper
plane it lies. Here, the training observations take response 
values y ∈ { − 1, 1} to signify the two classes. For regres
sion, the maximum margin hyperplane results in optimal 
fit to the training data (Drucker et al. 1997), with the mar
gin in this case representing the maximum unpenalized re
sidual ϵ, or difference between observed and predicted 
parameters k ∈ {1, 2, . . . , 2m} given by the value of yk.

All described machine learning architectures were imple
mented in R (2021). We used Keras (Chollet et al. 2017) 
with a TensorFlow backend (Abadi et al. 2015) for the 
NN, ranger (Wright and Ziegler 2017) for the RF, and 
liquidSVM (Steinwart and Thomann 2017) for the SVM. 
Note that when training the regression models, the NN 
was allowed to jointly estimate all K = 2m model para
meters, whereas a separate regression was performed for 
each parameter within the RF and SVM frameworks.

Training PiXi on Simulated Data

To train the three machine learning architectures, we first 
generated a balanced simulated dataset with N = 20, 000 
training observations, 10,000 from each of the two classes. 
We assumed independence among conditions, and that 
there were a total of m = 6 conditions as in an empirical 
gene expression dataset from Drosophila (Assis 2019b) on 
which we later applied our method (see Application of 
PiXi to empirical data in Drosophila), for a total of p = 
12 input features. To ensure that the simulated dataset 
was realistic, we drew model parameters θ1, θ2 ∈ [0, 5] to 
match the range observed in the empirical gene expression 
dataset (Assis 2019b), and α from log10 (α) ∈ [0, 3] and σ2 

from log10 (σ2) ∈ [ − 2, 3] to consider wide ranges of 
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potential strengths for selection and phenotypic drift, as in 
several previous studies (Hansen 1997; Butler and King 
2004; Rohlfs et al. 2014; Rohlfs and Nielsen 2015; 
DeGiorgio and Assis 2021). The class k was determined to 
be “conserved” when θ1 = θ2 and “diverged” when 
θ1 ≠ θ2. Then, we simulated gene expression data e(i) ∈ 
R2m for replicate i under model parameters for a given class 
k, generating Nk simulated replicates of parameter values.

To train the NN, we followed DeGiorgio and Assis (2021)
by minimizing the elastic net (Zou and Hastie 2005) pena
lized cost function

J(W, L, λ, γ) =
1
N

􏽘N

i=1

L(􏽢y(i), y(i))

+ λ
􏽘L

ℓ=0

􏽘p[ℓ]

j=1

􏽘p[ℓ+1]

k=1

[(1 − γ)(w[ℓ]
jk )2 + γ|w[ℓ]

jk |], 

where W is the set of parameter estimates, L is the number 
of hidden layers, λ is a tuning parameter that reduces the 
complexity of the fitted model by shrinking the weights 
to zero, γ ∈ [0, 1] is a tuning parameter that determines 
the influence of the L1- and L2-norm penalties for simultan

eous feature selection, and w[ℓ]
jk ∈ R is the weight (param

eter) from unit j in layer ℓ to unit k in layer ℓ + 1. As in 
DeGiorgio and Assis (2021), we estimated the set of para
meters W from a number of hidden layers L conditional 
on the pair of regularization tuning parameters λ and γ 
using the Adam optimizer (Kingma and Ba 2014) with 
learning rate 10−3 and exponential decay rates for the first 
and second moment estimates of β1 = 0.9 and β2 = 0.999 
(Kingma and Ba 2014). Similarly, we also used mini-batch 
optimization with a batch size of 5,000 observations for 
500 epochs, and five-fold cross-validation (Hastie et al. 
2009) to estimate L, λ, and γ (DeGiorgio and Assis 2021). 
In particular, here we used 16,000 (80%) observations for 
training, with the remaining 4,000 (20%) held out for val
idation. We also balanced each sample dataset, with equal 
numbers of observations from each class in the training 
(8,000) and validation (2,000) sets. Following DeGiorgio 
and Assis (2021), we considered values of L ∈ {0, 1, 2, 3} 
and γ ∈ {0, 0.1, . . . , 1.0}, as well as 25 values of λ chosen 
uniformly across log10 (λ) ∈ [ − 12, − 3]. Given the optimal 

cross-validation estimates 􏽢L, 􏽢λ, and 􏽢γ for L, λ, and γ, 
respectively, we estimated the NN model parameters 

W = {w, W[0], . . . , W[􏽢L]} using all 20,000 training observa
tions. Consistent with the findings of DeGiorgio and Assis 

(2021), a NN with 􏽢L = 2 hidden layers provided the best 
cross-validation performance for both classification and re
gression, with a validation loss of approximately 0.249 with 

optimal tuning parameters 􏽢λ ≈ 4.327 × 10−4 and 􏽢γ = 1 for 
classification, and a validation loss of approximately 0.274 

with optimal tuning parameters 􏽢λ ≈ 7.499 × 10−5 and 
􏽢γ = 1. These values of 􏽢γ = 1 imply that the L1-norm penalty 
was solely and mostly employed by our elastic net regular
ization in the classification and regression settings respect
ively, which encouraged sparse models with maximal 
feature selection.

To train the RF, we performed bagging (Breiman 1996) 
in tandem with random feature selection, as described by 
Breiman (2001). In particular, a bootstrap sample training 
set consisting of 20,000 observations was constructed 
through random sampling with replacement from the 
20,000 observations in the original training set. Due to 
bootstrapping, approximately 1/3 of observations in the 
original training set were left out (Efron 1979). We used 
the bootstrap sample to build a RF with n = 500 trees to 
predict classes and evolutionary parameters. Each tree in 
the RF was grown such that on every split, we let the tree 
choose among the q = ��

p
√

features that minimize node im
purity, with a minimum node size of ten for classification 
and five for regression.

To train the SVM, we maximized the Lagrangian dual 
function (Hastie et al. 2009)

􏽥L(μ1, μ2, . . . , μN) =
􏽘N

i=1

μi −
1
2

􏽘N

i=1

􏽘N

k=1

μiμkyiyk · K(xi, xk) 

subject to the constraint

0 ≤ μi ≤ C, 

where μ1, μ2, . . . , μN are the dual function parameters that 
maximize the margin M of the support vectors (xi with 
μi > 0), K(xi, xk) is the RBF kernel function with hyperpara
meter γ that influences the width of the kernel function, 
and C is a tuning parameter that defines penalization of ob
servations that violate M. As with our NN, we used five-fold 
cross-validation (Hastie et al. 2009) to estimate γ and C, 
again with 16,000 (80%) observations for training and 
the remaining 4,000 (20%) held out for validation. 
Similarly, we balanced each dataset, with equal numbers 
of observations from each class in the training (8,000) 
and validation (2,000) sets.

Testing PiXi on Simulated Data

After model training, we evaluated the performance of the 
three machine learning architectures of PiXi on an inde
pendent balanced test dataset of 2,000 simulated observa
tions, 1,000 from each of the two classes. As when 
generating our training dataset, we assumed m = 6 inde
pendent tissues and drew OU model parameters uniformly 
at random, with θ1, θ2 ∈ [0, 5] to match the range ob
served in the empirical Drosophila expression data (Assis 
2019b), and α from log10 (α) ∈ [0, 3] and σ2 from 

Genome Biol. Evol. 15(5) https://doi.org/10.1093/gbe/evad078 Advance Access publication 12 May 2023                                      11

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/15/5/evad078/7160677 by Florida Atlantic U

niversity user on 19 June 2023

https://doi.org/10.1093/gbe/evad078


Piya et al.                                                                                                                                                                         GBE

log10 (σ2) ∈ [ − 2, 3] to consider wide ranges of potential 
strengths for selection and phenotypic drift from several 
previous studies (Hansen 1997; Butler and King 2004; 
Rohlfs et al. 2014; Rohlfs and Nielsen 2015; DeGiorgio 
and Assis 2021). The class k was determined to be “con
served” when θ1 = θ2 and “diverged” when θ1 ≠ θ2, and 
gene expression data e(i) ∈ R2m were generated for repli
cate i under model parameters for a given class k, resulting 
in 1,000 simulated replicates of parameter values.

We also examined the performance of each machine 
learning architecture of PiXi on test datasets drawn 
from restricted regions of the parameter space. In particu
lar, we used the same approach outlined above to simulate 
test data sets of 2,000 observations, 1,000 from each class, 
for three distinct ranges of α ∈ [1, 10], [10, 100], and 
[100, 1, 000], and five distinct ranges of σ2 ∈ [0.01, 0.1], 
[0.1, 1], [1, 10], [10, 100], and [100, 1, 000]. For each com
bination of a range of α and a range of σ2, we sampled α 
and σ2 uniformly at random, matching the simulation set
ting used for generating the training data.

For evaluation of the classification performance of these 
machine learning architectures, we constructed another 
distance-based classifier with a cutoff c for selecting the 
output class k. In particular, we first computed Euclidean 
and Manhattan distances between absolute and relative ex
pression levels across m = 6 conditions in the training data
set that was used by the machine learning architectures. For 
each of these four sets of distances, we uniformly selected 
100 cutoff values from the range of distances, and used 
five-fold cross-validation to select the value of c that maxi
mized validation accuracy. Then, we constructed four clas
sifiers, each with a different distance metric and optimal 
value of c. We compared the power and accuracy of these 
four classifiers by applying them to the test dataset that we 
used for the three machine learning architectures. Of these 
distance-based classifiers, the classifier with Manhattan dis
tances between absolute expression levels and with c ≈ 
7.26 selected by cross-validation had the highest power 
and accuracy (supplementary fig. S15, Supplementary 
Material online). Thus, we used this best distance-based 
classifier for comparisons with the three machine learning 
architectures of PiXi.

Analysis of Empirical Data from Drosophila

We applied PiXi with the two-layer NN architecture that 
demonstrated optimal performance (see Testing machine 
learning architectures on data simulated from OU 
processes) to empirical data consisting of positionally 
relocated single-copy orthologs in D. melanogaster and 
D. pseudoobscura (Hart et al. 2018) and their expression 
abundances measured in the same six tissues from each 
species (Assis 2019b). To produce this input dataset, we 
first obtained 127 positionally relocated single-copy genes 

in D. melanogaster and D. pseudoobscura from Hart et al. 
(2018). Hart et al. (2018) identified positionally relocated 
single-copy genes through curation of previously anno
tated inter-chromosomal-arm positional relocations that 
occurred along the lineages leading to D. melanogaster 
and D. pseudoobscura (Hahn et al. 2007; Meisel et al. 
2009), and inferred their ancestral and derived chromo
somal arms through comparisons to the chromosomal 
arms of their orthologs in D. willistoni, D. virilis, and D. grim
shawi genomes.

Next, we obtained quantile-normalized gene expression 
abundances for carcass, female head, ovary, male head, 
testis, and accessory gland tissues in D. melanogaster and 
D. pseudoobscura from the Dryad dataset associated with 
Assis (2019b) at https://doi.org/10.5061/dryad.742564m. 
Briefly, Assis (2019b) downloaded paired-end 
RNA-sequencing reads from modENCODE (Celniker et al. 
2009) at https://www.modencode.com, aligned these 
reads to the reference transcriptomes of each species 
with Bowtie 2 (Langmead et al. 2009), computed expres
sion abundances of genes in fragments per kilobase of 
exon per million fragments mapped (FPKM) (Trapnell 
et al. 2013) with eXpress (Roberts and Pachter 2013), and 
quantile-normalized and log-transformed these FPKM va
lues in R (2021). We removed all Hart et al. (2018) genes 
for which the Assis (2019b) quantile-normalized FPKM <1 
in all six tissues for either D. melanogaster or D. pseudoobs
cura, yielding 102 positionally relocated single-copy genes 
and corresponding gene expression abundances on which 
we applied PiXi.

We trained PiXi with a two-layer NN architecture 
through five-fold cross-validation (Hastie et al. 2009) on a 
balanced simulated dataset with N = 20, 000 observations, 
setting the regularization tuning parameters as 􏽢λ ≈ 4.327 × 
10−4 and 􏽢γ = 1 for classification, and 􏽢λ ≈ 7.499 × 10−5 and 
􏽢γ = 1 for regression (see Training machine learning architec
tures on data simulated from OU processes). Then, we ap
plied the trained model to the 102 positionally relocated 
orthologs in Drosophila to predict their expression as either 
“conserved” or “diverged,” as well as their expression op
tima θ1 and θ2.

We used the DAVID Functional Annotation Tool (Huang 
et al. 2009a, 2009b) to assay functions of orthologs classi
fied as “conserved” and “diverged.” Specifically, we ran 
this tool twice, each time using the list of D. melanogaster 
orthologs from either the “conserved” or “diverged” pre
dicted class as our gene list, and all other genes in the D. 
melanogaster genome as the background list. We also as
sessed lineage-specific biases in the “diverged” class with 
a two-tailed exact binomial test, in which we set the num
ber of successes x = 13 to represent the number of “di
verged” genes that underwent positional relocations in 
the D. melanogaster lineage, the number of trials n = 23 
to represent the total number of “diverged” genes, and 
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the probability of success p = 53/102 to represent the ex
pected frequency of “diverged” genes that underwent pos
itional relocations in the D. melanogaster lineage if it is 
equal to the total frequency of positional relocations in 
this lineage. Finally, we assayed biases in ancestral and de
rived chromosomal arm distributions, as well as in reloca
tions between sex chromosomes and autosomes with 
two-tailed Fisher’s exact tests, in which we compared ob
served distributions of the “diverged” class to those ex
pected based on their frequencies in the full dataset of 
positional relocations. All statistical analyses were per
formed in the R software environment (R Core Team 2021).

Supplementary Material
Supplementary data are available at Genome Biology and 
Evolution online.
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