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We report on measurements of sequential Y suppression in Au + Au collisions at /syy = 200 GeV
with the STAR detector at the Relativistic Heavy Ion Collider (RHIC) through both the dielectron and
dimuon decay channels. In the 0%—60% centrality class, the nuclear modification factors (R44), which
quantify the level of yield suppression in heavy-ion collisions compared to p + p collisions, for Y(1S) and
Y (2S) are 0.40 £ 0.03(stat) + 0.03(sys) = 0.09(norm) and 0.26 + 0.08(stat) + 0.02(sys) + 0.06(norm),
respectively, while the upper limit of the Y'(3S) R4y is 0.17 at a 95% confidence level. This provides
experimental evidence that the Y'(3S) is significantly more suppressed than the Y'(1S) at RHIC. The level
of suppression for Y(1S) is comparable to that observed at the much higher collision energy at the Large
Hadron Collider. These results point to the creation of a medium at RHIC whose temperature is sufficiently

high to strongly suppress excited Y states.

DOI: 10.1103/PhysRevLett.130.112301

A primary goal of the Relativistic Heavy lon Collider
(RHIC) is to create and study the properties of the quark-
gluon plasma (QGP) [1-4]. Quantum chromodynamics
(QCD) predicts that the confining potential of a heavy
quark-antiquark pair is color screened in the QGP [5],
leading to the dissociation of quarkonium states. Such a
static dissociation is expected to happen when the quarko-
nium state size is larger than the Debye screening length of
the medium [6], which is inversely proportional to the
medium temperature. In addition, dynamical dissociation,
arising from inelastic scatterings between quarkonia and
medium constituents, can also lead to quarkoninum
breakup, whose impact becomes more profound with
increasing medium temperature and for quarkonia of larger
sizes [7-9]. Consequently, quarkonium states of different
sizes suffer from different levels of suppression in the QGP
(“sequential suppression’’) compared to the vacuum expect-
ation [8,10,11]. Heavy quarkonia are therefore considered
promising probes to study the color deconfinement, in-
medium QCD force, and the QGP’s thermodynamic
properties [12].

In heavy-ion collisions, sequential suppression of char-
monium states has been observed, with the yield of the
larger y(2S) mesons further reduced compared to J /y [13—
18]. Compared to charmonia, bottomonia [Y(1S), Y(25),
and Y(35)], with Y(1S) being the smallest in size and
Y(3S) the biggest, provide a longer lever arm in probing
the QGP. According to lattice QCD calculations based on a
complex quark-antiquark potential, the span of the disso-
ciation temperature for the three bottomonium states is
about a factor of 4 larger than that for the two charmonium
states [8]. Furthermore, bottomonia are considered cleaner
probes than charmonia since the regeneration contribution,
originating from deconfined heavy quark-antiquark pairs
combining into quarkonium states, is expected to be
smaller for bottomonia due to the smaller production cross
section of bb quarks [19,20]. When interpreting Y mea-
surements in heavy-ion collisions, cold nuclear matter
(CNM) effects, arising from the presence of nuclei in
the collision but not related to the QGP, need to be

considered [21-23]. The CNM effects can be quantified
through measurements of Y production in d + Au colli-
sions at RHIC [24], which show a hint of suppression for
the three Y states combined.

Sequential suppression of the three Y states has been
observed in Pb 4 Pb collisions at the LHC [25-27]. In
Au + Au collisions at the center-of-mass energy per
nucleon-nucleon pair (,/syy) of 200 GeV [24] and U + U
collisions at /syy = 193 GeV [28] at RHIC, previous
measurements revealed a hint of stronger suppression for
Y (2S + 3S) compared to Y(1S) with a significance of less
than 1.5¢. To fully utilize the constraining power of
quarkonium sequential suppression on the QGP’s temper-
ature profile and modifications to the QCD force in the
QGP [12] at RHIC, differential measurements of ground
and excited Y states separately with improved precision are
crucially needed.

In this Letter, we report the latest measurements of the
suppression of Y(15), Y(2S), and Y(3S) production in
Au + Au collisions at /syy = 200 GeV. Y mesons are
reconstructed through both dielectron and dimuon decay
channels. The suppression is quantified with the nuclear
modification factor (R,,), which is the ratio of the
quarkonium yield measured in nucleus-nucleus (A + A)
collisions to that in p + p collisions, scaled by the average
number of binary nucleon-nucleon collisions (N.y).
Results are presented as a function of the collision central-
ity and the Y transverse momentum (pz), where central
(peripheral) collisions correspond to incoming nuclei most
(least) overlapping with each other.

Subsystems of the solenoidal tracker at RHIC (STAR)
experiment [29] relevant for this analysis are the time
projection chamber (TPC) [30], the barrel electromagnetic
calorimeter (BEMC) [31] and the muon telescope detector
(MTD) [32,33]. The TPC is used for track reconstruction
and particle identification (PID), while the BEMC and
MTD are used for triggering on and identifying electrons
and muons, respectively. The TPC and the BEMC have a
full azimuthal coverage within the pseudorapidity range of
In| < 1. The MTD covers about 45% in azimuth within
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|| < 0.5.The Y — e™e™ analysis is performed on a dataset
of Au+ Au collisions corresponding to an integrated
luminosity of 2.3 nb~!, which was collected in 2011 with
the BEMC trigger requiring the presence of a single tower
with transverse energy deposition above 3.5 GeV. Electrons
with py > 3.5 GeV/c are selected based on their ioniza-
tion energy loss (dE/dx) measured in the TPC. Cuts on the
ratio of energy deposition in BEMC over associated track
momentum (E/p), and on the position differences along
beam and azimuthal directions between matched BEMC
tower and TPC track are applied to further reject hadrons.
For the Y — u"p~ analysis, a sample of Au+ Au colli-
sions, recorded with the MTD dimuon trigger in 2014 and
2016 and corresponding to an integrated luminosity of
27 nb~!, is utilized. The dimuon trigger requires the
presence of two muon candidates, identified based on
the particles’ flight time, in the MTD. The leading muon
is required to have p; above 4 GeV/c and the subleading
above 1.5 GeV/c. Besides dE/dx, muon candidates are
identified utilizing position and timing information mea-
sured by the MTD [33,34].

A Glauber model simulation is used for centrality
classification [35]. The charged-particle multiplicity dis-
tribution within || < 0.5 obtained from the simulation is
matched to the measured one at large multiplicity values.
The average number of participating nucleons (N, and
N are calculated for each centrality class, and their
uncertainties are evaluated by varying different components
of the Glauber model. Data are divided into three centrality
bins: 0%—10%, 10%—-30%, and 30%—60%, as well as three
Y py bins: 0-2 GeV/c¢, 2-5 GeV/c, and 5-10 GeV/c.

The invariant mass spectra of the Y candidates are
reconstructed via the dimuon decay channel within the
rapidity range of |y| < 0.5 and via the dielectron decay
channel within |y| < 1. Figure 1 shows the unlike-sign
lepton-pair distributions (full circles), along with like-sign
ones (open circles) which are used for determining the
shape and magnitude of the combinatorial background. An
unbinned maximum-likelihood fit is performed simulta-
neously on the unlike-sign and like-sign distributions to
obtain the raw yields for the three Y states. The line shapes
of the Y mass peaks are determined from GEANT3 simu-
lations [36] of the STAR detector, in which the Y’ — p*u~
or Y — ete™ decays are embedded into Au + Au collision
events, and reconstructed in the same way as real data. The
track momentum resolution in the simulation is further
tuned to match the J/w width as a function of py
reconstructed using the same Au+ Au data. The Y(1S)
peak widths are 221 MeV/c? and 129 MeV/c? for the
dimuon and dielectron decay channels, respectively. The
shape of the correlated background from bb decays and
Drell-Yan processes is determined with PYTHIAG simula-
tions [37] incorporating realistic detector response, while
its yield is left as a free fit parameter. With current statistics,
no Y(3S) signal is observed in either decay channel, and
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FIG. 1. Invariant mass distributions of Y candidates for 0 <
pr < 10 GeV/c reconstructed via the dimuon decay channel
within |y| < 0.5 (top) and the dielectron decay channel within
l[y] <1 (bottom). Unlike-sign and like-sign distributions are
shown as full and open circles, respectively. Solid lines are fits
to the unlike-sign distributions, while lines of other styles
represent individual components included in the fit. See more
details in the text.

therefore only the upper limits of Y(3S) yields are
estimated with the Feldman-Cousins method [38] at a
95% confidence level.

The TPC acceptance and tracking efficiency are deter-
mined based on the aforementioned embedding sample. In
the Y — ete™ analysis, the BEMC trigger efficiency is
evaluated using the same embedding sample while the
electron PID efficiency is estimated using a pure electron
sample from photon conversions in real data. In the Y’ —
utu~ analysis, a pure muon sample from J/y decays is
used to evaluate the muon PID efficiencies based on dE/dx
and the MTD timing information. The embedding sample is
used to estimate the additional PID efficiency related to
using the MTD position information, and the MTD
acceptance. The MTD response efficiency, referring to
the probability for a muon to generate a signal in the MTD
when hitting its active volume, is obtained from cosmic-ray
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data [33]. The MTD trigger efficiency, i.e., the fraction of
muons surviving the trigger cut on the flight time, is
evaluated based on the flight time distribution extracted
from the p + p data taken in 2015. Since the MTD
occupancy is very low even in 0%—-10% central Au + Au
collisions, the multiplicity difference between p + p and
Au + Au collisions is irrelevant for this purpose [33].

Several sources of systematic uncertainty are considered.
Variations in the signal extraction procedure, including fit
range, line shapes of the mass peaks, combinatorial and
residual background shapes, are made and the root mean
square (rms) of these variations is taken as the systematic
uncertainty. For the dielectron (dimuon) analysis, the
resulting uncertainty ranges between 1.7%-4.2% (1.5%—
4.0%) and 2.1%-8.3% (1.7%-98%) for Y(1S) and Y'(2S)
in different centrality and p; bins, and is 2.3 (4.9) in
absolute value for Y'(3S) yield integrated over p; in 0%—
60% centrality. Another major source of uncertainty arises
from efficiency corrections. For efficiencies evaluated
based on the embedding sample, their uncertainties are
estimated by varying cuts in data analysis and simulation
simultaneously, correcting the raw yields, and taking the
rms of the variations in the corrected yield as the uncer-
tainty. For efficiencies evaluated using data-driven meth-
ods, statistical errors of the data samples are treated as
systematic uncertainties. Uncertainties in MTD response
and trigger efficiencies are estimated using the same
method as in [33]. The overall efficiency uncertainties
apply equally to all three Y’ states, and they vary from 3.7%
t0 19.8% (11.6% to 18.6%) depending on centrality and py
for the dielectron (dimuon) analysis. Finally, the individual
sources are added in quadrature to obtain the total sys-
tematic uncertainties for the Y yields. When combining the
dimuon and dielectron results, the TPC tracking efficiency
uncertainties are treated as fully correlated while all other
uncertainties are uncorrelated.

The reference Y(1S + 2S + 3S) production cross sec-
tion in p + p collisions at the center-of-mass energy (1/s)
of 200 GeV is (do/dy)||, <95 = 75 £ 15 pb, obtained by
combining STAR and PHENIX measurements [24,39,40].
The cross sections of individual Y states are calculated
based on the total cross section and their yield ratios from
world data [41]. To obtain the reference cross sections in
different p; bins, the measured Y py spectra at different
collision energies [25,42-44] are parametrized with the
functional form C x py/(e?r/T + 1) [28], where C is a
normalization factor and 7T is the shape parameter. The
dependence of T on log(+/s) is fit with both a linear and a
power-law function, and the average interpolated 7 values
at /s =200 GeV from the two fits, ie., 1.40+
0.06 GeV/c and 1.51+0.10 GeV/c for Y(1S) and
Y(2S), are obtained. Systematic uncertainties arise from
the uncertainties on the measured Y spectra and the
functional form used for interpolation.

30-60% 10-30% 0-10% 0-60%
T T T

1.2+
| Au+Au 200 GeV, |y|<1,0< p, <10 GeV/c

global uncertaint;

D] R . L. 01 I ]
0.87— 5 Y@S) 7 |
m:g 0.6 ¢] ¥ Y(3S)(95% C.L.) |_ ]

&

0.4 [il%l m B @ T
N,y uncertainty

0.2? | ‘ ‘ | | | ﬂ% 7 _[

0
0 50 100 150 200 250 300 350
Npart

FIG. 2. Left: Y(1S) (circles) and Y(2S) (squares) Ry, as a
function of N, for py < 10 GeV/c. Data points for Y'(2S) are
displaced horizontally for better visibility. The vertical bars on
data points indicate statistical errors, while the systematic
uncertainties are shown as boxes. Shadowed bands around each
marker depict the systematic uncertainties from N;. The bands
at unity indicate the global uncertainties. Right: R 4, for various Y’
states, including the 95% upper limit for Y(3S), in 0%—60%
Au + Au collisions.

The R4, of individual Y states in Au + Au collisions at
V/Sny = 200 GeV is obtained by combining results from
dimuon and dielectron decay channels using the inverse of
the quadratic sum of statistical errors and uncorrelated
systematic uncertainties as weights, since the results from
the two analyses are consistent despite the different rapidity
coverages. Similarly, no strong dependence of Y R4, on
rapidity within |y| < 1 is observed at the LHC [26].

Figure 2 shows the Ry, of Y(1S) and Y(2S) as a
function of N, in three centrality intervals. The global
uncertainties, shown as bands at unity and fully correlated
among different Y states, originate from the relative
uncertainties of the reference p + p yields. Both Y(1S)
and Y'(2S) are suppressed in all three centrality intervals
with a hint of increasing suppression from the 30%—60% to
the 0%—10% centrality bin, consistent with the expected
increasing hot medium effect toward central collisions. In
the 0%-60% centrality class, the upper limit of the Y(3)
Ra4 with a 95% confidence level is estimated to be 0.17.
Y(3S) is significantly more suppressed than Y'(15), given
that even the upper limit of Y'(3S) R, at a 99% confidence
level, i.e., 0.26, is still lower than the Y(1S) R, of
0.40 £ 0.03(stat) 4+ 0.03(sys) £ 0.09(norm). Here, the
normalization uncertainty includes uncertainties in p + p
reference and N_,;. A hint is seen that the level of
suppression for Y(2S), whose Ry, is 0.26 £ 0.08(stat)+
0.02(sys) £ 0.06(norm), is between Y(1S) and Y(3S).
These results are consistent with a sequential suppression
pattern, similar to that observed at the LHC [26].
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FIG. 3. Y(1S) (top) and Y'(2S) (bottom) R4, as a function of

Npay for pr < 10 GeV/c, compared to similar measurements in
Pb + Pb collisions at \/syy = 5.02 TeV (open symbols), as well
as model calculations (bands). The two bands at unity indicate the
global uncertainties with the left one for CMS and the right one
for STAR.

The Au + Au results are compared to similar measure-
ments in Pb + Pb collisions at /syy = 5.02 TeV [26] in
Fig. 3. Y(15) exhibits a similar magnitude of suppression at
the two collision energies that differ by about a factor of 25,
while there is a hint that the Y'(2S) might be less suppressed
at RHIC in peripheral collisions even though the STAR and
CMS measurements are consistent within uncertainties. It
is plausible that the suppression of inclusive Y(1S) arises
mainly from the suppression of excited states that feed
down to Y(15) [45] and the CNM effects [24,46,47], while
the primordial Y'(15) are not significantly suppressed in the
QGP in both 200 GeV Au + Au and 5.02 TeV Pb + Pb
collisions. Figure 3 also shows the comparison between
data and two calculations based on open quantum system
(0OQS) plus potential nonrelativistic QCD (pNRQCD) [48-
50] and a transport model [20]. The OQS + pNRQCD
model solves a Lindblad equation for the evolution of the
quarkonium reduced density matrix using the pNRQCD

effective field theory [50]. Correlated regeneration and
feed-down contributions from excited states are included,
but the CNM effects are not. Systematic uncertainties stem
from variations in the transport coefficients suggested by
lattice QCD calculations. The transport model employs a
temperature-dependent binding energy, and uses a kinetic
rate equation to simulate the time evolution of bottomo-
nium abundances including dissociation and regeneration
contributions. Both feed-down and CNM effects are taken
into account, and the model uncertainties arise from the
range of CNM effects guided by data [24]. For the Y(15)
R4, both models are consistent with the STAR and CMS
measurements within uncertainties even though the STAR
data seem to be systematically below the model calcula-
tions. For Y(25), model calculations are also consistent
with data.

Figure 4 shows the R, for Y(1S) and Y(2S) as a
function of p;. No significant dependence on py is

12+
e® STAR Au+Au 200 GeV, |y| < 1, 0-60%

N,y uncertainty

Y(1S) R

. . ’
T T T T T

t * t ' t '
1.2 [ | Transport Model — Heidelberg Model
R3] 0QS+pNRQCD D Coupled Boltzmann Eq.

N,y uncertainty

4 6
P, (GeV/e)

FIG. 4. Y(1S) (top) and Y'(2S) (bottom) R4, as a function of
pr in the 0%—60% centrality class, compared to different model
calculations. The boxes and brackets around the data points
represent systematic uncertainties from Au + Au analysis and
p + p reference, respectively. The band at unity shows the
uncertainty in Ng.
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observed. The OQS + pNRQCD and transport model
calculations, which predict little py dependence, are shown
for comparison. The measurements are also compared to a
model that uses a set of coupled Boltzmann equations to
simultaneously describe the in-medium evolution of heavy
quarks and quarkonia in the QGP [51]. It incorporates
elastic and inelastic scatterings of heavy quarks with
medium constituents, as well as quarkonium dissociation
and regeneration. The dominant uncertainty arises from the
estimation of CNM effects. The model calculations are
consistent with data within uncertainties. The Heidelberg
model [52], which includes a QCD-inspired complex
potential, an explicit treatment of gluon-induced dissoci-
ation and reduced feed-down from higher states, overshoots
data, partly due to the lack of CNM effects.

In summary, we report the measurements of Y produc-
tion in Au + Au collisions at /syy = 200 GeV via both
the dielectron and dimuon decay channels with the STAR
experiment. The R4 for Y(1S) and Y'(2S) is measured as a
function of collision centrality and py, while an upper limit
is derived for the Y'(3S) R4, integrated over centrality and
pr. The results in the 0%—60% centrality class are con-
sistent with the sequential suppression pattern, namely that
the Y'(3S) is significantly more suppressed than the Y (1)
and the Y'(2S) Ry, lies between those of Y'(1S5) and Y'(35).
No clear p; dependence of the suppression is observed for
Y(1S) and Y(2S5). The magnitude of the Y(1S) suppression
at RHIC is comparable to that measured at the LHC. Model
calculations are consistent with data within the uncertain-
ties, although a larger Y suppression is predicted at the
LHC. Results presented in this Letter can help further
constrain model calculations on bottomonium suppression
in heavy-ion collisions, and improve our understanding of
the in-medium heavy quark-antiquark potential and
thermodynamic properties of the QGP at RHIC.
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