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Abstract—Proactive evacuation traffic management largely depends on real-time monitoring 

and prediction of traffic flow at a high spatiotemporal resolution. However, evacuation traffic 
prediction is challenging due to the uncertainties caused by sudden changes in projected hurricane 
paths and consequently populations’ evacuation behavior. Moreover, modeling spatiotemporal 
traffic flow patterns requires extensive data over a longer time period, whereas evacuations 
typically last for two to five days. In this paper, we present a novel data-driven approach for 
predicting evacuation traffic at a network scale. We develop a dynamic graph convolutional long 
short-term memory neural network (DGCN-LSTM) model to learn the network dynamics during 
hurricane evacuation. We first train the model for non-evacuation period traffic data and found 
that the model outperforms existing deep learning models for predicting non-evacuation period 
traffic with an RMSE value of 226.84. However, when the model is applied for predicting 
evacuation traffic, the RMSE value increased to 1440.99. We overcome this issue by adopting a 
transfer learning approach with additional features related to evacuation traffic demand such as 
distance from the evacuation zone, time to landfall, and other zonal level features to control the 
transfer of information (network dynamics) from non-evacuation periods to evacuation periods. 
The final transfer learned DGCN-LSTM model performs well to predict evacuation traffic flow 
(RMSE=399.69). The implemented model can be applied to predict evacuation traffic over a 
longer forecasting horizon (up to 6-hour). It will assist transportation agencies to activate 
appropriate traffic management strategies to reduce delays for evacuating traffic.                                                                                                                                                                 

Index Terms— artificial intelligence, network modeling, transfer learning, traffic prediction, 
spatiotemporal traffic pattern, evacuation traffic management 
 
1. Introduction  
Hurricanes have become more intense and frequent due to climate change and other related reasons 
(Tom Knutson, 2022). Coastal populations of the United States are becoming more vulnerable to 
the impact of hurricanes (Park, 2021). To save lives and reduce suffering of people during such 
events, emergency management agencies need efficient and pro-active strategies to ensure timely 
evacuation. Evacuation traffic management has been a major concern for transportation agencies 
and policy makers (House of Representatives Florida, 2018). The concern has grown further after 
the disastrous impact of Hurricane Irma in 2017 when about 6 million residents of Florida (29.3% 
of the population) evacuated from major cities including Key West, Miami, and Tampa (Northeast 
Florida Regional Planning Council, 2021). With only two major interstate highways (I-75 and I-
95) available for leaving Florida, the evacuation caused significant traffic congestion and crashes 
on highways (Rahman et al., 2021a), thus affecting the physical and mental health of evacuees.  

Efficient evacuation traffic management requires an effective evacuation plan that includes 
proactive measures to overcome unexpected events such as traffic incidents or a change of 
hurricane path causing unexpected demand surge etc. Over the past decades, several traffic 
management strategies (Murray-Tuite et al., 2017; Murray-Tuite and Wolshon, 2013) such as 
emergency shoulder use, contraflow operations, traffic signal control, route guidance etc. have 
been proposed to alleviate congestion during evacuation. However, a proactive deployment of 
these measures requires a better understanding of prevailing traffic conditions and prediction of 
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future traffic for a long-term horizon (> 1 hour). Thus, one of the critical aspects of evacuation 
traffic management is to understand the spatial and temporal distribution of congestion and to 
reliably predict future traffic condition. Based on this information, traffic managers can decide 
where, when, and for how long a strategy should be deployed to reduce delays.  

Previous studies (Barrett et al., 2000; Chen et al., 2020; Li et al., 2006; Murray-Tuite and 
Wolshon, 2013) have adopted mathematical modeling and simulation-based approaches to predict 
evacuation traffic. However, these approaches are not robust enough against sudden demand surge 
associated with irregular traffic flow patterns during evacuation. Moreover, developing such a 
model for a large-scale network is complicated since it relies on assumptions such as user 
equilibrium for an analytical approach or a detailed representation of traffic networks for a 
simulation-based approach. Due to such complexities, it takes a substantial amount of time to 
produce a stable solution predicting traffic at a network scale, making these models less suitable 
for a real-time application. Ubiquitous use of traffic sensors can provide a viable solution for 
overcoming these issues by developing data-driven network models.  

In this context, a data-driven network-scale model can be developed for real-time traffic 
prediction. For example, in Florida almost all the interstate highways are equipped with microwave 
radar-based traffic detectors owned by Florida Department of Transportation (FDOT) 
(https://www.fdot.gov/). These detectors monitor high-fidelity real-time traffic data that can reveal 
spatio-temporal patterns of evacuation traffic in response to unexpected events. Although roadway 
detectors have widely been deployed in major highways in the USA, few studies have utilized the 
data available from these detectors for network-level evacuation traffic analysis and prediction 
(Ghorbanzadeh et al., 2021; Staes et al., 2021).  

One of the major challenges towards developing a data-driven modeling framework is that such 
a framework needs to deal with the high dimensionality of the data due to spatiotemporal 
dependency among traffic variables and capture congestion propagation in the network. Recent 
advances in neural computation such as deep learning models have created an opportunity to deal 
with such high dimensionality in traffic data. Moreover, these models utilize the concept of graph 
theory to represent congestion propagation in a large-scale traffic network (Cui et al., 2020b, 
2020a; Guo et al., 2020; Peng et al., 2021, 2020). For instance, state-of-the-art graph convolutional 
neural networks use network structure (i.e., node-link relationship) to capture flow propagation 
inside the network and the cross-correlation among traffic states. However, existing graph 
convolutional approaches do not represent the actual dynamic nature of a transportation network 
such as how travel time changes over time and thereby influencing the changes in traffic flow 
patterns. Another issue with such a network-wide model is that it needs an extensive amount of 
data to train the model to make a reliable prediction. Thus, it is not feasible to develop such a 
model for special events such as hurricane evacuation, where traffic data are available only for a 
few days.  

In this study, we develop a novel deep learning architecture to overcome these challenges for 
evacuation traffic prediction. First, we develop a dynamic graph convolutional long short-term 
memory neural network (DGCN-LSTM) model with contextual understanding of congestion 
propagation inside the network. To overcome the limitation of data scarcity and model overfitting 
issue, we train the model on regular period traffic data collected from May 2017 to August 2017. 
Later, we transfer this model to an evacuation period with an additional neural network block as a 
controller to predict traffic during evacuation period. The evacuation period data were collected 
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from September 4, 2017 to September 9, 2017 covering the evacuation period of Hurricane Irma.  
The controller uses evacuation travel demand features such as distance from the evacuation zone, 
time to landfall, and other zonal level features to control which information from the DGCN-
LSTM to be included to predict traffic during evacuation period. As such, the final evacuation 
prediction model has the contextual understanding of congestion propagation inside the network; 
at the same time, it can discard any unnecessary information such as seasonality in traffic patterns 
which might be out of context during an evacuation period.      

This study has made several contributions for evacuation traffic prediction using large-scale 
traffic detector data: 

• It collects and analyzes large-scale traffic detector data during Hurricane Irma’s evacuation, 
providing insights on network wide spatiotemporal patterns of evacuation traffic.  

• It identifies the challenges to deal with large-scale real-time traffic data for evacuation traffic 
analysis and prediction.  

• It develops a dynamic graph convolutional neural network model to learn the congestion 
propagation for a large-scale network.  
    • It implements a transfer learning based deep learning architecture to incorporate evacuation 
context for improving the performance of evacuation traffic prediction.   
 
2. Literature Review 
2.1 Evacuation Traffic Modeling 

Evacuation traffic management can significantly benefit from how accurately we can predict 
traffic in real time. However, practices in evacuation traffic management mostly rely on behavioral 
analysis of evacuees to understand and predict evacuation decisions (Moynihan and Fonseca, 
2016; Murray-Tuite et al., 2018; Murray-Tuite and Wolshon, 2013; Sadri et al., 2013a; Wong et 
al., 2018). For instance, many studies investigated hurricane evacuation behavior focusing on 
understanding the factors related to evacuation decisions (Fry and Binner, 2015; Gudishala and 
Wilmot, 2013; Hasan et al., 2013, 2011; Huang et al., 2016), mobilization time (Sadri et al., 
2013b), departure time (Pel et al., 2012; Rambha et al., 2019), and destination choice (Mesa-arango 
et al., 2013; Wilmot et al., 2006). To predict evacuation traffic demand, previous studies adopted 
such individual- or household-level decision-making models (Blanton et al., 2020; Davidson et al., 
2020; Gudishala and Wilmot, 2012; Wilmot et al., 2006; K. Yang et al., 2019). These approaches, 
however, depend on survey data that are expensive and difficult to collect as a hurricane unfolds 
in real time. Several studies have analyzed evacuation traffic patterns using real-time data, but 
these studies were limited to only understanding operational performance of highways during 
evacuation (Dixit and Wolshon, 2014; Ghorbanzadeh et al., 2021; Litman, 2006; Staes et al., 
2021).  

A major challenge in modeling evacuation traffic arises from the fact that traffic patterns during 
evacuation, characterized by higher demand and traffic congestion, significantly differ from traffic 
patterns in a non-evacuation period (Rahman et al., 2021b). Evacuation traffic demand is more 
uncertain due to sudden changes in hurricane paths (Rahman et al., 2021c). To model such 
uncertain demand variations, we need a demand responsive model that hardly exists in the 
literature. A few studies (Chen et al., 2020; Li et al., 2006) have adopted mathematical modeling 
and simulation-based traffic assignment approaches to model evacuation traffic demand. However, 
such approaches rely on certain assumptions (e.g., user equilibrium, fixed O-D patterns) which 
may fail to represent an actual evacuation scenario. A data-driven method can offer an alternative 
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solution to overcome this issue. In recent years, a few studies have adopted data-driven methods 
for traffic prediction during hurricane evacuation (Rahman and Hasan, 2018; Roy et al., 2021). 
However, these studies developed models for a specific segment and those models are not 
generalized for the entire network. Moreover, when predicting future traffic, those models do not 
consider spatial correlations among traffic states. Hence these methods are not applicable for 
traffic prediction at the level of a network.    

 
2.2 Application of data-driven methods for network level traffic modeling 

A data-driven approach predicts future traffic states from historical traffic patterns, without 
making any assumption on user behavior (Oh et al., 2017), leading to a more robust and demand 
responsive model compared to traditional traffic prediction models. Recently, data-driven 
approaches are gaining more attention mainly for three reasons: first, model-driven approaches are 
more time consuming compared to typical data-driven approaches for calibrating the required 
parameters; second, an extensive coverage of sensors over transportation networks, fueled by data 
processing technologies and computational power, has created an opportunity to build big data 
approaches; third, data-driven approaches do not rely on assumptions on user behavior, hence they 
are more applicable for real-world dynamic problems. Data-driven methods have been applied in 
numerous traffic prediction contexts such as traffic speed prediction (Cui et al., 2020a, 2018b; 
Epelbaum et al., 2017; Ma et al., 2015; Zhao et al., 2020), travel time prediction (Yanjie Duan et 
al., 2016), traffic flow prediction (Guo et al., 2021; Luo et al., 2019; Polson and Sokolov, 2017; 
B. Yang et al., 2019), and vehicular queue length prediction (Lee et al., 2019; Rahman and Hasan, 
2021).  

Previous studies developed traditional data-driven models for traffic prediction such as Support 
Vector Machine (SVM) (Ahn, 2016; Wu et al., 2004), K-Nearest Neighbor (KNN) (Cai et al., 
2016; Habtemichael and Cetin, 2016; Meng et al., 2015; Myung et al., 2011; Qiao et al., 2013; Yu 
et al., 2016), and Artificial Neural Network (ANN) (Innamaa, 2005; Lee, 2009; Park et al., 1999; 
Yu et al., 2008). These studies were limited in scope and applicable for traffic prediction at a small 
spatial scale such as for a roadway segment or an intersection. Recently, to predict traffic at a 
network scale, many studies have applied deep neural network-based approaches such as Long 
Short-Term Memory Neural Network (LSTM), Convolutional Neural Network (CNN), Graph 
convolutional Neural Network (GCN) and integrated version of these models such as 
Convolutional LSTM (ConLSTM) and Graph Convolutional LSTM (GCNLSTM) (Atwood and 
Towsley, 2015; Cui et al., 2018a; Li et al., 2018a; Zhao et al., 2020). However, these studies mainly 
focused on learning traffic representation at a network scale, instead of learning network flow 
dynamics—how travel time variation impacts traffic flow propagation in a network.  

A few studies have applied graph convolution-based approaches to dynamically learn 
spatiotemporal features of a transportation network (Guo et al., 2020; Peng et al., 2021, 2020). But 
these studies are limited to exploring different graph representation techniques such as learning 
latent network Laplacian matrix, constructing roadways inflow outflow probability matrix and 
weighted incident matrix to represent dynamic traffic patterns. In the first study, using a dynamic 
graph convolution approach, Guo et al. (Guo et al., 2020) developed a method to predict the time 
variant Laplacian matrix to represent the network flow propagation from one node to another node. 
Later, Peng et al. (Peng et al., 2021, 2020) represented the dynamics of a network based on time 
variant inflow and outflow probabilities.  
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In addition, Guo et al. and Tang et al (Guo et al., 2019; Tang et al., 2020) applied an attention 
based spatial-temporal graph convolutional approach for traffic prediction. In the attention-based 
approach, the graph adjacency matrix is multiplied with correlation factors. These correlation 
factors are estimated based on capturing the similarity between traffic states of two different nodes 
and assigned as weights for the adjacency matrix. However, in the traffic prediction problem, the 
graph convolution neural network itself captures the spatial cross correlation among neighboring 
nodes of a transportation network. In this context, an attention-based graph convolutional approach 
would model the correlations twice requiring more learnable parameters, compared to directly 
learning spatial cross correlation using only a graph convolutional approach. In our study, we 
applied domain knowledge to represent network dynamics through creating a dynamic graph, thus 
reducing the number of learnable parameters.  

None of these studies have considered the influence of travel time variation on changes in traffic 
propagation; they have not considered the fact that at a given time interval whether traffic will 
reach from an origin to a destination depends on the travel time of the associated routes. On the 
contrary, this study develops a method to learn the dynamics of a transportation network by 
capturing the correlation between travel time variations and traffic flow propagation. Rather than 
using inflow and outflow probability values as weights or randomly predicting the weights for 
different origin to destination (OD) pairs, we define the weights based on travel time to represent 
network dynamics. Hence, our time variant dynamic graph represents the travel time variations of 
the network. 

Moreover, developing such a large-scale model requires extensive data which makes it 
unsuitable for a real-world deployment in managing special events such as traffic incident and 
evacuation traffic management. Recently, Peled et al (Peled et al., 2022) tested the transferability 
of traffic prediction models for emergency events relying on simulations of traffic incidents (e.g., 
lane closure). The outputs from the simulation model are used to adjust the predicted values of the 
regular model, thus making the model more adaptive to traffic incidents. However, to the best of 
our knowledge, none of the previous studies investigated the transferability of data-driven models 
for traffic prediction during emergency events. In this study, we develop a data-driven transfer 
learning method for traffic prediction during emergency events such as hurricane evacuation.   

In addition, it is critical to predict traffic well ahead of time (e.g., greater than 1 hr.) during 
evacuation to provide transportation agencies enough time to deploy traffic management strategies 
(i.e., signal control, emergency shoulder use etc.). However, to accurately predict traffic for a 
longer time period, we need to account for demand variations over time. Most of the existing 
studies do not capture the demand variations while predicting future traffic. In our proposed 
method, to capture demand variations during evacuation, we incorporate both evacuation related 
features and regular traffic features to sequentially predict evacuation traffic flow for a long-term 
horizon (1 to 6 hours).  

 
3. Problem Formulation  

To implement the method, we construct a network of traffic detectors where each detector 
indicates a node. In this network, travel time between two nodes dynamically changes over time. 
To capture the dynamics, we define the network as a dynamic graph 𝒢!(𝑣, ℰ, 𝑨𝒕) where	𝑣	denotes 
the set of nodes (i.e., detectors) and ℰ denotes the set of links between nodes (𝑖, 𝑗). 𝑨𝒕 represents 
the connectivity between nodes as a weighted adjacency matrix, where weights are based on travel 
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time between any two nodes (𝑖, 𝑗), defined as follows: 

𝑨𝒕(𝒊, 𝒋) = .𝑡𝑡#,%
! 											𝑖𝑓	𝑖	 ≠ 𝑗

0,										𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                (1) 

where 𝑡𝑡#,%!  denotes the travel time between the nodes 𝑖 and 𝑗 at time 𝑡. The connectivity inside an 
adjacency matrix detects which neighboring nodes (𝑗) will be influenced by the traffic condition 
at a given node (𝑖). Moreover, in a time series problem the existing traffic condition at a given 
node (𝑖) will also influence its future traffic condition, which means each node is temporally self-
influenced. This is represented by adding an identity (𝐼) matrix with the adjacency matrix which 
ensures that nodes are self-accessible,    
                                                      𝑨𝒕::: = 𝑨𝒕 + 𝑰																																								                                          (2) 

We aim to learn traffic flow patterns in a transportation network over multiple time steps (i.e., 
future time series) based on capturing the influence of congestion propagation (i.e., travel time 
variations) on spatiotemporal cross correlation among nodes’ traffic condition. In this problem, 
traffic condition is represented as a function of traffic demand related features. Thus, we feed the 
model with the information on two aspects: (i) a dynamic graph indicating the variations in travel 
time and (ii) node level features related to traffic demand. Let 𝑿𝒕 be the input features and 
𝒢!(𝑣, ℰ, 𝑨𝒕) is a dynamic graph with weighted adjacency matrix 𝑨𝒕. The problem is defined as to 
learn a function ℱ(. ) that maps 𝑙 instances of input sequence ([𝑿𝒕&𝒍, 𝑿𝒕&𝒍(𝟏… ,𝑿𝒕]) to predict 𝑝 
instances of flow (𝐹!(*, 𝐹!(+………𝐹!(,) for the entire network. Mathematically, the problem is 
defined as follows:   
                      ℱ([𝑿𝒕&𝒍, 𝑿𝒕&𝒍(𝟏… ,𝑿𝒕]; [𝒢!&-(𝑣, ℰ, 𝑨𝒕&𝒍)]) = G𝐹!(*, 𝐹!(+…𝐹!(,H                         (3) 
where 𝑙(= 0, 1, 2, … , 𝑙) and 𝑝(= 1, 2, 3, … , 𝑝) indicate the input and output sequence, 
respectively; 𝑿𝒕	 indicates traffic related features (i.e. volumes, time periods etc.); 𝑨𝒕 indicates the 
weighted adjacency matrix at time 𝑡 ; and the vector 𝐹!(, indicates the link flows for each link of 
the network at time (𝑡 + 𝑝). We have added the description of the notations associated with the 
model development in Table 1.  
 
4. Methodology 

4.1 Learning Traffic Flow Dynamics of the Transportation Network 
Traffic flow dynamics in a transportation network can be represented as a flow propagation 

process—traffic traversing from the origin node to the destination node via neighboring nodes. 
That is why, traffic condition of a given node influences the traffic condition of the neighboring 
nodes, in other words there exists a spatial correlation among these nodes. However, at any time 
step whether the traffic at a given node will reach any neighboring node or not depends on the 
travel time between these nodes, which changes over time. So, to model the traffic flow dynamics 
we need to represent travel time variations of the network and utilize this information while 
capturing spatial correlation among the nodes.  
 
Table 1 
Description of the Notation Associated with the Model Development   
Notation Description 

𝓖 Transportation network 
𝑣 Set of nodes in 𝒢 with size of |𝑣| = 𝑁 
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ℰ Set of links in 𝒢 with size of |ℰ| = 𝐸 
t   Time stamp representing different hours of a day   

𝑨𝒕 ∈ 𝑹𝑵×𝑵 Weighted adjacency matrix of 𝒢, defined by Equation (1) 
I	∈ 𝑹𝑵×𝑵 Identity matrix  
𝑨R𝒕 ∈ 𝑹𝑵×𝑵 Neighborhood matrix defined by Equation (2) 
𝑫R 𝒕 ∈ 𝑹𝑵×𝑵 Degree matrix of 𝒢, a diagonal matrix where diagonal elements (𝑖, 𝑖) 

indicate the number of links coming out from a node  
𝑡𝑡#% travel time between nodes 𝑖 and 𝑗 
𝑙 Input time sequence length (	0,1, …… . 𝑙	) 
𝑐 Number of features at each node 

𝑿𝒕
𝒓𝒆𝒈 ∈ 𝑹𝑵×𝒄 Contains all the traffic features (i.e., volumes, time periods etc.) 

associated with each node (𝑖) of the network for regular condition  
𝑿𝒕𝒆𝒗𝒄 ∈ 𝑹𝑵×𝒄 Contains all the traffic features (i.e., volumes, time periods etc.) 

associated with each node (𝑖) of the network for evacuation condition 
𝑿𝒕𝒆𝑫 ∈ 𝑹𝑵×𝒄 Contains the features related to evacuation travel demand (i.e., 

population under mandatory order, evacuation zones’ location etc.) 
associated with each node (𝑖) of the network 

𝒈𝒕 Graph Convolutional filter to learn the congestion propagation inside 
the network  

𝑓(. ) Activation function 
𝑾𝒈𝒄 ∈ 𝑹𝑵×𝑵 

 
Learnable parameters for the convolution filter 

h Indicates the output vector from different hidden layers of the proposed 
neural network architecture 

𝑝 Prediction horizon (	1, …… . 𝑝	) 
𝐹!(, 	 ∈ 𝑅6 Flow vector contains flows for each link (segment) of the network for 

the prediction horizon 𝑝  
All the bold letters denote a matrix 
 

In this study, we develop a graph convolution based deep neural network architecture to capture 
spatiotemporal correlation among node-level traffic features for predicting traffic flows. The 
model has two layers (see Fig. 1): in the first layer, we apply a graph convolution operation to 
capture the spatial correlation among neighboring nodes. In this approach, we derive a graph 
convolutional filter from adjacency matrix which represents the travel time variations of the 
network, thereby detects which neighboring nodes are within the shortest path distance of the 
origin node at a given time step. To derive the convolutional filter, we adopt a graph theoretic 
approach where a graph adjacency matrix is decomposed into its eigenvalues to represent the 
structural properties of the graph such as the strength of a node (i.e., node level features) and 
shortest path between two nodes. Such a representation, when fed into a deep learning model, 
suffers from exploding or vanishing gradient problem due to sparsity in eigen values’ distribution. 
To overcome this exploding or vanishing gradient problem, Kipf and Welling (Kipf and Welling, 
2016) proposed a normalization technique to represent a graph and its intrinsic dynamics. We 
adopt a similar approach and define the graph as a symmetrically normalized adjacency matrix 

(𝑫R 𝒕
&𝟏𝟐𝑨R𝒕𝑫R 𝒕

&𝟏𝟐). However, in previous applications the networks were static, hence the normalized 
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adjacency matrices were fixed. In our case, the network is dynamic, hence the normalized 
adjacency matrix will change over time.  
 

 
 

Fig. 1. A dynamic graph learning approach for network-wide traffic prediction 

The main function of the graph convolution layer is to capture spatial cross correlation among 
nodes considering network wide travel time variations. We use the normalized graph adjacency 
matrix as a convolution filter and perform the convolution with node level traffic demand related 
features of the network. The convolution operation can be defined as follows: 

                                             𝒈𝒄𝒕 = (𝑾𝒈𝒄⊗ (𝑫R 𝒕
&𝟏𝟐𝑨R𝒕𝑫R 𝒕

&𝟏𝟐))𝑿𝒕																		                                    (4) 
where 𝒈𝒄𝒕 indicates the convoluted feature matrix and 𝑾𝒈𝒄 indicates the parameters for the 
convolution filter. The convoluted feature matrix represents the state transition of the network, in 
other words how congestion is propagating inside the network and influencing neighboring nodes.   

In the second layer, we apply an LSTM (Hochreiter and Urgen Schmidhuber, 1997) model to 
map this convoluted feature matrix into traffic flows. The LSTM model captures the temporal 
dependency among traffic features while predicting traffic flows over multiple time steps (i.e., 
future time series).  The proposed dynamic graph-based LSTM model (DGCN-LSTM) model can 
be defined as follows: 

               𝐹!(, = LSTM^𝑓(𝒈𝒄𝒕)_ 	= LSTM(𝑓(𝑾𝒈𝒄⊗ (𝑫R 𝒕
&𝟏𝟐𝑨R𝒕𝑫R 𝒕

&𝟏𝟐))𝑿𝒕)                                   (5) 
where 𝑓 indicates a nonlinear activation function; we use rectified linear unit (relu) as an activation 
function.  

Training such graph-based models over a transportation network requires a substantial amount 
of data. However, evacuations usually take place for 2 to 5 days before the hurricane landfall. 
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When a model is trained with a small sample it will cause the model to overfit. To overcome this 
problem, we develop a new modeling method adopting a transfer learning technique (Zhuang et 
al., 2021). We first train the DGCN-LSTM model over regular traffic data (𝑿𝒕 = 𝑿𝒕

𝒓𝒆𝒈)  and later 
transfer this model to an evacuation period. The following section describes the methods to 
implement the model for evacuation traffic prediction.     

4.2 Network-wide Evacuation Traffic Prediction 
Evacuation traffic depends on many factors such as zonal level population under mandatory 

evacuation, hours left before landfall, distance of a detector from the nearest evacuation zone, and 
different time periods of the day etc. (Rahman et al., 2021c). Using these features as inputs, we 
can develop a simple time series-based model to predict evacuation traffic flow. However, such a 
model will perform poorly since it cannot capture the spatiotemporal dependency of traffic 
variables as it does not have any information on the underlying contexts of congestion propagation 
in the network. To overcome this problem, we adopt a transfer learning approach to transfer the 
context of network dynamics over multiple time steps (temporal sequences). However, traffic 
demands during evacuation significantly differ from non-evacuation condition. For example, 
evacuation traffic demand is higher than non-evacuation period and does not follow any regular 
pattern. Thus, when applying the transfer learning approach, we need to transfer only the 
information relevant for an evacuation period such as information of network connection and the 
function of how traffic flows from an upstream to a downstream location. 

 

 
Fig. 2. A deep learning architecture for evacuation traffic prediction 

 We develop a deep learning architecture which controls the information flow from regular traffic 
condition to evacuation traffic condition. The proposed deep learning architecture has four 
components (see Fig. 2). The first component is the pretrained DGCN-LSTM model, we apply this 

Pretrained 
DGCN-LSTM tanh 

LSTM 

tanh 

σ 
ℎ𝑒𝑣𝑐 𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ℎ′𝑒𝑣𝑐 

𝑿𝒕 = 𝑿𝒕𝒆𝒗𝒄 

𝑿𝒕−𝒍	 = 𝑿𝒕−𝒍𝒆𝒗𝒄 

𝑙 
𝑿𝒕𝒆𝑫 

𝑙 

𝑿𝒕−𝒍𝒆𝑫  

𝐹𝑡+𝑝 
𝑝 

𝐹𝑡+1 

Evacuation demand related features of all the nodes at time 𝑡 

Element wise multiplication 

𝑿𝒕𝒆𝑫 
Evacuation traffic related features of all the nodes at time 𝑡 𝑿𝒕𝒆𝒗𝒄 

⊕ Element wise Summation 
⊗ 

𝐹()* Traffic flow for all the nodes 
𝜎 

𝑓𝑐𝑜𝑛𝑡𝑟𝑜𝑙 
Sigmoid function 

Control layer output (varies between 0,1) 
𝑡𝑎𝑛ℎ Hyperbolic tangent nonlinear function 

ℎ′𝑒𝑣𝑐 Output from pretrained model 
ℎ!"# Output from LSTM based evacuation model  
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model using the traffic features (i.e., volumes, time periods etc.) from evacuation period (𝑿𝒕 =
𝑿𝒕𝒆𝒗𝒄) to predict traffic flow over multiple timesteps.  

                                               ℎ′789 = 𝐷𝐺𝐶𝑁-𝐿𝑆𝑇𝑀(𝑿𝒕𝒆𝒗𝒄)                                                   (6) 
where ℎ′789 indicates the outputs from the DGCN-LSTM model. We add this information with 
other evacuation traffic demand information. The second component is an LSTM layer, we apply 
this model to capture the temporal correlation among evacuation traffic demand related features 
(𝑿𝒕𝒆𝑫).  
                                                       ℎ789 = 𝐿𝑆𝑇𝑀^𝑿𝒕𝒆𝑫_                                                               (7) 
where ℎ789 indicates the output from the LSTM layer.  

 
The third component is the control layer; in this layer, we define a neural network with sigmoid 

activation function to remove irrelevant information from the DGCN-LSTM model.  
                                                𝑓9:;!<:- = 𝜎^𝑾𝑪. 𝑿𝒕𝒆𝑫 + 𝑏9_                                                       (8) 

where 𝑓9:;!<:- indicates the output from the control layers which are distributed between 0 to 1.  
 
The fourth and final component is the output layer which adds the network dynamics related 

information with evacuation demand to generate the final traffic prediction.  
                                 𝐹!(, = 𝑓9:;!<:- ⊗ tanh	(ℎ>789) + 𝑡𝑎𝑛ℎ(ℎ789)                                          (9) 
 
In this layer, we perform an elementwise matrix multiplication between 𝑓9:;!<:- and ℎ′789, thus 

some of the information will be erased prior to adding with evacuation demand. Since we assign 
weight 𝑾𝑪 in the control layer, when training the model for evacuation traffic prediction, it 
automatically learns to control the information flow from non-evacuation condition to evacuation 
condition.  

 
5. Data Collection and Preprocessing  

5.1 Traffic Detector Data 
To test the model, we consider a network consisting of interstate highways of Florida. We select 
the network based on evacuation traffic patterns in previous hurricanes, when many residents 
living in Florida evacuated to Georgia and adjacent States (Rahman et al., 2021c; Roy et al., 2021). 
Thus, two major highways (I-75 and I-95) and other two highways (I-4 and Florida’s Turnpike) 
connecting them are expected to serve a substantial amount of evacuation traffic during Hurricane 
Irma. To create the network, we have chosen the northbound directions of I-75, I-95, and Florida’s 
Turnpike and the eastbound direction of I-4 (see Fig. 3).  

We have collected traffic data from Regional Integrated Transportation Information System 
(RITIS) (“REGIONAL INTEGRATED TRANSPORTATION INFORMATION SYSTEM: A 
data-driven platform for transportation analysis, monitoring, and data visualization,” 2008) from 
September 4, 2017 to September 9, 2017 which covers the evacuation period of Hurricane Irma. 
We have also collected non-evacuation period traffic data from May 1 to August 31, 2017. RITIS 
gathers data from Microwave Vehicle Detection System (MVDS) detectors deployed by Florida 
DOT (https://www.fdot.gov/), giving real-time information on traffic speed, volume, and 
occupancy at a very high resolution (20 to 30s frequency). 
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Fig. 3.  Network of inter-state highways 

The raw data collected from traffic detectors are subjected to errors. Several factors such as 
detector malfunctioning, false encoding during storing the data into the server, overlapping of 
multiple entries, duplicate entries, and bad weather conditions can cause errors. Moreover, during 
congested stop and go traffic conditions, sometimes microwave radar detectors fail to detect 
vehicles, hence providing misleading information. Therefore, before proceeding to any data 
analysis, we need extensive data cleaning and quality checking. Fig. 4 shows the framework for 
the data processing steps. 
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Fig. 4. Framework for data processing 

We followed several steps for data processing. First, we remove the detectors having higher 
percentages of missing values (>20%); second, we detect the outliers based on the capacity of the 
highway (2500 vehicle per hour per lane); third, we replace the outliers and available missing 
values using multivariate iterative data imputation technique (Pedregosa et al., 2011; van Buuren 
and Groothuis-Oudshoorn, 2011). The details of the data pre-processing steps are provided in our 
previous publication (Rahman et al., 2021c).   

5.2 Zonal Level Mandatory Evacuation 
We collect the time and location of evacuation orders issued for different areas for Hurricane 

Irma from the Florida Division of Emergency Management. However, the declaration dates of 
evacuation order for all the zones are not available at a single source, thereby, in few cases, we 
collect the declaration date by manually checking the emergency management agency’s social 
media posts (e.g., Twitter, Facebook) of the respective county and contemporary news article 
available online. Fig. 5 (a) shows the mandatory evacuation zones with evacuation declaration 
times for our study area. We observe that most of the evacuation zones are by the coast; smaller 
zones in the central part of Florida mainly represent mobile homes or low-lying areas vulnerable 
to inland flooding.  Florida Keys and other low-lying zones such as Everglades were issued 
mandatory order on early September 5, 2017. Evacuation zones in the east coast, such as Miami-
Dade, Daytona were issued evacuation orders on September 7, 2017 (Hurricane Irma was supposed 
to hit the east coast of Florida until Sep. 7, 2017). After September 7, 2017, as the projected path 
shifted from east coast to west coast, evacuation zones of Naples, Cape Corals, Tampa, Levy, and 
Jacksonville were ordered mandatory evacuations on September 7 and onward (see Fig. 5 (a)). We 
have collected population data for the mandatory evacuation zones to understand how many people 
were under mandatory evacuation order. Since, population data is not available for the evacuation 
zones, we collect block group level population data from 2017 5-year American Community 
Survey and sum the population that falls within an evacuation zone to retrieve the population for 
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that zone. On Sept. 8, 2017, the highest number of people (3.42 million) were under mandatory 
evacuation orders, followed by Sept. 9, 2017 when the second-highest number of people (2.63 
million) were under mandatory evacuation orders (Fig. 5(b)).  
 

 
(a) Zones of mandatory evacuation orders with corresponding declaration dates 

 
(b) Population under evacuation order at different dates during evacuation period 

    Fig. 5. Temporal variations of total population under mandatory evacuation 
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6. Experiments 

6.1 Feature Extraction and Graph Representation 
We followed several steps to extract the spatiotemporal features from the collected data. We 

prepared two types of data samples: (i) traffic data samples for regular period (𝑿𝒕 = 𝑿𝒕
𝒓𝒆𝒈)	and 

evacuation period (𝑿𝒕 = 𝑿𝒕𝒆𝒗𝒄); (ii) evacuation demand features ^𝑿𝒕𝒆𝑫_. All the input features are 
listed in Table 2.  

 
6.1.1 Traffic data samples 

We aggregate the traffic data for 1-hour intervals estimating traffic flow and average traffic 
speed. To capture the periodic nature of traffic flow variations, we group the hours into 6 different 
time periods such as late night, early morning, morning, noon, evening, and night. We represent 
these features using one hot encoding, which means that each of the six time periods is represented 
by an indicator variable (0,1).  We also extract different features to capture traffic flow variations 
over previous day (𝑡?&*)  and previous time period (𝑡,<?&*) corresponding to current day (𝑡?) and 
current time period ^𝑡,<?_ at time (𝑡). The extracted features include previous day and time 
periods’ mean and standard deviation of traffic flow (see Table 2). Since we do not have any data 
to indicate the characteristics of different zones (e.g., built environment characteristics, zonal level 
population etc.); we use a variable named “Zone ID” to represent zonal characteristics specific to 
the location of each detector. This variable also represents the ordering of the output sequence (i.e., 
1 to 806) for all the detectors.    

We formulate the traffic data sample as [number of samples (𝑛),  input time sequence (𝑙), number 
of nodes (𝑁), input features (𝑐)]. Since we have collected the data from 806 detectors, the number 
of nodes, 𝑁 = 806. We select input data sequence of 6 hours to predict traffic for the next 6 hours, 
leading to input time sequence length, 𝑙 = 6 and prediction horizon length, 𝑝 = 6. In total we have 
twelve input features (𝑐 = 12): Zone ID, Late Night (12am-4am), Early Morning (4am-8am), 
Morning (8am -12 pm), Mid-day (12 pm-4pm), Evening (4pm-8pm), Night (8pm -12am), mean 
traffic flow (𝑞!), previous day mean traffic flow	(𝑞:!:;<), previous day standard deviation of traffic 
flow (𝑠𝑞!:;< 	), previous time period mean traffic flow (𝑞:!,<?&*), and previous time period 
standard deviation in traffic flow (𝑠𝑞!,<?&*).  

For the non-evacuation period, we have the data for 2148 hours and for the evacuation period we 
have data for 120 hours. For evacuation and non-evacuation periods the input data has the shape 
as [120, 6, 806, 12] and [2148, 6, 806, 12], respectively and the target data has the shape as [120, 
6, 806] and [2148, 6, 806], respectively.  
 
Table 2 Description of input features 

Variables Description 
𝑍 Zone ID: represent zonal characteristics specific to the location of each 

detector (i.e. 1,2,….,N) 
 
𝑡,<? 

Time periods: Late Night (12am-4am), Early Morning (4am-8am), Morning 
(8am -12 pm), Mid-day (12 pm-4pm), Evening (4pm-8pm), Night (8pm -
12am)  

𝑡? Different days corresponding to time 𝑡 

𝑞! Traffic flow at time 𝑡 
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		𝑞:!:;< Previous day mean traffic flow 
 

𝑠𝑞!:;< 	 Previous day standard deviation of traffic flow 

𝑞:!,<?&* Previous time period mean traffic flow  

𝑠𝑞!,<?&* Previous time period standard deviation of traffic flow  

𝑆! Mean speed over an hour   

𝑇! Hours left before landfall  

𝑃!789 Cumulative population under mandatory evacuation 

𝑑!789 Distance to the nearest evacuation zone from each detector 

 
6.1.2 Evacuation demand data samples ^𝑿𝒕𝒆𝑫_ 

We extract features related to evacuation demand such as population in mandatory evacuation 
zone, distance of a detector from the nearest evacuation zone, and hours left before hurricane 
landfall. We have also added a variable “cumulative population under mandatory evacuation” to 
capture the impact of population under mandatory orders on overall traffic conditions. However, 
prior to adding this variable, we also need to consider that when an evacuation order is placed, it 
will take some time for people to start evacuating. That means that the number of populations 
under mandatory evacuation will not have an immediate effect on traffic condition. Rather we will 
observe the impact when people start to evacuate. For example, if 500,000 populations are under 
mandatory evacuation during early morning (e.g., 8 am) and people start evacuating from the 
evening (e.g., 8 pm), then we will observe an increase in overall traffic volume during the evening 
period. So, population under mandatory evacuation on morning (e.g., 8 am, 𝑡 − 12) will have an 
impact on increase in traffic volume during evening (8 pm, 𝑡), which implies that there is a time 
lag between the declaration of evacuation orders and when people start to evacuate. To account 
this time lag, we shift the total population under mandatory evacuation zone by 18 hr.  We perform 
an empirical analysis by running a linear regression model multiple times with different time lags 
and find that the coefficient associated with the variable of total population under mandatory orders 
is positive for 18-hour time lag (𝑡 − 18) and significantly influences the increase in evacuation 
traffic flow at time 𝑡. The details of this process of determining the time lag are provided in 
(Rahman et al., 2021c).  

Moreover, evacuation demand also depends on time of the day. In our previous study (Rahman 
et al., 2021c), we found that people are more likely to evacuate during daytime compared to night 
time. Hence, we also consider time periods to capture evacuation traffic demand.  Finally, the 
evacuation demand data samples have 9 features: Late Night (12am-4am), Early Morning (4am-
8am), Morning (8am -12 pm), Mid-day (12 pm-4pm), Evening (4pm-8pm), Night (8pm -12am), 
population under mandatory evacuation zone (𝑃789), distance of the nearest evacuation zone from 
each detector (𝑑789), and hours left before hurricane landfall (𝑇!). We formulate the evacuation 
demand data as [number of samples (𝑛),  input time sequence (𝑙), number of nodes (𝑁), input 
features (𝑐)] i.e. [120, 6, 806, 9]. 
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6.1.3 Graph Representation 
We follow several steps to construct the graph. First, we map locations of the detectors on Open 

Street Map. Second, considering the detectors as nodes, we connect these detectors to complete 
the network. Finally, after constructing the network, we represent the network using an adjacency 
matrix (see Equations 1 and 2). We also calculate the travel distance between pairs of nodes from 
Open Street Map and estimate the travel time. We define the travel time between a pair of nodes 
as follows,  
                                                    𝑡𝑡#%! =

?=>
?=
@A?>

@

B

= +?=>
A=
@(A>

@                                                                 (10) 

where 𝑡𝑡#%! , 𝑑#% indicate the travel time and distance between two consecutive detectors; 𝑆# and 𝑆% 
indicate average speed for two consecutive detectors. We use the travel time as weight for the 
adjacency matrix. We also perform gaussian transformation on the weighted graph adjacency 
matrix,  
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where 𝑡𝑡F!? 	indicates the standard deviation of travel time and 𝑟 is the threshold to control the 
distribution and sparsity of weighted graph adjacency matrix. We fix the threshold value as 0.1 
based on previous studies (Li et al., 2018b) and experiment results.    

6.2  Baseline Models 
We implement three baseline models to compare the performance of the proposed DGCN-LSTM 

model. 
 

6.2.1  LSTM 
In the LSTM model, we use two stacked LSTM layers to predict traffic for next 6 hours. For each 

layer, we assign 4836 (number of nodes * output sequence length) hidden neurons. The output 
layer is a fully connected layer with tanh activation function.  

 
6.2.2 Convolutional LSTM 

In the Convolutional LSTM (ConvLSTM) model, we stack a convolution layer with an LSTM 
layer. The convolutional layer uses a convolution filter to extract the spatial correlation among 
traffic features between consecutive detectors. We experiment with different size of the kernel (𝑘) 
and find that the model performs best for a kernel size of 3. The output from the convolutional 
layer is fed into the LSTM layer to capture temporal correlation among traffic features while 
predicting traffic flow over a long sequence.  

 
6.2.3 Graph Convolutional LSTM 

In the graph convolutional LSTM (GCN-LSTM) model, we apply a similar approach as (Kipf 
and Welling, 2016; Li et al., 2018b). In this case, the weights of the graph adjacency matrix are 
constant and assigned based on the distance between two consecutive nodes. 
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6.3 Model Training  
We train the model using mean squared error as the loss function. At each iteration, the model 

estimates the mean squared error for the predicted flows (𝐹!(,G 	) and the actual flows (𝐹!(,ℰ ) of the 
network. Afterward, the gradient of the loss function is backpropagated to adjust the weights to 
reduce loss function value. The loss function can be defined as,  

     
                                                  𝐿 = 𝐿𝑜𝑠𝑠^𝐹!(,G 	, 𝐹!(,G 	_                                                             (12) 
where 𝐿𝑜𝑠𝑠(. ) is the function to estimate the error between the actual (𝐹!(,ℰ ) and estimated 
values	(𝐹!(,G ) and ℰ denotes the set of links for the network.  

We implement our model using Pytorch environment (“PyTorch,” 2016) and train the model 
with dual NVIDIA Tesla V100 16GB PCIe GPU.  
 
6.3.1 DGCN-LSTM for Non-evacuation period 

 From the regular traffic data samples, we use 90% for training, 5% for validation, and rest 5% 
of the data for testing the model. Based on the validation accuracy, we tune the hyperparameters 
such as learning rate, maximum number of iterations, and the type of the optimizer. We also track 
the training and validation loss values to check whether the model is overfitting or not. From the 
loss values, we find that it takes about 60 epochs with a learning rate of 0.001 for the model to 
converge (i.e., similar train and validation loss value). After that there are merely any variation in 
loss values (Fig. 6 (a)). Moreover, after 70 epochs the value of the loss function for the validation 
data gradually starts increasing, indicating that the model starts to overfit. We use Adaptive 
Moment Estimation (ADAM) to train the model. Compared to other optimizers such as Adaptive 
Gradient (AdaGrad), Root Mean Square Propagation (RMSProp) etc., ADAM optimizer gives 
more stable solutions.    

   
Fig. 6. Variations of training and validation loss (a) DGCN-LSTM (b) Transfer Learned DGCN-

LSTM 

6.3.2 Transfer Learned DGCN-LSTM for Evacuation period 
From the evacuation traffic data samples, we use 80% for training, 10% for validation, and rest 

10% of the data for testing the model. Similar to previous model, we experimented with different 
optimizer however ADAM optimizer gives the best result. We also track the changes in training 
and validation loss values to ensure the model is not overfitting. It takes 150 epochs for the model 
to converge, after that it starts to overfit (Fig. 6(b)).     
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6.4 Experiment results 
Once the final model is fixed, we test it on the test data set. We calculate Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE) and Symmetric Mean Absolute Percentage Error 
(SMAPE) as performance measures to check the accuracy of the implemented model. Performance 
metrics are defined as:   
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where	ℰ indicates the set of available links and 𝐸 indicates the total number of links in the network. 
In case of our network, we have 𝐸 = 865 links.  

In Table 3, we report the performance of the model on the test dataset. To investigate the 
sensitivity of the model over different data samples, we iteratively train the model 10 times with 
different training data and measure the accuracy on test data. At each iteration, we randomly split 
the data into train, validation, and test sets. Since we randomly split the data at each iteration, we 
have different data for training, validation and testing the model. These datasets are temporally 
ordered to maintain the temporal sequence of time series input. From this process, we obtain 10 
different models and report the mean and standard deviation of the estimated performance 
measures on the test datasets. Based on performance measures, we find that the proposed DGCN-
LSTM model performs best compared to other baseline models. The RMSE and MAE values of 
the model are 226.85 and 133.82, respectively.  

However, when we apply the model for traffic prediction during evacuation, it performs poorly. 
The RMSE and MAE values significantly increase to 1440.994 and 1009.94, respectively (Fig. 7). 
To resolve this issue, we first train the model over the data that combine both regular and 
evacuation period observations.  In the combined dataset, we also include the evacuation specific 
variables; for regular period data, the evacuation specific variables are padded with zeros. We test 
the combined DGCN-LSTM model for evacuation period traffic prediction and find a slight 
improvement in model performance with RMSE and MAE values reduced to 1097.23 and 733.99, 
respectively (Table 4). However, the overall performance is still poor compared to that in a regular 
period. 

 Hence, we use a transfer learning approach with additional demand features to capture the 
changes in traffic demand during hurricane period, which improves the overall prediction 
accuracy. For the transfer learned model, the RMSE and MAE values are 399.69 and 268.03, 
respectively (Table 4).  

The RMSE and MAE values provide aggregate information (average over all the outputs) on the 
performance of the models. In Fig. 8 (a), we show the correlation between actual and predicted 
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link flows. From the figure we find that the actual and predicted traffic flows almost match with 
each other with an 𝑅+ score of 0.98 indicating that the model can learn regular traffic flow patterns 
very well. Although 𝑅+ is an aggregate measure of model performance, 𝑅+	 is easier to interpret 
since it is normalized between -1 and 1.  

We also find that in some cases the model overestimates and underestimates the flows. This is 
because of the shift in hurricane path three days before the landfall day and associated changes in 
mandatory evacuation zones from southeast regions (e.g., Miami) to southwest regions (e.g., 
Tampa) of Florida. This sudden change caused an increase in evacuation traffic at the upstream of 
I-75 and a decrease in evacuation traffic at the upstream of I-95. Due to such sudden variations, 
the model fails to accurately capture the trends, resulting in overestimation and underestimation of 
traffic flows.   

We also investigate the detector wise variations of actual and predicted traffic flows (Fig.8 (b)). 
The overall symmetric mean absolute percentage error (SMAPE) for different prediction horizon 
remains less than 8%, which indicates that the model can capture spatiotemporal patterns of traffic 
very well.  
 
Table 3 
Comparisons among different models to predict traffic over 6-hour sequence for non-evacuation 
period 
 

Model Mean 
RMSE 

Std 
RMSE 

Mean 
MAE 

Std MAE Mean R2 
Score 

Std R2 
Score 

LSTM 282.38 14.24 160.81 3.92 0.98 0.0028 

GCN-LSTM 275.08 14.08 152.08 5.91 0.98 0.0024 

ConvLSTM 246.57 31.19 146.11 14.94 0.98 0.0046 

DGCN-LSTM 226.84 21.54 133.82 9.58 0.98 0.0032 

std = standard deviation 
 
 
Table 4 
Proposed model performance for evacuation traffic prediction (Min flow 50.0 and Max flow 
11247.0) 

 
Model RMSE MAE R2 Score 

LSTM 1481.17 1082.47 0.16 

GCN-LSTM 1481.14 1014.08 0.20 

ConvLSTM 1480.57 1076.85 0.20 

DGCN-LSTM 1440.99 1009.94 0.21 
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Combined DGCN-
LSTM 

1097.23 733.99 
 

0.33 

Transfer learned 
DGCN-LSTM 

399.69 268.03 0.94 

 

 
(a) 

 
(b) 

Fig. 7. Comparison between actual and predicted traffic flow (a) correlation (b) variations over 
different detectors without transfer learning 
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(a) 

 
(b)  

Fig. 8. Comparison between actual and predicted traffic flow (a) correlation (b) variations 
over different detectors with transfer learning 

6.5 Congestion Mapping to Understand Network Disruption 
We apply the implemented model to predict traffic for different days prior to hurricane landfall. 
As shown in Fig. 9, we map the predicted traffic flows to generate spatiotemporal traffic variations 
for different zones over a 6-hour period. The figure demonstrates congestion propagation at 
different zones of the network, such information will be critical for the traffic management 
agencies to implement strategies focusing on reducing delays during hurricane evacuation. The 
figure provides further evidence that the implemented model can capture the spatiotemporal traffic 
variations of a network during emergency evacuation even in case of unexpected event such as 
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changes in hurricane path changing zonal level evacuation demand. For example, we observe a 
significant traffic congestion near west coast of Florida region: downstream of I-75 and I-4 on 
September 8 and 9, 2017. This is because of the shift in hurricane Irma’s projection path which 
forced people living in Naples, Cape Corals, Tampa, Levy, Jacksonville to evacuate at the eleventh 
hour causing significant congestion.  

 

 
(a) Predicted traffic flow 

 
 
 



 23 

 
(b) Actual traffic 

 
Fig. 9. Congestion map indicating traffic flow variations over different time during hurricane 

evacuation 

7. Conclusions  
Evacuation traffic prediction is one of the most critical elements for deploying pro-active traffic 

management strategies. However, evacuation traffic patterns differ from non-evacuation traffic 
condition such as the presence of higher traffic volume and unexpected shifts in evacuation trends. 
Thus, it is more challenging to learn such irregularities using traditional modeling approaches. 
Moreover, modeling spatiotemporal traffic variations requires large volume of data at a higher 
resolution, which is difficult to obtain due to the short duration of typical evacuation periods. To 
address these challenges, in this study we develop a new method considering spatiotemporal 
network dynamics to accurately predict evacuation traffic over multiple time steps.  

First, we develop a deep learning architecture namely DGCN-LSTM to learn the spatiotemporal 
network scale traffic patterns and train the model with non-evacuation period traffic data. Based 
on the experiment results, we find that the implemented DGCN-LSTM outperforms the existing 
deep learning models (such as LSTM, ConvLSTM and GCN-LSTM models) with an RMSE of 
226.84. However, as we apply the model for predicting traffic during evacuation periods the RMSE 
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value increased to 1440.99. We overcome this issue by adopting a transfer learning approach with 
additional evacuation demand related features such as distance from the evacuation zone, time to 
landfall, and other zonal level features to control the information flow from the pretrained DGCN-
LSTM model. The final transfer learned DGCN-LSTM model performs well to predict evacuation 
traffic flow (RMSE 399.69).  

The main contribution of this study includes the development of a big data pipeline to collect 
and analyze large-scale traffic detector data during emergency evacuation, thus providing insights 
on network-wide spatiotemporal patterns of evacuation traffic. Based on that it develops a data-
driven method to accurately predict long-term traffic variations for a large-scale network. Such 
data-driven methods will assist emergency traffic management agencies to implement strategies 
focusing on reducing traffic delays during hurricane evacuation. 

This study has several limitations. We have not tested the performance of the model over data 
from other hurricanes. Testing the model for multiple hurricanes will further establish the 
generalizability of the model for evacuation traffic prediction. Moreover, we do not have data 
related to zonal level evacuation traffic demand. We use aggregate measures such as total 
population under mandatory evacuation to understand overall evacuation trends. High resolution 
demand data from emerging technologies such as mobile phones, location-based services, and 
connected vehicles can be used to overcome this issue.  
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