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A B S T R A C T   

Crystal plasticity finite element models (CPFEM) have shown tremendous potential for simulating 
the microstructure evolution paths in polycrystalline aggregates subjected to large plastic strains. 
However, their high computational cost has hindered their broader deployment in design efforts 
where large process design spaces need to be explored. In this work, a novel machine learning 
framework is developed to establish low-computational cost reduced-order models for predicting 
the details of microstructure evolution in face-centered cubic (FCC) polycrystalline microstruc-
tures subjected to arbitrary stretching tensors. Within this framework, the previously established 
feature engineering of polycrystalline materials within the material knowledge system (MKS) 
framework is extended such that it is applicable to the highly deformed microstructures obtained 
during large deformations. Gaussian process autoregression (GPAR) approaches combined with 
Bayesian design of experiment strategies are employed for building the desired surrogate models 
to optimize the generation of the computationally expensive training data (produced using 
CPFEM). It is demonstrated that a relatively small training set of 1400 datapoints is adequate to 
produce a high-fidelity reduced-order model for predicting the details of the microstructure 
evolution in a very broad set of FCC polycrystalline aggregates subjected to arbitrary macro-
scopically imposed stretching tensors.   

1. Introduction 

It is well known that certain salient details of the polycrystalline microstructures of metals strongly influence their overall me-
chanical properties (McDowell, 2018; Ghosh and Dimiduk, 2011; Jones and Ashby, 2012). Since the metallic microstructures can be 
modulated easily with a broad variety of thermo-mechanical processing routes, there is a strong interest in developing 
low-computational cost reduced-order models relating the process parameters to the salient details of the microstructure evolution 
(Ibragimova et al., 2021; Fernandez-Zelaia and Melkote, 2019; Khandelwal et al., 2021; Fernandez-Zelaia and Melkote, 2019; 
Khosravani et al., 2017; Hashemi and Kalidindi, 2021). An important parameter characterizing metal manufacturing processes is the 
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imposed deformation history, which is best captured as a time-dependent stretching tensor. It should be noted that the complete 
domain of isochoric1 stretching tensors (i.e., the space of all traceless symmetric second-rank tensors) serves as the formal design space 
for developing metals with improved effective properties. This design space is rather large, and a rigorous exploration of such large 
design spaces requires the development of validated reduced-order models connecting the large input domains and output ranges 
involved. The central challenge in this task comes from the lack of a suitable mathematical framework for establishing practically 
useful, but universally applicable, low-dimensional representations of the inherently high-dimensional polycrystalline 
microstructures. 

Crystal plasticity finite element models (CPFEM) represent a class of established physics-based tools for simulating the textural and 
morphological details of microstructure evolution during room-temperature plastic deformations in single-phase cubic polycrystalline 
metals deforming by crystallographic slip (Kalidindi et al., 1992; Khan et al., 2015; Ali et al., 2017; Luccarelli et al., 2017). CPFEM 
models essentially apply a crystal plasticity constitutive model at each integration point of the meshed polycrystalline aggregate. 
Although CPFEM have enjoyed many successes in predicting the evolution of heterogeneous microstructures in various metal-forming 
applications (Gupta et al., 2018; Tasan et al., 2014; Sedighiani et al., 2022; Knezevic et al., 2014; Chen et al., 2018; Wang et al., 2019; 
Sedighiani et al., 2021), their broader adoption in material design has been hampered by the extremely high computational cost of 
these tools (Iftikhar et al., 2021; Farooq et al., 2020; Bonatti et al., 2022). As already described earlier, a validated low-computational 
cost reduced-order model could open an attractive avenue. Since the phenomena of interest involves microstructure evolution 
resulting from an imposed deformation history, it is most logical to formulate the desired reduced-order model as an auto-regressive 
(AR) model (Box et al., 2015). In these approaches, the inputs to the model would include the salient descriptors of the microstructure 
at the beginning of a fixed time step and the imposed stretching tensor during the time step, while the output would constitute the 
salient features of the microstructure at the end of the time step. This type of formulation allows for recursive usage of the model by 
taking the output from one time step as a part of the input for the next time step. It should also be noted that although AR models are 
generally formulated to mainly capture linear relationships between the inputs and outputs, they can be extended to include nonlinear 
relationships (Zhou and Ding, 2020; Chen et al., 2018; Waheeb et al., 2019). The central challenges in establishing reduced-order AR 
models for capturing the salient features of microstructure evolution in metal polycrystalline aggregates subjected to arbitrary 
deformation modes include: (i) the earlier mentioned lack of established formalisms for capturing the salient features of polycrystalline 
microstructures in low dimensional representations, and (ii) lack of demonstrated workflows capable of efficiently building the desired 
reduced-order models with as few training datapoints as possible (this is important because of the high computational cost of CPFEM). 

Majority of prior studies addressing the problem described above have incorporated highly simplified feature engineering, i.e., they 
employed grossly simplified representations of the complex polycrystalline microstructures. For example, some studies have focused 
only on the morphological features and disregarded completely the information on the crystallographic texture (Fernandez-Zelaia and 
Melkote, 2019; Yabansu et al., 2019; Muhammad et al., 2021). Alternately, other studies have focused exclusively on the averaged 
texture information in the polycrystalline aggregate (Knezevic and Kalidindi, 2007; Kalidindi et al., 2009; Knezevic and Bhatta-
charyya, 2017; Sankaran and Zabaras, 2007). More recent studies have exploited the implicit feature engineering capabilities of neural 
networks (including both the simple feed-forward neural networks as well as the convolution neural networks). These studies have 
mainly incorporated the texture information, and have successfully predicted the flow behavior, stress-strain response and texture 
evolution of various FCC polycrystals undergoing plastic deformation (Ibragimova et al., 2021; Ali et al., 2019; Saidi et al., 2022; Dai 
et al., 2021; Acar, 2020; Yuan et al., 2018; Gorji et al., 2020; Ali, 2021). Only a few recent studies incorporated both textural and 
morphological information to predict localized stress and strain fields (Ibragimova et al., 2022; Mangal and Holm, 2018). It should be 
noted that the neural network-based approaches require a large training dataset, posing significant challenges to problems where data 
generation is computationally expensive (such as the CPFEM). Since both textural and grain morphology information in the repre-
sentative volume element (RVE) play an important role in controlling its effective response, it is desirable to develop feature engi-
neering approaches that rigorously capture all of the salient features of the polycrystalline microstructures. 

The recently developed Material Knowledge System (MKS) framework (Kalidindi, 2015; Iskakov et al., 2018; Latypov et al., 2019; 
Yabansu et al., 2020) leverages 2-point spatial correlations (Torquato and Haslach Jr, 2002; Niezgoda et al., 2011; Niezgoda et al., 
2013) and principal component analyses (PCA) (Hastie et al., 2005) to obtain low dimensional representations of polycrystalline 
microstructures. Prior studies have demonstrated that the 2-point spatial correlations of lattice orientations in polycrystalline ag-
gregates can be computed efficiently utilizing generalized spherical harmonics (GSH) (Hashemi and Kalidindi, 2021; Kalidindi, 2015; 
Paulson et al., 2017; Bunge, 1993). The main advantage of using GSH representations lies in its ability to reflect compactly all relevant 
crystal and/or sample symmetries. However, the complete set of the 2-point spatial correlations of orientations in polycrystalline 
aggregates contains an extremely large number of microstructure descriptors (often as many as 106 − 109 (Hashemi and Kalidindi, 
2021; Paulson et al., 2017; Paulson et al., 2018)), making it intractable for the formulation of low-cost reduced-order models. Prior 
work has addressed this challenge by employing PCA to obtain a reduced-order representation of each microstructure by using only the 
first 10-15 principal component (PC) scores (Khosravani et al., 2017; Iskakov et al., 2018; Yabansu et al., 2020; Paulson et al., 2017; 
Fernandez-Zelaia et al., 2019). The MKS feature engineering approach is distinctly different from the other feature engineering ap-
proaches mentioned earlier. First, it rigorously captures most of the textural and morphological information of the microstructure. 
Second, it employs an unsupervised learning approach in that the identified features are unaware of the targets (i.e., model outputs). In 
other words, they are agnostic to the targets, and can potentially be employed for a very broad set of user-selected targets. Third, highly 

1 The hydrostatic components of imposed stretching tensors in most metals are very small and produce only elastic deformations; these are 
ignored in this work. 
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efficient computational protocols for evaluating these features have already been developed in prior work (Cecen et al., 2016; Full-
wood et al., 2010). Indeed, it has been shown that high-fidelity structure-property (S-P) linkages can be established for polycrystalline 
materials using these low-dimensional representations (Paulson et al., 2017; Paulson et al., 2018; Priddy et al., 2017; Paulson et al., 
2019; Tallman et al., 2019). In this work, our goal is to demonstrate that the same protocols can be used to formulate reduced-order 
process-structure evolution (P-S) linkages as well, thereby leading to a consistent framework for exploring the complete set of 
process-structure-property (PSP) linkages needed for materials design (Kalidindi, 2015; Kalidindi, 2019; McDowell and Olson, 2008; 
Ramakrishna et al., 2019). It should be noted that the establishment of P-S linkages is generally more challenging compared to the 
formulation of the S-P linkages. This is because of the need to track the time evolution of the material microstructure for a specified 
process history. Although a number of different model building strategies exist, the nonparametric Gaussian process autoregressive 
(GPAR) models (Requeima et al., 2019) are particularly attractive because of their high expressivity with relatively small training 
datasets. This approach allows the formulation of P-S linkages without a priori knowledge of the expected model form, while providing 
a natural way for the quantification of the prediction uncertainties. In prior work, GPAR has been explored in problems involving 
relatively simpler microstructures (e.g., two-phase microstructures) (Brough et al., 2017) or simplified descriptions of complex mi-
crostructures (e.g., grain size distribution) (Fernandez-Zelaia and Melkote, 2019; Fernandez-Zelaia and Melkote, 2019; Yabansu et al., 
2019) or relatively smaller design spaces (e.g., including only morphological parameters such as grain shape and size) (Hashemi and 
Kalidindi, 2021). 

The main goal of this work is to explore the feasibility of formulating GPAR-based microstructure evolution linkages for poly-
crystalline materials subjected to an arbitrary stretching tensor. This goal encounters two main challenges. The first challenge arises 
from the fact that the MKS framework uses a voxelized description of the microstructures, where the spatial domain is uniformly 
tessellated. However, upon deformation, the uniformly tessellated microstructures become distorted (i.e., the deformed microstructure 
is presented on a non-uniform grid). The second challenge comes from the need to explore a vast input domain (i.e., the complete space 
of the initial microstructures input to the simulation of a time step of the microstructure evolution) spanning a large number of 
morphologies and textures. Additionally, these input microstructures can be subjected to an arbitrary macroscopically imposed 
stretching tensor in the time step being simulated. Since computationally expensive CPFEM simulations need to be performed to 
generate the training data required for establishing the desired P-S linkages of interest, it is essential to devise a computational scheme 
that efficiently explores such expansive input domains while minimizing the size of training data needed. The challenges mentioned 
above are addressed in this work through suitable extensions to the MKS framework. Specifically, by taking advantage of the inherent 
periodicity of the CPFEM simulated RVEs, an efficient computational scheme is devised to map the deformed polycrystalline micro-
structures (presented on a non-uniform spatial grid) onto a uniform spatial grid. The second challenge described above is addressed by 
designing and implementing a Bayesian design of experiment (DOE) strategy that utilizes the uncertainty quantification implicit in the 
GPAR. The Bayesian DOE strategy sequentially updates the training set until the prediction uncertainty over the entire input domain of 
interest is reduced to an acceptable level. This study establishes that the GPAR-MKS framework can be effectively combined with the 
novel computational protocols described above (i.e., mapping fields from a nonuniform spatial grids to a uniform spatial grid, Bayesian 
DOE) to establish a high fidelity reduced-order microstructure evolution model for predicting the temporal evolution of face-centered 
cubic (FCC) polycrystalline microstructures subjected to an arbitrary macroscopically imposed stretching tensor. Most importantly, it 
is demonstrated that the use of the Bayesian DOE strategy dramatically reduces the need for large training datasets. 

2. Background 

2.1. Feature engineering of polycrystalline materials via MKS 

The MKS framework starts with an unsupervised feature engineering of the microstructures being studied. For this purpose, we first 
compute translationally invariant features of the polycrystalline RVEs via 2-point spatial correlations. The 2-point spatial correlations 
f(g, g′ |r) capture the conditional probability density of finding lattice orientations g and g′ located at the head and tail of a vector r 
randomly placed within the microstructure (Torquato and Haslach Jr, 2002; Niezgoda et al., 2011; Niezgoda et al., 2013). The 
digitized Fourier representation of the 2-point spatial correlations for the polycrystalline material are expressed as (Kalidindi, 2015; 
Paulson et al., 2017), 

f (g, g′ |r) =
∑

Q

∑

L

∑

u
FLQ

u TL(g)TQ(g
′ )χu(r) (1)  

where FLQ
u are the Fourier coefficients, and χu(r) is a primitive basis function which equates to one if the vector r lies in the vector bin u 

and is zero otherwise. TL(g) represent the symmetrized GSH basis functions that already reflect the desired crystal and sample sym-
metries for the problem. Suitable truncation of the GSH representations and the discretized r-space (resulting from the use of voxelated 
microstructure domains) allows for the identification of a finite set of FLQ

u for a comprehensive representation of polycrystalline mi-
crostructures capturing many of their salient features (Hashemi and Kalidindi, 2021; Paulson et al., 2017; Paulson et al., 2018). Most 
importantly, it has been shown (Cecen et al., 2016; Fullwood et al., 2010) that this extremely large feature vector can be computed by 
leveraging the fast Fourier transform (FFT) algorithm (Brigham, 1988). 

As the next step, the MKS framework employs the principal component analysis (PCA) (Hastie et al., 2005) to reduce the 
dimensionality of the complete set of 2-point spatial correlations selected for model building. PCA rotationally transforms the original 
data onto the orthogonal directions of highest variance (called PC basis) ordered descendingly based on their captured variance in the 
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original dataset. Prior studies have shown that one can achieve reasonably accurate low-dimensional representation of highly complex 
polycrystalline microstructures with only a handful of PC scores (Khosravani et al., 2017; Iskakov et al., 2018; Yabansu et al., 2020; 
Paulson et al., 2017; Fernandez-Zelaia et al., 2019). In the present study, the PC scores representing the polycrystalline microstructures 
are denoted by the vector α. 

2.2. Gaussian Process Autoregression Models 

Gaussian Processes (GPs) can be combined with time series autoregression (AR) models; the resultant GPAR models (Requeima 
et al., 2019) are capable of capturing nonlinear system dynamics. Mathematically, the GPAR model is expressed as a zero-mean GP 
(Williams and Rasmussen, 2006): 

αt
i ∼ G P (0, k(γ, γ′ )) (2)  

where αt
i denotes an individual targeted PC score representing the polycrystalline microstructure at the current time t, γ = {αt−1

i ,αt−2
i ,

…, αt−β
i , θ} denotes the input vector comprising normalized variables capturing the known prior time history (over the previous β 

timesteps, with β referred as the autoregression order) as well as the external loading parameter θ (captures details of the imposed 
deformation in the current time step), and k denotes the covariance kernel. The automatic relevance determination squared expo-
nential (ARD-SE) kernel (Williams and Rasmussen, 2006) often serves as a good choice for the kernel function due to its expressivity 
and interpretability. The ARD-SE kernel can be mathematically expressed as (Williams and Rasmussen, 2006) 

k(γ, γ′ ) = σ2
f exp

[
− 1

2
∑β+1

l=1

(
γl − γ′

l
)2

σ2
l

]
+ σ2

nδγγ′ (3)  

where δγγ′ is the Kronecker delta. The scaling factor σf , the length scale parameters σl, and the noise factor σn represent hyper-
parameters that need to be optimized during the model building process. Relatively higher/smaller values of length scale σl results in 
smooth/noisy predictions, providing important insights into the influence of each input feature on the output predictions. 

The joint distribution between the observed train set and unobserved test set is expressed by a zero-mean Gaussian process 
(Williams and Rasmussen, 2006) as 

[
αt

i

αt
i∗

]
∼ G P

(
0,
[

K(Ai,Ai) K∗(Ai,Ai∗)
K†

∗(Ai,Ai∗) K∗∗(Ai∗,Ai∗)

])
(4)  

where Ai and Ai∗ are data matrices of inputs corresponding to the training and test sets of the ith PC score, respectively, and the 
components of the covariance matrices are computed using the kernel described in Eq. (3). One can obtain the posterior distribution of 
the GPAR by conditioning the joint distribution in Eq. (4). The posterior distribution is a Gaussian, fully described by its mean μi∗ and 
covariance function Σi∗ (Williams and Rasmussen, 2006) computed as 

μi∗ = K†
∗K−1αt

i

Σi∗ = K∗∗ − K†
∗K−1K∗

(5) 

Although the GPAR framework is presented above using a single input, it is easily extendable to multiple inputs. However, when 
GPAR models are formulated with the dependence of the output on the time histories of all the inputs, the larger data matrix sizes and 
need to optimize the large number of hyperparameters increase the computational cost significantly. In prior work (Hashemi and 
Kalidindi, 2021) using PC representations of the high-dimensional inputs, it was seen that the history dependence of the PC scores can 
be decoupled (possibly because of the orthogonal decomposition). This observation raises the possibility that GPAR models can be 
established independently for each PC score at significantly lower computational cost. In this work, we will specifically explore the 
feasibility of establishing such uncoupled GPAR models for the evolution of polycrystalline microstructures subjected to plastic 
deformation. 

2.3. Bayesian DOE strategies 

Typically, in problems involving vast design spaces and/or high cost of data generation it is desirable to devise a Bayesian design of 
experiment (DOE) strategy to minimize the number of training data points needed for the extraction of the high-fidelity surrogate 
model of interest. Bayesian DOE facilitates this process by (1) indicating which data point (here, a combination of polycrystalline 
microstructure and the arbitrary stretching tensor) should be chosen next to maximize the expected information gain, and (2) 
providing a stopping criterion when additional training data points are not expected to further improve the model performance. 

Within the Bayesian DOE framework, an initial GP is built using a small initial training data (possibly covering the design space 
uniformly). Then, the GP prediction for all candidate data points targeted for training are evaluated. From the candidate set, the data 
point that maximizes the expected information gain on model performance is selected as the next training point. The computational 
expensive physics-based model is executed for the selected training point, and the results are used to update the GP model. The process 
is then repeated until one obtains an acceptable model performance. Prior studies have largely used either active learning Mackay 
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(ALM) (MacKay, 1992; Montagna and Tokdar, 2016; He, 2015; Seo et al., 2000) or active learning Cohn (ALC) (He, 2015; Seo et al., 
2000; Cohn, 1996; Sauer et al., 2022) to select additional data points. While ALM selects the data point that has the greatest standard 
deviation in the GP prediction, ALC selects the data point that maximizes the reduction in the overall prediction variance. In this study, 
we used ALC since it results in global reduction in the variance of the GP predictions instead of focusing on local data points of highest 
variance. 

3. Data generation 

3.1. Synthetic polycrystalline microstructures 

For the present study, a rich ensemble of synthetic FCC polycrystalline microstructures was generated to serve as the candidate set 
for training the desired surrogate models. The generation was designed to account for various morphologies and textures commonly 
encountered in cubic polycrystalline materials, and comprised of three steps:  

(i) Generation of a space-filling 3-D grain structure with targeted grain morphology (specified by an average grain size and an 
average aspect ratio),  

(ii) Generation of orientation distribution functions (ODFs) from various commonly encountered textures and  
(iii) Assignment of grain orientations sampled from generated ODFs to the grain structures produced in step (i). 

Specifically, the open-source Python package KanaPy (Prasad et al., 2019) was used for addressing step (i). The volumes generated 
corresponded to a 51 μm × 51 μm × 51 μm cube domain with a 1 μm × 1 μm × 1 μm voxel size. Since there is no explicit length 
scale in the constitutive model used in this study, the results are independent of the voxel size. The main specifications in generation of 
each microstructure are grain aspect ratios parameterized as 1 : 1 : c with c ∈ [1, 2,3, 4,5] (elongating grains in the z-direction) and the 
total number of grains chosen to range from 40 to 1500 grains. A total of 600 distinct grain structures were generated by uniform 
sampling of combinations of aspect ratio and number of grains from the ranges described above. For step (ii), ODFs are defined using 
weighted linear combinations of commonly encountered texture components (Suwas and Ray, 2014), which can be described using 
Miller indices as {hkl}〈uvw > specifying the crystallographic planes and directions, respectively. The different texture components 
utilized in this study to generate different ODFs are shown in Fig. 1, and include (a) texture components typically observed in deformed 
samples of cubic metals: Goss {110}〈001 >, Brass {110}〈112 >, S {123}〈112 >, Copper {112}〈111 > and Cube {100}〈001 >; (b) 
rolling textures: brass (with strong Brass and weak Goss components) and copper (equal proportions of Copper, Brass and S compo-
nents); (c) fiber textures: <110>||RD and <111> ||ND; and (d) uniform texture (Suwas and Ray, 2014; Toth et al., 1990; Venka-
traman et al., 2021). Each ODF is generated via MTEX (Mainprice et al., 2015) by randomly sampling 10 different weights (wi) for each 
of the aforementioned texture components while ensuring 

∑10
i=1wi = 1. Following this procedure, a total of 500 distinct ODFs were 

generated. In step (iii), for each grain structure produced in step (i), the desired number of grain orientations are sampled from each 
generated ODF, and randomly assigned to the grains. The process described above produced a total of 300,000 (= 600 grain structures 
times 500 ODFs) distinct polycrystalline microstructures, serving as the candidate pool for the planned DOE efforts. This collection will 
be referred to as the ensemble of microstructure volume elements (MVEs) (Paulson et al., 2017; Yang et al., 2018; Yabansu et al., 2014; 
Latypov and Kalidindi, 2017). Prior work (Paulson et al., 2017; Yang et al., 2018; Yabansu et al., 2014; Latypov and Kalidindi, 2017) 
has demonstrated that it is advantageous to use the smaller MVEs (instead of RVEs) to train the surrogate models of interest. This is 

Fig. 1. Texture components utilized in the present study to generate an ensemble of ODFs.  
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because these generated MVEs are large enough to allow the surrogate models to learn the grain interactions within the polycrystalline 
aggregates, while reducing the computational cost of data generation using the computationally expensive physics-based models. 

Following the MKS feature engineering framework described in Section 2.1, 2-point spatial correlations were computed for the 
complete set of 300,000 candidate polycrystalline MVEs. Following prior work (de Oca Zapiain and Kalidindi, 2019), a total of 5,173, 
428 features were computed for each microstructure. These included 39 GSH coefficients representing the orientation distribution 
function in the MVE (correspond to the volume averaged values of each of the 39 GSH coefficients computed for each voxel in the MVE) 
and 39 sets of 2-point spatial correlations (results in 39 × 513 = 5, 173,389 features for each MVE; details can be found in prior work 
(Hashemi and Kalidindi, 2021)). PCA was performed on the full ensemble of the computed microstructural statistics. Prior to the 
application of PCA, each set of spatial correlations is scaled in such a way that it exhibits a unit variance across the entire dataset. This 
ensures all 39 sets of spatial correlations are given equal consideration in the PC representation. Incremental principal component 
analysis (IPCA) (Li et al., 2016) was employed in this study to avoid the memory issues arising from the large dataset of the size 300,
000 × 5,173,428 collected for this study. IPCA (implemented in Scikit package in python programming language (Hao and Ho, 
2019)) retrieves the first k principal components by considering small batches of data at a time, and sequentially updating the PC 
representation as more data is taken into consideration. In the present study, the GPAR-based MKS model for polycrystalline aggre-
gates subjected to arbitrary stretching tensors is obtained using the first 10 PC scores (k = 10). This decision was made primarily to 
limit the computational cost involved. Furthermore, since the reduced-order models are being built in a completely de-coupled manner 
(i.e., separately for each PC score), one can augment the models produced here as needed by simply extending the protocols to the 
additional PC scores. 

It is emphasized that PCA is performed only once in this work, and the established PC basis is used consistently throughout this 
work. In other words, as new microstructures are encountered (e.g., deformed microstructures are predicted by CPFEM), they are 
projected onto the already established PC basis. Since the candidate pool established for this study comprised a diverse set of mi-
crostructures, the established PC basis was found to be comprehensive in capturing the changes in the polycrystalline microstructures 
arising from the imposed plastic deformation (discussed in more detail in Section 3.3). 

3.2. CPFEM simulations 

All crystal plasticity simulations for this study were performed using a previously validated CPFEM model with a computationally 
efficient fully-implicit time-integration scheme (Kalidindi et al., 1992). Each voxel of the MVE is converted to a 8-noded 3-D solid 
element (C3D8) of a finite element (FE) mesh. Because of our interest in capturing the role of plastic deformation on microstructure 
evolution, high values of elastic stiffness parameters were assigned to the elements to limit the elastic strains to negligibly small 
numbers (~0.0001). Although, it is in principle possible to treat the evolution of the slip resistance as an additional material local state, 
it was decided to limit the present study to the non-hardening case for simplicity. Other parameters used in the CPFEM simulations 
include the reference slip rate and the slip rate sensitivity, which were set to 0.001/s and 0.01, respectively. In the CPFEM simulations, 
each MVE was subjected to periodic boundary conditions corresponding to a selected macroscopically imposed stretching tensor. 
Following strategies developed in earlier work (Van Houtte, 1994; de Oca Zapiain et al., 2017; de Oca Zapiain et al., 2022; Alharbi and 
Kalidindi, 2015; Kalidindi et al., 2020), the surrogate model developed in this work is formulated in the principal frame of the traceless 
symmetric stretching tensor, D, which can be conveniently parametrized as 

D =
̅̅̅
2
3

√
D0

⎡

⎣
cos(θ − π/3) 0 0

0 cos(θ + π/3) 0
0 0 −cos(θ)

⎤

⎦ (6)  

where D0 = |D| denotes the magnitude of the macroscopically imposed strain rate, and θ ∈
[
0, π

3
)

captures the deformation mode. As 
specific examples, θ = 0 and θ = π

6 correspond to uniaxial compression and plane strain compression, respectively. 
For generating the training data, CPFEM simulations corresponding to a selected θ are performed on MVEs selected from the 

generated ensemble using a DOE strategy. The deformed microstructures predicted by CPFEM after an imposed strain of ε = D0 ×t =
0.02 (i.e., an imposed equivalent strain of 0.02) were recorded as the final microstructures (this includes the spatial positions as well as 
crystal lattice orientations at each integration point of the deformed elements). Note that the imposed strain rate is not expected to 
have a significant influence on the predicted final microstructure, since the model employed in this study exhibits an almost rate- 
independent behavior (the rate-sensitivity parameter was assigned a value of 0.01 (Wu et al., 2008)). We therefore formulate the 
GPAR model in this work such that the time steps correspond to a fixed strain step of 0.02, independent of the imposed strain rate (i.e., 
the value of D0). The approach outlined here therefore allows us to parameterize the deformation mode with a single variable, θ. 
Further, it should be noted that for a rigid-viscoplastic non-hardening crystal plasticity constitutive model employing the 
rate-dependent slip power law, the relationship between the imposed strain rate tensor D and the deviatoric stress tensor σ′ is 
one-to-one. In other words, a single value of D corresponds to a single value of σ′ , and vice-versa. This is because the crystal plasticity 
relationship between these two tensors produces 5 equations with 5 unknowns with a unique solution, independent of the number of 
potential slip systems. Consequently, there is no need for any other history-tracking state variables. The computational simplicity of 
the updated Lagrangian framework described above is also the main reason for its selection. Although a total Lagrangian scheme 
(Kalidindi et al., 1992; Kalidindi and Anand, 1992; Kouchmeshky and Zabaras, 2009; Sundararaghavan and Kumar, 2012) offers many 
advantages in the conventional approaches to the crystal plasticity computations, it actually makes it much more difficult to establish 
the machine learning model desired here as it requires us to model the time history of much more complicated variables such as the 
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plastic deformation gradient tensor. 

3.3. Extension of MKS feature engineering to deformed polycrystalline microstructures 

The voxels of the CPFEM predicted deformed microstructures do not lie on uniform grids, inhibiting the direct use of the fast 
Fourier transform (FFT) algorithms (Cecen et al., 2016; Fullwood et al., 2010) in the computation of 2-point spatial correlations. 
Without the use of the FFT algorithms, the cost of computing the 2-point correlations for polycrystalline microstructures becomes 
extremely high. For this work, this challenge was addressed by devising new protocols. Following prior work (Hashemi and Kalidindi, 
2021; Paulson et al., 2017), the first step in this protocol involves the representation of the material local state in each voxel by a local 
orientation distribution function (i.e., voxel-level ODF), expressed as GSH coefficients. Since the CPFEM predictions produce a crystal 
orientation at each of the integration points, the voxel-level ODF is simply defined by an average over the GSH coefficients corre-
sponding to the orientations at each of the integration points in the deformed mesh (Bunge, 1993). Taking advantage of the fact that 
GSH coefficients of real-valued functions (such as the spatial correlations defined in Eq. (1)) come in complex-conjugate pairs, they are 
reshaped to equivalent real-valued representations (Bunge, 1993). Note that this representation is on a non-uniform spatial grid for the 
deformed microstructures, and needs to be re-sampled onto the uniform grids (see Fig. 2(a)-(b)). 

Fig. 2(a) shows schematically a 2-dimensional section of a 3-D deformed microstructure, where the grains are shown in different 
colors. A bounding rectangular parallelopiped box of dimensions LBox

x × LBox
y × LBox

z is identified based on the extremes of the nodal 
coordinates in the deformed microstructure lx × ly × lz, padded by rmax in all directions (see Fig. 2(a)). rmax identifies the maximum 
vector component lengths to which the 2-point spatial correlations are to be computed. For the present study, considering that the 
undeformed MVEs are 51 × 51 × 51 voxels, the value of rmax was chosen as 25 voxels to ensure adequate sampling of the vectors of 
the selected lengths in computing the spatial correlations (Cecen et al., 2016; Sun et al., 2017). Each dimension of the bounding box is 
also rounded-up to correspond to an integer number of the voxels. The bounding box is then placed around the deformed micro-
structure, as shown in Fig. 2(a). Note that the bounding box can be placed with any amount of gap between the deformed micro-
structure and the bounding box as long as the deformed microstructure is contained fully within the box. The voxels that are not 
associated with the deformed microstructure in Fig. 2(a) are all assigned zero values (also called padding). The padded microstructure 
shown in Fig. 2(a) is denoted as m̃g

s . Next, we create another microstructure denoted  m̂g
s by extending the deformed microstructure in 

all directions to completely fill out completely the same bounding box LBox
x × LBox

y × LBox
z . Note that the second microstructure has no 

padded voxels. 
The real-valued representations of the voxel-level ODF computed on the non-uniform deformed microstructure are then re- 

sampled, using a nearest neighbor interpolation algorithm (Valdman, 2016), onto the uniform grids identified in Fig. 2 for both mi-
crostructures m̃g

s and m̂g
s . Convolving these re-sampled microstructures with each other using the FFT algorithm, and normalizing by 

the number of voxels in the re-mapped domain of the deformed microstructure in m̃g
s results in the efficient and correct computation of 

the 2-point spatial correlations up to vector  ̃r = (|rx| ≤rmax, |ry| ≤rmax, |rz| ≤ rmax) (Kalidindi, 2015; Cecen et al., 2016). The computed 
2-point spatial correlations are projected onto the already established PC basis to obtain the PC scores for the deformed microstructure; 
these serve as the targets for the training of the GPAR model, while the PC scores of the initial microstructures and the deformation 
mode serve as regressors. 

4. GPAR-MKS framework 

As previously stated, our goal in the present study is to produce high-fidelity low-computational cost process-microstructure 
evolution surrogates for polycrystalline aggregates subjected to any arbitrary stretching tensor in the form of a GPAR model with 
autoregression order of one. In other words, these models would take as input the PC scores of a microstructure at the beginning of a 
strain step2 (set equal to 0.02 for the present study) and the imposed deformation mode (quantified by θ), and predict the values of PC 
scores at the end of the strain step. A suitable workflow was designed for this training and is schematically shown in Fig. 3. The 
workflow is comprised of three main steps (shown using three differently colored borders in Fig. 3 for the steps involved): (1) the initial 
design, (2) the Bayesian DOE loop to identify the next training point to be added and the corresponding update of the GPAR model, and 
(3) the GPAR model validation. 

4.1. Initial design 

The workflow starts by selecting an initial training set of datapoints. Each datapoint is obtained by selecting a microstructure from 
the pool of candidate microstructures (generated in Section 3.1) and applying a strain step of 0.02 corresponding to a selected θ using 
the CPFEM tool described earlier. An Euclidean distance-based K-centroid clustering algorithm (Hastie et al., 2005) was used to 
identify the k (= 25 for the present study) well-separated microstructures from the full ensemble of 300,000 candidate microstruc-
tures, each of which was then subjected to six deformation modes corresponding to θ = {0∘, 10∘, 20∘, 30∘, 40∘, 50∘} to generate the 

2 Due to the fact that the constitutive model considered in the present study is almost rate-independent, it is natural to formulate the GPAR model 
here in terms of the imposed strain step. This is because the imposed strain step is much more relevant to tracking the microstructure evolution, 
compared to the time step over which the strain step is imposed. 
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Fig. 2. Protocols used for the efficient computation of 2-point spatial correlations in the deformed microstructures. (a) A schematic of the 2-D cross- 
section of a 3-D deformed microstructure padded within a large bounding box and mapped to a uniform grid. (b) Extended deformed microstructure 
within the same bounding box mapped to a uniform grid. 

Fig. 3. Schematic description of the workflow used in this study to train the GPAR model.  
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Fig. 4. Low-dimensional PC projections of the full ensemble of candidate polycrystalline microstructures considered in this study. In these plots, microstructures whose texture was predominantly from 
a single texture component are colored differently. 
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initial training set. The 150 (25 microstructures X 6 deformation modes) CPFEM predicted deformed microstructures were quantified 
using the extended MKS feature engineering scheme presented in Section 3.3 to produce the initial training dataset. 

Initial GPAR models with autoregression order of one were trained. Following protocols developed in prior studies (Hashemi and 
Kalidindi, 2021), the dependence of the evolution of each PC on the other PCs was evaluated by exploring trial GPAR models. These 
trials revealed that the influence of the time history of a PC score on its own evolution was significantly higher than its influence on the 
evolution of the other PC scores. This observation confirms our expectation that the GPAR models can be developed in a fully 
de-coupled manner, i.e., the model input for αt

i can be taken simply as γ = {αt−1
i ,θ}. Note that this greatly simplifies the model building 

effort. 

4.2. Bayesian DOE loop 

One loop of the Bayesian DOE entails selection of new inputs (one new input is selected for each of the 10 GPAR models, one for 
each PC score, being trained) where the new training points should be generated, performing the necessary CPFEM simulations, adding 
the new training point to the database of available training datapoints, and updating the GPAR models. A stopping criterion is 
implemented to decide when to terminate the loop. In the present study, the 10-fold cross-validation mean absolute error associated 
with each model was evaluated using the entire training dataset. These errors were then normalized by the mean absolute value of the 
target PC scores. The normalized cross-validation mean absolute errors (nCVMAE) were required to be lower than a specified value, 
chosen as 0.1 here. If this stopping criterion is not met, the GP-based uncertainty associated with the ensemble of the candidate 
microstructures considering all values of θ used in the training is evaluated for each trained GPAR model. Active Learning Cahn (ALC) 
(Cohn, 1996; Gramacy, 2016; Gramacy and Apley, 2015) is then employed to choose new inputs (microstructure and deformation 
mode), whose addition to the training set would result in maximum expected information gained for each GPAR model by maximizing 
the reduction in overall prediction uncertainties. CPFEM simulations are performed for the set of the identified microstructures and 
deformation modes, and the GPAR models are updated using these new data points. The DOE loop described above is repeated, until 
the stopping criterion is met. 

Fig. 5. The sets of undeformed and deformed microstructures generated as the training set by the DOE strategy employed in this work. The 
datapoints corresponding to the deformed microstructures are colored differently, based on the applied value of θ. 
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4.3. Model validation 

A test dataset comprised of k∗ = 8 microstructures is chosen from the candidate pool of microstructures not used in the training. 
Each microstructure within the test set is randomly subjected to one of the six deformation modes used in the training process as well as 
two additional previously unseen values of θ = 15∘ and θ = 43∘. These new values of the deformation mode θ enable assessing the 
GPAR model’s predictive capabilities for other loading conditions not considered in the training step. The CPFEM simulations of test 
cases were conducted to a total strain of |ε| = 0.50. This allows us to evaluate the predictive capability of the GPAR to large strains 
through recurrent use of the model (recall that all training simulations were only performed to a total strain of 0.02). The low- 
dimensional representation of the CPFEM-predicted deformed microstructures are computed using the extended MKS feature engi-
neering scheme described in Section 3.3. It should be noted that since the model is built in the principal frame of the stretching tensor, 
the MVE for the test case needs to be described in this frame to use the models correctly. For monotonic paths, this means that the initial 
MVE is defined in this frame. In other words, the crystal orientations are defined using the principal frame of the stretching tensor as 

Fig. 6. The decay in the values of nCVMAE with the design size for all GPAR models built in this study.  
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the sample reference frame; the voxelization and the spatial computations are also computed using this frame. For non-monotonic 
paths, this means that the spatial correlations need to be suitably rotated between time increments before applying the model 
recurrently. Finally, the performance of the trained models is evaluated using the mean absolute error (MAE) between the predicted 
and actual values of PC scores at the end of the imposed total strain of 0.5. 

5. Results and Discussion 

As mentioned earlier, in this study, only the first 10 PC scores are used in the low-dimensional representation of the microstruc-
tures. This was done mainly to limit the computational cost of the training involved. This truncation level resulted in a representation 

Fig. 7. Out of fold CV parity plots showing the accuracies of all ten GPAR models built in this work. The circles represent the predicted means, while 
the error-bars identify the one standard deviation from the mean value. 
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Fig. 8. Parity plots showing the accuracies of all ten GPAR models built in this work applied to unseen test data corresponding to imposed total plastic strain of |ε| = 0.5. The circles represent the 
predicted means, while the error-bars identify the one standard deviation from the mean value. 
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error of err =
∑

|FLQ
u −F

∼LQ

u |∑
|FLQ

u |
= 0.3, where F

∼LQ

u denotes the GSH representations of the 2-point spatial correlations recovered from using 10 

first PCs. Limited availability of computational resources did not allow us to consider a larger number of PC scores, which will un-
doubtedly reduce this representation error. Fig. 4 presents the low-dimensional representation of the entire ensemble of 300,000 
polycrystalline microstructures considered in this study, projected onto the first 3 PC scores. In this figure, microstructures whose 
texture was predominantly from a single texture component (see Section 3.1) are colored differently. It is clearly seen that within the 
first 3 PCs, microstructures are automatically clustered based on their textures. The intra class variabilities are mainly attributed to 
differences in the microstructure morphologies (i.e., grain shape, size and their spatial distributions). Although, we are visualizing only 
2-D projections of the very large PC space, it is re-assuring that there is natural (unsupervised) organization in the PC space. This is 
impressive because the actual microstructure space for the polycrystals, as already discussed, is extremely high-dimensional. We 
reiterate here our earlier argument that the unsupervised feature engineering of the MKS framework has the potential to be used with 
any user-specified set of targets. Essentially, the low dimensional representations obtained here are chosen to efficiently span a very 
large input domain. 

Adopting the Bayesian DOE scheme presented in the Section 4, a total of 1400 microstructures were identified and simulated to 
obtain the training dataset used in this study. Fig. 5 presents low-dimensional projections of the entire training set, including both the 
undeformed microstructures used as inputs as well as the CPFEM-predicted deformed microstructures (to an imposed total strain of 
0.02, color-coded based on the value of θ). It is observed that the deformed microstructures lie close to the initial microstructures, but 
do depict the expected large influence of the deformation mode, θ. These observations further confirm that the MKS feature engi-
neering framework is producing, practically useful, low-dimensional representations of the inherently high-dimensional poly-
crystalline microstructures. 

Fig. 6 demonstrates the steady decay in the values of nCVMAE with the addition of the training data points identified by the 
Bayesian DOE strategy (the total number of training data points is also referred as the design size). Note that in each Bayesian DOE 
loop, 10 new training datapoints are identified (i.e., the design size is increased in steps of 10 in our application). The steady decrease 
in nCVMAE for all ten GPARs built in this work indicates strongly that the DOE strategy employed in this study is working well for our 
application. In the present study, it is observed that after 1400 training data points, the nCVMAE values corresponding to all PCs are 
well below the stipulated accuracy of 0.1. Thus, the Bayesian DOE loop was terminated and the final GPAR models were established 
using the complete set of the identified 1400 training datapoints. Fig. 7 demonstrates a parity plot showing a comparison between the 
out of fold predictions in a 10-fold cross-validation performed for each trained GPAR model and the target values. It is seen that 
leveraging the devised DOE scheme, with only 1400 data points, we have obtained successfully a reasonably accurate and robust set of 
GPAR models. 

Next, we evaluate the accuracy of the GPAR models established above for their ability to march forward in time and predict the 
complete trajectory of unseen microstructures subjected to a larger imposed strain of 0.5. Given only the PCs of initial microstructures 
as well as the imposed deformation modes, the trained GPAR models were used recursively to predict the evolution of each PC score to 
the imposed large strains. Fig. 8 demonstrates a parity plot serving as a comparison between the predicted values and the target values 
of PC scores of the microstructures within the test set (recall this set comprised of 8 microstructures each subjected to a distinct 
deformation mode). The normalized MAE across all PCs at the end of the last strain step was found to be smaller than 3.5%. The GP- 
based uncertainties with respect to model predictions are found to be within 4% of the mean absolute target value. A summary of the 
normalized mean absolute error for out of fold cross validations (nCVMAE) as well as the test normalized mean absolute error (nMAE) 
are shown in Table 1. Although the parity plot showed in Fig. 8 provides valuable insight concerning the model prediction accuracy 
and its associated uncertainty, it is incapable of demonstrating the evolutionary path of the PC score. Fig. 9 shows the trajectory of two 
selected PC scores of all test microstructures, each colored differently based on their associated applied value of the deformation mode 
θ. It is observed the GPAR predictions closely followed the CPFEM predicted microstructure evolution trajectories, even for unseen 
values of θ. 

As a final confirmation of the accuracy of the GPAR models built in this work, Fig. 10 compares 2-D cross-sections of the recon-
structed 2-point spatial autocorrelations from the actual (target) and predicted PC scores for a selected test microstructure subjected to 
the unseen value of θ = 15∘. These cross-sections are depicted for 3 different values of imposed total strain of 0.02 (associated with the 
training data), 0.24 and 0.50. It is demonstrated that microstructural statistics obtained from the GPAR predictions are quite close to 
the target values. In fact, the mean absolute error between the reconstructed target and predicted 2-point spatial autocorrelations is 
within 1.25% of the mean target value. Similar observations were made for the remaining sets of 2-point spatial correlations. 

In this paper, we have treated the 2-point spatial correlations of the microstructure as the essential quantitative representation of 
the microstructure, as opposed to the more commonly employed 3D volumes (such as those used as inputs or obtained as outputs in 
CPFEM simulations). This is mainly because we treat any specific 3D volume as only one of many possible instantiations of the 
microstructure in a given physical sample. In other words, we subscribe to the paradigm that a statistically homogeneous micro-
structure in a given physical sample is most accurately characterized by the n-point spatial correlations (Torquato and Haslach Jr, 

Table 1 
The mean absolute cross-validation and test errors for each of the ten independent GPAR models built in this work.  

PC score α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 

out of fold nCVMAE 0.015 0.023 0.025 0.018 0.055 0.048 0.069 0.081 0.089 0.091 
Test nMAE 0.014 0.015 0.014 0.013 0.026 0.027 0.018 0.022 0.033 0.025  
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2002; Niezgoda et al., 2011; Niezgoda et al., 2013), and one can sample a large number of stochastic instantiations (3D volumes) for 
any specified incomplete set of spatial correlations (Niezgoda et al., 2011; Niezgoda et al., 2013; Robertson and Kalidindi, 2022). The 
set of stochastic instantiations can then inform the uncertainty in the predicted properties associated with the incomplete set of spatial 
correlations. This fundamental hypothesis is supported by advanced composite theories (Kalidindi et al., 2006; Milhans et al., 2011; 
Nemat-Nasser and Hori, 2013; Matouš et al., 2017) as well as our prior work (Paulson et al., 2017; Paulson et al., 2018; Paulson et al., 
2019) where the 2-point spatial correlations were successfully correlated with effective properties of the polycrystalline aggregates. It 
is acknowledged that the mapping of the specified spatial correlations to stochastic 3D instantiations can be quite challenging, 
especially for polycrystalline microstructures. 

As another limitation of the current work, we acknowledge that future work should consider a larger number of PCs and an even 
richer set of candidate microstructures. Note specifically that the use of 10 PCs in the current work resulted in a representation error of 
~0.3. Similarly, there is a need to further extend the candidate set of microstructures to additional textures and grain morphologies. 
Although this would incur a very high one-time computational expense (mainly for carrying out PCA), establishing such a large library 
of 3D microstructures and their PC representations would serve as a valuable resource for future efforts. Because the PC representations 
are obtained in unsupervised learning, such candidate sets can be used for any property of interest associated with the candidate 
microstructures (not restricted to the plastic properties considered in this work). 

As a final discussion point, it is emphasized that the reduced-order GPAR models built in this work will significantly reduce the 
computational cost involved in polycrystalline microstructure or process design efforts. On an average, each simulation of the training 
set corresponding to an imposed total strain of 0.02 took ~ 50 minutes using 16 CPU cores and one V100 NVIDIA GPU core on Georgia 
Tech’s HIVE computing clusters. On the other hand, the average run time of each test simulation corresponding to an imposed total 
strain of 0.50 was ~26 hours using 16 CPU core and four V100 NVIDIA GPU cores on Georgia Tech’s HIVE computing clusters. The 
GPAR models trained in this study took less than 5 seconds on a single core 2.8 GHz processor with 16 GB RAM desktop computer to 
predict the complete trajectory of microstructure evolution for new (not seen in the training set) microstructures subjected to an 
imposed total strain of 0.50. It is therefore clear that the high one-time computational cost involved in generating the GPAR models 
covering an extremely large space of microstructures and deformation modes will be very valuable to future microstructure and 
process design efforts. 

6. Conclusions 

A novel framework and associated computational strategies have been devised and demonstrated for establishing a high-fidelity 
reduced-order model capable of predicting the temporal evolution of an extremely broad range of single-phase polycrystalline FCC 
microstructures undergoing any arbitrary plastic stretching tensor. These new protocols leveraged the previously established MKS 
feature engineering schemes and extended their application to deformed polycrystalline microstructures described on a non-uniform 
spatial grid (as typically output from a CPFEM simulation). Most importantly, the proposed protocols successfully implemented a 
Bayesian design of experiment (DOE) strategy scheme to optimally generate the computationally expensive training data set needed. 
This was critical for the success of the effort described in this work because of the extremely large input domain involved, which in 
itself represents a product space of two large spaces (the polycrystalline microstructure space and the deformation mode space). 
Combining all of the elements described above with a Gaussian process autoregression (GPAR) model building strategy, wherein the 
evolution of the individual microstructure features (PC scores) was decoupled, allowed for the successful formulation of the desired 
reduced-order models. The modeling strategies described in this work open new avenues of research because of their broad 

Fig. 9. The predictions of two selected GPAR models built in this work. The circles/solid curves and the cross/dashed curve represent the actual and 
predicted trajectories, respectively. The GPAR predictions are seen to be reasonably accurate for the entire time evolution for all the test 
microstructures. 
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applicability to similarly intractable problems because of their exceedingly large input domains and output ranges. 
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