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A B S T R A C T   

The calibration of continuum damage mechanics (CDM) models is often performed by least-squares regression 
through the design of specifically crafted experiments to identify a deterministic solution of model parameters 
minimizing the squared error between the model prediction and the corresponding experimental result. Spe-
cifically, this work demonstrates a successful application of Bayesian inference for the simultaneous estimation of 
eleven material parameters of a viscous multimode CDM model conditioned upon a small inhomogeneous 
multiaxial experimental dataset. The stochastic treatment of CDM model parameters provides uncertainty esti-
mates, enables the propagation of uncertainty into further analyses, and provides for principled decision making 
regarding informative subsequent experimental tests of value. The methodology presented in this work is also 
broadly applicable to various mechanical models with high-dimensional parameter sets.   

1. Introduction 

Continuum damage mechanics (CDM) is a branch of continuum 
mechanics used to describe inelastic damage and fracture processes 
within materials ranging from initiation through to ultimate fracture 
(Kachanov, 1986; Lemaitre, 1992; Murakami, 2012). This theory pro-
vides computational tractability in modeling the accumulation of dam-
age in a continuum sense rather than the consideration of discrete 
cracks, and as such, has been widely applied to a variety of material 
classes (Chaboche, 1993; Lemaitre, 1984; Lemaitre and Chaboche, 1990; 
Pailhes et al., 2002; Simo and Ju, 1987). In order to correctly capture 
interdependencies between the different possible damage modes and 
their respective evolutions, CDM models often employ a large number of 
model parameters that need to be calibrated to experimental data. The 
number of model parameters is especially high for materials exhibiting 

strong anisotropy prior to damage, such as ceramic-matrix composites 
(CMCs). This is clearly evident from the many CDM models developed 
specifically for such materials (Chaboche et al., 1998; Matzenmiller 
et al., 1995; Oliver, 1989; Pailhes et al., 2002). Traditionally, model 
calibration is often accomplished through least-squares regression of 
model predictions with corresponding experimental measurements 
(Mahnken, 2017). Specific experiments are often designed to simplify 
this calibration process. For example, Camus (2000) calibrated the pa-
rameters in their CDM model by matching the model predictions for the 
stress-strain responses in both on- and off-axis (0◦ and 45◦, respectively) 
uniaxial loading with the corresponding measurements. A similar 
methodology was also used by Chaboche and Maire (2002) and Pailhes 
et al. (2002). Although this simple approach ensures that the model 
predictions match closely with the experimental data in the specific tests 
used in the calibration process, they do not guarantee good predictions 
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for other loading conditions. Furthermore, these approaches do not 
allow for a proper treatment of the stochasticity inherent in the mea-
surements. There are indeed many sources of uncertainty in both the 
physical experiments and the numerical models that need to be taken 
into account in the model calibration process. These may include the 
many simplifications/idealizations introduced into the CDM model as 
well as the accuracy/resolution limits for the experimental data. 

Bayesian inference (Adeli et al., 2020; Knipprath, 2010) offers novel 
avenues for the calibration of the CDM models to available experimental 
data. In this approach, one not only treats the measurements as sto-
chastic outcomes of experiments, but also treats the model parameters as 
random variables. Therefore, it is assumed that any individual experi-
mental observation can only help reduce the uncertainty in the distri-
bution of the model parameter sets. Some of the inherent advantages of 
this approach are that it allows for the consideration of a wide variety of 
experimental observations (from different test protocols) and accounts 
for any inherent correlations among the model parameters. The latter is 
especially important for over-parameterized models with limited ob-
servations (Van Oijen et al., 2005), similar to the conditions encountered 
in the calibration of CDM models for CMCs. Bayesian inference has been 
successfully applied in simpler problems such as the identification of 
elastic constants in an aluminum alloy (Pacheo et al., 2016), a polymeric 
material embedded in glass (Zhang et al., 2012), as well as on laminate 
composites (Castillo and Kalidindi, 2019; Gallina et al., 2015). They are 
being increasingly explored for the calibration of the more sophisticated 
material constitutive models such as the one-dimensional Von-Mises 
plasticity model with strain hardening (Mahnken, 2017), viscoelasticity 
(Mehrez et al., 2015; Miles et al., 2015; Zhang et al., 2013), viscoplas-
ticity (Adeli and Matthies, 2019), and viscous-damage models (Adeli 
et al., 2020; Ding et al., 2020). It should be noted that the total number 
of calibrated model parameters in these prior studies were fewer than 
five, and the calibration was performed on small homogeneous datasets. 
These approaches have not yet been extended to models with larger 
numbers of model parameters, largely due to the relative scarcity of 
suitable experimental data. Indeed, the broader application of these 
methods is only practically feasible if one aggregates and uses inho-
mogeneous data (e.g., experimental observations in distinct multiaxial 
loading conditions) in the calibration process. The use of inhomoge-
neous data is also very likely to sharply improve the accuracy and 
robustness of the estimated distributions on the model parameters. 

In this work, Bayesian inference is applied in the probabilistic cali-
bration of a total of eleven elastic and inelastic damage parameters of a 
viscous multimode damage model developed by Hall and Brockman 
(Hall et al., 2021, 2022; Hall and Brockman, 2020, 2021). The experi-
mental dataset used for this calibration was taken from prior efforts at 
Air Force Research Laboratory (Jefferson et al., 2018)1. It consisted of 
two uniaxial and five multiaxial (tension-torsion) tests, each with 
distinct loading ratios and rates (there are no duplicate tests in the 
dataset). The material evaluated in these tests was an oxide/oxide, 
Nextel™ 720/AS CMC, arranged in 8-harness satin plies woven into 
thin-walled tubular specimens with an involute ply lay-up. The CDM 
model is defined through an Abaqus user-defined material model 
(UMAT) (Dassault, 2019), and is compiled as an external library within 
the Bayesian calibration framework. The modular approach described in 
this work is broadly applicable to a wide variety of custom material 
constitutive models that can be implemented as user-subroutines within 
commercial FE solvers. 

2. Methods 

The CMC viscous deformation and damage model considered in this 

work is taken from the work of Hall and Brockman (Hall et al., 2021, 
2022; Hall and Brockman, 2020, 2021). One key aspect of CMCs which 
allows for their operation in extreme (thermal) environments is its 
damage tolerant behavior, facilitated by an internal fibrous structure 
(Bansal and Lamon, 2014) that is key to avoiding the catastrophic failure 
observed commonly in monolithic ceramics. Under monotonically 
increasing load, the CMC exhibits various energy dissipating damage 
mechanisms such as matrix cracking, interface debonding, sliding at the 
fiber matrix interface, and fiber fracture. These microstructural damage 
mechanisms occur over a distributed region allowing for flaw insensi-
tivity and overall nonlinear behavior (Kumar et al., 2019). Increased 
utilization of CMCs in structural applications requires a method for 
mathematically modeling its behavior at component length scales, 
lumping together these varied energy dissipating damage mechanisms. 
CDM provides one such avenue, and has effectively been used in the 
modeling of such materials under varied loading conditions (Camus, 
2000; Chaboche et al., 1998; Chaboche and Maire, 2002; Pailhes et al., 
2002). 

2.1. Viscous multimode damage model 

An overview of the multimode damage model considered in this 
work is presented here briefly. A more thorough treatment of the 
mathematical foundations can be seen in the works of Hall and Brock-
man (Hall et al., 2021; Hall and Brockman, 2020, 2021). In this model, 
damage is described as a fourth-order tensor exhibiting orthotropic 
symmetry (with nine independent components). The isothermal state in 
the principal material frame is defined by the following list of variables: 

s={Ei,Dα,wα} i= 1, 2,…, 6; α= 1, 2,…, 9 (1)  

where Ei denote the (vectorized) components of the Green strain mea-
sure, Dα are the independent components (referred here as damage 
modes) of the orthotropic damage tensor, and wα are indirect measures 
of work associated with Dα. Specifically, 

[E] = [E11 E22 E33 2E23 2E31 2E12 ]T

[D] = [D1 D2 D3 D4 D5 D6 D7 D8 D9 ]T

= [D1111 D2222 D3333 4D2323 4D1313 4D1212 2D2233 2D1133 2D1122 ]T

(2)  

wα are related to the threshold values of damage energy release rates on 
the α planes, yα, as (no implied summation on the Greek indices) 

wα =
∫ t

0
ẇαdt, ẇα = yα[wα]Ḋα, yα[wα] = y0

α +
∫ t

0
cαyα[wα[ξ]]Ḋα[ξ]dξ (3)  

where cα are material constants related to the expansion of the damage 
surface in the space of energy release rates, and y0

α is the initial threshold 
value in the absence of damage. 

The model presented above assumes small strains with finite rota-
tions. A co-rotational coordinate system is adopted which rotates ac-
cording to the rotation component, R, defined in the polar 

decomposition of the deformation gradient, F. In the relations below, D
Δ 

is the corresponding Green-Nagdhi or Dienes co-rotational rate of the 
damage tensor, D (Belytschko et al., 2014), and Le is defined as the 
elastic stiffness tensor. It is assumed that the second Piola-Kirchhoff 
stress, S, satisfies the hyperelastic relation with the Helmholtz energy, 
ψ , as 

S= ρ0
∂ψ[s]
∂E ,ψ = 1

2 E : Le[D] : E (4) 

The rate of dissipation is then given by 

Y : D
Δ
− ρ0

∑9

α=1

∂ψ
∂wα

ẇα ≥ 0 (5) 
1 These tests were a continuation of efforts initiated in partnership with the 

Air Force Institute of Technology (DeRienzo, 2013; Hilburn, 2014), using the 
same specimen material and involute tubular geometry. 
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where the damage energy release rate Y is defined as 

Y = − ρ0∂ψ [s]/∂D (6) 

Consistent with the vectorized representations introduced earlier, a 
compact representation for Y is introduced as 

[Y] = [ Y1111 Y2222 Y3333 Y2323 Y1313 Y1212 Y2233 Y1133 Y1122 ]T (7) 

The second law is then enforced in the modified sense below, where ζ 
is the corresponding modal dissipation function: 

∑9

α

(
FαD

Δ
α − ρ0

∂ψ
∂wα

ẇα

)
= ζ

[
D
Δ

α, ẇα; s
]
≥ 0 (8)  

Fα =Yα(fα)qα , fα = 〈∑
β

9H−1
αβ Yβ

yα[wα]
− 1〉 (9)  

where 〈 • 〉 is the Heaviside function, β = 1, 2,…,9, and the H−1 matrix 
has diagonal entries 1/Hαα and off-diagonal entries − nαβ/ Hαα. 

The assumption of maximum dissipation rate (Hall et al., 2021; 
Rajagopal and Srinivasa, 1998, 2004) leads to 

D
Δ

β =
∑9

α
H−1

βα [s]Yα(fα)qα ≡
∑9

α
H−1

βα [s]Fα (10)  

where the same matrix H−1 is assumed in Equations (9) and (10) for 
simplicity. 

In the present tension-torsion application, only damages modes 1 
and 6 are active, such that damage evolution is defined as 

D
Δ

1 =
1

H11
Y1(f1)q1 − n16

H11
Y6(f6)q6

= 1
H11

Y1〈(Y1 −n16Y6)/H11
y1[w1]

−1〉q1 − n16
H11

Y6〈Y6/H66
y6[w6]

−1〉q6

D
Δ

6=
1

H66
Y6(f6)q6 − n16

H11
Y1(f1)q1

= 1
H66

Y6〈Y6/H66
y6[w6]

−1〉q6 − n16
H11

Y1〈(Y1 −n16Y6)/H11
y1[w1]

−1〉q1

(11) 

The directional damage coupling coefficients, nαβ, reflect the effects 
of coupled damage accumulation in normal and shear loadings. At the 
microstructural level, these coupling parameters reflect the effect of 
normal stresses on frictional shear deformation occurring at longitudinal 
crack faces and fiber-matrix interfaces. 

2.2. Bayesian inference of model parameters 

The procedure for estimating model parameters given noisy data is 
formally known as the inverse problem (Kirsch, 2011; Wu et al., 2018), 
or model calibration in statistical literature (Box and Hunter, 1962; 
Kennedy and O’Hagan, 2001). Traditionally such a model is defined as 

yE = yM(θ) + ξ (12)  

where yE denotes the noisy structured observational data, yM the pre-
dictive model with unknown parameters θ, and ξ the unknown obser-
vational noise. Directly calculating the inverse of the predictive model is 
generally intractable in practice, limiting methods for the identification 
of θ which best match the experimental data. 

The multimode damage model in this work is sufficiently flexible to 
model wide ranging nonlinear material behavior, at the cost of increased 
parameterization in its underlying form. This increased parameteriza-
tion presents challenges in the identification of θ when provided with 
limited or inhomogeneous experimental datasets corrupted by unknown 
noise and nonlinear effects. It is precisely in this scenario in which 
Bayesian approaches become increasingly useful, as they treat model 
parameters as stochastic variables exhibiting a distribution of possible 

values, rather than providing a deterministic result. An important 
property of Bayesian inference is its ability to update one’s beliefs, or 
condition the probability distribution of stochastic variables, as addi-
tional data (e.g., experimental observations) becomes available. Given 
the model form of Eq. (12), Bayes’ theorem is commonly expressed as 

P
(
θ
⃒⃒
yE) = P(yE|θ)P(θ)

P(yE)
(13)  

where P(θ) represents the prior belief on the unknown model parameters 
θ, P(yE

⃒⃒
θ) the likelihood of sampling the observations yE for a specific set 

of model parameters, P(yE) is the probability of the evidence, and 
P(θ

⃒⃒
yE) the posterior representing the updated belief on the model pa-

rameters θ given the observations yE. The manipulation of conditional 
probabilities in Eq. (13) is especially useful in cases where P(yE

⃒⃒
θ) is easy 

to compute, but not P(θ
⃒⃒
yE). The likelihood is often considered to be 

Gaussian as it arises from the model in Eq. (12) with an assumption of 
normally distributed white noise. In applications where little prior 
knowledge over the material model parameters is available, a uniform 
distribution is often taken for the prior so that its influence over the 
posterior is limited. 

2.2.1. Affine-Invariant Ensemble Markov Chain Monte Carlo algorithm 
The identification of the multidimensional parameter distribution 

conditioned on the observed experimental data (i.e., posterior distri-
bution defined in Eq. (13)) was estimated through the Affine-Invariant 
Ensemble Markov Chain Monte Carlo (MCMC) algorithm (Fore-
man-Mackey et al., 2013; Goodman and Weare, 2010). This ensemble 
sampler was utilized primarily for its ability to readily identify skewed 
or multimodal distributions, both of which were expected in the sam-
pling of such a high dimensional parameter space. The general goal of 
MCMC algorithms is to draw samples from the posterior probability 
density as defined in the numerator of Eq. (13). This strategy allows one 
to sample from the posterior distribution without computing the evi-
dence, which is generally expensive to compute (Foreman-Mackey et al., 
2013). The sampling strategy can be viewed as a procedure for gener-
ating a random walk in parameter space that given sufficient time, draws 
a representative set of samples from the posterior distribution. During 
this random walk, each individual point in the Markov chain X(ti) = θi 
depends solely on the position of the prior step X(ti−1) = θi−1. 

In comparison to the standard Metropolis-Hastings (M − H) algo-
rithm, the Affine-Invariant Ensemble algorithm requires the existence of 
an ensemble of K walkers S = {Xk}, where the proposal distribution for 
one of the walkers (indexed by k) is based on the locations in parameter 
space of the remaining K − 1 walkers defining the complementary set of 
walkers S[k] = {Xj, ∀j∕= k}. During each iteration, the position of all 
walkers in the ensemble is updated. In order to update the position of a 
single walker at position Xk, a walker is drawn at random from the 
complementary set S[k] and the new proposed position for the walker Xk 

can be written as 

W =Xj + Z
(
Xk(t)−Xj

)
(14)  

with Z being a random variable drawn from the distribution g(z). The 
particular distribution recommended by Goodman and Weare (2010) is 

g(z)∝

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1̅ ̅̅
Z

√ if z ∈
[1

a, a
]

0 else

(15)  

where a is a tunable parameter set to 2. The proposal walker location is 
then accepted with probability 

q=min
(

1,ZD−1 P(W)
P(Xk(t))

)
(16) 
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where D is the dimensionality of the space being sampled. The proposal 
is then accepted or rejected when compared against a sample drawn 
from a standard uniform distribution r←R ∼ U[0,1]. If r ≤ q then the 
transition is accepted and Xk(t+1) is assigned the position W. 

The algorithm described above has been extensively used in astro-
physics applications (Chontos et al., 2021; Huang et al., 2021; Suárez 
Mascareño et al., 2021) where models exhibit similar 
high-dimensionality as the CDM model considered in this work. In such 
high-dimensional spaces, traditional algorithms require multiple 
tunable parameters (their number scaling with the problem size), 
whereas the Affine-Invariant Ensemble Sampler employs only one 
parameter (Foreman-Mackey et al., 2013). It has also been shown to 
provide improved performance in highly skewed distributions (such as 
the Rosenbrock density) over the conventional M − H algorithm 
(Goodman and Weare, 2010). The specific MCMC algorithm used in this 
study is implemented in the Python package emcee, developed by 
Foreman-Mackey et al. (2013). In practice, the initialization of the 
ensemble walker positions is recommended to be placed in a tight cluster 
surrounding an estimate of the maximum likelihood estimate (MLE). 

2.2.2. Autocorrelation analysis and chain convergence 
An ever-present challenge in MCMC sampling is judging when suf-

ficient samples have been drawn to ensure some representative and 
stationary posterior probability density function (PDF). Unfortunately 
without having definitive bounds on the smoothness and support of the 
posterior PDF, it is never truly possible to know that the entire posterior 
PDF has been correctly sampled (Hogg and Foreman-Mackey, 2018). In 
real world applications of MCMC sampling, one must rely on heuristics 
to cease sampling. Examples of these include, observing that each 
walker has traversed high-probability portions of the parameter space 
many times, observing trace plots for each parameter to ensure sta-
tionary behavior, or observing convergence of the posterior with varied 
initialization. These heuristics can be made more precise through a 
quantification of the amount of deviation observed between two subsets 
of a sampled chain. A metric that formalizes this notion is the integrated 
autocorrelation time of a chain, of which estimates are foundational in 
multiple other diagnostic heuristics often employed convergence anal-
ysis (Roy, 2019). 

As previously discussed MCMC sampling approximates intractable 
integrals through a Monte Carlo approximation in scenarios where point 
estimates of P(yE

⃒⃒
θ) can be readily obtained without knowledge of its 

analytical form. The error associated with this approximation is pro-
portional to 

̅̅̅̅̅̅̅̅
τ/N

√
, where τ is the integrated autocorrelation time, and N 

the total number of samples (Hogg and Foreman-Mackey, 2018). The 
autocorrelation time then defines the average time required for the 
samples to become uncorrelated, and provides a method to calculate the 
relative error on the target integral (Hogg and Foreman-Mackey, 2018). 
It is defined as 

τ =
∑∞

t=−∞
A(t) = 1 + 2

∑∞

t=1
A(t) =1 + 2

∑∞

t=1

C(t)
C(0) (17)  

where A(t) is the normalized autocorrelation function of the stochastic 
process that generated the chain and C(t) is the autocovariance function 
that measures the amount of correlation between samples separated by 
an integer lag t. The autocovariance function is defined as 

C(t)=Ei[(X(ti)−X)(X(ti+t)−X)]= lim
N→∞

1
N
∑N

i=1
(X(ti)−X)(X(ti+t)−X) (18)  

where X is the mean. In practice it is not possible to compute the inte-
grated autocorrelation time as it requires an infinitely long chain of 
samples. It can instead be estimated using a finite chain {X(tn)}N

n=1 as 

Ĉ(t) = 1
N − t

∑N−t

i=1
(X(ti)−X)(X(ti+t)−X) (19)  

and this estimate is then propagated through Eq. (17) to obtain an es-
timate for the autocorrelation time. In practice, it is recommended to use 
a value M≪N as the introduction of this smaller value reduces the 
variance of the estimator at the cost of a small amount of added bias. 
Sokal (1996) recommends selecting the value of M such that M ≥ 5τ̂(M), 
and notes that this selection performs well for chains longer than 1000τ̂. 
Fortunately, the Affine-Invariant MCMC algorithm contains large 
numbers of parallel chains of walkers which can be leveraged such that 
often only chains of length 50τ̂ are required (Foreman-Mackey, 2021). 

3. Multiaxial experimental dataset 

The experimental dataset used for probabilistic calibration in this 
work consists of experiments performed at Air Force Research Labora-
tory (Jefferson et al., 2018). The material evaluated was an oxide/oxide, 
Nextel™ 720/AS CMC, arranged in 8-harness satin plies woven into 
thin-walled tubular specimens with an involute ply lay-up. The tubes 
were designed to nominally have an outer diameter of 41 mm with an 
85 mm gage length. The involute layup process results in material ply 
orientation inclines approximately 7◦ from the hoop direction. In this 
work, this small angle is neglected and the stresses and strains are re-
ported in the cylindrical coordinate system. Further information 
regarding the test apparatus, specimen shape, and manufacturing 
methodology can be found in the theses of Hilburn (2014), DeRienzo 
(2013) and work by Pagano and Whitford (1985). Relevant details of 
each test sample considered in this work are summarized in Table 1, 
where load control information is presented alongside the calculated 
resulting mean strain rates. All tests were performed under ambient 
conditions. Of the seven tests performed, one isolated the response in 
pure tension and one in pure torsion, while the remaining samples were 
performed at four varying loading ratios and three varied rates. 

The measured stress-strain responses are shown in Fig. 1, where it 
can be observed that the strain to failure varies significantly between 
samples according to their test parameters. The viscous effects of dam-
age evolution are also evident in the varied stiffness degradation and 
ultimate strengths at failure. 

4. Simultaneous Bayesian calibration of damage model 

The viscous multimode damage model was simultaneously cali-
brated against the tension-torsion dataset described in Section 3. This 
inverse problem of identifying model parameters given the multiaxial 
tension-torsion dataset was approached through the identification of the 
active model parameters, namely, elastic constants E1 and G12, strength 
in tension and torsion (XT1 and XT6), viscous scaling parameter (c1 and 
c6), damage evolution power law exponent (q1 and q6), damage evolu-
tion scaling parameter (H11 and H66), and damage coupling parameter 
n16. These 11 model parameters are then grouped into the model 
parameter vector θ. 

In order to incorporate the experimental curves into the numerical 

Table 1 
Experimental data and testing conditions for each thin-walled tubular sample, 
including loading rates in tension and torsion and the load ratio.  

Sample Axial Rate (MPa/s) Torsional Rate (MPa/s) 

115 1.000 0.250 
117 0.000 0.400 
119 4.000 0.000 
120 4.000 0.290 
121 0.200 0.014 
122 0.200 0.067 
123 0.200 0.133  
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workflow, each curve in tension and torsion tests was sampled at L 
evenly spaced points. The stress values in vectorized form were then 
stacked and grouped into a vector defined as sE. The resulting final 
vector was of the form 

sE =
[

sT
a1 sT

t1 ⋯ sT
a7 sT

t7
]T (20)  

where sa1 is the vector consisting of all the stress components σ11 (at the 
L evenly spaced strain points) for the first sample, and st1 the vector 
consisting of all the shear stress components σ12. Accordingly, the final 
length of sE is 14L. A similar vector could be established for the model 
output through evaluating the material model at the same strain and 
time increments as those used for each experimental sample, and 
populating the vector with stress values from a discretized curve. This 
was accomplished through direct calls to a driver subroutine wrapped 
around the Abaqus UMAT subroutine as an externally loaded library. 
The Abaqus UMAT subroutine is used directly for performing stress 
evaluations. This approach allows the fully three-dimensional model to 
be used for property identification, while accommodating a mixture of 
test types with differing stress boundary conditions. The UMAT works 
with three-dimensional stress and strain states, while the property 
evaluation process prescribes only the strain quantities relevant to the 
test data being used for fitting. A wrapper function is provided to 
perform a Newton-Raphson solution for unspecified strains that corre-
spond to zero stress components, by calling the UMAT multiple times at 
a single strain sampling point. Robust initializing values are always 
available from previous time points, ensuring rapid convergence of 
subsequent iterations. Specific to this application, this driver subroutine 
identifies strain increments corresponding to the thin-walled plane- 
stress condition during tension-torsion testing. 

4.1. Mixed effects statistical model 

The classical definition of the inverse problem described in Section 
2.2 for scalar, functional, or tensor output for a singular individual in a 
population can be extended through the use of mixed effects models 
(Davidian and Giltinan, 1993, 2003; Pinheiro et al., 2007). Mixed effects 
models provide a method of handling data in the form of continuous, 
repeated measurements taken on a number of individuals, such as in the 
present case of stress-strain responses for a collection of samples, with 
repeated stress values evolving during progressive loading. Specifically, 
such models add stochastic terms to account for intra-individual vari-
ability (in our case variability across all strain levels in a single test). 
Importantly, as in the present application these additional stochastic 
terms will remain constant for a given individual sample, it was 

anticipated that the additional model flexibility would aid in accounting 
for variability in the anisotropy of distinct samples used in the different 
tests (see Fig. 1). Variability in the experimental response curves of the 
inhomogeneous dataset naturally lends itself to this statistical descrip-
tion given the impossibility of isolating the contribution of response 
variation associated with viscous loading effects, or inherent variability 
in the microstructure of each sample and associated anisotropic 
response. Minimal variability is expected with test sample preparation 
and load control during testing. These multiple effects can be captured 
in the model by introducing a multiplicative random effect βi ∼ N(1,
σ2

β), for each test i as 

sE
ij = βisM

ij (θ) + ξij (21)  

where ξij ∼ N(0,σ2
ξ ), i = 1,…,K, with K being the number of tests, and 

j = 1, …, L. A multiplicative random effect term was utilized as the 
variability in the response for all curves clearly begins at zero, and in-
creases with progressive loading. As already indicated, in the present 
application, the β term in Eq. (21) can be interpreted as accounting for 
variability in the anisotropic response of a given sample, and ξ ac-
counting for the remaining variability. 

Eq. (21) can be rewritten for an individual sample response as 
[

sE
ai

sE
ti

]
= βi

[
sM

ai (θ)
sM

ti (θ)

]
+ ξ (22) 

Due to the normality assumption, the random effects and stochastic 
error, ξ, can be integrated out from the model, leaving the likelihood for 
the data as 

P
(

sE
⃒⃒
⃒θ, σ2

β, σ2
ξ

)
= 1

(2π)2LK ̅̅̅̅̅̅
|Σ|

√ exp
[(

sE − sM(θ)
)T Σ−1(sE − sM(θ)

) ]
(23)  

with L and K being the number of points used in the discretization of the 
experimental curves and the number of experimental runs to be evalu-
ated, respectively. The structure of the covariance matrix could be 
determined from Eqs. (21) and (22), resulting in 

Σ = E
[
sEsET

]
− E

[
sE]E

[
sE]T = sMsMT ⊙

(
σ2

βIK ⊗ J2L

)
+ σ2

ξI2LK (24)  

where I denotes the identity matrix and J a matrix of ones (subscripts 
denote their dimension), ⊙ the Hadamard product, and ⊗ the Kronecker 
product. Further details regarding the derivation of Eq. (24) from Eq. 
(21) can be found in Appendix A. 

Utilizing the nomenclature introduced above, Bayes’ theorem can be 
expressed for our application as 

Fig. 1. Measured stress-strain responses in tension-torsion tests for all samples considered in this work.  
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P
(

θ, σ2
β, σ2

ξ

⃒⃒
⃒sE

)
∝P

(
sE
⃒⃒
⃒θ, σ2

β, σ2
ξ

)
P(θ)P

(
σ2

β, σ2
ξ

)
(25) 

Due to a lack of prior knowledge on the damage parameter set, an 
uninformative uniform prior distribution, P(θ) was used in this work. 
These priors are summarized in Table 2. The elastic moduli bounds were 
informed by the work of Jefferson et al. (2018). Informative priors were 
placed on the variance σ2

ξ ∼ Ga(0.01,0.01) to encapsulate prior 
knowledge of minor variability in each individual response curve. 
Separate variances for β and ξ in tension and torsion, {σ2

βa, σ2
βt , σ2

ξa, σ2
ξt}

were also considered with trivial adjustments to the covariance structure 
in Eq. (24). 

4.2. Estimation of posterior distribution 

The Affine-Invariant MCMC algorithm as described in Section 2.2.1 
was used to establish the posterior distribution of the complete set of the 
model parameters, random effect variances, and stochastic noise vari-
ances for the 15-dimensional parameter vector 

θ =
[
E1,G12, n16,XT1, c1, q1,H11,XT6, c6, q6,H66, σ2

βa, σ2
βt, σ2

ξa, σ2
ξt

]T
(26) 

It was estimated using 200 walkers and sampling over 400,000 it-
erations with an acceptance rate of ~17%. Initialization of the ensemble 
walker positions was established through optimization of the maximum 
likelihood estimate (MLE) and stochastically placing their positions in a 
cluster surrounding it. The MLE was found through use of the Nelder- 
Mead (Nelder and Mead, 1965) method to minimize the negative 
log-likelihood as the external call to the UMAT represents a ‘black-box’ 
function call. 

Convergence of MCMC sampling was informed through evolution of 
the estimated integrated autocorrelation time and mean parameter 
values in trace plots across all of the chains. Evaluation of the integrated 
autocorrelation time consisted of evaluation at which point τ̂ ≤ N/ 50, 
alongside the stabilization of this estimate with progressive sampling. 
The estimated mean integrated autocorrelation time at the end of sam-
pling was found to correspond to roughly 1,700 iterations. With the 
complete length of the chains, the mean estimate was beginning to 
asymptotically approach its stable value. In order to minimize the error 
in the posterior estimate, a burn-in period of 200,000 iterations was 
removed and the remaining portion of the chain kept as the final result.
Fig. 2 shows the mean τ̂ estimate with increasing number of samples, 
alongside the trace plots for each parameter considered. Qualitatively, it 
can be observed that the mean of all walkers stabilizes by 40,000 steps. 
In Fig. 2a, the evolution of the integrated autocorrelation time is evident 
along with its asymptotic behavior, along with a trace plot in Fig. 2b 
further demonstrating the stability of sampling past the burn in period of 
200,000 iterations. 

The sampled 200 chains were then thinned by a factor of 0.5τ̂ and 
stacked together. The resulting thinned chain can be visualized in a 
scatter plot matrix displaying the final 15-dimensional posterior along 

with the marginalized distributions on the main diagonal in Fig. 3. The 
marginal distributions upon first inspection intuitively display a degree 
of certainty regarding each model parameter, while correlations be-
tween parameters can be observed looking at the off-diagonal. Highly 
skewed projected distributions such as that between {XT6, c6} were also 
readily resolved by the Affine-Invariant MCMC algorithm. From closer 
inspection of Fig. 3, it can be observed that all marginal distributions 
were identified with the exception of that for parameter H11, where the 
tail was not entirely captured by the assumed prior in Table 2. The prior 
considered was informed by similar mechanical models, calibrated in a 
deterministic fashion visually or through least-squares, where it was 
considered that values exceeding these bounds would be erroneous 
(Chaboche, 1993; Chaboche et al., 1998; Laurin et al., 2007; Marcin 
et al., 2011). The obtained posterior, clearly reflects the lack of infor-
mation contained within the experimental dataset on informing this 
model parameter. Given the challenges in identifiability of this param-
eter, evidenced by the truncated tail in the marginal distribution, we 
believe little additional valuable information would be obtained 
through expansion of this prior. The contributions of individual exper-
imental tension-torsion specimens on the resulting posterior distribution 
can be parsed out through performing sequential Bayesian update steps, 
identifying a distinct posterior distribution at each step. Changes in the 
posterior distribution at each step can be quantified through various 
divergence measures, such as the KL-divergence or α-divergence among 
many others (Minka, 2005). In this work, all experimental data was used 
in inferring model parameters. 

Summary statistics of the marginal distributions are listed in Table 3 
along with the maximum a posteriori (MAP) vector. Evaluation of the 
statistical model parameter variances demonstrates a higher inter- 
sample variability than intra-sample in the response in tension and in 
torsion. This can more clearly be observed through comparison of the 
MAP variances corresponding to β and ξ, and scaling σβa and σβt by the 
mean of the final stress values across all samples in tension and torsion, 
sM
a[−1] and sM

t[−1], respectively. This process results in ratios of 
sM
a[−1]σβa /σξa ≈ 25.067 and sM

t[−1]σβt /σξt ≈ 1.813. This simple post- 
processing check highlights the importance of considering inter- 
sample variability in the governing statistical model when evaluating 
inhomogeneous experimental datasets, particularly on composite ma-
terials where a high level of variability in the anisotropic response is 
expected. Through further inspection of the moments of the distribu-
tions in Table 3, it can be seen that none of the marginal distributions of 
damage model parameters could be simply approximated as Gaussian. 
The marginalized distribution characteristics for each model parameter 
can be interpreted in terms of the relative uncertainty of the model 
conditioned on the observed dataset. The parameters E1, G12, c6, and q6 
all exhibited coefficients of variation (CV) below 10% identifying tight 
clustering around the mean and a relative degree of certainty regarding 
the underlying value. Higher order moments of these distributions 
(skewness and kurtosis), with the exception of G12, are all positive and 
approximately zero, signifying minimal positive skew to each distribu-
tion, and normalized kurtosis values identifying each as a leptokurtic 
distribution. G12 is equivalently identified as a platykurtic distribution 
with negative skew. Parameters exhibiting large deviations from 
Gaussian are XT1, n16, and q1, all of which are significantly positively 
skewed with excess kurtosis values signifying larger tails and a higher 
likelihood of outliers. Not surprisingly, these insights are also observed 
in the CV values reported for these parameters, where each has values in 
excess of 30%, with a peak value of approximately 102% for XT1. 
Returning to Fig. 3 to further evaluate XT1, the heavy skew of the 
marginalized distribution becomes evident on the main diagonal. While 
the mode is clearly identified, the overall uncertainty of this parameter 
remains high with a standard deviation ~7× the MAP value. This un-
certainty in initial strength (XT1) of the material in damage mode 1 
should not be unexpected when looking at the experimental response 
curves in Fig. 1. All of the curves in tension (and the singular test in 

Table 2 
Bounds of the uniform priors used in this work for the different damage model 
parameters.  

Parameter Min. Max. 

E1 (GPa) 40 95 
G12 (GPa) 15 45 

n16 0 5 
XT1 (MPa) 0 50 

c1 0 100 
q1 0 5 
H1 0 500,000 

XT6 (MPa) 0 15 
c6 0 100 
q6 0 5 

H66 0 100,000  
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compression) exhibit little nonlinear behavior prior to failure, in direct 
contrast to the material response in torsion. This response presents 
challenges in the identification of model parameters XT1, c1, and q1. 
Adjustment of these three parameters simultaneously permits wide 
ranging values of each in their marginalized distributions to match the 
approximately linear elastic behavior observed in tension. XT1, denoting 
the onset of damage establishes the initial threshold energy release rate, 
y0

α, in Eq. (3). The growth rate in the energy release rate threshold yα 
(which encompasses viscous effects) for further damage accumulation is 
then controlled with the constant c1 (see Eq. (3)). Finally, the power law 
form of the damage accumulation rate expression (see Eq. (11)) is 
influenced by the exponent q1. Modulation of all three of these param-
eters can control the onset of damage with XT1 as well as the overall rate 
of damage accumulation directly through q1 and indirectly through c1. 
This is further borne out in the projected joints (indexed by (5,4), (6,4), 

and (6,5)) in Fig. 3 demonstrating a high level of mutual information 
between the identified damage variables. 

The posterior distribution was then sampled, passed through the 
mechanical model and displayed against the experimental curves upon 
which the parameters were conditioned. Plots of this result along with 
the MAP vector and 1,000 samples can be seen in Fig. 4 for each loading 
case. 

The resulting curves drawn from the posterior display different levels 
of discrepancies between the model predictions and the experimentally 
observed stress-strain curves. Following the discussion and model of 
Kennedy O’Hagan (Kennedy and O’Hagan, 2001), this discrepancy can 
be broken into: (i) stochastic error induced by the measurement appa-
ratus, (ii) error owing to the variability in the involute tube layup and 
resulting mechanical properties, and (iv) the error attributed to limita-
tions in the mechanical model formulation. From the preceding sections, 
it should be apparent that the first two sources of error were accounted 
for through the model presented in Eq. (21). While the model discrep-
ancy term was clearly non-negligible from Fig. 4, its inclusion in the 
Kennedy O’Hagan model was omitted as the goal of this work was to 
probabilistically calibrate the present damage model rather than eval-
uate its predictive capability. Inclusion of discrepancy modeling is left as 
an avenue of future research in the Bayesian treatment of complex 
multimodal mechanical models. 

4.3. Identification of subsequent experimental tests 

Of particular interest in the characterization of materials is the 
ability of this Bayesian workflow to provide valuable information on 
subsequent experimental tests which maximize the potential informa-
tion gain. In traditional model calibration, often there is an available 
dataset of varying degrees of quality, which is utilized to identify a 
deterministic parameter set minimizing an error metric between model 
predictions and experimental observations. The Bayesian workflow 
demonstrated in this work, and identified mechanical model parameter 
posterior distribution in Fig. 3, can facilitate an active learning approach 
for the subsequent selection of testing conditions which would maximize 
the constitutive model accuracy across a domain of interest. Examples of 
such active learning approaches include, uncertainty sampling (Lewis 
and Catlett, 1994) and entropy-based selection (Herbrich et al., 2003), 
where new test conditions are identified based on the largest posterior 
variance, along with selection by maximum difference from current 
estimates (Wang and Li, 2018), or selection by maximum expected 
improvement in the model fit (Yue et al., 2020), or batch selection ac-
cording to distance in the input (Loeppky et al., 2010), among many 
others (Ginsbourger, 2018; Yue et al., 2020). As a demonstration of the 
above procedure in the current work, an input domain of tensile 

Fig. 2. (a) Plot of estimated mean integrated autocorrelation time across all chains with increasing total chain length. (b) Trace plots for all parameter values with 
overlaid traces for each walker shown against increasing step number with the mean of all walkers displayed in red. 

Fig. 3. Scatter plot matrix of 15-dimensional posterior distribution estimate of 
viscous multimode damage model and noise parameters, with the maximum a 
posteriori (MAP) value highlighted in blue. Contours denote the 0.5σ, 1.0σ, 
1.5σ, and 2.0σ confidence intervals. Plotting utilized a package in Python by 
Foreman-Mackey (Foreman-Mackey, 2016). 
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multiaxial strain rates {ε̇11, γ̇12} was discretized into 100 bins, and the 
posterior was passed through the forward mechanical model, with cor-
responding effective loading rates determined from the mechanical 
model output. At each location in the input domain, the mean variance 
of the posterior predictions across the multiaxial response curves was 
evaluated, with the topology of the resulting variance map displayed in 
Fig. 5. 

The candidate experimental test condition exhibiting the maximum 
predicted variance is then selected as the next experiment to be run. This 
cycle of populating variance values on the input domain, and maximum 
selection is repeated as many times as needed – usually until the model 
results in error stabilization across the accumulated experimental 

dataset. In the current case, a map of the posterior propagated variance 
across the input domain can be observed in Fig. 5, with the peak un-
certainty present at the test conditions of σ̇11 = 0.47 and σ̇12 = 0.40 in 
MPa/s, informing the subsequent experimental run. 

5. Conclusions 

The work described in this paper significantly advances Bayesian 
methods as applied to material constitutive model development. It 
provides several advantages over prior work: (i) it demonstrates the 
feasibility of simultaneous calibration over inhomogeneous datasets 
with multiaxial loading, facilitated through the use a statistical model 

Table 3 
Statistical measures of marginalized posterior distributions including the MAP, mean, standard deviation, skewness, kurtosis, and coefficient of variation.  

θ MAP Mean Std. Dev. Skew. Kurt. CV (%)

E1 (GPa) 69.579 70.147 3.410 0.336 1.032 4.862 
G12 (GPa) 39.995 40.447 2.048 −0.194 −0.132 5.064 

n16 0.500 0.681 0.276 1.598 5.557 40.558 
XT1 (MPa) 0.444 3.263 3.314 1.947 5.150 101.558 

c1 39.724 29.718 5.764 0.907 1.053 19.397 
q1 0.751 1.361 0.455 1.148 2.576 33.458 

H11 2.641E+04 2.160E+05 1.422E+05 0.351 −1.117 65.816 
XT6 (MPa) 0.742 0.703 0.155 0.499 0.302 22.093 

c6 15.292 15.482 0.557 0.167 0.077 3.595 
q6 1.134 1.142 0.043 0.028 0.056 3.791 

H66 138.108 141.086 24.594 0.356 0.234 17.432 
σ2

βa 0.014 0.129 0.030 0.765 0.887 23.155 

σ2
βt 0.005 0.110 0.028 0.858 1.116 25.849 

σ2
ξa 0.173 0.438 0.028 0.322 0.194 6.304 

σ2
ξt 3.517 1.919 0.120 0.306 0.171 6.276  

Fig. 4. Response curves in tension and torsion for each loading condition. 1,000 samples are plotted in blue from the posterior distribution, along with the curve 
resulting from the MAP vector in red and the experimentally observed response in black. 
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accounting for inter-sample variability, (ii) allows for modular incor-
poration of the widely used Abaqus UMATs for material development, 
(iii) extends probabilistic calibration from simple mechanics models to 
CDM models with large quantities of unknown parameters correspond-
ing to elastic constants, coupling and evolution functions, and (iv) de-
livers a workflow for the objective and rigorous quantification of 
uncertainty in stochastic material model parameters. Overall, this work 
enables the probabilistic calibration of complex constitutive models 
when provided with sparse and inhomogeneous datasets. A limitation of 
this work presented exists in the omission of a statistical quantification 
of the model discrepancy, or inability to perfectly capture the underlying 
physics. This additional activity is left as an avenue of future research to 

better quantify performance of CDM models. The end result of this work 
provides a promising approach for the probabilistic calibration of 
complex high-dimensional material models. 
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Appendix A 

The details of establishing the covariance matrix in Eq. (24) are presented in this section. The derivation starts with the classical definition of the 
covariance matrix, utilizing the flattened structure of sE previously presented in Eq. (20) as 

Σ = E
[
sEsET

]
− E

[
sE]E

[
sE]T (A.1) 

In this vectorized notation, Eq. (21) can be rewritten as 

sE = β ⊗ 12L ⊙ sM + ξ (A.2)  

where 12L denotes a vector of ones with length 2L, β a random vector β = [β1,…, βK]
T, sM a vector of model output stresses matching to the structure of 

sE with length 2LK, and ξ a random vector of Gaussian white noise, similarly with dimension 2LK. 
Substitution of sE into Eq. (A.2) along with further simplification leads to 

Σ = E
[(

β ⊗ 12L ⊙ sM + ξ
)(

β ⊗ 12L ⊙ sM + ξ
)T

]
− E

[
β ⊗ 12L ⊙ sM + ξ

]
E
[
β ⊗ 12L ⊙ sM + ξ

]T = E
[
sMsMT ⊙ (β ⊗ 12L)(β ⊗ 12L)T

]
+ σ2

ξI2LK − sMsMT

= sMsMT ⊙ E
[
ββT ⊗ J2L

]
+ σ2

ξI2LK (A.3) 

At this point, through noting independence of βi ∼ N(1,σ2
β), the final covariance structure of Eq. (24) can be obtained, which is repeated in Eq. 

(A.4). 

Σ = sMsMT ⊙
(

σ2
βIK ⊗ J2L

)
+ σ2

ξI2LK (A.4) 

This covariance matrix can be adjusted to introduce independence between the multiplicative random effect in tension and torsion through 
adjusting both sE and sM to order all stress values in tension, followed by all stress values in torsion as 

sE =
[

sT
a1 ⋯ sT

aK sT
t1 ⋯ sT

tK
]T (A.5) 

Fig. 5. Map of predicted mean variance across multiaxial tensile response. 
Predicted variances were identified by passing the identified posterior distri-
bution on model parameters through the mechanical model at each combina-
tion in the strain rate input space. Maximum variance location is highlighted at 
σ̇11 = 0.47 and σ̇12 = 0.40 MPa/s. 
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with sM following accordingly. Separate distributions for βia ∼ N(1, σ2
βa) and βit ∼ N(1, σ2

βt) can now be incorporated resulting in the expression found in 
Eq. (A.6). 

Mβ =

⎡

⎣ σ2
βa 0
0 σ2

βt

⎤

⎦

Σ = sMsMT ⊙
(
Mβ ⊗ IK ⊗ JL

)
+ σ2

ξI2LK

(A.6)  
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