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The calibration of continuum damage mechanics (CDM) models is often performed by least-squares regression
through the design of specifically crafted experiments to identify a deterministic solution of model parameters
minimizing the squared error between the model prediction and the corresponding experimental result. Spe-
cifically, this work demonstrates a successful application of Bayesian inference for the simultaneous estimation of
eleven material parameters of a viscous multimode CDM model conditioned upon a small inhomogeneous

multiaxial experimental dataset. The stochastic treatment of CDM model parameters provides uncertainty esti-
mates, enables the propagation of uncertainty into further analyses, and provides for principled decision making
regarding informative subsequent experimental tests of value. The methodology presented in this work is also
broadly applicable to various mechanical models with high-dimensional parameter sets.

1. Introduction

Continuum damage mechanics (CDM) is a branch of continuum
mechanics used to describe inelastic damage and fracture processes
within materials ranging from initiation through to ultimate fracture
(Kachanov, 1986; Lemaitre, 1992; Murakami, 2012). This theory pro-
vides computational tractability in modeling the accumulation of dam-
age in a continuum sense rather than the consideration of discrete
cracks, and as such, has been widely applied to a variety of material
classes (Chaboche, 1993; Lemaitre, 1984; Lemaitre and Chaboche, 1990;
Pailhes et al., 2002; Simo and Ju, 1987). In order to correctly capture
interdependencies between the different possible damage modes and
their respective evolutions, CDM models often employ a large number of
model parameters that need to be calibrated to experimental data. The
number of model parameters is especially high for materials exhibiting

strong anisotropy prior to damage, such as ceramic-matrix composites
(CMCs). This is clearly evident from the many CDM models developed
specifically for such materials (Chaboche et al., 1998; Matzenmiller
et al., 1995; Oliver, 1989; Pailhes et al., 2002). Traditionally, model
calibration is often accomplished through least-squares regression of
model predictions with corresponding experimental measurements
(Mahnken, 2017). Specific experiments are often designed to simplify
this calibration process. For example, Camus (2000) calibrated the pa-
rameters in their CDM model by matching the model predictions for the
stress-strain responses in both on- and off-axis (0° and 45°, respectively)
uniaxial loading with the corresponding measurements. A similar
methodology was also used by Chaboche and Maire (2002) and Pailhes
et al. (2002). Although this simple approach ensures that the model
predictions match closely with the experimental data in the specific tests
used in the calibration process, they do not guarantee good predictions

* Corresponding author. Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332, USA.
E-mail addresses: agenerale3@gatech.edu (A.P. Generale), richard.hall.16@us.af.mil (R.B. Hall), Robert.Brockman@udri.udayton.edu (R.A. Brockman), roshan@

gatech.edu (V.R. Joseph), george.jefferson.l@us.af.mil (G. Jefferson),
(S.R. Kalidindji).

https://doi.org/10.1016/j.mechmat.2022.104487

Jennifer.Pierce@udri.udayton.edu (J. Pierce), surya.kalidindi@me.gatech.edu

Received 30 June 2022; Received in revised form 27 September 2022; Accepted 3 October 2022

Available online 7 October 2022
0167-6636/© 2022 Elsevier Ltd. All rights reserved.


mailto:agenerale3@gatech.edu
mailto:richard.hall.16@us.af.mil
mailto:Robert.Brockman@udri.udayton.edu
mailto:roshan@gatech.edu
mailto:roshan@gatech.edu
mailto:george.jefferson.1@us.af.mil
mailto:Jennifer.Pierce@udri.udayton.edu
mailto:surya.kalidindi@me.gatech.edu
www.sciencedirect.com/science/journal/01676636
https://www.elsevier.com/locate/mechmat
https://doi.org/10.1016/j.mechmat.2022.104487
https://doi.org/10.1016/j.mechmat.2022.104487
https://doi.org/10.1016/j.mechmat.2022.104487
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2022.104487&domain=pdf

A.P. Generale et al.

for other loading conditions. Furthermore, these approaches do not
allow for a proper treatment of the stochasticity inherent in the mea-
surements. There are indeed many sources of uncertainty in both the
physical experiments and the numerical models that need to be taken
into account in the model calibration process. These may include the
many simplifications/idealizations introduced into the CDM model as
well as the accuracy/resolution limits for the experimental data.

Bayesian inference (Adeli et al., 2020; Knipprath, 2010) offers novel
avenues for the calibration of the CDM models to available experimental
data. In this approach, one not only treats the measurements as sto-
chastic outcomes of experiments, but also treats the model parameters as
random variables. Therefore, it is assumed that any individual experi-
mental observation can only help reduce the uncertainty in the distri-
bution of the model parameter sets. Some of the inherent advantages of
this approach are that it allows for the consideration of a wide variety of
experimental observations (from different test protocols) and accounts
for any inherent correlations among the model parameters. The latter is
especially important for over-parameterized models with limited ob-
servations (Van Oijen et al., 2005), similar to the conditions encountered
in the calibration of CDM models for CMCs. Bayesian inference has been
successfully applied in simpler problems such as the identification of
elastic constants in an aluminum alloy (Pacheo et al., 2016), a polymeric
material embedded in glass (Zhang et al., 2012), as well as on laminate
composites (Castillo and Kalidindi, 2019; Gallina et al., 2015). They are
being increasingly explored for the calibration of the more sophisticated
material constitutive models such as the one-dimensional Von-Mises
plasticity model with strain hardening (Mahnken, 2017), viscoelasticity
(Mehrez et al., 2015; Miles et al., 2015; Zhang et al., 2013), viscoplas-
ticity (Adeli and Matthies, 2019), and viscous-damage models (Adeli
et al., 2020; Ding et al., 2020). It should be noted that the total number
of calibrated model parameters in these prior studies were fewer than
five, and the calibration was performed on small homogeneous datasets.
These approaches have not yet been extended to models with larger
numbers of model parameters, largely due to the relative scarcity of
suitable experimental data. Indeed, the broader application of these
methods is only practically feasible if one aggregates and uses inho-
mogeneous data (e.g., experimental observations in distinct multiaxial
loading conditions) in the calibration process. The use of inhomoge-
neous data is also very likely to sharply improve the accuracy and
robustness of the estimated distributions on the model parameters.

In this work, Bayesian inference is applied in the probabilistic cali-
bration of a total of eleven elastic and inelastic damage parameters of a
viscous multimode damage model developed by Hall and Brockman
(Hall et al., 2021, 2022; Hall and Brockman, 2020, 2021). The experi-
mental dataset used for this calibration was taken from prior efforts at
Air Force Research Laboratory (Jefferson et al., 2018)". It consisted of
two uniaxial and five multiaxial (tension-torsion) tests, each with
distinct loading ratios and rates (there are no duplicate tests in the
dataset). The material evaluated in these tests was an oxide/oxide,
Nextel™ 720/AS CMC, arranged in 8-harness satin plies woven into
thin-walled tubular specimens with an involute ply lay-up. The CDM
model is defined through an Abaqus user-defined material model
(UMAT) (Dassault, 2019), and is compiled as an external library within
the Bayesian calibration framework. The modular approach described in
this work is broadly applicable to a wide variety of custom material
constitutive models that can be implemented as user-subroutines within
commercial FE solvers.

2. Methods
The CMC viscous deformation and damage model considered in this
1 These tests were a continuation of efforts initiated in partnership with the

Air Force Institute of Technology (DeRienzo, 2013; Hilburn, 2014), using the
same specimen material and involute tubular geometry.
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work is taken from the work of Hall and Brockman (Hall et al., 2021,
2022; Hall and Brockman, 2020, 2021). One key aspect of CMCs which
allows for their operation in extreme (thermal) environments is its
damage tolerant behavior, facilitated by an internal fibrous structure
(Bansal and Lamon, 2014) that is key to avoiding the catastrophic failure
observed commonly in monolithic ceramics. Under monotonically
increasing load, the CMC exhibits various energy dissipating damage
mechanisms such as matrix cracking, interface debonding, sliding at the
fiber matrix interface, and fiber fracture. These microstructural damage
mechanisms occur over a distributed region allowing for flaw insensi-
tivity and overall nonlinear behavior (Kumar et al., 2019). Increased
utilization of CMCs in structural applications requires a method for
mathematically modeling its behavior at component length scales,
lumping together these varied energy dissipating damage mechanisms.
CDM provides one such avenue, and has effectively been used in the
modeling of such materials under varied loading conditions (Camus,
2000; Chaboche et al., 1998; Chaboche and Maire, 2002; Pailhes et al.,
2002).

2.1. Viscous multimode damage model

An overview of the multimode damage model considered in this
work is presented here briefly. A more thorough treatment of the
mathematical foundations can be seen in the works of Hall and Brock-
man (Hall et al., 2021; Hall and Brockman, 2020, 2021). In this model,
damage is described as a fourth-order tensor exhibiting orthotropic
symmetry (with nine independent components). The isothermal state in
the principal material frame is defined by the following list of variables:

s={Ei,Dg,wo} i=1,2,...,6; a=12,..9 (@D
where E; denote the (vectorized) components of the Green strain mea-
sure, D, are the independent components (referred here as damage
modes) of the orthotropic damage tensor, and w, are indirect measures

of work associated with D,. Specifically,

[E)=[E Eyn Es 2Ey 2Ey 2Ep|
[D]=[D\ D, D; D, Ds Ds D; Ds D]
=[Diin1 Dy Dizss 4Dyps 4D1313 4D1a1a 2Dz 2Dyiss 2D1122]T
(2

w, are related to the threshold values of damage energy release rates on
the a planes, y,, as (no implied summation on the Greek indices)

Wq = / Wedt, W :ya[wa}D.avya[Wa] :yz + / CaYa[Wa[f]]Da[f}dé 3
0 0

where ¢, are material constants related to the expansion of the damage
surface in the space of energy release rates, and y? is the initial threshold
value in the absence of damage.

The model presented above assumes small strains with finite rota-
tions. A co-rotational coordinate system is adopted which rotates ac-
cording to the rotation component, R, defined in the polar

decomposition of the deformation gradient, F. In the relations below, lA)
is the corresponding Green-Nagdhi or Dienes co-rotational rate of the
damage tensor, D (Belytschko et al., 2014), and L° is defined as the
elastic stiffness tensor. It is assumed that the second Piola-Kirchhoff
stress, S, satisfies the hyperelastic relation with the Helmholtz energy,
v, as

oy|s] 1

5V =5E L'DI:E “4)

S=py

The rate of dissipation is then given by

A 9. o
Y;Dfp[,zax’w,,zo (5)
a=1 a
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where the damage energy release rate Y is defined as

Y= —pydyls]/aD ©

Consistent with the vectorized representations introduced earlier, a
compact representation for Y is introduced as

[Y] = [ YI 111 Y2222 YSS}} Y2323 Y]313 Y]212 Y2233 Y] 133 Yl 122 ]T (7)

The second law is then enforced in the modified sense below, where ¢
is the corresponding modal dissipation function:

9

3 (Faf)a - poa%‘”wa) =¢[Duiass] 20 ®

a

9yyr—
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oo, {5

©)]

where ( o ) is the Heaviside function, § = 1,2,...,9, and the H~! matrix
has diagonal entries 1/H,, and off-diagonal entries — ngs/ Heq.

The assumption of maximum dissipation rate (Hall et al., 2021;
Rajagopal and Srinivasa, 1998, 2004) leads to

9
6/i: Z ia[ ]Y,,(ﬁ, ZH/m Fy (10)

where the same matrix H~! is assumed in Equations (9) and (10) for
simplicity.
In the present tension-torsion application, only damages modes 1

and 6 are active, such that damage evolution is defined as

4 1 nie
D =—Y q1 _ 2y g6
g " g Y
1 (Y1 —nie¥e)/Hy o Mo Ye/Hes %
=Ly e gy ey I
Hy, Y1[W1] Hy, }6[W6] a1
1 n
Da_*Ya(fa)%* 16Yl(fl)
Y Yo/Hes >,,6_’116 <(Y1*nleYa)/Hu_ly,1
" He s[ws] yi[wi]

The directional damage coupling coefficients, n,;, reflect the effects
of coupled damage accumulation in normal and shear loadings. At the
microstructural level, these coupling parameters reflect the effect of
normal stresses on frictional shear deformation occurring at longitudinal
crack faces and fiber-matrix interfaces.

2.2. Bayesian inference of model parameters

The procedure for estimating model parameters given noisy data is
formally known as the inverse problem (Kirsch, 2011; Wu et al., 2018),
or model calibration in statistical literature (Box and Hunter, 1962;
Kennedy and O’Hagan, 2001). Traditionally such a model is defined as

y=y"(0)+¢ 12)

where y£ denotes the noisy structured observational data, yM the pre-
dictive model with unknown parameters 6, and ¢ the unknown obser-
vational noise. Directly calculating the inverse of the predictive model is
generally intractable in practice, limiting methods for the identification
of @ which best match the experimental data.

The multimode damage model in this work is sufficiently flexible to
model wide ranging nonlinear material behavior, at the cost of increased
parameterization in its underlying form. This increased parameteriza-
tion presents challenges in the identification of & when provided with
limited or inhomogeneous experimental datasets corrupted by unknown
noise and nonlinear effects. It is precisely in this scenario in which
Bayesian approaches become increasingly useful, as they treat model
parameters as stochastic variables exhibiting a distribution of possible
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values, rather than providing a deterministic result. An important
property of Bayesian inference is its ability to update one’s beliefs, or
condition the probability distribution of stochastic variables, as addi-
tional data (e.g., experimental observations) becomes available. Given
the model form of Eq. (12), Bayes’ theorem is commonly expressed as

rlop) ="

13)
where P(0) represents the prior belief on the unknown model parameters
0, P(y%|0) the likelihood of sampling the observations y for a specific set
of model parameters, P(yf) is the probability of the evidence, and
P(6]y®) the posterior representing the updated belief on the model pa-
rameters 6 given the observations y. The manipulation of conditional
probabilities in Eq. (13) is especially useful in cases where P(y® \0) is easy
to compute, but not P(9|yE). The likelihood is often considered to be
Gaussian as it arises from the model in Eq. (12) with an assumption of
normally distributed white noise. In applications where little prior
knowledge over the material model parameters is available, a uniform
distribution is often taken for the prior so that its influence over the
posterior is limited.

2.2.1. Affine-Invariant Ensemble Markov Chain Monte Carlo algorithm

The identification of the multidimensional parameter distribution
conditioned on the observed experimental data (i.e., posterior distri-
bution defined in Eq. (13)) was estimated through the Affine-Invariant
Ensemble Markov Chain Monte Carlo (MCMC) algorithm (Fore-
man-Mackey et al., 2013; Goodman and Weare, 2010). This ensemble
sampler was utilized primarily for its ability to readily identify skewed
or multimodal distributions, both of which were expected in the sam-
pling of such a high dimensional parameter space. The general goal of
MCMC algorithms is to draw samples from the posterior probability
density as defined in the numerator of Eq. (13). This strategy allows one
to sample from the posterior distribution without computing the evi-
dence, which is generally expensive to compute (Foreman-Mackey et al.,
2013). The sampling strategy can be viewed as a procedure for gener-
ating a random walk in parameter space that given sufficient time, draws
a representative set of samples from the posterior distribution. During
this random walk, each individual point in the Markov chain X(t;) = 6;
depends solely on the position of the prior step X(t;_1) = 6;_1.

In comparison to the standard Metropolis-Hastings (M — H) algo-
rithm, the Affine-Invariant Ensemble algorithm requires the existence of
an ensemble of K walkers S = {Xj}, where the proposal distribution for
one of the walkers (indexed by k) is based on the locations in parameter
space of the remaining K — 1 walkers defining the complementary set of
walkers Sy = {Xj, Vj# k}. During each iteration, the position of all
walkers in the ensemble is updated. In order to update the position of a
single walker at position Xy, a walker is drawn at random from the
complementary set Sy and the new proposed position for the walker X
can be written as

W=X;+Z(X\(1) - X)) a4

with Z being a random variable drawn from the distribution g(z). The
particular distribution recommended by Goodman and Weare (2010) is

1

sl V2 TEE {5’ “} (15)

0 else

where a is a tunable parameter set to 2. The proposal walker location is
then accepted with probability

o p1_P(W)
qum(LZ m) (16)
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where D is the dimensionality of the space being sampled. The proposal
is then accepted or rejected when compared against a sample drawn
from a standard uniform distribution r<R ~ U[0,1]. If r < q then the
transition is accepted and X(t+1) is assigned the position W.

The algorithm described above has been extensively used in astro-
physics applications (Chontos et al., 2021; Huang et al., 2021; Suarez
Mascareno et al., 2021) where models exhibit similar
high-dimensionality as the CDM model considered in this work. In such
high-dimensional spaces, traditional algorithms require multiple
tunable parameters (their number scaling with the problem size),
whereas the Affine-Invariant Ensemble Sampler employs only one
parameter (Foreman-Mackey et al., 2013). It has also been shown to
provide improved performance in highly skewed distributions (such as
the Rosenbrock density) over the conventional M — H algorithm
(Goodman and Weare, 2010). The specific MCMC algorithm used in this
study is implemented in the Python package emcee, developed by
Foreman-Mackey et al. (2013). In practice, the initialization of the
ensemble walker positions is recommended to be placed in a tight cluster
surrounding an estimate of the maximum likelihood estimate (MLE).

2.2.2. Autocorrelation analysis and chain convergence

An ever-present challenge in MCMC sampling is judging when suf-
ficient samples have been drawn to ensure some representative and
stationary posterior probability density function (PDF). Unfortunately
without having definitive bounds on the smoothness and support of the
posterior PDF, it is never truly possible to know that the entire posterior
PDF has been correctly sampled (Hogg and Foreman-Mackey, 2018). In
real world applications of MCMC sampling, one must rely on heuristics
to cease sampling. Examples of these include, observing that each
walker has traversed high-probability portions of the parameter space
many times, observing trace plots for each parameter to ensure sta-
tionary behavior, or observing convergence of the posterior with varied
initialization. These heuristics can be made more precise through a
quantification of the amount of deviation observed between two subsets
of a sampled chain. A metric that formalizes this notion is the integrated
autocorrelation time of a chain, of which estimates are foundational in
multiple other diagnostic heuristics often employed convergence anal-
ysis (Roy, 2019).

As previously discussed MCMC sampling approximates intractable
integrals through a Monte Carlo approximation in scenarios where point
estimates of P(y?|0) can be readily obtained without knowledge of its
analytical form. The error associated with this approximation is pro-

portional to 1/7/N, where 7 is the integrated autocorrelation time, and N
the total number of samples (Hogg and Foreman-Mackey, 2018). The
autocorrelation time then defines the average time required for the
samples to become uncorrelated, and provides a method to calculate the
relative error on the target integral (Hogg and Foreman-Mackey, 2018).
It is defined as

r:E:Auy:1+2§:M0:1+2§i£ﬁl a7

where A(t) is the normalized autocorrelation function of the stochastic
process that generated the chain and C(t) is the autocovariance function
that measures the amount of correlation between samples separated by
an integer lag t. The autocovariance function is defined as

N

CU%:EKXOJ*YMXOW)*YH:“mE' X(1) - X)X (1) —X)  (18)

N—ooN 4 ;
=

where X is the mean. In practice it is not possible to compute the inte-
grated autocorrelation time as it requires an infinitely long chain of

samples. It can instead be estimated using a finite chain {X(t,)}N_, as
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X(#) —X)(X(tir) — X) (19)

and this estimate is then propagated through Eq. (17) to obtain an es-
timate for the autocorrelation time. In practice, it is recommended to use
a value M<N as the introduction of this smaller value reduces the
variance of the estimator at the cost of a small amount of added bias.
Sokal (1996) recommends selecting the value of M such that M > 57(M),
and notes that this selection performs well for chains longer than 10007.
Fortunately, the Affine-Invariant MCMC algorithm contains large
numbers of parallel chains of walkers which can be leveraged such that
often only chains of length 507 are required (Foreman-Mackey, 2021).

3. Multiaxial experimental dataset

The experimental dataset used for probabilistic calibration in this
work consists of experiments performed at Air Force Research Labora-
tory (Jefferson et al., 2018). The material evaluated was an oxide/oxide,
Nextel™ 720/AS CMC, arranged in 8-harness satin plies woven into
thin-walled tubular specimens with an involute ply lay-up. The tubes
were designed to nominally have an outer diameter of 41 mm with an
85 mm gage length. The involute layup process results in material ply
orientation inclines approximately 7° from the hoop direction. In this
work, this small angle is neglected and the stresses and strains are re-
ported in the cylindrical coordinate system. Further information
regarding the test apparatus, specimen shape, and manufacturing
methodology can be found in the theses of Hilburn (2014), DeRienzo
(2013) and work by Pagano and Whitford (1985). Relevant details of
each test sample considered in this work are summarized in Table 1,
where load control information is presented alongside the calculated
resulting mean strain rates. All tests were performed under ambient
conditions. Of the seven tests performed, one isolated the response in
pure tension and one in pure torsion, while the remaining samples were
performed at four varying loading ratios and three varied rates.

The measured stress-strain responses are shown in Fig. 1, where it
can be observed that the strain to failure varies significantly between
samples according to their test parameters. The viscous effects of dam-
age evolution are also evident in the varied stiffness degradation and
ultimate strengths at failure.

4. Simultaneous Bayesian calibration of damage model

The viscous multimode damage model was simultaneously cali-
brated against the tension-torsion dataset described in Section 3. This
inverse problem of identifying model parameters given the multiaxial
tension-torsion dataset was approached through the identification of the
active model parameters, namely, elastic constants E; and G;2, strength
in tension and torsion (X771 and Xr¢), viscous scaling parameter (c; and
), damage evolution power law exponent (q; and g¢), damage evolu-
tion scaling parameter (H;; and Hgg), and damage coupling parameter
nie. These 11 model parameters are then grouped into the model
parameter vector 6.

In order to incorporate the experimental curves into the numerical

Table 1
Experimental data and testing conditions for each thin-walled tubular sample,
including loading rates in tension and torsion and the load ratio.

Sample Axial Rate (MPa/s) Torsional Rate (MPa/s)
115 1.000 0.250
117 0.000 0.400
119 4.000 0.000
120 4.000 0.290
121 0.200 0.014
122 0.200 0.067

123 0.200 0.133
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Fig. 1. Measured stress-strain responses in tension-torsion tests for all samples considered in this work.

workflow, each curve in tension and torsion tests was sampled at L
evenly spaced points. The stress values in vectorized form were then
stacked and grouped into a vector defined as sf. The resulting final
vector was of the form

sE=[sT st o sT 5T (20)

where s4; is the vector consisting of all the stress components 617 (at the
L evenly spaced strain points) for the first sample, and s the vector
consisting of all the shear stress components ¢15. Accordingly, the final
length of s is 14L. A similar vector could be established for the model
output through evaluating the material model at the same strain and
time increments as those used for each experimental sample, and
populating the vector with stress values from a discretized curve. This
was accomplished through direct calls to a driver subroutine wrapped
around the Abaqus UMAT subroutine as an externally loaded library.
The Abaqus UMAT subroutine is used directly for performing stress
evaluations. This approach allows the fully three-dimensional model to
be used for property identification, while accommodating a mixture of
test types with differing stress boundary conditions. The UMAT works
with three-dimensional stress and strain states, while the property
evaluation process prescribes only the strain quantities relevant to the
test data being used for fitting. A wrapper function is provided to
perform a Newton-Raphson solution for unspecified strains that corre-
spond to zero stress components, by calling the UMAT multiple times at
a single strain sampling point. Robust initializing values are always
available from previous time points, ensuring rapid convergence of
subsequent iterations. Specific to this application, this driver subroutine
identifies strain increments corresponding to the thin-walled plane-
stress condition during tension-torsion testing.

4.1. Mixed effects statistical model

The classical definition of the inverse problem described in Section
2.2 for scalar, functional, or tensor output for a singular individual in a
population can be extended through the use of mixed effects models
(Davidian and Giltinan, 1993, 2003; Pinheiro et al., 2007). Mixed effects
models provide a method of handling data in the form of continuous,
repeated measurements taken on a number of individuals, such as in the
present case of stress-strain responses for a collection of samples, with
repeated stress values evolving during progressive loading. Specifically,
such models add stochastic terms to account for intra-individual vari-
ability (in our case variability across all strain levels in a single test).
Importantly, as in the present application these additional stochastic
terms will remain constant for a given individual sample, it was

anticipated that the additional model flexibility would aid in accounting
for variability in the anisotropy of distinct samples used in the different
tests (see Fig. 1). Variability in the experimental response curves of the
inhomogeneous dataset naturally lends itself to this statistical descrip-
tion given the impossibility of isolating the contribution of response
variation associated with viscous loading effects, or inherent variability
in the microstructure of each sample and associated anisotropic
response. Minimal variability is expected with test sample preparation
and load control during testing. These multiple effects can be captured
in the model by introducing a multiplicative random effect ; ~ N(1,
03), for each test i as

sf = [sy(O) +&; 21)

where &; ~ N(Oﬁ?), i =1,...,K, with K being the number of tests, and
j =1,..., L. A multiplicative random effect term was utilized as the
variability in the response for all curves clearly begins at zero, and in-
creases with progressive loading. As already indicated, in the present
application, the § term in Eq. (21) can be interpreted as accounting for
variability in the anisotropic response of a given sample, and ¢ ac-
counting for the remaining variability.
Eq. (21) can be rewritten for an individual sample response as

Sai 4 (0)
|: a8 ﬁi |:
S Sii

i (0)
Due to the normality assumption, the random effects and stochastic
error, €, can be integrated out from the model, leaving the likelihood for
the data as

+§& (22)

P(sE

0,6;,6?) = exp[(sE —s"(0) )TE’] (s* —s(0) )] (23)

1
(2n)"*\/I2]

with L and K being the number of points used in the discretization of the
experimental curves and the number of experimental runs to be evalu-
ated, respectively. The structure of the covariance matrix could be
determined from Egs. (21) and (22), resulting in

= [E[sEsET] — [E[SE} [E[SE] T ghgM? O] (612311( ®JZL) + U§I2LK 24)

where I denotes the identity matrix and J a matrix of ones (subscripts
denote their dimension), ® the Hadamard product, and ® the Kronecker
product. Further details regarding the derivation of Eq. (24) from Eq.
(21) can be found in Appendix A.

Utilizing the nomenclature introduced above, Bayes’ theorem can be
expressed for our application as
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st ) P (sE

Due to a lack of prior knowledge on the damage parameter set, an
uninformative uniform prior distribution, P(#) was used in this work.
These priors are summarized in Table 2. The elastic moduli bounds were
informed by the work of Jefferson et al. (2018). Informative priors were
placed on the variance oZ ~ Ga(0.01,0.01) to encapsulate prior
knowledge of minor variability in each individual response curve.
Separate variances for f and ¢ in tension and torsion, {c7,,0%,6%,, 0%}

1050

P(G 03, 6

0.0, ag)p(o)p(o;,ag) (25)

were also considered with trivial adjustments to the covariance structure
in Eq. (24).

4.2. Estimation of posterior distribution

The Affine-Invariant MCMC algorithm as described in Section 2.2.1
was used to establish the posterior distribution of the complete set of the
model parameters, random effect variances, and stochastic noise vari-
ances for the 15-dimensional parameter vector

T
2 2 2 2
0 = |Ey,Gia, 16, X11, €15, q1, Hi1, X765 Co5 46, Hoo s 00 05 0y, O, (26)

It was estimated using 200 walkers and sampling over 400,000 it-
erations with an acceptance rate of ~17%. Initialization of the ensemble
walker positions was established through optimization of the maximum
likelihood estimate (MLE) and stochastically placing their positions in a
cluster surrounding it. The MLE was found through use of the Nelder-
Mead (Nelder and Mead, 1965) method to minimize the negative
log-likelihood as the external call to the UMAT represents a ‘black-box’
function call.

Convergence of MCMC sampling was informed through evolution of
the estimated integrated autocorrelation time and mean parameter
values in trace plots across all of the chains. Evaluation of the integrated
autocorrelation time consisted of evaluation at which point 7 < N/ 50,
alongside the stabilization of this estimate with progressive sampling.
The estimated mean integrated autocorrelation time at the end of sam-
pling was found to correspond to roughly 1,700 iterations. With the
complete length of the chains, the mean estimate was beginning to
asymptotically approach its stable value. In order to minimize the error
in the posterior estimate, a burn-in period of 200,000 iterations was
removed and the remaining portion of the chain kept as the final result.
Fig. 2 shows the mean 7 estimate with increasing number of samples,
alongside the trace plots for each parameter considered. Qualitatively, it
can be observed that the mean of all walkers stabilizes by 40,000 steps.
In Fig. 2a, the evolution of the integrated autocorrelation time is evident
along with its asymptotic behavior, along with a trace plot in Fig. 2b
further demonstrating the stability of sampling past the burn in period of
200,000 iterations.

The sampled 200 chains were then thinned by a factor of 0.57 and
stacked together. The resulting thinned chain can be visualized in a
scatter plot matrix displaying the final 15-dimensional posterior along

Table 2
Bounds of the uniform priors used in this work for the different damage model
parameters.

Parameter Min. Max.
E; (GPa) 40 95
G2 (GPa) 15 45
Nie 0 5
X711 (MPa) 0 50
c1 0 100
Q 0 5
H; 0 500,000
Xr6 (MPa) 0 15
Ce 0 100
e 0 5
Hee 0 100,000
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with the marginalized distributions on the main diagonal in Fig. 3. The
marginal distributions upon first inspection intuitively display a degree
of certainty regarding each model parameter, while correlations be-
tween parameters can be observed looking at the off-diagonal. Highly
skewed projected distributions such as that between {Xt¢, cs} were also
readily resolved by the Affine-Invariant MCMC algorithm. From closer
inspection of Fig. 3, it can be observed that all marginal distributions
were identified with the exception of that for parameter Hy;, where the
tail was not entirely captured by the assumed prior in Table 2. The prior
considered was informed by similar mechanical models, calibrated in a
deterministic fashion visually or through least-squares, where it was
considered that values exceeding these bounds would be erroneous
(Chaboche, 1993; Chaboche et al., 1998; Laurin et al., 2007; Marcin
et al., 2011). The obtained posterior, clearly reflects the lack of infor-
mation contained within the experimental dataset on informing this
model parameter. Given the challenges in identifiability of this param-
eter, evidenced by the truncated tail in the marginal distribution, we
believe little additional valuable information would be obtained
through expansion of this prior. The contributions of individual exper-
imental tension-torsion specimens on the resulting posterior distribution
can be parsed out through performing sequential Bayesian update steps,
identifying a distinct posterior distribution at each step. Changes in the
posterior distribution at each step can be quantified through various
divergence measures, such as the KL-divergence or a-divergence among
many others (Minka, 2005). In this work, all experimental data was used
in inferring model parameters.

Summary statistics of the marginal distributions are listed in Table 3
along with the maximum a posteriori (MAP) vector. Evaluation of the
statistical model parameter variances demonstrates a higher inter-
sample variability than intra-sample in the response in tension and in
torsion. This can more clearly be observed through comparison of the
MAP variances corresponding to § and &, and scaling o, and oy by the
mean of the final stress values across all samples in tension and torsion,
5%71] and Eﬁ{l], respectively. This process results in ratios of
Sal1)0pa /0za = 25.067 and Y ;05 [0z ~ 1.813. This simple post-
processing check highlights the importance of considering inter-
sample variability in the governing statistical model when evaluating
inhomogeneous experimental datasets, particularly on composite ma-
terials where a high level of variability in the anisotropic response is
expected. Through further inspection of the moments of the distribu-
tions in Table 3, it can be seen that none of the marginal distributions of
damage model parameters could be simply approximated as Gaussian.
The marginalized distribution characteristics for each model parameter
can be interpreted in terms of the relative uncertainty of the model
conditioned on the observed dataset. The parameters E;, G2, c¢, and ge
all exhibited coefficients of variation (CV) below 10% identifying tight
clustering around the mean and a relative degree of certainty regarding
the underlying value. Higher order moments of these distributions
(skewness and kurtosis), with the exception of G;4, are all positive and
approximately zero, signifying minimal positive skew to each distribu-
tion, and normalized kurtosis values identifying each as a leptokurtic
distribution. G2 is equivalently identified as a platykurtic distribution
with negative skew. Parameters exhibiting large deviations from
Gaussian are X71, n6, and ¢, all of which are significantly positively
skewed with excess kurtosis values signifying larger tails and a higher
likelihood of outliers. Not surprisingly, these insights are also observed
in the CV values reported for these parameters, where each has values in
excess of 30%, with a peak value of approximately 102% for Xr;.
Returning to Fig. 3 to further evaluate Xr;, the heavy skew of the
marginalized distribution becomes evident on the main diagonal. While
the mode is clearly identified, the overall uncertainty of this parameter
remains high with a standard deviation ~7x the MAP value. This un-
certainty in initial strength (Xr1) of the material in damage mode 1
should not be unexpected when looking at the experimental response
curves in Fig. 1. All of the curves in tension (and the singular test in
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Fig. 2. (a) Plot of estimated mean integrated autocorrelation time across all chains with increasing total chain length. (b) Trace plots for all parameter values with
overlaid traces for each walker shown against increasing step number with the mean of all walkers displayed in red.
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Fig. 3. Scatter plot matrix of 15-dimensional posterior distribution estimate of
viscous multimode damage model and noise parameters, with the maximum a
posteriori (MAP) value highlighted in blue. Contours denote the 0.5c, 1.0c,
1.50, and 2.0c confidence intervals. Plotting utilized a package in Python by
Foreman-Mackey (Foreman-Mackey, 2016).

compression) exhibit little nonlinear behavior prior to failure, in direct
contrast to the material response in torsion. This response presents
challenges in the identification of model parameters X7, c¢1, and q;.
Adjustment of these three parameters simultaneously permits wide
ranging values of each in their marginalized distributions to match the
approximately linear elastic behavior observed in tension. Xr;, denoting
the onset of damage establishes the initial threshold energy release rate,
Y2, in Eq. (3). The growth rate in the energy release rate threshold y,
(which encompasses viscous effects) for further damage accumulation is
then controlled with the constant c; (see Eq. (3)). Finally, the power law
form of the damage accumulation rate expression (see Eq. (11)) is
influenced by the exponent g;. Modulation of all three of these param-
eters can control the onset of damage with X7, as well as the overall rate
of damage accumulation directly through q; and indirectly through c;.
This is further borne out in the projected joints (indexed by (5,4), (6,4),

and (6,5)) in Fig. 3 demonstrating a high level of mutual information
between the identified damage variables.

The posterior distribution was then sampled, passed through the
mechanical model and displayed against the experimental curves upon
which the parameters were conditioned. Plots of this result along with
the MAP vector and 1,000 samples can be seen in Fig. 4 for each loading
case.

The resulting curves drawn from the posterior display different levels
of discrepancies between the model predictions and the experimentally
observed stress-strain curves. Following the discussion and model of
Kennedy O’Hagan (Kennedy and O’Hagan, 2001), this discrepancy can
be broken into: (i) stochastic error induced by the measurement appa-
ratus, (ii) error owing to the variability in the involute tube layup and
resulting mechanical properties, and (iv) the error attributed to limita-
tions in the mechanical model formulation. From the preceding sections,
it should be apparent that the first two sources of error were accounted
for through the model presented in Eq. (21). While the model discrep-
ancy term was clearly non-negligible from Fig. 4, its inclusion in the
Kennedy O’Hagan model was omitted as the goal of this work was to
probabilistically calibrate the present damage model rather than eval-
uate its predictive capability. Inclusion of discrepancy modeling is left as
an avenue of future research in the Bayesian treatment of complex
multimodal mechanical models.

4.3. Identification of subsequent experimental tests

Of particular interest in the characterization of materials is the
ability of this Bayesian workflow to provide valuable information on
subsequent experimental tests which maximize the potential informa-
tion gain. In traditional model calibration, often there is an available
dataset of varying degrees of quality, which is utilized to identify a
deterministic parameter set minimizing an error metric between model
predictions and experimental observations. The Bayesian workflow
demonstrated in this work, and identified mechanical model parameter
posterior distribution in Fig. 3, can facilitate an active learning approach
for the subsequent selection of testing conditions which would maximize
the constitutive model accuracy across a domain of interest. Examples of
such active learning approaches include, uncertainty sampling (Lewis
and Catlett, 1994) and entropy-based selection (Herbrich et al., 2003),
where new test conditions are identified based on the largest posterior
variance, along with selection by maximum difference from current
estimates (Wang and Li, 2018), or selection by maximum expected
improvement in the model fit (Yue et al., 2020), or batch selection ac-
cording to distance in the input (Loeppky et al., 2010), among many
others (Ginsbourger, 2018; Yue et al., 2020). As a demonstration of the
above procedure in the current work, an input domain of tensile
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Table 3
Statistical measures of marginalized posterior distributions including the MAP, mean, standard deviation, skewness, kurtosis, and coefficient of variation.
[4 MAP Mean Std. Dev. Skew. Kurt. CV (%)
E; (GPa) 69.579 70.147 3.410 0.336 1.032 4.862
G12 (GPa) 39.995 40.447 2.048 —0.194 —-0.132 5.064
Nie 0.500 0.681 0.276 1.598 5.557 40.558
X1 (MPa) 0.444 3.263 3.314 1.947 5.150 101.558
c 39.724 29.718 5.764 0.907 1.053 19.397
q1 0.751 1.361 0.455 1.148 2.576 33.458
Hip 2.641E+04 2.160E+05 1.422E+05 0.351 -1.117 65.816
X16 (MPa) 0.742 0.703 0.155 0.499 0.302 22.093
Co 15.292 15.482 0.557 0.167 0.077 3.595
qe 1.134 1.142 0.043 0.028 0.056 3.791
Hee 138.108 141.086 24.594 0.356 0.234 17.432
U/ZJQ 0.014 0.129 0.030 0.765 0.887 23.155
”/21: 0.005 0.110 0.028 0.858 1.116 25.849
o‘?a 0.173 0.438 0.028 0.322 0.194 6.304
o‘?t 3.517 1.919 0.120 0.306 0.171 6.276
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Fig. 4. Response curves in tension and torsion for each loading condition. 1,000 samples are plotted in blue from the posterior distribution, along with the curve
resulting from the MAP vector in red and the experimentally observed response in black.

multiaxial strain rates {&1,7;,} was discretized into 100 bins, and the
posterior was passed through the forward mechanical model, with cor-
responding effective loading rates determined from the mechanical
model output. At each location in the input domain, the mean variance
of the posterior predictions across the multiaxial response curves was
evaluated, with the topology of the resulting variance map displayed in
Fig. 5.

The candidate experimental test condition exhibiting the maximum
predicted variance is then selected as the next experiment to be run. This
cycle of populating variance values on the input domain, and maximum
selection is repeated as many times as needed — usually until the model
results in error stabilization across the accumulated experimental

dataset. In the current case, a map of the posterior propagated variance
across the input domain can be observed in Fig. 5, with the peak un-
certainty present at the test conditions of 6;; = 0.47 and 615 = 0.40 in
MPa/s, informing the subsequent experimental run.

5. Conclusions

The work described in this paper significantly advances Bayesian
methods as applied to material constitutive model development. It
provides several advantages over prior work: (i) it demonstrates the
feasibility of simultaneous calibration over inhomogeneous datasets
with multiaxial loading, facilitated through the use a statistical model
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Fig. 5. Map of predicted mean variance across multiaxial tensile response.
Predicted variances were identified by passing the identified posterior distri-
bution on model parameters through the mechanical model at each combina-
tion in the strain rate input space. Maximum variance location is highlighted at
6’11 = 0.47 and fflz = 0.40 MPa/s.

accounting for inter-sample variability, (ii) allows for modular incor-
poration of the widely used Abaqus UMATs for material development,
(iii) extends probabilistic calibration from simple mechanics models to
CDM models with large quantities of unknown parameters correspond-
ing to elastic constants, coupling and evolution functions, and (iv) de-
livers a workflow for the objective and rigorous quantification of
uncertainty in stochastic material model parameters. Overall, this work
enables the probabilistic calibration of complex constitutive models
when provided with sparse and inhomogeneous datasets. A limitation of
this work presented exists in the omission of a statistical quantification
of the model discrepancy, or inability to perfectly capture the underlying
physics. This additional activity is left as an avenue of future research to

Appendix A

Mechanics of Materials 175 (2022) 104487

better quantify performance of CDM models. The end result of this work
provides a promising approach for the probabilistic calibration of
complex high-dimensional material models.
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The details of establishing the covariance matrix in Eq. (24) are presented in this section. The derivation starts with the classical definition of the
covariance matrix, utilizing the flattened structure of s¥ previously presented in Eq. (20) as

Y= [E{sEsET] — [E[SE} E[SE]T
In this vectorized notation, Eq. (21) can be rewritten as

sE=p@ 1, 05" +E

(A1)

(A.2)

where 1 denotes a vector of ones with length 2L, § a random vector f = [, ..., ], s™ a vector of model output stresses matching to the structure of
sF with length 2LK, and & a random vector of Gaussian white noise, similarly with dimension 2LK.
Substitution of s¥ into Eq. (A.2) along with further simplification leads to

= E{(ﬂ@lu @sM+§)(ﬁ®12L®sM+§)T] —Efo L os" +EES L, 05" + € = [E[sMsM" @(ﬁ@l@(ﬁ@hﬂ] + 02k — sV

=" © E[BS" ®Ja) + orlyk

(A.3)

At this point, through noting independence of §; ~ N(l,a/%), the final covariance structure of Eq. (24) can be obtained, which is repeated in Eq.

(A.4).

2 =" 0 (k@0 ) + otk

(A.4)

This covariance matrix can be adjusted to introduce independence between the multiplicative random effect in tension and torsion through
adjusting both sf and s™ to order all stress values in tension, followed by all stress values in torsion as

T 6T roo.. T}T

E_
s =[sz, S Sn

(A.5)
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with sM following accordingly. Separate distributions for g, ~ N(1, 6,23‘1
Eq. (A.6).

2
o, 0

2
0 o

E=s"s" 0 (M @Ik ®J1) + 0k
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