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A B S T R A C T

Conditional microstructure generation tools offer an important, inexpensive pathway to constructing statisti-
cally diverse datasets for Integrated Computational Materials Engineering and Materials Informatics efforts. To
provide this utility in practice, an ideal generative framework must be able to efficiently, systematically, and
robustly generate microstructures corresponding to selected spatial statistics (e.g., 1- and 2-point statistics)
while also producing realistic local features (e.g., shapes and sizes of individual phase constituents). Because
of the austerity of these requirements, generative frameworks often target either statistical conditioning or
visual realism, but not both. In this paper, we propose to bridge these two approaches by approximating a
microstructure’s generating process (i.e., its stochastic microstructure function) using a two layer semi-directed
probabilistic graphical model. The first layer – a Gaussian Random Field (GRF) – provides direct control of the
1- and 2-point statistics. The second layer – a Score Based Generative Deep Learning model – postprocesses
GRF predictions to refine local features while preserving global patterning. To understand and evaluate our
proposed framework, we apply it to generate statistically equivalent N-phase microstructures from experimental
references, including a 2-Phase Nickel-based Super Alloy and a 3-phase ↵ * � Titanium alloy. Through these
two case studies, we demonstrate that our framework successfully matches both lower-order (1- and 2-point
statistics) and several salient higher-order statistics. Additionally, we briefly explore the capacity of these
models to extrapolate outside of their training data by varying the input 2-point statistics. We discuss the
value of this ability towards systematically generating diverse microstructure datasets.

1. Introduction

Fueled by national initiatives such as the Materials Genome Initia-
tive [11], there is a rapidly growing interest in synthetic microstructure
generation [12–17]. Combined with limited, expensive experimental
data, such tools promise a pathway for systematically constructing the
large, diverse microstructure datasets necessary for design [18–21],
discovery [22,23], and manufacturing [24] tasks central to Integrated
Computational Materials Engineering (ICME) and Materials Informatics
(MI) efforts. Therefore, to be useful to these efforts, it is important
that generative frameworks maintain their compatibility with the larger
ICME and MI paradigms for studying engineering materials.

Foundational to many ICME and MI frameworks is the statistical
treatment1 of materials and their microstructures, which provides a
robust theoretical platform for the rigorous analysis of their response
to external stimuli [2,25–28]. Fundamentally, this worldview proposes
that instances of material microstructures that we observe (through,

< Corresponding author at: George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
E-mail address: surya.kalidindi@me.gatech.edu (S.R. Kalidindi).

1 Here, we make reference to the general class of theories that approach the quantitative study of materials and their microstructures from the perspective
of continuum statistical mechanics and probability theory. Prominent examples are Kroner’s Statistical Continuum Theories [1,2], Torquato’s Strong Contrast
Homogenization Theories [3–6], and Kalidindi’s Materials Knowledge System [7–10].

for example, experimental techniques such as Scanning Electron Mi-
croscopy (SEM) or during computer simulations) are sampled instances
from abstract stochastic processes called Stochastic Microstructure
Functions [9,12,25–27]. Over the past few decades, researchers have
leveraged the n-point statistics [2,25–27] that identify these stochastic
microstructure functions as powerful descriptive features for tasks such
as unsupervised quantification and analysis of material microstruc-
tures [29,30], construction of advanced homogenization models for
identifying effective properties [4,5,19,31], microstructure sensitive
design [20,21,32], the construction of process–structure linkages to
describe the transformation of material microstructures in response to
manufacturing conditions [24,33–35], and in inverse problems for non-
destructive testing [36,37]. Additionally, these ideas have been used to
form localization models for approximately or exactly solving partial
differential equations over heterogeneous microstructures [38–43].
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Within ICME and MI efforts, microstructure generation tools are
commonly used to systematically generate microstructures targeting
specific salient microstructure statistics [19,21,44,45]. For example, be-
cause several statistical measures (e.g., Orientation Distribution Func-
tions, Grain Size Distributions) can be controlled in the generating pro-
cess [46,47], Dream3D and other similar tools [48] have been success-
fully applied to many important ICME applications (e.g., design [21,
44], manufacturing [24]). The capacity to systematically control the
statistics of the generating process (hereafter referred to as conditional
microstructure generation) is fundamental to the generator’s broader
usefulness.

Keeping in mind the desired applications, useful conditional mi-
crostructure generation tools should, ideally, meet the following five
requirements.

1. Control: The generative model should be conditioned by mi-
crostructure statistics important to broader engineering prob-
lems; in many studies this takes the form of first- and second-
order statistics [19,24,31,36].

2. Realism: Although we only require explicit control over lower-
order statistics, the generative framework should produce mi-
crostructures whose higher order statistics are representative of
real engineering materials. Because the number of individual
statistics involved increases exponentially [25,26,49] with in-
creasing order of the spatial correlations (i.e., n-point statistics),
explicit conditioning with higher-order statistics, while ideal, is
an extremely challenging requirement.

3. Robustness: The generative quality should remain stable across
the input domain since these tools are usually used to systemat-
ically explore large ranges of the input microstructure statistics.
This requirement is especially important when employing deep
learning models. For engineering purposes, a generative model
whose function is restricted to producing new microstructures
that are statistically similar to its training set has very limited
practical utility. By definition, we would already have ample
examples of microstructures that it can produce.

4. Data Efficiency: If training is required, training should be data
efficient. Given the well documented data scarcity prevalent in
Materials Informatics [50–53], significant training data is often
an unachievable luxury.

5. Computational Efficiency: An ideal generative model is com-
putationally efficient to sample.

We recently proposed an initial model for synthetic generation of
vector-valued microstructures conditioned on 2-point statistics. This
was achieved by constructing a computationally tractable approxima-
tion of the Stochastic Microstructure Function using multi-output Gaus-
sian Random Fields (GRFs) [12]. The GRF model met many of the pre-
viously described criteria. It can be efficiently sampled at O(NS lnS)
computational cost for S spatial pixels and N microstructure states
(Requirement Five). Additionally, the model does not require training
data (Requirement Four) and as such displays excellent robustness
(Requirement Three). Finally, it directly incorporates and statistically
matches a desired set of 1- and 2-point statistics (Requirement One).
However, in exchange for these strengths, the model is limited by its
inability to incorporate and correctly match higher-order statistics. As
a result, the GRF-generated microstructures are heavily biased towards
semi-connected, pseudo-amorphous features. Obviously such features
are rarely representative for the vast majority of engineering mate-
rials; the model fails to satisfy Requirement Two. We note that the
importance of this requirement depends heavily on the desired ap-
plication. For example, in low-contrast composites, extensive research
has demonstrated that effective elastic and simple plastic properties
are sufficiently defined by 1- and 2-point statistics [4,19,31,54]. In
such cases, we need not worry about matching the higher-order statis-
tics. However, it remains unclear in which situations the higher-order
statistics play an important role [49,55–57].

In this paper, we propose a refined approximation to the Stochas-
tic Microstructure Function. The resulting generating process retains
explicit conditioning on lower-order statistics (1- and 2-point statis-
tics), while also offering strong agreement with salient higher-order
statistics. Theoretically, we achieve this by expanding on the local–
global hypothesis we presented at the end of our prior work [12]:
for many engineering materials’ microstructures, lower-order statistics
sufficiently describe the salient global spatial patterns, as well as av-
erage shape, of microstructure features, while higher-order statistics
primarily characterize the features’ individual shapes and their spatially
localized interactions.

Mathematically, we argue that the conceptual split between local
and global implies a natural decomposition of the dependency struc-
ture2 of stochastic microstructure functions. As a higher-order approxi-
mation, we propose a two-layer semi-directed Probabilistic Graphical
Model3 [59,60]. The first layer, containing a latent variable for ev-
ery pixel, incorporates the global information of the 1- and 2-point
statistics. Here, the graph is densely connected and the resulting dis-
tribution is parameterized using the multi-output Gaussian Random
Field model [12]. The second layer, containing visible variables for
every pixel, accounts for higher-order, local information using a Score-
Based Generative model. Connections from the first layer and within
the second layer are spatially limited to compact neighborhoods. In
the context of previous generation efforts, the proposed framework is
a unification of global and local approximation models leveraging the
strengths of both.

The remainder of the paper is structured as follows. First, we present
a discussion of existing generation frameworks in the context of the
local–global split. Next, we introduce Score-Based Generative models
as a valuable tool for learning conditional distributions. Subsequently,
we present a complete discussion of the proposed generative model
and accompanying training methodology. Finally, we specialize the
framework to the N-phase generation problem and provide several case
studies aimed at exploring its strengths and limitations. In the first case
study, we benchmark the expressiveness of the model by generating 2-
phase microstructures derived from a segmented SEM micrograph of a
Ni-based super alloy [61]. In the second case study, we demonstrate
the application of the proposed frameworks to a system with larger
numbers of phases and more diverse local features. Specifically, we
use a ↵ * � Ti microstructure [62] as the reference. In both case
studies, the framework’s performance is evaluated both qualitatively –
in its ability to construct realistic features – and quantitatively – in its
ability to match the statistics of the underlying microstructure process.
Additionally, we utilize these case studies to facilitate an important
discussion regarding architecture design and learning strategies for
effectively training the local distribution model (details provided in
Section 4 and Appendix C). In particular, we emphasize training within
Materials Informatics’ characteristic data-starved environments and the
necessary considerations for producing reliable deep learning models
for this application. In the first case study, we also briefly explore the
model’s capacity to extrapolate outside of its training data.

To facilitate communication we briefly present the notation adopted
throughout the paper. Vector-valued quantities are demarcated in bold,
a. Quantities with spatial dependency, such as spatially resolved func-
tions, are demarcated using a subscript for discretely sampled quan-
tities or a spatial dependency for continuous quantities: as and a(x),

2 Here, we are referring to the existence and nature of inter-variable
dependencies within a distribution [58,59].

3 In this formalism, a distribution is represented as a graph over a node set
defined by the distribution’s random variables (in this case, the vector-valued
microstructure state across all pixels). A directed edge between variables
represents conditional dependency along the edge. This graph-based formalism
offers a quantitative language for constructing and studying the structure of
probabilistic models and provides a means of converting domain intuition
(e.g., separation of scales) into testable models (such as ours).
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respectively. Components of vector-valued quantities are indexed using
a superscript in parenthesis, a

(�) = a � e� , where e� is the �-basis
vector. Finally, summations will always be written explicitly using the
summation operator and are never implied by repeated indices.

2. Background

Conditional synthetic microstructure generation remains an open
research question due to the myriad relevant features in a microstruc-
ture. Out of practical necessity, generative frameworks are usually
constructed to only target specific subsets of these features. For ex-
ample, many research efforts have proposed frameworks that generate
microstructures matching 1- and 2-point statistics [12,14,16,17,63–67].
However, in exchange for strong agreement on the target statistic, this
specialization produces highly unrealistic artifacts. For example, the
problem of synthetically generating fiber composites from 1- and 2-
point statistics is an ubiquitous benchmark in microstructure generation
because it clearly delineates important strengths and limitations of
proposed methods [12,15,68]. Synthetic microstructures generated by
models designed to match the 1- and 2-point statistics of a fiber
composite display realistic long range spatial arrangements, but lack
the characteristic uniform fiber shapes. Instead, they display significant
connectivity in the fiber phase. Similar issues appear in other appli-
cations; Jiao et al. present the generation of synthetic Fontainebleau
sandstone. Unlike the original micrograph, they note that the syn-
thetic microstructures lack the original’s characteristic sharp phase
boundaries [63].

Amongst methods specialized for 1- and 2- point statistics,
optimization-based generative models (such as Jiao et al.’s method [16,
63]) have partially addressed these limitations. In exchange for long
generation times, instead of directly approximating the stochastic mi-
crostructure function, optimization-based methods generate new mi-
crostructures displaying the desired statistics by minimizing a prede-
fined loss [14,16,63–66]. A deeper analysis of this class of methods
has been recently presented [12]. To improve generation quality and
capture these fine details, Jiao et al. argued that higher-order spatial
statistics are necessary [68]. By including just 3-point statistics in their
expanded loss function, they demonstrate significant improvement
in the realism of their synthetic microstructures. This approach was
recently analyzed and expanded by Cheng et al. who noted that only a
small subset of the 3-point statistics – those associate with small vectors
(r1 and r2) – contribute to the improved realism [15]. This result
is not surprising: the subset describes features of the local interfaces
present in the microstructure [49]. Therefore, their inclusion reduces
the likelihood of local artifacts. As an aside, these observations give
weight to the assumed separation between local and global features
discussed previously.

While efficient to sample, probabilistic approximation models lack
an equivalent to the flexibility of the optimization objective. This makes
it challenging to address these local aberrations by including higher-
order statistics. As a result, previous research efforts have remained
divided: focused on either incorporating 1- and 2-point statistics [12,
17,69] or successfully synthesizing realistic local features. For clar-
ity, we will refer to approximation methods that focus on generating
the large-scale patterns observable in material microstructures by in-
corporating 1- and 2-point statistics in the approximation as global
approximation methods. In contrast, we will refer to methods that focus
on generating realistic local features – implicitly incorporating local
higher-order statistics – as local approximation methods.

2.1. Global approximation methods

Gaussian Random Field (GRF) models are the most common exam-
ple of global approximation methods [12]. GRFs are a family of simple
stochastic functions parameterized by mean functions and covariance

kernels [70,71]. Additionally, the family is defined by the character-
istic that the function value associated to any finite set of points in
the domain is distributed as a multivariate normal distribution (see
Eq. (2)). Stationarity of the stochastic family is a common simplifying
assumption; for stationary GRFs the mean function is constant within
the domain, �(x) = � and the covariance kernel ⌃ depends only on the
difference between spatial locations, ⌃(x1,x2) = ⌃(x1 * x2).

f (x) Ì GRF (�,⌃(r = xi * xj )) (1)
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In a recent article [12], we demonstrated an equivalence between a
microstructure’s anisotropic 1- and 2-point statistics and the mean and
covariances of a GRF. Via this connection, we built a second-order (that
is, Gaussian) approximation of any N-field stochastic microstructure
function. Additionally, for periodic vector-valued microstructures, we
proposed an efficient algorithm to produce samples at O(NS lnS) com-
putational cost for N phases and S pixels. This model can efficiently
generate synthetic microstructures corresponding to arbitrary, periodic,
stationary 1- and 2-point statistics. Because the model avoids the
necessity of training, it is widely generalizable to any observed set of
1- and 2-point statistics. However, its local features are systematically
biased; the approximation of the Gaussian Random Field produces
pseudo-amorphous structures.

2.2. Local approximation methods

In contrast to global approximation methods, there are numerous,
seemingly disparate, approaches which can be naturally classified as
local approximation methods. Perhaps the most widely adopted is
Dream3D, which generates synthetic polycrystalline microstructures
with specified 1-point statistics (e.g., Orientation Distribution Func-
tions [27]) [22,46,47]. To generate individual grains, Dream3D adopts
a simple parametric grain shape: an ellipsoid [46]. After sampling
the ellipsoid parameters from a grain size distribution, the grains are
packed spatially and then refined using a coarsening process. Finally,
grain descriptors (e.g., orientations) are sampled and added. In this
model, the grain size distribution, orientation distribution, and the
ellipsoid model together act as a local feature distribution. Although
a number of alternative models use more complex representations,
they share an important characteristic with Dream3D: a local, ap-
proximate feature distribution is used to synthesize a much larger
microstructure. As a result, all of these models display excellent local
detail but lack global patterning, making them well-suited (and widely
used) for globally homogeneous microstructures such as homogeneous
polycrystals [22] and Oolitic Limestone [13].

In many practical applications, the local feature distribution is too
complex to parameterize analytically. In such cases, one may instead
extract a library of candidate local features from real microstruc-
tures. Cecen et al. present a clear example of this in the context of
optimization based methods [72]. Using a reference segmented SEM
micrograph, they extract a library of local features and use a congruent
concept to Dream3D to generate new microstructures. They first sam-
ple a feature from the library, then place it to minimize pre-defined
objectives using a filter-based loss function.

Markov Random Field models [73–79] build a computationally
tractable approximation of the stochastic microstructure function by
imposing a local Markov assumption: the state of a material point
(i.e., pixel) x is only dictated by its direct neighbors (or a small neigh-
borhood [76]), N(x). Via this assumption, the approximation is con-
structed using a local conditional neighborhood distribution, p(xN(x)).
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To generate microstructures, Markov Random Field models raster over
an initially-blank structure and repeatedly sample p(xN(x)). At each
step, for each neighborhood, they identify the set of x that best match
the neighborhood under a handcrafted metric [75,76]. Randomly se-
lecting from the top K best fits, they add this region to the new
microstructure. Like Cecen et al.’s method, MRF methods employ a
discrete library approximation of the conditional local feature distri-
bution. As a result, MRF methods often struggle with extremely high
computational cost. This occurs for two reasons. First, each sampling of
the conditional distribution requires exhaustively searching the discrete
library. Second, MRF methods are notoriously unstable. Therefore,
they often must be restarted multiple times to successfully produce a
sample [76].

Finally, deep distributional learning has emerged as a powerful
class of methods for approximating distributions (for example, Gener-
ative Adversarial Networks (GAN) [80–84], Normalizing Flows [85],
Stochastic Diffusion Models [86,87], Variational Autoencoders [88],
Style Transfer methods [89,90]). Recently, many research efforts have
employed these models as extremely expressive approximations of mi-
crostructure distributions [13,73,82,90–101]. In theory, distributional
learning models could be used as a direct approximation of the entire
generating process, acting as both local and global approximators.
Although some efforts have sought to do so by collecting sufficiently
large microstructure datasets [82,94,100,101], widespread application
of this monolithic approach is limited by the data-scarcity character-
istic to Materials Informatics efforts. Instead, most studies use these
models as a natural extension of discrete library frameworks, where a
continuous approximation of the local feature distribution is learned
implicitly from a dataset composed of small patches cropped from
a single (or a few) experimental micrographs [13,92,93,97,102,103].
In such frameworks, large microstructures are synthesized by either
directly using the patch-trained model on a larger domain to synthesize
a large microstructure4 [13,92,93] or by sampling and subsequently
stitching together a large set of individual patches [97]. Like other
local approximation methods, although such models produce extremely
realistic local features, it is well documented that they are unable to
generate spatial patterns whose length-scale exceeds the patch size [13,
90].

In addition to requiring large datasets, Deep Learning frameworks
are incapable of extrapolating to generate microstructures that are
statistically dissimilar to their training data. Therefore, they are gen-
erally limited to generating microstructures similar to microstructures
one already has. It is worth noting that several attempts have been
made to address this by training conditional deep learning models [92,
96,100,102,103]; however, such models are often limited by an even
higher data requirement. Furthermore, even when applicable, they
have only displayed the ability to interpolate to highly statistically
similar structures [92]. While data remains scarce, it remains to be seen
whether such models can be diversified.

2.3. Hybrid probabilistic approaches

In prior work, we presented a simple extension of the Gaussian
Random Field model to address the fiber composite benchmark prob-
lem [12]. In brief, we employ the output of the Gaussian Random
Field as a guide to the iterative placement of fiber features (following
Cecen et al.’s approach [72]). From the perspective of probabilistic
approximation, we interpret this blended generative model as a rudi-
mentary unification of Global and Local Approximation Methods. In
effect, the stochastic microstructure function is estimated with higher
precision by augmenting the collected lower-order statistics with a local

4 In general, the ability to do this depends significantly on the type of deep
learning model and its architecture. For example, a fully convolutional model
is absolutely necessary.

feature distribution — in this case, approximated by a single circu-
lar cross-section of the fiber reinforcement.5 Altogether, this hybrid
approximation allowed one to generate realistic fiber features while
controlling 1- and 2-point statistics.

The extended GRF model can be interpreted of as a kind of two
layer probabilistic model [59]. The GRF, parameterized by the 1- and
2-point statistics, acts as the first layer. The iterative feature placement,
parameterized by the feature distribution and conditioned on the GRF
output, acts as the second layer. This hybridization is exciting because
it maintains the stability, speed, and parameterization of the Gaussian
Random Field model – important for practical applications – while
adding the high local feature quality of local approximation meth-
ods. However, this approach only worked because the fiber-reinforced
composite exhibits extremely homogeneous local features; its local
feature distribution could be approximated using a single example. For
more complicated material systems encountered in most engineering
applications, the feature distribution cannot be adequately represented
in such a simplistic manner.

2.4. Score-based generative models

Denoising diffusion-based deep generative models [86,87,104–106]
are a category of deep distributional learning models [88] that have
been the source of significant revived interest due to several new
theoretical improvements [86,87,107–110] as well as demonstrated
success in a variety of engineering problems (such as image genera-
tion [111–113], text-image generation [114], video generation [115,
116], molecular design [117,118], waveform generation [119], mi-
crostructure generation [100,101]). During training, these models learn
a function undoing an imposed noise process (often the iterative addi-
tion of Gaussian noise to training images). At sampling, generation is
performed by iteratively applying the learned function to samples from
a known distribution (often the unit normal).

Score-Based Denoising Generative (SBG) models [87,104,109] are a
subcategory6 of denoising-based deep generative models that attempt
to learn the Stein score of a data distribution, (x log p(x), as a denoising
function. Theoretically, learning the Stein-score alone is sufficient for
generation. However, to overcome training instability between modes
and at the fringes of the data-distribution [109,120], SBG models are
usually trained and sampled via an annealing process. Each annealing
level is characterized by a noise parameter, �i, which is used to smooth
the data distribution via convolution with a symmetric Gaussian with
variance �

2
i
. As a result, the Stein score is augmented to incorporate

the noise level: (x log p�(x). Once trained, sampling is performed by
iteratively updating samples while slowly decreasing the noise param-
eter, �. In its simplest form, this process is referred to as Annealed
Langevin Dynamics and produces the following update equation (where
subscripts denote a step or iteration in the denoising process).

xt = xt*1 + ↵s✓(xt*1, �) +
˘
2↵zt (3)

zt Ì N (0, 1) (4)

Here, s✓(x, �) is the learned SBG model with trainable parameters ✓.
After many iterations, the result is x Ì pdata(x). The original authors rec-
ommend performing a single Langevin step over a significant number

5 Of course, even this is an approximation because it ignores the short range
correlations between neighboring fibers.

6 More rigorously, SBG models [87] and denoising diffusion models [86,
106,107] are alternate derivations of a single mathematical framework [104]
for conceptualizing and constructing stochastic denoising models. Although
both derivations afford similar end results (i.e., nearly identical loss functions
and sampling algorithms), each paradigm has its own conceptual strengths. For
example, conditional sampling is more naturally addressed in the score-based
interpretation [87,113].
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of noise levels, along with a geometrically decaying noise schedule,7 for
optimal performance [121]; that work also presents numerous details
regarding implementation and training for this class of models. At the
continuous limit of infinitesimal steps in �, Song et al. [87] demon-
strated that the denoising process is equivalent to solving a Stochastic
Differential Equation (SDE). This observation initiated the development
of SBG models which accept continuous values of � and are sampled
using numerical SDE solvers [87]. For very complex distributions,
using exotic solvers can improve sample quality and reduce sampling
time [87,122,123]. Application of a simple forward Euler–Murayama
numerical solver [87] returns the Annealed Langevin Dynamics update
equation described above.

Training [121] of denoising diffusion and SBG models is simpler
than alternative approaches. They specifically avoid the competitive
training (and associated instabilities [124]) required in GANs [80] and
the invertible layers of Conditional Normalizing Flow models [125].
Specifically, training SBG models is performed by minimizing a single,
unified loss function [87,109,121]. Amongst the proposed alterna-
tives [126], the Denoising Score Matching loss [108] (Eq. (5)) has been
widely adopted because of its low computational burden.

1
2L

L…
i=1

�
2
i
Epdata(x)Ep�i

( Éxx)

LÙÙÙÙÙ
s✓( Éx, �i) +

Éx * x
�
2
i

ÙÙÙÙÙ

2

2

M
(5)

Here, L is the total number of noise levels. Both expectations are
approximated via Monte Carlo integration. The second expectation is
performed over the �i perturbed distribution p( Éxx) Ì N ( Éx;x, �2

i
I).

SBG models have two characteristics of particular importance to
applied engineering problems. First, they offer simple conditioning. In
general, standard denoising models approximate unconditional distri-
butions. Sampling them conditionally requires either a learned transfor-
mation to the denoising path [114–117,119,127,128] or perturbation
approximations of posterior distributions [106,129]. These approaches
are complicated, expensive, and can require large training sets and
complex models. In contrast, the direct relationship between Stein
scores and probability density functions allows one to condition SBG
models directly using an additive form of Bayes Rule [87,111–113].

(x log p(xy) = (x log p(yx) + s✓(x, �) (6)

Here, (x log p(yx) is the Stein score function of the likelihood. Depend-
ing on the application, this can either be learned separately [112,113]
or analytically prescribed [86,87,111]. This relationship offers more
flexibility in applying a trained SBG model to problems where con-
ditional distributions are necessary without incurring higher training
demands.

Second, Song et al. [87] demonstrated that trained continuous SBG
models can be used to estimate log likelihoods [87]. Although we will
not employ this characteristic in this paper, we briefly note it here as
an interesting potential pathway for future research.

3. Proposed framework

3.1. Decomposition of the stochastic microstructure function

In this section, we formally develop our proposed higher-order
generative framework – a generalization to the extended Gaussian
Random Field (GRF) method [12]. As with all probabilistic approaches,
this development amounts to systematically building a tractable ap-
proximation to the stochastic microstructure function of interest. If we
transition to the discrete setting by adopting a pixelized description
for microstructures [12,25,26], then our goal is to approximate the

7 This noise schedule is referred to as variance exploding [87] and is more
commonly adopted in SBG implementations. Other schedules, such as variance
preserving [86,87,104], are also common and display similar performance.

parameterized (i.e, statistically conditioned) joint distribution over the
local states of each pixel.

p(m1,…mS ;�,f r) (7)

Here, ms refers to the possibly vector valued microstructure state at
pixel s (out of S pixels in total). We use the term ‘‘pixel’’ since our case
studies focus on two-dimensional structures, however, the framework
itself is general and (given appropriate training data) is unchanged for
three-dimensional voxelized structures as well. � and f r are the desired
vector-valued mean of the local states and their discrete, vector-valued
2-point statistics function, respectively. Variables appearing after the
semicolon denote parameterization of the distribution.

Our fundamental assumption in this work is that a separation exists
between the roles of lower-order (i.e., 1- and 2-point statistics) and
higher-order statistical information in the generation process. Specif-
ically, lower-order information captures long range correlations such
as the spatial arrangement and general shape of important features. In
contrast, the impact of higher-order statistical information is localized;
it describes features such as interfaces between phases. We argue that
this assumption mathematically manifests as a factorized dependency
structure for the joint distribution in Eq. (7). This decomposition draws
on a rich body of existing mathematical frameworks for formulating
and simplifying the structure of joint distributions, such as Copulas [17,
130] and Probabilistic Graphical Models [59,60]. In the following
paragraphs, we develop our proposed approximation, incorporating the
assumption described previously, in three informative progressions.

As an initial construction, the approximation of the complete joint
distribution should capture long range correlations. Because we as-
sume that the correlation between sufficiently separated pixels is solely
dependent on 1- and 2-point statistics, the joint distribution is well
described by a Gaussian approximation:

p
GRF (m1,… ,mS ;�,f r) = N (m1,…mS ;�,f r) (8)

Imposing this assumption regardless of the separation of the two
pixels of interest recovers the Gaussian Random Field model [12].
However, this approximation is unrealistic if the separation between
pixels is small.

As a second step, consider a set of small, spatially-compact neigh-
borhoods in the microstructure. Mathematically, we identify the ith
neighborhood as Xi – a set of pixel locations. Correspondingly, we
define Ni as the set of local state assignments, Ni = {mj : j ÀXi}. Additionally, Ni

c , the compliment of the neighborhood, is the set
of local states for all pixels outside of the neighborhood. Here, the
length scale of the neighborhood is small enough such that its salient
features (e.g., the curvature of phase boundaries) depend heavily on
higher-order, short-range microstructure statistics. In this case, the
joint distribution of pixels within Ni is strongly non-Gaussian and
parameterized by higher-order statistics �

(3,…) (e.g., 3-point statistics
and up).

p
neigh(Ni) = p

neigh({mj : j À Xi};�(3,…)) (9)

Furthermore, stationarity of the stochastic microstructure function re-
quires that all neighborhoods obey the same joint distribution (i.e.,
p
neigh(Ni) = p

neigh(Nj ) ≈i, j). This expression corresponds to an uncon-
ditional local feature distribution; like the GRF, it is also unrealistic.
Sampling would produce neighborhoods independent of any nearby
neighborhoods and without any global context. However, as we will
later argue, the structure of this distribution makes it an important
intermediate, well-suited for training deep learning models.

We can account for continuity between adjacent neighborhoods and
global context by conditioning the local neighborhood distribution. In
this case, our local features, Ni, are conditioned on both initial latent
predictions (supplied by the GRF and denoted Çm with ith neighborhood
assignments ÇNi) as well as on the values of the closest pixels just
outside of the neighborhood. For notational simplicity, we overestimate
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these pixels using the neighborhood’s compliment, Ni

c . However, we
strongly emphasize that this is largely redundant. Once conditioned by
the GRF, the dependency between neighborhoods is near-Markovian:
only the closest pixels are necessary to ensure continuity. Assuming
that all other regions of the domain are fixed, we define the following
conditional neighborhood distribution.

p
cond (NiNi

c ) = p
neigh(Ni ÇNi,Ni

c ;�(3,…)) N ( ÇNi;�,f r) (10)

Importantly, in this construction, the Gaussian distribution con-
tinues to provide global context and direct control over the 1- and
2-point statistics. Therefore, ideally, the conditional correction should
not impact the lower order statistics. Note that ‘‘’’ denotes conditioning ;
that is, ÇNi and Ni

c are also random variables. Finally, we multiply the
conditional distributions of each neighborhood to approximate the full
joint distribution.

p(m1,… ,mS ;�,f r) =
K«
i=1

p
cond (NiNc

i
)

=
K«
i=1

p
cond (Ni ÇNi,Ni

c ;�(3,…)) N ( ÇNi;�,f r)

= N ( Çm1,… , ÇmS ;�,f r)
K«
i=1

p
cond (Ni ÇNi,Ni

c ;�(3,…))

(11)

K is the total number of neighborhoods. Note that the neighborhoods
are not necessarily disjoint sets; this factorization can be achieved by
any choice of neighborhoods so long as their union is the full domain
(
∑K

i=1 Xi = ⌦). Since the GRF is jointly Gaussian over any subset of
pixels, it can be pulled outside of the product. In contrast, because of
the explicit conditioning, the second term remains localized to each
neighborhood.

Eq. (11) is the central conceptual contribution and backbone of this
paper. It supports conditional microstructure generation frameworks
that meet the five requirements previously discussed. Via the GRF, it
offers microstructure generation explicitly conditioned on required 1-
and 2-point statistics (Requirement One). Furthermore, the conditional
local neighborhood distribution incorporates realistic local features
(Requirement Two). Finally, this formulation is relatively robust (Re-
quirement Three). In the remainder of the paper, we substantiate
these claims and demonstrate that the framework can be implemented
computationally efficiently and in extremely data-starved regimes (Re-
quirements Four and Five). To practically implement Eq. (11), we
require expressive and tractable models for the global normal distribu-
tion and the neighborhood conditional distribution. The first is simply
the Multi-Output Gaussian Random Field model [12]. An analytic
expression for the second would be ideal, but is impossible (or at least
infeasible) due to the extreme complexity of defining an analytic dis-
tribution incorporating higher-order microstructure statistics. Instead,
we propose to use a Score-Based Denoising Generative (SBG) model to
approximate the conditional neighborhood distribution.

3.2. SBG models for neighborhood distributions

SBG models offer a number of advantages for the problem at
hand. In practice, learning the conditional neighborhood distribution
in Eq. (10) is extremely challenging for several reasons. Primarily, we
cannot acquire the necessary data triplets, (Ni,

ÇNi,Ni

c ), for training.
This would require access not only to multiple complete structures,
but also to ‘‘noisy’’ versions resulting from a Gaussian truncation. The
ability to maintain the 1- and 2-point statistics imposed by the GRF
poses an additional constraint on the model form. Fortunately, we can
avoid requiring unacquirable training data and satisfy conditioning
requirements using SBGs.

Instead of learning a conditional distribution – Eq. (10) – directly,
we propose to approximate the unconditional neighborhood distribu-
tion in Eq. (9). Learning this simpler distribution is practically achiev-
able because it only requires examples of real neighborhoods (see
Section 4.1). Subsequently, we show how to perform conditional sam-
pling in Eq. (11) – without additional training of the unconditional
model – via two analytic transformations to the sampling process.

First, we transform the score function of the unconditional neigh-
borhood prior into that of a volume-fraction-conditioned posterior
using Bayes’ Rule. This posterior form allows us to draw samples with
minimal changes to the 1-point statistics introduced by the PGM’s first
layer (the GRF). For vector-valued microstructures, the likelihood term
is applied to each dimension independently.

(m log p(mvf ; ✓, �, ��) = * 1
S�2

�

0
mT 1
S

* vf

1
1 + s✓(m, �) (12)

Here we redefine m to be a vectorized representation of the microstruc-
ture over the entire spatial domain; ✓ are the learned model parameters,
S is the number of pixels and � is the noise level for the diffusion model.
�� is the standard deviation of the volume fraction likelihood, and
dictates the acceptable uncertainty in the volume fraction. A derivation
of the posterior score function is given in Appendix A. An ablation study
demonstrating the importance of this term is given in Appendix B.

In addition to augmenting the score function, we employ a truncated
noise schedule to further condition8 samples from the neighborhood
posterior on the output of the Gaussian Random Field. This procedure
was first recommended in Meng et al. [111] and has shown success
for a number of problems [86]. Instead of beginning sampling with
white noise and iteratively proceeding through every noise level [109],
conditional sampling is achieved by using the output of the Gaussian
Random Field as an initial iterate and starting the iterative denoising
at an intermediate noise level �c À [�f , �i]. Of course, this parameter
must be tuned. Although application-specific tuning would provide the
best results, for N-phase microstructure generation, we found that an
intermediate noise level between 0.5 and 1.0 offers acceptable results
in general (we used 0.75 in both case studies).

Together, these two transformations allow us to sample neigh-
borhoods conditioned on the output of the Gaussian Random Field.
Importantly, this procedure is designed to minimize deviations from
the GRF’s explicitly controlled 1- and 2-point statistics (Requirement
One). Due to strong coupling between orders of n-point statistics,9 even
slight errors in the lower-order statistics can cascade into significant
errors in the higher-order statistics. The capacity to preserve lower-
order statistics while modifying higher-order statistics is another major
driving factor in our decision to use score-based denoising models to
learn the conditional distribution.

In addition to making it feasible to practically implement the pro-
posed framework, SBGs produce high quality and visually diverse
images [87]. For our application, this is especially important for mi-
crostructures with multi-modal local neighborhood distributions (see
Section 5.3). The precise reason for this high quality is presently an
open question. However, a growing body of research has repeatedly
observed that iterative learning methods offer better and more stable
results, in exchange for slightly slower inference speeds, compared to
one-step learning methods [43,131–136]. In the context of Materials
Informatics and physics-informed deep learning, it is possible that

8 We note that a direct conditioning can be achieved using Bayes
Rule [112]. The process would be similar to conditioning on the volume
fraction (Appendix A). However, previous research has demonstrated that,
in this case, the L2 norm is not an effective measure for the likelihood.
Instead, these efforts have used learned norms. In the interest of simplicity
and conserving model parameters, we forgo this approach.

9 For example, for large shift distances the 2-point statistics converge to the
squared volume fraction [25–27].
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Fig. 1. Visual summary of the proposed framework. The final elements of the proposed generative framework are contained within the dashed gray rectangle.

this improvement is due to the close relationship of these schemes
with classical operator splittings and decomposition methods for Par-
tial Differential Equations [137,138] and the Lippmann–Schwinger
equation [1,3,40,139].

3.3. Implementation

Altogether, training, constructing and sampling the proposed model
is simple. The proposed framework is visually summarized in Fig. 1.
To begin, the SBG is trained on small microstructure patches ex-
tracted from an experimental reference to approximate the uncon-
ditional neighborhood distribution. The GRF is analytically parame-
terized by the desired set of 1- and 2-point statistics. The statistics
can, but need not, be sourced from the reference, Section 5.2. Once
training is complete, sampling a synthetic microstructure is performed
via two steps. First, the GRF produces an initial second-order approx-
imation. Subsequently, a final synthetic microstructure is produced
by performing iterative Langevin sampling on the entire GRF sample
using the trained SBG and the conditioning transformations discussed
above. Because both the computation of the 2-point statistics and the
GRF’s sampling algorithm assume periodicity, the initial second-order
approximations are periodic. We recommend employing an embedding
strategy similar to Bostanabad et al.’s periodic embedding strategy [73]
to maintain this periodicity during the SBG refinement stage.10 The
embedding should be reinitialized after each Langevin step to reflect
any updates. Importantly, the extended region should be excluded from
the volume fraction estimates. We recommend and adopted this strat-
egy over the use of periodic convolutions in the SBG because the SBG
model is trained on nonperiodic patches. More generally, it is important
to note that two spatial domains are involved with the SBG model; it
is trained on small, spatially-compact neighborhoods, but evaluated at
sampling time on the entire spatial domain. This is achieved by using
a fully-convolutional SBG network with a carefully-chosen receptive
field. The impact of this dual-scale usage is further discussed in Sec-
tion 4.2 and Appendix C. Finally, with respect to neighbor continuity,
because the SBG model acts in a strided fashion, it implicitly satisfies
local continuity between neighborhoods at each iteration. Since many
conditional passes are made during denoising, there is no hard Markov
assumption; instead, information diffuses between neighborhoods in a
process reminiscent of message passing [59].

10 We periodically extend the microstructure in all directions by a constant
number of pixels. In practice, we found that 16 pixels were sufficient to
maintain continuity of local features across the boundaries.

4. Training methodology

4.1. Constructing the training dataset

While the GRF component of our framework requires no pre-existing
training data, the score-based denoising model requires a dataset of
real neighborhoods to estimate the score function. Adopting standard
practice from previous microstructure generation frameworks [13,92,
93,97], we construct a large training dataset of local patches by cutting
many individual patches from our single reference image. We use the
word ‘‘patch’’ to refer to finite regions cut from a larger microstructure;
a single patch contains partial neighborhoods for many pixels.

Like all deep learning frameworks, the size and quality of the
dataset is paramount [140]. Because our problem is not amenable to
traditional data augmentation techniques such as contrast-shifting and
rotation, the achievable size and quality of the dataset is strictly defined
by the sizes of the reference image and the individual patches. This
highlights one major benefit of the two level decomposition adopted
in the proposed framework. Because the analytic Gaussian Random
Field handles long range patterns in the generated microstructures, the
necessary patch size can be small – on the length scale of the smallest
features in the microstructure. This allows us to curate acceptable
datasets within the strict data scarcity characteristic to microstructure
generation problems. Only a single reference microstructure was used
to generate training data for each case study. Importantly, the patch
size must be chosen to balance several considerations: it must be
sufficiently large to contain important local features, but small enough
to realistically train and test with available computational resources.
We rely on microstructure statistics, such as chord length distributions,
to choose an appropriate patch size.

4.2. Model architecture

Recent advances in distributional deep learning are characterized
by deep, exotic architectures [86,125,141]. Modern denoising-based
approaches (such as score-based denoising generation [87]) are no
exception, often employing extremely large models containing mil-
lions [86,87] to billions [114,127] of trainable parameters. Such ex-
otic architectures are a direct product of the wealth of training data
available to the designer. In contrast, previous materials informat-
ics efforts have achieved better stability in the low-data regime via
smaller, lightweight architectures [32,35,43,51,142]. Following suit,
we developed a lightweight architecture inspired by the U-Net used in
DDPM [86], Fig. 2.
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Fig. 2. Architecture for the lightweight SBG model. Only one down/upsampling layer is shown in the depiction. Additional resolutions are added by repeating the depicted
down/upsampling unit (including the upsampling block and the 1 ù 1 convolution necessary to maintain the latent dimension, L) at the two arrows.

The U-Net archetype combines information from various length
scales through the use of up- and down-sampling and has found suc-
cess in both mechanics of materials applications [43,143,144] and
traditional image processing [86,87,115,116,145,146]. For systematic
tuning, we compactly hyperparameterize the architecture in terms of
a lift dimension and the number of down-/up-sampling layers. The
lift dimension refers to the constant number of channels maintained
throughout the network’s internal operations. In contrast, the number
of down-sampling layers dictates how many spatial resolutions the
network considers, and thus its receptive field.11 In practice, we found
that a receptive field similar to the patch size was extremely important
for maintaining stable performance (see Appendix C).

To stabilize training, we added instance normalization blocks after
each convolutional layer except for the last one. Such blocks have previ-
ously been used extensively in score-based denoising models to improve
their stability and generation quality [87]. Furthermore, we employ
a parametric rectified linear unit (PReLU) activation function. In our
experiments, other activation functions with discontinuous slopes, such
as the ReLU and leaky ReLU, also performed well. Although, smooth

11 The receptive field of a convolutional neural network refers to spa-
tial width of the local region of output pixels impacted by a single input
pixel [147]. For example, a single 3 ù 3 convolutional filter has a receptive
field of 3. When many filters are stacked sequentially, the size of the receptive
field increases rapidly.

activations such as SWISH [148] have performed well in previous stud-
ies [86,87], we found they performed very poorly for our problem.12
This failure might be a consequence of the sharp discontinuities in
N-phase microstructures and merits further investigation.

Our proposed architecture further simplifies DDPM and its variants
by removing some of the most costly layers. First, we adopt Song’s
recommended direct parameterization [121]: using a convolutional
neural network to approximate the score function s(m) = (m log p(m)
directly, and then scaling the output by the noise parameter �:

s✓(m, �) =
s✓(m)
�

This approach avoids the accompanying dense, fully connected em-
bedding layers required by Fourier embedding [86,87,141]. In experi-
ments, including the Fourier embedding mechanism produced minimal
differences in model performance, especially for 2-phase structures.

Second, we removed all attention mechanisms from the architec-
ture. Unlike in traditional image generation applications [86,87,106,
114,115], where the attention mechanism has the critical role of con-
trolling non-local context [149] (i.e., learning large spatial patterns), in
the proposed framework, non-local context management is performed

12 For architectures with comparable numbers of learnable parameters,
we were unable to even generate microstructures whose pixel values were
numerically similar to the training data – i.e., were near 0 or 1 – when using
smooth activation functions.
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by the Gaussian Random Field model. Therefore, a spatially-compact
fully-convolutional architecture is sufficient. This removal also has
tremendous practical benefits. Attention mechanisms are notoriously
expensive [150]. For example, the full spatial attention mechanism
used in the DDPM model [86,87,149] incurs an O(S2) memory cost.
Here, S can be as high as the total number of pixels. This cost would
be unacceptable in our framework as the trained model is applied to the
complete domain during generation. Therefore, foregoing these mech-
anisms offers the dual practical benefits of lowering the computational
cost of a forward pass of the model and affording linear memory scaling
to larger domains.

In the presented Case Studies, we find that these changes decrease
sampling time (from minutes to seconds) and model size (from g 50
million parameters [86] to between 100,000 and 1 million) without
diminishing generative performance.

4.3. Metrics for successful training

Although denoising models boast a loss function that can be op-
timized via stochastic minimization, the training and hyperparameter
tuning processes – especially for engineering applications – are not triv-
ial. This difficulty has two sources: their composite loss function and the
visual imperceptibility of their errors. The loss function for denoising
models (Eq. (5)) is a sum of losses at each noise level, comprising
1000 terms for our model. In practice, this extreme averaging means
that models with similar losses can have wildly varying generation
quality. For example, error in early iterations can be overcome by
the intermediate iterations, but error in the intermediate iterations is
unrecoverable. For example, during our experimentation with deeper
network architectures, we observed models that obtained identical
composite losses as our final models, but produced pure white noise.
The score-based denoising loss provides good gradients for training, but
it is a poor measure for evaluating models.

Instead, we quantify model performance (both during hyperpa-
rameter tuning and on the final model) by contrasting salient mi-
crostructure statistics between the training dataset and a synthetic
patch dataset generated unconditionally by a model post-training. This
choice is aligned with the primary goal of this project: creating a
generation framework that matches salient microstructure statistics. In
total, we compare three important measures between the training and
generated datasets: volume fraction, chord length distribution along
the X-direction, and principal component (PC) projections of patch 2-
point statistics.13 The PC basis is constructed using just the training
data. Therefore, this comparison tests the SBG model’s capacity to
generate patches belonging to the same latent statistical space as the
training data. Notably, this collection of metrics contains both lower
and higher-order statistics. These metrics are solely used to quantify
model performance after training and to select hyperparameters; they
are not directly incorporated into the training process.

4.4. Training parameters

To train the SBG model, we used many of the hyperparameter
settings recommended by Song et al. [87,120,121]. We selected the
starting noise level to be slightly larger than the maximum L2 distance
between patches in the training dataset. We used a final noise level
of � = 0.01. Training was performed on 1000 noise levels between

13 Here, patch 2-point statistics refers to the set of nonperiodic 2-point
statistics [151] computed for each individual patch. We used a cutoff distance
of half the patch size (e.g., 20 pixels for Case Study 1) to ensure sufficient
sampling of the 2-point statistics. Following standard procedures [29], we
extracted salient low dimensional statistics from the set of computed patch
2-point statistics using Principal Component Analysis. We kept 50 PC scores.

the initial and final noise levels following a variance exploding sched-
ule14 [87]. We used the Adam optimizer with �1 = 0.90 and �2 =
0.999. In general, we found that between 400,000 and 850,000 training
iterations15 where necessary to train the models (we used 500,000 and
750,000 iterations in Case Studies 1 and 2, respectively). We used
a cosine one-cycle learning rate schedule,16 along with exponential
moving averaging with a rate of 0.999 to improve the robustness of
the training process to noise.

5. Case studies in generation of N-phase microstructures

We present two case studies exploring the merits and limitations
of the proposed framework. The first case study demonstrates our
model’s generative ability, and additionally explores the framework’s
capacity to approximate stochastic microstructure functions other than
the reference’s without the need for retraining. The second case study
tests the framework’s capacity to be extended to systems with larger
numbers of material local states and more complex local morpholo-
gies. In both, focus is restricted to synthetically generating N-phase
microstructures. Defining the probability of finding phase i in pixel s as
ms

(i), an N-phase structure is locally binary: ms
(i) À {0, 1}N ;≥

i
ms

(i) = 1.
Our framework is not inherently restricted to N-phase microstructures.
However, extensions (e.g., to polycrystalline microstructures, discrete
dislocation systems, etc.) require further treatment which, in general,
is not trivial. We leave this to future work.

Generating discrete N-phase microstructures requires a few simple
adjustments to the proposed framework. During the iterative genera-
tion process, the Langevin dynamic update steps output unbounded,
continuous variables ms

(i) À R. In practice, the model learns to restrict
these outputs to [0, 1] early in the generating process and, by the
end, produces outputs (within a small margin) of the set {0, 1}. At
the end of the generating process, to obtain discrete microstructures,
we segment the final output by naively assigning each pixel to the
phase with maximum value in that pixel. In addition, rather than
computing the 1-point statistics for Eq. (12) directly during generation,
we compute 1-point statistics over a segmented version of the candi-
date microstructure. This improves the ability to condition on volume
fraction by providing better estimates of the post-generation volume
fraction. For microstructures with more than 2-phases, a pixel s is
excluded from this estimate if the value 1*≥N

i=1 m
(i)
s is greater than the

value of any individual phase, mi

s
– that is, pixels with high uncertainty

are masked out. However, these uncertain pixels only occur early in
the iterative denoising process. Throughout our experiments we have
observed that the alternative volume fraction estimate improved per-
formance, especially for microstructures with higher numbers of phases
or imbalanced volume fractions across phases. For easier tasks (e.g., 2-
phase generation), a simpler, direct averaging and final segmentation
– using [12] – strategy generally performed similarly.

To facilitate salient analysis of the framework’s performance, in
both case studies, we primarily generate synthetic microstructures
that are statistically equivalent to a previously observed reference
microstructure. We use experimentally collected, segmented SEM mi-
crographs as references. We implement the framework in 2D to simplify
acquisition of the experimental data as well as visualization. We em-
phasize that implementation in 3D is conceptually identical; it simply
requires the usage of 3D convolutions in the SBG model architecture.

14 We preferred this schedule over available alternatives because it focuses
training on small noise levels. As a result, the model is preferentially trained
for the noise levels that are actually employed during conditional generation.
15 Mimicking previous work [86,87], here, each training iteration was taken
to be a single mini-batch gradient step.
16 We used an initial rate of 0.001, a maximum rate of 0.01, and a final rate
of 0.00001. Transition from the initial to the maximum rate was completed in
30% of the training steps.
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Fig. 3. Images contrasting (a) the original reference microstructure, (b) a microstructure sampled unconditionally from just the trained SBG model, and (d,f,h) samples from the
hybrid bayes network model. Figures (c,e,g) display the intermediate samples from the Gaussian Random Field model taken after the first layer of the hybrid model.

However, 3D implementations might experience data challenges. In
addition to the greater rarity of 3D experimental data, 3D convo-
lutions require an additional order more trainable parameters. The
framework’s localized training on individual neighborhoods will help
minimize this problem, but the problem’s extent remains an open
question. For generality, we purposefully ignore any material-specific
context and simply treat the micrographs as sources of N-phase ref-
erence microstructures. While superior generative performance could
likely be achieved by specializing a generative framework to the spe-
cific material system and its inherent symmetries, such a construction
would serve a different purpose to the generalized framework we are
proposing. We provide a discussion of architecture and dataset design
in Appendices C and D.

5.1. Case study 1: Statistical analysis of 2-phase generation

Our first case study uses a segmented SEM micrograph of � ® pre-
cipitates in a Ni-based superalloy microstructure [61] as the reference,
shown in Fig. 3a. Since nothing in our framework is specialized to this

specific material system, we simply refer to the �
® phase as the white

phase and the matrix phase as the black phase. This microstructure
is particularly challenging to generate because of its highly-geometric
local features.

A total of 4000 patches sized 40 ù 40 pixels were extracted from
the 256 ù 256 reference image and used to train an SBG model with a
latent dimension of 40 and just one down-/up- sampling layer (totaling
˘ 100, 000 trainable parameters). We tuned hyperparameters using
the microstructural statistics described in Section 4.3. We initialize
the shortened noise schedule (for conditional sampling) at a reduced
noise level of � = 0.75. See Appendix C for an in-depth discussion
of the choice of patch size, the training process, and the quantitative
identification of the reduced noise level.17

17 That section also contains a thorough discussion of the consequences that
patch size has on the architecture and pertinent considerations for applying
these SBG models to materials informatics topics. Practically, such discussion
is especially important because it highlights several necessary deviations from
the current trends in the general literature on denoising distributional learning.
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5.1.1. Statistical analysis of generated microstructures
With all the requisite models trained and hyperparameters iden-

tified, we next construct the complete hybrid model and benchmark
the performance of the proposed framework, using the GRF model as
an informative baseline. When pertinent, we also compare the hybrid
model’s performance against just the SBG model sampled uncondition-
ally.18 To facilitate statistical analysis, we generate an ensemble of 200
synthetic samples from all three approaches. While the GRF required
a fraction of a second per sample, the hybrid model took 1.9 ± 0.6
seconds per sample on an Nvidia Tesla V100 GPU. However, this
minor slowdown produced major improvements in visual realism and
statistical fidelity. Fig. 3 contrasts the original reference (Fig. 3a) with
representative samples from the proposed hybrid model19 (Fig. 3d,f,e),
the intermediate outputs of the Gaussian Random Field (Fig. 3c,e,g),
and a representative sample from a large unconditional sampling of the
local neighborhood distribution (Fig. 3b).

Contrasting the four sets, two important observations are imme-
diately evident. First, samples from the hybrid framework display
significantly more realistic local features than those of the GRF. Specifi-
cally, the local geometric details of Nickel-based superalloys are clearly
visible, and thin separation between individual features is achieved.
This contrasts sharply with the amorphous patterning and persistent
connectivity of the GRF samples. Second, the conditioning from the
GRF improves global coherence in the hybrid samples compared to
the unconditional sample from the SBG alone. For example, identically
located long diagonal black phase regions are clearly visible in corre-
sponding GRF-hybrid pairs (e.g., at (x = 100, y = 100) in Fig. 3d,h).
Qualitatively, this indicates that the SBG model successfully transforms
local, higher-order features, while retaining the GRF’s global, lower-
order features, Section 3. Importantly, these global patterns appear not
only in the original image, but also samples from the GRF and hybrid
model; they are characteristics of the underlying generating process. In
contrast, these long range spatial patterns are strikingly absent in the
unconditional sample. There are still discontinuities in the regularity of
the white phase features, but they do not take on a regular diagonal
pattern. This supports our hypothesis that the GRF provides global
context to the generative framework that would not be captured by
just a local approximation model. As part of our further analysis of this
hypothesis, a more dramatic example of the GRF’s role in controlling
long-range patterns is presented in Section 5.2. There, via the GRF,
we systematically change the present long range patterns (introducing
large spatial heterogeneities).

Contrasting the statistics of the reference with those of the gener-
ated ensembles, we see quantitative support for the qualitative conclu-
sions discussed above. Both the GRF and the hybrid model approxima-
tions perform well to first and second order, matching the reference’s
1- and 2-point statistics. In contrast, the unconditional SBG (’uncond.’)
model only matches localized subsets of the lower-order statistics. The
samples from the hybrid model have a volume fraction of 0.379± 0.001

18 Unconditional SBG samples were generated without GRF conditioning
(i.e., by utilizing the entire denoising process) but with volume fraction condi-
tioning. Additionally forgoing volume fraction conditioning produced visually
indistinguishable microstructures with a wider distribution of volume fractions
(0.377 ± 0.004 and 0.370 ± 0.007 for with and without volume fraction condi-
tioning, respectively. See Appendix B.). Therefore, the unconditional samples
with volume fraction conditioning represent the optimal performance of our
framework on statistically conditioned sampling if only the local generative
model is used (e.g., similar to [73]).
19 To acquire the outputs from the hybrid model, the raw outputs from the
Gaussian Random Field are post-processed using the original methodology [12]
and then further processed using the trained SBG. Although we achieved
comparable results without the original postprocessing, we, qualitatively,
observed that the microstructures were less noisy when postprocessing was
applied before the SBG model.

(mean ±1�), compared to the GRF20 and reference’s volume fraction,
0.379 exactly. Clearly the hybrid model’s conditional sampling process
retains the correct 1-point statistics with high precision. Samples from
the unconditional SBG model have a volume fraction of 0.377 ± 0.004.

Fig. 4 contrasts two central slices of the 2-point statistics (specifi-
cally, the white autocorrelation). Both segments include the zero-shift
2-point statistic at (x = 0, y = 0). Only 1D subsections are depicted to
elucidate the minor variances between samples arising from the proba-
bilistic nature of all approximations. The ensemble average statistics
are depicted in bold. Observing the 2-point statistics, we see strong
agreement between the reference, the GRF, and the hybrid model.
For the unconditional SBG model, similar agreement holds only for
specific subsets. Interestingly, the relative performance between the
three models varies between different regions of the 2-point statistics.
At small separations, there is general agreement between all four sets;
we observe a strong center peak flanked by secondary peaks (x =
±8.5), Fig. 4a. While the GRF displays small inconsistencies in both
sets of peaks due to implicit biases [12], the hybrid and unconditional
SBG models maintain excellent agreement with the reference, Fig. 4b.
This local improvement is a direct result of the localized correction
introduced by the denoising model. In contrast, only the GRF and
hybrid model agree with the reference at large separations. The GRF
performs best; it tends to capture minuscule fluctuations in the 2-point
statistics, Fig. 4d. The long range 2-point statistics of the unconditional
SBG model are completely flat demonstrating that the model has a
very short correlation length and that generated samples lack reliable
long range patterning. This is consistent with the previous qualitative
observations. The hybrid model seems to generally approximate the
reference and GRF; it captures general trends and softer fluctuations
in the autocorrelations.

Fig. 5 illustrates the full 2D absolute error maps in the ensemble
average white autocorrelation for all three models. The SBG’s patch
size is clearly outlined in each figure using a red box to demarcate the
subset of the 2-point statistics that are significantly impacted by the
denoising model. Consistent with Fig. 4, the error in hybrid model’s
long range statistics (i.e., outside the red box) is slightly larger than
that of the GRF. However, like the GRF error map, the hybrid model’s
error map is randomly spatially distributed demonstrating that the
hybrid model successfully captures the dominant trends in the 2-point
statistics. In contrast, the unconditional SBG model displays systemic
patterns in its long range error. Primarily, diagonal, striped regions of
low and high error are visible. These are the statistical fingerprints of
the absent diagonal bands noted previously. Additionally, as a result of
the model’s short correlation length, the error displays regular vertical
and horizontal patterns that further emphasize the unconditional SBG
model’s inability to generate consistent long range structure. Addi-
tionally, the error in the statistics within the red boxes is consistent
with the previous analysis. The hybrid and unconditional SBG models
display similar error patterns which are also smaller in magnitude
than that of the GRF. Again, this reflects the learned localized cor-
rection. Altogether, the achieved lower-order agreement between the
reference and hybrid ensemble supports the conclusion that the hy-
brid model meets Requirement One. Furthermore, the inability of the
unconditional SBG model to match long-range lower-order statistics
quantitatively demonstrates the importance of the GRF in the proposed
framework. The agreement between the GRF and the hybrid model
demonstrates that our design of the SBG conditional sampling scheme
successfully minimizes the correction’s impact to the first GRF layer’s
correct lower-order statistics.

The hybrid model also shows great promise in matching higher-
order statistics (Requirement Two). Here, we consider only an informa-
tive subset of the infinitely-large and unwieldy set of possible statistics.

20 The GRF prescribes the volume fraction exactly.
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Fig. 4. Plots contrasting representative 1-Dimensional (1D) segments of the reference’s white autocorrelations with those from an ensemble of 200 samples from the GRF and the
hybrid approximation. The ensemble average is depicted in bold. The legend shown in (a) applies to all images. (a) A central segment of the white phase autocorrelation taken
along the x-axis. The slice corresponds to 2-point statistics with zero shift in the y direction. (b) Close up of the central 2-point statistics from (a). (c) A central segment of the
white phase autocorrelation taken along the y-axis corresponding to 2-point statistics with zero shift in the x direction. (d) Close up of long range 2-point statistics from (c).

Fig. 5. Maps of the absolute value of the difference in the ensemble average white autocorrelation for the three models (GRF, Hybrid, and Unconditional SBG (’Uncond’)) compared
to the experimental reference. The central red box depicted in all three figures outlines the SBG patch size (40 ù 40 pixels). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6 visually summarizes the results. Beginning with the Chord Length
Distribution (CLD) [12], we can clearly see the statistical fingerprints
of many of the qualitative observations made originally. Studying the
CLDs of samples from the GRF (red), we see a clear long tail extending
to larger chord lengths. This is a direct result of the pseudo-connected,
amorphous featuring evident in Fig. 3c,e,g. In contrast, the CLDs from
the hybrid model have a sharp cutoff at higher chord lengths, consistent
with the CLD of the reference. The improved agreement between the
chord length distributions is a significant strength of the proposed
framework.

While the hybrid model generally produces realistic features, we do
observe a notable, systematic difference between its samples and the
reference. In general the SBG model seems to preferentially produce
less noisy features; synthetic feature phase boundaries have fewer
randomly extruding pixels. In fact, these small features seem to be
artifacts caused by segmentation and/or spatial undersampling and lack

appreciable patterns. Statistically, this discrepancy is most pronounced
for small chord lengths. The reference’s artificial small chords result in
a slight relative shift between the average’s of the hybrid and reference
chord length distributions, Fig. 6c,d. However, the hybrid model still
captures the average feature size,21 Fig. 6e. While a more powerful SBG
network (accompanied by more training data) might produce closer
statistical matching, it would also be more prone to overfitting these
high-frequency artifacts.

In addition to displaying the reference’s straight phase boundaries,
the hybrid samples qualitatively contain its recognizable geometric
feature shapes. Unlike the chord length distributions, 3-point statistics

21 For N-phase composites, the radially averaged slope of the main peak is
the average feature size [27,152,153].
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Fig. 6. Visual summary of the analysis of higher-order microstructure statistics. In each image, the statistics of the reference image (black) are contrasted against the statistics
of an ensemble of 200 microstructures drawn from the GRF (red) and the proposed hybrid model (cyan). (a, b) The Chord Length Distributions in pixels computed along the
X-axis (a), the Y -axis (b). (c, d) The relative error in the average X-, Y-CLD, respectively. (e) The relative error in the average feature size [152]. (f-h) Two dimensional principal
component projections of a subset of the 3-point statistics. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

need not lie on a consecutive line. Therefore, these statistics also quan-
tify characteristic nonlinear features (such as corners) in the ensemble.
We restrict ourselves to the set of 3-point statistics in which the first
displacement has a magnitude less than or equal to 1 pixel22 [49,154].
This specific subset was selected due to their success in previous
optimization-based efforts [15], where they encourage generation of vi-
sually realistic features. Therefore, agreement in these statistics would
be a significant improvement for probabilistic generative methods.
Following standard procedures, we extract salient low-rank representa-
tions of the 3-point statistics using Principal Component Analysis [155]
and present the results in Fig. 6f-h.

Although microstructures from the GRF, the hybrid model, and the
reference were indistinguishable after the fourth principal component
(PC) score, a clear separation appears in the first three PC dimensions.
This reflects the unsurprising conclusion that the two models repre-
sent different approximations of a stochastic microstructure function.
Notably, the 3-point statistics of the reference are clearly projected
into the hybrid distribution,23 even though the training process did not
optimize for 3-point statistics directly and the PC projection was com-
puted independently of the reference. This demonstrates that the hybrid

22 The 3-point statistic for each initial displacement can be thought of
as the 2-point crosscorrelation between the original microstructure and an
expanded state produced by multiplying each pixel with one of its nearest
neighbors [49].
23 For this example, however, we note that a perfect agreement is not
achieved. Beyond statistical scatter and unavoidable imperfections in the
training process of deep learning models, we hypothesize that this slight
mismatch represents a trade-off between maintaining the 2-point statistics and
producing the learned higher-order statistics when tuning the conditioning
process (Fig. C.4).

model is an effective higher-order approximation of the reference’s
Stochastic Microstructure Function.

5.2. A modular framework

Our proposed framework requires both lower-order statistics (pa-
rameterizing the first layer) and a trained denoising model (the second
layer). Until now, both elements were acquired from a single source:
the reference image. However, this is not necessary; we are free to
mix and match elements from different sources to actively control local
and global patterns. In this section, we demonstrate this capacity and
highlight some of its strengths and current limitations.

We create a set of alternative input 2-point statistics for the hybrid
model by interpolating between two known sets of 2-point statistics,
Fig. 7a,b. To help illustrate the distinct global patterns implied by each
autocorrelation, we include the corresponding microstructure used to
compute them, Fig. 7c,d. Unlike the relatively uniform global arrange-
ment of features visible in Fig. 7c and evident in the largely globally
homogeneous autocorrelation map (Fig. 7a), the large high probability
peaks in the second autocorrelation – at (x = 0, y = 0) and (x =
±90, y = 0) – as well as the low probability regions between them
indicate the existence of global layering with large black phase regions.
This layering is clearly visible in the reference microstructure, Fig. 7d.
Importantly, we are only interested in the global patterns implied by
the long-range 2-point statistics. Because the pretrained SBG model will
impose its learned local neighborhood, the impact of any local 2-point
statistics will be minimized.

To test the model’s ability to extend to previously-unseen mi-
crostructure functions we create six ‘‘interpolated’’ autocorrelations
from convex combinations of the two references. Each of these is used
as an input to the pretrained hybrid model, the results of which are
shown in Fig. 8. We emphasize that we did not perform any additional
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Fig. 7. Two autocorrelation maps ((a) and (b)) used to generate a set of new inputs for the hybrid model trained in Section 5.1.1. For reference, images (c) and (d) depict the
microstructures used to compute the 1- and 2-point statistics in (a) and (b), respectively.

Fig. 8. Example samples synthesized using the convex combination of the autocorrelation maps depicted in Fig. 7 as an alternative input to the hybrid model from Section 5.1.1.
The image correspond to a 1 * ✓, ✓ mixture of Fig. 7a,b with ✓ = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0) for (a)–(f), respectively.
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training on the SBG denoising model after training on the superalloy
dataset. We clearly see the impact of changing the 2-point statistics.
As we begin to incorporate the statistics of the layered system, the
relatively uniform patterning of the white phase features is broken up,
Fig. 8b. Larger regions of high black phase density emerge but retain
the diagonal structuring identified previously. Once the statistics of
the layered system take over, each phase takes on vertically elongated
arrangements forming the clear global layering implied by the second
autocorrelation, Fig. 8f. Importantly, the local features generally retain
their highly geometric structure even as the global spatial pattern
changes significantly. Importantly, simply the existence of the frame-
work’s capacity to systematically translate varying inputted 2-point
statistics into distinct long-range patterning emphasizes the value of the
GRF-SBG hybridized framework over utilizing just the SBG. Because the
output of the SBG does not depend on the 2-point statistics, we argue
that this capacity can only arise as a result of the argued connection
between the GRF and global patterns. We emphasize that this capacity
does not require any additional training data or retraining for the new
microstructures because the GRF is an analytic model.

This result is particularly exciting because it indicates that the gen-
erative model can be used to stably extrapolate and generate previously
unseen microstructures. In materials design and discovery, this capacity
could be especially valuable as a means of generating microstructure
datasets and exploring the documented impact of global feature ar-
rangements on properties [19,61,156] and processing behavior [24].
While the first sample, Fig. 8a, corresponds to generation within the
training distribution, the remainder push successively further outside
of the training domain. This stability highlights an important benefit
of the framework’s assumed two-layer decomposition. Just the analytic
Gaussian Random Field uses the input 1- and 2-point statistics (to define
global context). Therefore, when the generative framework is asked
to extrapolate, the more robust GRF seems to shield the SBG model
from having to extrapolate outside of its training dataset. Thus the
hybrid framework is relatively robust (Requirement 3) even with the
incorporated deep learning model.

While reflecting on this result, it is important to recognize that this
capacity to extrapolate is not without its limitations and consequences.
First, as we transition away from the 2-point statistics of the reference
image used to train the SBG model, the capacity to precisely control
the lower-order statistics diminishes slightly. As illustrated in Fig. 8f,
we retain the capacity to match long-range patterns. However, the
previously documented strong agreement for very short-range 2-point
statistics is weakened. This is a natural consequence of the strong
coupling between lower and higher-order statistics [14,157]. The pre-
trained denoising model imposes a strong bias towards the superalloy’s
short-range 2-point statistics, which conflict with those of the layered
composite. Therefore, synthesized structures will display the desired
input statistics up to this correction (i.e., similar average behavior with
superimposed minor fluctuations indicating the geometric features).
Second, as we extrapolate away from the superalloy’s 2-point statistics,
the synthesized structures are more prone to noise. This results in
situations where the Gaussian Random Field (parameterized by the
extrapolated 2-point statistics) introduces neighborhoods outside of the
training domain of the SBG model. For example, in Fig. 8f, we see
several neighborhoods with volume fractions below those present in
the training data, Fig. C.2b. In these neighborhoods, the model is more
likely to introduce noise or other artifacts. However we argue that in
many practical applications these are acceptable limitations and are
outweighed by the usefulness of extrapolation. We simply note them
here as potential inspiration for future improvements to the framework.

5.3. Case study 2: Generation of 3-phase microstructures

While the previous Case Study was restricted to 2-phase microstruc-
tures, we now challenge the generative performance of the proposed
framework on a more complex reference microstructure. As before, the

goal is to generate statistically similar synthetic microstructures to a
reference, in this case a segmented SEM micrograph of a Bi-Modal ↵*�

Titanium microstructure [62]. The reference microstructure is depicted
in Fig. 9a; as before we reference each phase by its color: yellow, teal,
and dark blue.

With respect to the generation problem, this system has several
important sources of complexity. First, it contains three phases. In
theory, the incorporation of additional local states is simple: expand the
number of input and output channels in the SBG network. Practically,
this extension requires larger networks and complicates the condition-
ing process by increasing uncertainty in the local state. Second, the
reference has several length scales associated with its salient features:
the layered dark blue and yellow lath features are characterized by an
average (±1�) chord length (in the x-direction) of 2.0±1.5 and 3.1±2.8
pixels, respectively. In contrast, the teal matrix phase has characteristic
x-chord lengths of 48±52 pixels. Third, a diverse set of local patterns are
found within the yellow and dark blue composite phases; for example,
there are disordered regions, regions with thin layering, and regions
of thick layering. Mathematically, this third characteristic is especially
challenging because it means the neighborhood distribution is multi-
modal — therefore, the SBG must learn and be able to synthesize from
each mode.

5.3.1. Dataset, training, and architecture
Using the original 512 ù 400 microstructure, we constructed a patch

dataset composed of 8000 individual 64 ù 64 patches. Mirroring the
previous case study, the patch size had to representatively describe all
salient features in each pixel’s neighborhood. As noted, this includes
the local featuring of the yellow and dark blue phases as well as the
larger phase boundaries between this composite region and the teal
background phase.

Because of the larger patch size, we employed a different hyper-
parameterization of the U-net to achieve a larger receptive field. A
network with a latent dimension of 100 and 3 down-sampling layers
(approximately ˘ 1, 000, 000 trainable parameters) achieved the best
results. Additionally, this SBG model takes a 3 channel microstructure
as input; each phase is explicitly included. This is in stark contrast
with the 2-phase case, where the second phase is defined implicitly
via point-wise conservation of the volume fraction. During experimen-
tation, we found that explicitly including each phase improved the
framework’s ability to control their volume fractions without requiring
a larger network. For an in-depth discussion of the training results and
visualization of the patches, please see Appendix D.

5.3.2. Qualitative analysis
As before we generated 200 synthetic microstructures using the

GRF, and then postprocessed each with the denoiser. For the SBG, we
initialized conditional sampling at a reduced initial noise level24 of
� = 0.75, sampling took 16.3 ± 0.6 seconds per microstructure.

Fig. 9c,e,g depict representative samples from just the Gaussian Ran-
dom Field model. Although the visual difference is immediately stark,
the GRF actually successfully approximates several of the reference’s
salient features. In particular, it successfully synthesizes the distinct
length scales. The yellow and dark blue phases are clearly intermixed
with fine individual features, and the remaining teal phase forms larger,
continuous regions. This demonstrates that even with an extremely
challenging reference, the GRF model can successfully support its role
in the proposed hybrid framework: maintaining long range context.

Perhaps unsurprisingly, the GRF struggles locally. In addition to
significant noise, the unimodal GRF replaces the lath heterogeneities
in the yellow-and-dark-blue regions with amorphous, pseudo-connected
features [12].

24 In this case, because of the extremely poor performance of the GRF model
locally, we forgo segmenting the initial GRF output before denoising.
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Fig. 9. Images contrasting (a) the original reference microstructure, (b,d,f) samples from the proposed hybrid model, and (c,e,g) corresponding samples from the Gaussian Random
Field model created from the output of the first layer of the hybrid model.

The hybrid model produces samples with much more realistic local
features while preserving global patterns present in the correspond-
ing GRF samples. For example, regions where the GRF predicts high
densities of yellow and dark blue phases retain this density in the
hybrid samples. Likewise, large teal regions are retained (and the noise
is largely removed). The local disorder is replaced by neighborhoods
similar to those observed in the reference microstructure: small, dis-
ordered regions, thick layered regions, thin layered regions, and clear
phase boundaries between the teal and composite regions. The achieved
heterogeneity demonstrates the value of the SBG model. It is able to
successfully learn the multimodality in the local feature distribution
and consistently generate neighborhoods from each mode to produce
diverse large microstructures.

Even with significantly improved visual similarity, some subtle
differences remain. First, as in the first case study, we observe that
the synthetic microstructures are less noisy than the reference. This is
especially noticeable on the cusps of the teal phase boundary. Small
noisy segments (such as the bottom-center of the reference image) are
largely absent. Because this noise is largely an artifact of segmentation
error, its notable absence is evidence that our model is not overfitting
the training data. Second, the synthetic neighborhoods are slightly
less visually diverse than the reference image. While the prominent
patterns are retained (for example, thick laths), some of the small
ones are lost. Importantly, this is not an artifact of insufficient model
capacity — increasing the latent dimension did not alter this trend (and

eventually training became unstable). Instead, we hypothesize that
this occurs because the original reference is quite noisy. The greater
homogeneity could reflect the model’s inability to discern reasonable
patterns in a subset of training patches, leading it to effectively ignore
them. This could likely be overcome by expanding the training dataset
with a second image or using a less noisy reference. This issue aside,
the hybrid model produces much more realistic local features while
retaining the GRF’s global coherence.

5.3.3. Statistical analysis
These observations are supported quantitatively by comparing the

microstructure statistics. Fig. 10 depicts 1D sections from each au-
tocorrelation (Fig. 10a-c) as well as the crosscorrelations with the
yellow phase (Fig. 10d-f). The 2-point statistics of samples from the
hybrid model are in excellent agreement with the reference. This is
especially true in the ensemble average — the dark cyan line is almost
indistinguishable from the black line in many regions. Furthermore,
compared to the GRF the hybrid model actually improves the agreement
near the origin. This effect is even more pronounced than in Case Study
1. For example, in the yellow-dark blue cross-correlation (Fig. 10f), the
hybrid model is able to recreate the sharp transition from no correlation
at the origin to strong correlation near x = ±2. In fact, in the central
peak, the hybrid ensemble is in such strong agreement that every
sample’s statistics are almost indistinguishable from the reference’s.
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Fig. 10. Plots contrasting 1-D segments from the reference’s 2-point statistics (black) with the 2-point statistics of an ensemble of samples drawn from the GRF (red) and the
hybrid model (cyan). Ensemble averages are depicted in bold. Plots (a), (b), and (c) contain the yellow, teal, and dark blue autocorrelations, respectively, while (d) and (e) show
the yellow-teal and yellow-dark blue crosscorrelations. Plot (f) highlights the central feature in the yellow-dark blue crosscorrelation. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Histograms summarizing the distribution of volume fractions for each phase estimated using an ensemble of samples from the GRF (red) and the hybrid model (cyan).
The width of the GRF distribution is artificially added for visualization. By construction, the samples from the GRF have no variance in their volume fractions. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

While the samples from the hybrid model match many salient
features of the reference’s 2-point statistics, the same subtle deviations
appear here as in the first case study. In contrast to the GRF ensemble,
the hybrid ensemble’s autocorrelation displays greater variance at the

peak (for 0 shift) and for very large shifts. This occurs due to greater
uncertainty in the 1-point statistics, Fig. 11, which propagates upward
through statistical coupling. Unfortunately, controlling the volume frac-
tion is more challenging for the 3-phase case. The error in volume
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Table 1
X-CLD statistics for each set of structures (mean ± 1 standard deviation).
Model Yellow Dark blue Teal

GRF 5.7 ± 5.3 5.3 ± 5.9 13 ± 20
Hybrid 3.0 ± 2.8 2.1 ± 1.6 53 ± 46
Reference 3.1 ± 2.8 2.0 ± 1.5 48 ± 52

fraction for each phase is *0.008 ± 0.008, 0.007 ± 0.01, and 0.002 ±
0.005 for the yellow, teal, and dark blue phases, respectively.25 We
hypothesize that volume fraction errors occur because the denoising
process is defined over the space of continuous numbers instead of
the natural domain of N-phase microstructure functions (the set 0
and 1). As the noise level is decreased during generation (and, as a
result, the changes to the microstructure at each Langevin step become
smaller) its capacity to transition a pixel from one phase to another
decreases significantly.26 Such artifacts could likely be mitigated by
utilizing a sampling process specialized to N-phase generation (e.g., an
adaptation of [73]). However, in the interest of keeping the basic
framework agnostic to the choice of the local state, we do not pursue
this in this work. Even so, this uncertainty is sufficiently small that the
framework is able to acceptably match both the 2-point statistics and
salient higher-order statistics.

We next consider the higher-order statistics. The mean (±1�) chord
length for each phase across reference, GRF-, and hybrid-generation
structures are presented in Table 1. These results confirm the previ-
ous visual analysis: for the finer phases (yellow and dark blue) the
GRF’s tendency to produce overly-smooth, stretched features results
in overestimated average chord lengths. We note that the apparent
mismatch in the teal average chord length for the GRF model is likely
a numerical artifact caused by the presence of noise, as in Fig. 9c,e,g.
The denoiser corrects these trends almost perfectly. Additionally, for
the larger teal phase, the hybrid model produces a wide range of large
individual features. Noting the significant standard deviation, many of
these features far exceed the patch size, providing quantitative support
for the GRF’s value in the proposed framework. Given the multi-scale
nature of this reference, the capacity to generate features at multiple
length scales is an exciting strength of this framework and is a direct
result of the assumed local–global decomposition.

Finally, we compare the same subset of the 3-point statistics used
in Case Study 1; this time statistics are computed on each phase
individually. The two distributions are indistinguishable after the first
two principal components, Fig. 12. As in the 2-phase example, a clear
separation exists between samples from the GRF and hybrid model for
all three phases. The reference’s 3-point statistics lie clearly within
the hybrid distribution. Again, we emphasize that this agreement is
achieved without explicitly incorporating the higher-order statistics
into the training process for the SBG.

Overall, this case study demonstrates that the flexibility of the
combined GRF and SBG models allow it to handle generation problems
involving higher numbers of phases, complex local morphologies, and
multi-scale spatial patterns. The assumed local–global decomposition
as well as the careful construction of the secondary layer facilitate
strong agreement in both lower- and higher-order statistics while also
producing visually realistic microstructures. This case study also high-
lighted two characteristic challenges when extending to larger numbers
of phases. First, the extension required a significant increase in network
size (from 100,000 parameters in the first case study to 1, 000, 000) in

25 The reference volume fraction of each phase is 0.254, 0.564, and 0.189.
26 In the 2-phase case, this problem is minimized because the transition
is clear: white to black. However, in the higher phase case, the ambiguity
of which phase to transition to seems to incorporate uncertainty into the
conditioning process. This could potentially pose an issue for high-entropy
systems with a large number of phases.

order to capture the complexity of the local neighborhood distribution.
Second, increasing the number of states was accompanied by a slight
increase in the variance of the synthetic microstructure’s microstructure
statistics (especially the volume fraction). However, we emphasize that
the hybrid model still achieves excellent agreement in second- and
third-order statistics. Future work will test whether similar uncertainty
is observed for increasing N and for continuous local states.

6. Conclusions

In this work, we present a theoretical and computational framework
for conditional approximations to the generating processes of material
microstructures (i.e., their stochastic microstructure functions). In ad-
dition, we present the necessary algorithms to implement the proposed
framework as well as document possible challenges that arise when
training a hybrid model. Our hybrid model displays several important
strengths compared with previous generative models. First, we are
able to efficiently and systematically generate microstructures with
realistic local features while retaining explicit control over their 1-
and 2-point statistics. Second, the hierarchical framework allows us to
extrapolate, with limited error, and generate microstructures outside of
the model’s training data. Third, the necessary learning models can be
trained using just a single training image, opening up a number of data-
scarce applications. Fourth, the generated microstructures are periodic
even if the reference is not. Therefore, the synthetically generated
microstructures can be utilized in efficient numerical simulations with
periodic boundary conditions by future efforts. Finally, generation is
computationally efficient. Although slightly slower than our Gaussian
Random Field framework [12], the two-layer method outpaces other
approaches by more than an order of magnitude [14,66,76].

The primary theoretical contribution of this paper is the proposi-
tion of a novel probabilistic decomposition approximating a stochastic
microstructure function. Specifically, we propose a two layer semi-
directed Probabilistic Graphical Model.

p(m1,… ,mS ;�,f r) = N ( Çm1,… , ÇmS ;�,f r)
K«
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p
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We argue that this two layer construction is a direct mathematical
realization of the global–local assumption presented in our previ-
ous work [12]. An N-output Gaussian Random Field acts as a fully-
correlated first layer, introducing global correlations contained in the
1- and 2-point statistics. The second layer, which assumes condi-
tional dependence only within compact spatial regions, incorporates
higher-order statistical information to produce realistic local neighbor-
hoods. We argue that this second layer is best approximated using a
Score-Based Denoising Deep Generative learning model. In addition to
promising greater stability than popular alternatives (i.e., distribution-
to-distribution GANs [81,82]), these models can be directly conditioned
using Bayes Rule. We use this technique to softly constrain sampling
from the neighborhood distribution in order to maintain the 1- and 2-
point statistics output by the Gaussian Random Field. In total, we argue
that sampling can be performed using the following expression.
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To support our analysis, we presented two case studies demon-
strating the practical implementation of the proposed framework for
generating 2-phase and 3-phase microstructures. In both case stud-
ies, we compared against experimental micrographs. In addition, we
explored the stability of the model by reapplying it – without re-
training – to approximate stochastic microstructure functions with
different lower-order statistics but identical local features. In doing
so, we demonstrated a gentle form of extrapolation to stochastic mi-
crostructure functions outside of the training set. This ability stems
from the bi-level directed nature of our framework. The learned second
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Fig. 12. Principal Component projections of a subset of the 3-point statistics computed for each phase: yellow, teal, and dark blue for (a), (b) and (c), respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

layer is shielded by the more robust (but less flexible) GRF layer, allow-
ing the entire framework to extrapolate without significantly reducing
generative performance.

This study lays the groundwork for a number of future explorations.
First, from a modeling perspective, incorporating higher numbers of
local states proves challenging. In this paper, we explored both 2-
phase and 3-phase generation; however, even this simple transition
led to a significant increase in the required capacity of the score-
based denoising model. To facilitate extension to increasingly complex
local states, more research is needed to identify methods of training
these models without incurring parameter explosion (e.g., the curse of
dimensionality). Second, the SBG model’s generalization (i.e., ability
to learn distributions over arbitrary local states) leaves space for im-
provement via application specific specialization of the local model.
For example, for N-phase generation, models specialized for categor-
ical random variables [73] could address the documented scatter in
generated volume fractions. Third, we restricted the focus to 2D gen-
eration because of the greater accessibility of 2D data. Although the
3D case is theoretically equivalent, we noted that its implementation
could be practically difficult primarily because of data scarcity. For 3D
generation, recent research has proposed techniques for training 3D
generative models on orthogonal 2D data slices in order to minimize
these challenges [98]. Incorporation of these ideas into this framework
would simplify implementation in 3D. Fourth, in this paper we ig-
nore any material context, focusing instead on statistically-conditioned
generation. This decision stemmed from the fundamental relationship
between microstructure statistics and relevant material properties [1,3–
6,57] and produced a generalized conditional generation framework.
However, we acknowledge that better generation quality can likely
be achieved on a system-to-system basis by incorporating material-
specific symmetries and physics. For example, the titanium structures
considered in this paper have highly-constrained lath arrangements.
Further research into systematically incorporating ‘‘physics-driven in-
formation’’ into the generative process is an interesting – yet challeng-
ing – open question. Fifth, from a practical use perspective, continued
stability analysis during extrapolation is necessary. Ideally one would
have a model which can accept changing 2-point statistics without
impacting the higher-order statistics.

Code availability

The implementation of the hybrid model, the trained diffusion mod-
els, and the training framework described in this paper are freely avail-
able under an open-source license at https://github.com/arobertson38/
LocalGlobalDecompositions.
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Appendix A. Derivation of posterior score function

This appendix contains the derivation of the volume-fraction-
conditioned posterior score function which enforces a desired global
volume fraction. We begin by expanding the abstract definition of
the posterior distribution using Bayes rule. For simplicity, we consider
microstructures with scalar local states; m is a vectorized representation
of the entire spatial microstructure.

(m log p(mvf ) = (m log p(vf m) + (m log p(m) * (m logQ (A.1)

Here, Q is a normalization term which is assumed to remain con-
stant across all volume fractions and microstructures. Because the
gradient of a constant is zero, this term can be ignored. The second

https://github.com/arobertson38/LocalGlobalDecompositions
https://github.com/arobertson38/LocalGlobalDecompositions
https://github.com/arobertson38/LocalGlobalDecompositions
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term, (m log p(m), is the score function of the prior. This term is
replaced by its learned representation. Finally, the distribution of the
likelihood is estimated using a Gaussian centered at the volume fraction
of the current microstructure.

(m log p(mvf ) = (m logN
0
vf ;

1Tm
S

, �
2
�

1
+

s✓(m)
�

(A.2)

Here, 1 is the vector of all ones. Therefore, 1Tm
S

is the volume
fraction of the current microstructure.
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Altogether, the augmented score function is given as:

(m log p(mvf ) = * 1
S�2
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�

(A.5)

Because the score of the likelihood is prescribed analytically, in
theory, it does not require an annealing schedule for stable sampling.
However, in practice, we found a mild annealing schedule improved nu-
merical stability. With the same variance exploding schedule archetype,
we achieved the best results with ��,i = (1.526e * 7)S and ��,f =
(1.526e * 9)S, using S to account for differences in the total number
of pixels as the domain size changes.

For vector valued local states, conditioning is achieved by applying
the likelihood expression to each dimension individually.

Appendix B. Ablation study: Volume fraction conditioning

In Section 3, we propose and derive an analytic transformation to
the learned score function to condition the denoising model’s sampling
process on a desired 1-point statistic (see Eq. (12) and Appendix A).
Without this transformation, the denoising process synthesizes mi-
crostructures over a wide distribution of 1-point statistics. Such spread
is observed both when sampling the SBG alone and in the proposed
hybrid framework (i.e., when conditioning the SBG on the output of
the GRF as described in Section 3.2). In the context of the generation
problem described in Case Study 1, we compare the volume fractions of
200 synthetic microstructures generated using four different generating
strategies to demonstrate the importance of the proposed custom sam-
pling rule. We use the same domain size and sampling hyperparameters
utilized in Case Study 1 unless explicitly noted.

1. SBG: Samples are drawn using the standard SBG score function
and utilizing the entire denoising process (i.e., starting at � =
20.0).

2. SBG + Vf : Samples are drawn using the custom SBG sampling
rule, Eq. (12), and the entire denoising process. We slightly
adjusted the volume fraction noise schedule to ��,i = 0.02, ��,f =
0.0003 to stably generate microstructures.

3. SBG + GRF: Samples are drawn using the standard SBG score
function and GRF conditioning (i.e., starting the denoising pro-
cess at � = 0.75 and initializing with a GRF sample.).

4. Hyb: SBG + GRF + Vf : The Proposed Framework. Samples are
drawn using the custom SBG sampling rule and GRF condition-
ing.

Fig. B.1 depicts the distributions of the volume fractions of the
synthetic microstructures generated using each strategy. Case Study 1’s
reference (i.e., target) volume fraction, 0.379, is demarcated with a
black line. Contrasting Strategies 1 and 2 as well as Strategies 3 and
4, the impact of the custom sampling rule’s inclusion is clear. In both
cases, samples generated with the custom sampling rule display much
closer agreement with the target volume fraction. The difference is

Fig. B.1. Histogram contrasting the distributions of volume fractions of synthetic
microstructures generated using four different generation strategies. The target volume
fraction (0.379) corresponds to the reference microstructure in Case Study 1.

particularly pronounced for the hybrid frameworks (Strategies 3 and 4).
In this case, the correction adjusts the volume fraction from 0.341±0.009
(mean ±1�) to 0.379±0.001, respectively (compared to 0.370±0.007 and
0.377±0.004 for Strategies 1 and 2, respectively). Interestingly, compar-
ing Strategies 2 and 4, the GRF and the volume fraction conditioning
together seem to further improve the generating strategy’s capacity to
match the 1-point statistics, 0.377±0.004 to 0.379±0.001. This deviation
occurs because, without the GRF, generative instability forces us to use
a more diffuse volume fraction likelihood (i.e., to utilize a higher final
volume fraction noise level). We hypothesize that the GRF helps to
numerically stabilize generation because it initializes sampling with a
microstructure with the correct 1-point statistics.

Appendix C. Case study 1: Training

The following section outlines important steps in designing and
training the SBG model used in Case Study 1. We emphasize that many
of these observations – regarding the design of these models to ensure
good statistical performance during application – are quite general and
apply to Case Study 2 as well.

C.1. Generating the dataset

For this case study, we used a patch size of 40 ù 40 pixels (the
original SEM image is 256 ù 256 pixels). From the Chord Length
Distribution, Fig. 6a,b, the largest prevalent individual feature size
is 8 pixels.27 Therefore, a 40 ù 40 patch size is sufficiently large to
contain most individual features as well as their first and segments
of their second nearest neighbors. We cut a training dataset of 4000
patches from the original image (e.g., Fig. C.1 - bottom row.). The patch
centers were selected using a Latin hyper cube sampling [158] of the
reference domain to encourage representative coverage of the reference
microstructure.

27 We used the largest prevalent size instead of the average because of the
sharp cutoff in feature size observable both visually and in the chord length
distributions.
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Fig. C.1. Images contrasting randomly selected unconditional samples from the trained SBG model (row 1) with their closest image in the training dataset (row 2). Closeness is
measured using the L2-norm.

Fig. C.2. Images summarizing the training process for the final score based denoising model used in Case Study 1. (a) Plot depicting the denoising score matching loss computed
during training on batches from the train and testing sets. 1000 sample patches were drawn from the trained SBG model and compared against the original training data to
produce images (b), (c), and (d). (b) White phase volume fractions. (c) White phase chord length distribution. (d) PC projection of the nonperiodic patch 2-point statistics.

C.2. Training

Fig. C.2 summarizes the results of the training process of the final
model. As shown in Fig. C.2a, the model shows similar performance on
the training and test data (we used a 85 * 15% training–testing split),
demonstrating the stability of the model. Fig. C.2b-d summarize the
statistical agreement between the training data and synthetic patches
generated unconditionally by the trained model. As demonstrated by the
strong agreement in the statistics, the SBG model successfully learns to
generate realistic patches. Importantly, the statistical agreement holds
for all three orders of statistics. When deployed, this agreement means
that the model should be able to successfully correct the higher-order
statistics without excessively perturbing the lower-order ones. The
patches in Fig. C.1 further affirm this conclusion. Fig. C.1 contrast four
randomly selected synthetic patches (the first row) with the closest,
in the L2-norm, patches to each from the training dataset (the second
row). The synthetic patches share many qualitative characteristics with
the original training data: geometric individual features, fine separation
between the features, and semi-regular spatial arrangement between
the features and their nearest neighbors. Moreover, the network does
not seem to be simply recreating the training dataset.

During architecture and hyperparameter tuning, we observed that
the statistical generation quality – referring to the agreement between

the microstructure statistics of the unconditionally generated patches
and the microstructure statistics of the experimental patches (i.e., the
training dataset) – decreased rapidly with growing architecture size
(i.e., the number of trainable parameters). This behavior contrasted
sharply with the visual generation quality – referring to the qualita-
tive visual agreement between the two datasets – which, generally,
improved as the architecture size increased.28 The proclivity of neural
networks to overfit is well documented in the deep learning commu-
nity [159]. However, we believe that it remains an especially impor-
tant observation in this context because our solution (using smaller,
lightweight architectures) goes against the general trend of extremely
large architectures in diffusion based distributional learning [86,87,
114,115,127]. We hypothesize two justifications for this divergence.
First, the hybrid two-level construction (i.e., the GRF construction
followed by the denoising step) significantly simplifies the complexity
of the distribution that the denoising model is tasked to learn, allowing

28 In addition to statistical errors, large architectures often also introduced
training instability. When present, repeatedly restarting the training process
would lead to a fraction of the models generating white noise instead of
discernible patches. With sufficiently lightweight architectures, we never ob-
serve this instability. However, there are still minor fluctuations in generated
microstructure statistics between training runs.
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Fig. C.3. Images summarizing the statistical stability of the generated images as the size of the spatial domain is varied (40, 60, 150, 256 pixels). (a) An overlay of the Chord
Length Distributions (computed in the x-direction) at each scale. (b) The average of the Chord Length Distribution (x-direction) at each scale.

us to use a less complex model. Second, limited dataset sizes leave
us much more susceptible to training instability if we were to use
a large architecture. Researchers have developed an extensive suite
of regularization techniques, such as dropout29 [160] and weight de-
cay [161], to combat overfitting and instability. However, we argue
that, for this application, systematically designing a lightweight model
is a better solution. Specifically, smaller architectures result in de-
creased computational cost of the forward pass. Although the difference
might be imperceptible for a single-pass model, the composite cost
over the many forward passes required in denoising is noticeable.
As an extreme example, generation time using Song et al.’s original
NCSN architecture [109] (approximately 8 million parameters) took us
several minutes per microstructure, whereas generation time with the
augmented U-net takes 1.9±0.6 seconds per sample on an Nvidia Tesla
V100 GPU.

In addition to the measures described above, we also tested the
statistical stability of the trained model as the size of the spatial
dimension is changed. Because the model is trained at a constant patch
size (40 ù 40 for Case Study 1) and then evaluated at a different, larger
spatial dimension during application (here, 256 ù 256), such stability
is vital to the performance of the entire generative framework. Fig. C.3
summarizes the results of the stability test. At each spatial dimension
(40, 60, 150, and 256), 40 samples were drawn to compute statistics.
Fig. C.3a,b demonstrate that the chord length distributions of the
generated features remain acceptably stable as the spatial dimension
is increased. This is clearly emphasized by the stability of the mean of
the CLD. Altogether, this indicates that the denoising model will retain
its documented performance from training when applied to a larger
domain during application. During experimentation, we observed an
important, negative relationship between the visual receptive field of
our model and the statistical stability. Receptive fields significantly
larger than the patch size caused instability, likely due to changes in
the boundary information when we transition to larger spatial domains.

C.3. Selecting the reduced initial noise level

Before evaluating the conditional hybrid model, the final necessary
step is to identify the adjusted starting noise level. As outlined in
Section 3, sampling is conditioned by the output of the GRF via a
shortened noise schedule (by starting at a reduced initial noise level,
�) and by replacing the white noise initial iterate with the output of
the GRF. This hyperparameter must be tuned. As a guiding principle,
it should be sufficiently high to enable pixels to transition from one

29 Dropout is used extensively in the DDPM framework [86].

state to another (i.e., on the order of � ˘ 0.5), but not too high to
wash out information from the initial GRF state. We swept a large
range of values and recorded the error in our aforementioned statistical
indicators. As seen in Fig. C.4, a balance is achieved when the change
induced by the SBG transformation is sufficiently small to maintain the
important features of the GRF (thereby matching the desired 2-point
statistics) and sufficiently large to perturb the local features (thereby
matching higher-order statistics such as chord length distributions).
� = 0.75 balances these competing goals. During our experiments,
we observed that reduced initial noise levels near this one worked
satisfactorily in many situations. However, performance could almost
always be improved by application-specific tuning.

Appendix D. Case study 2: Training

For Case Study 2, during training, we used an initial noise level
of 50.0 and a final noise level of 0.01. Mirroring observations in
the literature [87], we employed a longer training regime – 750,000
iterations – compared to 500,000 in the 2-phase microstructures case.
Otherwise, the methodology and training hyperparameters were the
same as reported in Section 4.4.

Fig. D.1 summarizes the training process. Again, we compare mi-
crostructure statistics (this time for all three phases), rather than the
loss curve, to measure quality-of-fit. Volume fractions (Fig. D.1a-c)
and chord length distributions (Fig. D.1d-f) are computed for each
phase individually. The principal component projection is computed in
aggregate [29]. Although for some statistics there are larger inconsis-
tencies than in Case Study 1 (this occurs because this neighborhood
distribution is much more complex, Section 5.3), altogether, the per-
formance is similar to the two-phase case and acceptable. Importantly,
the performance for the higher-order statistics is strong. The difference
between the neighborhood 2-point statistics distributions is almost
imperceptible. Further, the chord length distributions, especially for
the yellow and dark blue phases display excellent agreement. Its worth
noting that the features for the teal phase are often larger than the
patch size, so some error there is acceptable since such features will
be predominantly dictated by the GRF. Fig. D.2 contrasts randomly
selected patches generated using the final model with the closest patch
to each from the training data. The patches contain both salient features
of the finer yellow and dark blue phases as well as representative
segments from the teal phase boundary. Again we note that the model
does not simply memorize the training data.
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Fig. C.4. Images summarizing the experiments to determine the initial index to use for conditional generation. All plots have the noise index as their x-axis. Plots contrast the
relative error of a set of 80 samples against the reference for several microstructure statistics. The mean and one standard deviation are depicted. (a) 2-point statistics. (b) Average
Chord Length (x). (c) Average Chord Length (y).

Fig. D.1. Visual summary of the training process metrics and output. The statistics of the training data are depicted in blue, the statistics of the synthetic patches are in orange.
Distributions contrasting the volume fractions (a-c) and X chord length (d-f) between the training data (blue) and synthetic data from the unconditional SBG model (orange) for
each phase. (h-j) 2-dimensional Principal Components of local patch 2-point statistics. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. D.2. Images contrasting randomly selected unconditional samples from the trained SBG model (row 1) with their closest image in the training dataset (row 2). Closeness is
measured using the L2-norm.
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