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ABSTRACT: The structural, thermal, and electronic properties of Ba2MnSe3
were investigated. Analysis of the low-temperature heat capacity revealed a low
Debye temperature and a low average speed of sound that, together with the
bonding in this material, result in a low thermal conductivity over a relatively large
temperature range. Density functional theory and calculated electron localization
were employed to investigate the electronic structure and bonding. Absorption
and photoluminescence spectroscopy measurements corroborated our calcu-
lations and revealed a direct band gap of 1.75 eV. This study expands on our
understanding of the physical properties of this material and reveals previously
unascertained properties, the knowledge of which is imperative for any potential
application of interest.

■ INTRODUCTION
Multinary metal chalcogenides form in a variety of structure
types and exhibit varying properties depending on the
composition, crystal structure, chemical bonding, and/or
processing conditions. These materials continue to be
investigated for different applications of interest, including
optoelectronics and photovoltaics,1−6 superconductivity,7−9

topological insulators,10,11 thermoelectrics,12−15 optical phase-
change memory devices,16−18 thermal storage devices,19,20 and
thermal barrier coatings.21,22 Among the varying ternary
compounds thus far reported are chalcogenides of the form
Ba2XQ3 (where X = Mn, Cd, Co, Fe, or Zn and Q = S or Se).
These ternary chalcogenides possess an orthorhombic crystal
structure consisting of linear chains of X atoms formed by
corner-sharing XQ4 tetrahedra, with alkaline earth atoms
(coordinated to seven chalcogens) between the chains.23−27

They have been employed for fundamental studies of low-
dimensional magnetic interactions in solids, where the bridging
chalcogens mediate magnetic coupling between the transition
metals.27−34 In addition, Ba2XQ3 chalcogenide compounds
have received attention as potential high-temperature super-
conductors30,32 and tunable light-emitting diode materi-
als.35−38 Moreover, because antiferromagnetic materials are
of interest for high-density data storage and ultrafast
switching,39−44 certain compositions are currently of interest
for possible spintronic applications.
It is noteworthy that the reports mentioned above lack

detailed studies of the thermal properties. The thermal
properties of materials are among the most fundamental, the
knowledge of which is essential for any applications of interest,
including those outlined above. Moreover, an intrinsically low

thermal conductivity, κ, is important for thermoelectric,
thermal barrier coating and phase-change memory materials
with specific structural features such as weak bonding,13,45

coordination preferences,13,46 lone pair electrons,47−50 the
large number of atoms per unit cell,51,52 the superionic
transition,53−55 partial occupancy,56−59 and strong anharmo-
nicity,60−63 leading to low κ values. Motivated by these
considerations and our ongoing interest in multinary metal
chalcogenides, we investigated the thermal and electronic
properties of Ba2MnSe3. To the best of our knowledge, only
the magnetic properties of Ba2MnSe3 have previously been
reported.27 In addition, Ba2MnSe3 is of interest due to its low-
dimensional, high-spin antiferromagnetic behavior.27,34 More-
over, magnetic cations, such as Mn2+, with large and
antiparallel spins resulting in bonding heterogeneity may
induce low κ values. In addition to temperature-dependent κ
and heat capacity measurements, density functional theory
(DFT) calculations of the electronic band structure and the
calculated electron localization provided further insight into
the properties of this material, with ultraviolet−visible (UV−
vis) and photoluminescence spectroscopy corroborating the
calculated energy band gap of this material.
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■ EXPERIMENTS AND COMPUTATIONAL METHODS
Phase-pure Ba2MnSe3 was synthesized by reaction of BaSe, Mn, and
Se. All preparations were carried out inside a N2-filled glovebox.
Binary BaSe was prepared by the direct reaction of Ba pieces (99.2%,
Alfa Aesar) and Se powder (99.999%, Alfa Aesar) combined in a
stoichiometric ratio at 1213 K for 3 days.64 BaSe, Mn powder
(99.99%, Alfa Aesar), and Se powder (99.999%, Alfa Aesar) were
placed in a silica ampule in a 2:1:1 stoichiometric ratio that was then
placed in a quartz tube. The quartz tube was evacuated and sealed
before being placed in a resistive furnace for reaction. The
temperature was increased at a rate of 20 K/h to 1123 K, kept at
this temperature for 4 days, and then slowly decreased to 723 K at a
rate of 2 K/h before decreasing to room temperature at a rate of 10
K/h. The specimen was ground into a fine powder and sieved (325
mesh) before being loaded into a custom-designed WC die-and-
punch assembly for densification by spark plasma sintering (SPS,
Thermal Technology model 10-3). To prevent reaction with the
material, the WC assembly was lined with graphite foil. Densification
was accomplished at 673 K and 400 MPa for 30 min under vacuum,
resulting in a dense polycrystalline material (96% of the theoretical
density). The temperature ramp rate was 25 K min−1, and the
pulse:current ratio was 40:1. A TA Instruments Q600 instrument was
used for differential thermal analysis (DTA) measurements prior to
the SPS densification.

Crystal structure characterization was accomplished by X-ray
diffraction (XRD) and Rietveld structure refinement. A Bruker-AXS
D8 Focus diffractometer in Bragg−Brentano geometry with Cu Kα
radiation and a graphite monochromator was used to collect the
powder XRD data, and the GSAS II software package65 was used to
perform Rietveld refinement. Scanning electron microscopy (SEM)
and energy dispersive X-ray spectroscopy (EDS) were used to
investigate the grain morphology and the homogeneity of the
densified specimen. Optical micrographs were recorded on a SEM
instrument (JEOL JSM-6390LV) equipped with an Oxford INCA X-
Sight 7582M instrument for EDS. UV−vis−near-infrared (NIR)
absorbance spectroscopy was performed in transmission mode using a
Cary 5000 spectrophotometer equipped with PMT/PbS detectors.
The band gap was determined by a Tauc plot. Photoluminescence
spectra were recorded using a Renishaw inVia microscope with 633
nm HeNe laser excitation and emission detection on a 1 in. CCD
spread off a 1200 lines/mm grating.

The thermal diffusivity, αth, was measured, from 300 to 675 K, on a
1.0 mm thick 1.3 mm diameter disk utilizing the laser flash technique
(NETZSCH LFA457 system) under an Ar flow, with an experimental
uncertainty of ±5%. The κ values were then calculated according to
the relation κ = DαthCv, where D is the density of the specimen and Cv
is the isochoric heat capacity estimated from the Dulong−Petit limit
Cv = 3nR, with n being the number of atoms per formula unit and R
the gas constant. A 2 mm × 2 mm × 5 mm bar was cut from the
densified pellet for low-temperature steady-state κ measurements from
20 to 300 K on a custom-built radiation-shielded vacuum probe with a
maximum experimental uncertainty of 8%.66,67 Temperature-depend-
ent isobaric heat capacity, Cp, data were measured on a Quantum
Design Physical Property Measurement System using thermal N-
grease and appropriate addenda. The maximum uncertainty in the
entire temperature range was estimated to be 5%.

Ab initio DFT calculations based on self-consistent Kohn−Sham
equations were performed as implemented in the Quantum Espresso
package68 using the structural information from our refinement result.
The Perdew−Burke−Ernzerhof69,70 plus Hubbard71 (PBE + U)
exchange-correlation functional with projector-augmented waves
(PAW) pseudopotentials72 was applied. The U parameter was set
to 4.7 eV for Mn on the basis of prior studies that provided good
agreement between calculated and experimental structural data.73 The
valence configurations of the pseudopotentials were 5s25p66s2,
3s23p64s23d5, and 4s24p4 for Ba, Mn, and Se, respectively. A k-point
mesh of 3 × 3 × 3, a kinetic energy cutoff for wave functions and a
charge density of 680 and 4762 eV, respectively, and an energy
convergence threshold of 10−7 eV were applied for the self-consistent

field (SCF) calculations. The electron localization function (ELF)
distribution was analyzed and visualized using Vesta software.74

■ RESULTS AND DISCUSSION
Figure 1 shows the XRD refinement profiles that include the
observed, calculated, and difference patterns, as well as Bragg

positions of phase-pure Ba2MnSe3. The refinement results are
summarized in Table 1, and the refined atomic positions and

isotropic displacement parameters, Uiso, are listed in Table 2.
The crystal structure, space group Pnma, is isostructural with
K2AgI3.

75 There are two crystallographically distinct Ba sites,
one Mn site, and three Se sites, with 24 atoms in the unit cell,
as shown in Figure 2. Both Ba sites have irregular local
environments formed by seven Se atoms in a monocapped
trigonal prismatic geometry. The Mn atoms are in a distorted
tetrahedron formed by four Se atoms. The BaSe7 polyhedra
and MnSe4 tetrahedron are connected by common edges to
form the complex three-dimensional structure. Selected
interatomic bond distances and angles are listed in Table 3.

Figure 1. XRD pattern, including the profile fit, profile difference, and
Bragg positions.

Table 1. Crystallographic Data and Refinement Results

space group Pnma (No. 62)
a (Å) 9.1546(17)
b (Å) 4.4733(9)
c (Å) 17.764(3)
α = β = γ (deg) 90
V (Å3), Z 727.5(4), 4
d (g/cm3) 5.1724
radiation graphite-monochromated Cu Kα (1.54056 Å)
2θ range (deg) 19−100
wRp, Rp 0.05479, 0.04300
goodness of fit 1.436

Table 2. Atomic Coordinates, Occupancies, f Values, and
Atomic Displacement Parameters (Uiso)

atom site x y z f Uiso (Å2)

Ba1 4c 0.4198(3) 0.25 0.71366(18) 1 0.021(4)
Ba2 4c 0.2590(4) 0.25 0.45747(16) 1 0.020(4)
Mn 4c 0.3746(7) 0.25 0.1325(4) 1 0.020(5)
Se1 4c 0.9984(5) 0.25 0.60001(25) 1 0.021(4)
Se2 4c 0.3186(5) 0.25 0.27284(27) 1 0.014(4)
Se3 4c 0.1244(5) 0.25 0.07156(28) 1 0.017(4)
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Utilizing the atomic bond lengths obtained from our
refinement results as well as the bond valence parameters,76

empirical bond valence sums of +2.06 and +2.08 were obtained
for Ba and Mn, respectively, values that are consistent with an
oxidation state of +2 for these ions. Figure 3 shows a SEM
micrograph of a cracked surface of the densified specimen
revealing the surface morphology with grain sizes in the range
of 2−20 μm. The EDS data from a well-polished surface
confirmed the stoichiometry from XRD analyses, and
elemental mapping (Figure 3) shows the uniform distribution
of the constituent elements indicating the good homogeneity
of our densified specimen.
Figure 4 shows the DTA data for Ba2MnSe3 indicating this

material to be stable up to 750 K, with decomposition into
BaSe2, BaSe, BaSe3, and MnSe above this temperature as
revealed by XRD of the product after DTA. To determine the
optical band gap, as this has not previously been reported for
this material, transmission was measured from the NIR to the
UV region of the electromagnetic spectrum. From the
absorbance, as shown in Figure 5a, the absorption band edge
was observed to begin at ∼2700 nm. A Tauc plot was
constructed (inset) by plotting (αhν)2 as a function of photon
energy hν. Linear fitting of the steepest gradient provided a
value of 1.75 eV for the photonic band gap. The square of the
Tauc function provided a good linear fit, indicative of a direct
electronic transition. The supposition of a direct band gap was
confirmed by photoluminescence spectroscopy, which de-

tected broad emission from Ba2MnSe3 upon excitation with a
633 nm HeNe laser, as shown in Figure 5b. Peak emission was
detected at 745 nm, corresponding to an energy of 1.66 eV.
This is close to, but slightly less than, the optical band gap
energy of 1.75 eV, as is normally observed in photo-
luminescence spectra. Multiple weaker transitions were visible
in the photoluminescence spectrum, centered at 827 and 902
nm, suggesting the presence of vibration-assisted relaxation
pathways or midgap states.
Thermal conductivity measurements from 20 to 675 K are

shown in Figure 6. As shown in the figure, the excellent
agreement between the low- and high-temperature data
collected on two different specimens that were cut from the
same densified pellet is another indication of the homogeneity
of the polycrystalline specimen. Due to the relatively large
band gap for this material, κ is presumably due to the lattice
contribution with negligible, if any, electronic contribution.
The κ values are relatively low, ranging from 1.8 W m−1 K−1 at
room temperature to ∼1 W m−1 K−1 above 600 K, with a T−1

Figure 2. Atom positions within the unit cell.

Table 3. Selected Atomic Bond Lengths (angstroms) and
Bond Angles (degrees)

Ba1−Se1 3.387(6) Se1−Ba1−Se2 80.13(14)
Ba1−Se2 3.297(5) Se2−Ba1−Se3 72.11(10)
Ba1−Se2 3.286(4) Se2−Ba1−Se2 157.06(11)
Ba1−Se3 3.397(5) Se1−Mn−Se1 119.67(30)
Ba2−Se1 3.479(5) Se1−Mn−Se2 108.03(19)
Ba2−Se2 3.325(6) Se1−Mn−Se3 108.15(18)
Ba2−Se3 3.202(4) Se2−Mn−Se3 103.68(26)
Ba2−Se3 3.385(5) Se1−Ba2−Se1 75.15(12)
Mn−Se1 2.586(4) Se1−Ba2−Se3 151.57(15)
Mn−Se2 2.545(8) Se3−Ba2−Se3 76.52(13)
Mn−Se3 2.533(7) Se3−Ba2−Se3 88.61(14)

Figure 3. SEM images of a cracked surface and EDS elemental
mapping from a well-polished surface illustrating the homogeneity of
the specimen, with 35.5(3) atom % Ba, 16.3(4) atom % Mn, and
48.2(4) atom % Se.

Figure 4. DTA data at a heating rate of 10 K/min indicating that
Ba2MnSe3 is stable up to 750 K. The inset shows the XRD data after
DTA to 773 K indicating decomposition of the main phase into
BaSe2, BaSe, BaSe3, and MnSe.
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temperature dependence indicating Umklapp scattering
dominates at higher temperatures.
To gain further insights into the thermal properties, as well

as elucidate the reason for the relatively low κ values, heat
capacity measurements were also performed. Figure 7 shows
the temperature-dependent Cp data for Ba2MnSe3. The Cp data

approach the Dulong−Petit limit at high temperatures,
indicating that all of the acoustic and optical phonon modes
are fully excited at 300 K. The inset of Figure 7 shows the low
temperature data fit to the relation Cp = αT + βT3, where the
first term represents the electronic contribution and the second
term represents the lattice contribution.77 The Debye
temperature, θD, can be determined from the low-temperature
Cp data using the relation θD = (12π4Rna/5β)1/3, where na is
number of atoms per formula unit and β = 3.6 mJ mol−1 K−4

from our fit, resulting in a θD of 148 K. The average sound
speed (υ = 1563 m/s) can be obtained using the relation θD =
υ(h/kB)(3naNad/4πMw)1/3, where h is Planck’s constant, kB is
the Boltzmann constant, Na is Avogadro’s constant, d is the
density, and Mw is the molecular weight. These relatively low υ
and θD values suggest relatively weak bonds13,51,78 in this
compound, resulting in a low κ for Ba2MnSe3.
To further consider the bonding in this material and

investigate the electronic properties, DFT electronic structure
calculations and ELF analyses were performed. As shown in
Figure 8, our DFT calculations indicated a direct band gap of
1.8 eV at the Γ point, in very good agreement with our
experimentally obtained value. The orbital-projected density of
states (DOS) indicated that the valence band maximum
(VBM) was mainly composed of Ba 5s6p, Mn 3d, and Se 4p
orbitals with contributions from the Se 4p orbital being
predominant, while the conduction band minimum (CBM)
was mainly from the Mn 3d orbital with slight contributions
from Mn 4s, Ba 6s, and Se 4s4p orbitals. The calculated
electron localization results are shown in Figure 9. The ELF
takes values ranging from 0 (fully delocalized electrons or does
not exist) to 1 (perfect localization), with a value of 0.5
corresponding to uniform electron-gas-like pair probability.79

From the topological maps, shown in Figure 9, the very low
ELF values in the Ba−Se interaction regions indicate that Ba
atoms couple to adjacent Se atoms in primarily ionic bonding.
In contrast, Mn atoms exhibit spin-dependent electron
localization, with primarily ionic and electron-gas-like covalent
bonding for Mn2 and Mn1, respectively (see Figure 9). This
bonding “heterogeneity” can affect phonon propagation80−82

and contribute to the low κ for this material.

■ CONCLUSION
The thermal and electronic properties of Ba2MnSe3 are
reported for the first time. Heat capacity data indicated

Figure 5. (a) UV−vis−NIR absorbance spectrum, with the
corresponding Tauc plot, indicating a direct optical band gap of
1.75 eV and (b) photoluminescence spectra (633 nm excitation)
confirming a direct band gap with optical emission peaking at 745 nm.

Figure 6. Temperature-dependent κ with a solid line representing a
T−1 temperature dependence.

Figure 7. Temperature-dependent Cp/3nR vs T data, where the inset
shows Cp/T vs T2 data at low temperatures with the solid line
representing the fit to the relation Cp/T = α + βT2.
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relatively low θD and υ values that, together with a relatively
complex crystal structure and bonding heterogeneity, lead to a
relatively low κ for this ternary chalcogenide. Spectroscopic
analyses corroborate the DFT calculations that revealed a
relatively large direct band gap with the VBM and CBM mainly
composed of Se 4p and Mn 3d orbitals, respectively. The
results of this study will be beneficial for improving our
understanding of the physical properties of ternary chalcoge-
nides and developing strategies for enhancing specific proper-
ties for potential applications of interest in this and similar
ternary chalcogenides.
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