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Abstract Flood risk assessments commonly use event-based apptoaches to-réduce the number of scenarios
required to be run through computationally intensive physical processimodels. Often the return period of the
response variable (e.g., a fluvial water level or overtopping discharge) generated by an event (e.g., upstream/
downstream water level or set of sea state variables) does not match'that of the event itself; a limitation of
event-based approaches which can lead to the misspecification‘of flood risk. We present a transferable hybrid
statistical-hydraulic modeling framework for rapidly locating transition’zones; river reaches where extreme
water levels are driven by both upstream rivering discharge and downstream sea level. Instead of an event-based
approach the framework utilizes a surrogate model to reduce computational expense of the hydraulic model.
The surrogate-based approach allows the gmpirical estimation of response-based along-river return levels from
on a large number of plausible discharge—coastal still water level events simulated from the statistical model.
We assess the robustness of the event-based approach by comparing the associated return levels with the
response-based return levels. The framework is applied to the Suwannee River in Florida (United States). Three
surrogate models are evaluated, highlighting the enhanced ability of non-linear models to accurately capture
discharge-sea level interactions alongthe river. The along-river return levels of the “most-likely” design event
are found to lie within the rangeof variability of the response-based return levels for most of the transition
zone.

Plain Language,Summary Transition zones are stretches of river where water level is driven by
upstreamriver. flow and downstream sea level. Techniques for evaluating flood risk in coastal rivers commonly
model@single onsmall number of flow - sea level combinations representing rare flooding scenarios, for
example, the flood event expected on average, once every 100 years. In transition zones, many different flow
=1sea level combinations can generate flooding consequently the 100-year flood generated from a single or

few combinations may not represent the true 100-year flood. We develop a framework linking a statistical
model with a river flow model to locate transition zones. Thousands of plausible flow - sea level combinations
are simulated from the statistical model with their dependence preserved. Estimating along-river levels by
running these combinations through a river flow model takes a very long time, thus we develop a proxy for the
flow model. The transition zone is located by comparing combinations driving the 100-year water level with
the upstream river flow and sea level expected with the same frequency. At our case study site, we find the
100-year water level extracted from our framework differ from those produced by existing techniques thus the
latter may need to be reconsidered.

1. Introduction

Transition zones are stretches of river where extreme water levels can arise through the interaction of multiple
drivers such as elevated river discharge, storm surge, and high tide (Bilskie & Hagen, 2018). Transition zones are
likely to exist along rivers throughout the world and tend to be most dramatically revealed during catastrophic
flood events, such as Hurricane Harvey (2017) where coincident heavy rainfall and surge flooded Houston
and the surrounding area (Valle-Levinson et al., 2020). In January 2012, elevated inland water levels triggered
precautionary evacuations in the northern Netherlands, as storm surges blocked gravity-driven drainage for five
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consecutive low tides during a period of prolonged rainfall on an already saturated catchment (Santos, Casas-Prat,
et al., 2021; van den Hurk et al., 2015). Storm surge and the rainfall that produces the elevated river discharge,
are often generated by common synoptic conditions (Pfahl & Wernli, 2012), and are statistically dependent (e.g.,
Nasretal., 2021; Wahl et al., 2015). Hydraulic modeling has shown discharge and surge often interact nonlinearly
(Bilskie & Hagen, 2018), exacerbating the impact of a flood to a greater (Gori, Lin, & Smith, 2020; Kumbier
et al., 2018; Silva-Araya et al., 2018) or lesser degree (Torres et al., 2015). Hence combining independently
derived fluvial and coastal flood maps, as is currently being implemented for example, by the U.S. Federal Emer-
gency Management Agency (FEMA) as part of the National Flood Insurance Program, will likely mischaracterize
the true flood risk (Bass & Bedient, 2018; Bilskie & Hagen, 2018; Moftakhari et al., 2019)«

Hydrodynamic models have been used to identified transition zones during historical events (Eilander et al., 2022;
Gori, Lin, & Smith, 2020) and hypothetical scenarios based on past storms (Bilskie &) Hagen, 2018; Shen
et al., 2019). At the catchment scale, hydraulic models such as the Hydrologic Engineering Center-River Analy-
sis System (HEC-RAS) (HEC, 2002) provide robust estimates of along-riverswater levels (Loveland et al., 2021).
Larger scale oceanic processes such as the wind driven storm surge can_be aceounted for implicitly in hydraulic
models through boundary conditions. This is typically carried out by eoupling theéshydraulic models dynamically
or, more commonly, through a one-way coupling with a storm surge model such as ADvanced CIRCulation
(ADCIRC) (Santiago Cabello et al., 2019). To assess the compoundiflood hazard in transition zones, hydraulic
models have been combined with statistical modeling of the4oint probabilities of the flood drivers either directly
(Moftakhari et al., 2019; Serafin et al., 2019) or through larger scale‘climatology (Bass & Bedient, 2018; Gori,
Lin, & Xi, 2020; Orton et al., 2018). In these hybrid statistical-hydraulieemodeling frameworks, boundary condi-
tions to date have taken the form of synthetic events generated from the statistical models.

Despite increases in computational resourcesgppropagating many scenarios through physics-based models often
remains impractical (e.g., Robinson_ et al., 2008). One solution for limiting the computational cost is to combine
a low fidelity numerical model, for example, a eone‘dimensional steady state model, with a relatively short record
of synthetic conditions (e.g., Couasnon etal.,;2018); however, this can lead to large uncertainties. Certain hybrid
frameworks that attempt to estimate the flood hazard in transition zones (e.g., Moftakhari et al., 2019; Muifioz
et al., 2020) and at the coast (e.g., Didier et al., 2019) adopt event-based statistical approaches to reduce the
number of numerical model runs."Event-based approaches assume the response variable, in this case along-river
water levels, are produced by the combination of the drivers with the equivalent return period (e.g., a certain
combination of coastal waterlevel and discharge with a bivariate return period of 50 years is assumed to lead
to a 50-year water level along the river). Due to the physical interaction of the drivers, in reality, this will likely
seldom be the case (e.g., Serinaldi, 2015). Generally, the event on a joint return period curve (or isoline) deemed
“most-likely*acecording to the observational data is taken to represent the bivariate return period. The event-based
approach.combined with the “most-likely” strategy has the practical advantage of only requiring a single scenario
per return period to be run through the numerical model. However, even assuming an exact correspondence
between the' return period of the drivers and response, using a single design event prevents a full characterization
of the along-river levels associated with a bivariate return period. For instance, the “most-likely” event may not
be the return level event that elicits the most extreme response (Lan et al., 2022), here the event that produces the
highest along-river levels, potentially leading to under design and under estimation of flood risk.

In this context, surrogate models offer an alternative solution (Robinson et al., 2008). Surrogate models (also
referred to as “response surfaces” or “meta-models”) are essentially computationally efficient approximations
of the deterministic physics-based models (Sacks et al., 1989). The physics-based model is run for a subset of
carefully chosen inputs while the responses of the remaining inputs are estimated by a surrogate model fit to
these model runs. Data-driven surrogate models empirically approximate the relationship between the inputs (and
parameters) and the outputs of a complex model without attempting to emulate any of its internal parts (Razavi
et al., 2012). Past applications of surrogate models in fluvial and coastal flooding studies range from conceptually
simple look-up tables (Apel et al., 2008) and empirical formulations (van Ormondt et al., 2021) to more complex
approaches including Gaussian process models (Malde et al., 2016; Parker et al., 2019; Rohmer et al., 2022), krig-
ing (Parker et al., 2019; Rohmer & Idier, 2012), 3D scatter interpolation (Serafin et al., 2019), bilinear interpola-
tion (Couasnon et al., 2022), radial basis functions (Camus, Mendez, Medina, et al., 2011; Gouldby et al., 2014;
Medellin et al., 2016; Rueda et al., 2016), support vector regression (Bermudez et al., 2019; Chen et al.,. 2020;
Jhong et al., 2017), random forests (Zahura & Goodall, 2022; Zahura et al., 2020), and artificial neural networks
(Bermudez et al., 2018; Peters et al., 2006; Santos et al., 2019). In a flooding context, the performance of the
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different models have rarely been compared. An exception is Bass and Bedient (2018), where kriging was shown
to be a better surrogate than artificial neural networks for a 2D hydrodynamic model loosely coupled with a
lumped hydrologic-hydraulic model forecasting peak inundation from tropical cyclones in Houston, Texas.

The predictive skill of the surrogate model will at least in part depend on the subset of inputs run through the
physical models. The Maximum Dissimilarity Algorithm (MDA) (Kennard & Stone, 1969; Willett, 1999) aims
to optimize surrogate model performance by identifying a user-specified sized subset of data that is most repre-
sentative of the diversity of the underlying data set. Camus, Mendez, and Medina (201 L);found the MDA better
represented the boundaries of a data set (which are often the conditions leading to the most extreme responses)
than other clustering techniques. Surrogate models aided by the MDA have been successfully developed for
physics-based models of dune erosion (Santos et al., 2019), wave transformation (Gouldby et.al.,, 2014; Malde
et al., 2016; Rohmer et al., 2022; Rueda et al., 2016), wave run-up (Medellin et al.,"2016), flood inundation
(Bermudez et al., 2018), and fluid—structure interactions (Lara et al., 2019).

The hybrid frameworks demonstrate that in the transition zones extreme water levels can be produced by individ-
ual discharge and coastal still water levels that are far less severe. Adopting a'surrogate model enabled Serafin
et al. (2019) to estimate along-river water levels for a long synthetic,record of events, and in turn calculate
response-based return levels empirically along the river. The authors.demonstrated the disparity in the event-based
return levels, that is, water level given by the associated foreing event, under the assumption of full dependence
between the forcings, and the response-based return levels fora range of return periods. The disparity may arise at
least in part due to the assumption of full dependence leading to conservative event-based return periods. A natu-
ral next step is to investigate whether the disparity.persists between the event-based and empirical response-based
return levels, once the dependence between the forcings i accounted for in the derivation of the event-based
scenarios, such as in Moftakhari et al. (2019). Comparing water levels generated by the “most-likely”” design
event with those produced by an ensemble ofpossible design events sampled along the same isoline will provide
a preliminary assessment of the robustness of the'*most likely” strategy.

The aim of this paper is twofold. First,.to'develop a flexible hybrid statistical-numerical modeling framework
for rapidly identifying transitiomzones,|which is transferable and expandable. Second, to use the response-based
return levels generated in finding the transition zone to evaluate the robustness of the widely used event-based
approach. The frameworkqs implemented for the Suwannee River in northwest Florida representing the first
application of such a framework to a river on the eastern U.S. coast. The first objective is to derive a long
synthetic set of riveridischarge and coastal still water level events by fitting a statistical model that accounts for
the dependence between the two flooding drivers. The second objective is to validate an existing HEC-RAS
model for the case study site, through which an MDA-selected subset of synthetic events will be propagated. The
third’objective s to find a suitable data driven surrogate for the HEC-RAS model by evaluating the performance
of several ‘candidate models. Synthetic events not in the MDA subset will be propagated through the optimal
surrogate,model to obtain along-river water levels. The fourth and final objective is to compute response- and
eventsbased return levels. Contrasting the individual components of the discharge and still water level events
that produce a given return level along the river enables the identification of the transition zone. Comparing the
along-river response- and event-based return levels will elucidate on the robustness of the event-based approach.

2. Case Study Site and Data

The Suwannee River flows for around 396 km, with an average slope of 0.075 m per km (Valle-Levinson, 2012),
and discharges into the Gulf of Mexico in northwest Florida. Described as a blackwater river, due to its stained
hue caused by the tannic acids released by decaying vegetation that seep into its waters, the Suwannee is one
of a few major rivers (>200 km in length) in the contiguous U.S. without any significant physical alterations
such as dams, flow diversions, or navigation projects (Benke, 1990). The river drains an area of approximately
25,770 km?, almost two thirds of which are in South Georgia and the remainder in North Florida (SRWMD, 2005).
These larger catchments (>5,000 km?) are generally less vulnerable to compound events than their smaller peers
(Bevacqua et al., 2020). However, Dykstra and Dzwonkowski (2021) show that compound events are a more
substantial issue for larger catchments in the northeastern Gulf of Mexico than previously believed, due to precip-
itation intensification shortening precipitation-discharge lag times.
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Figure 1. Case study site. (a) Location of tide and stream gauges in the Suwannee River and its main tributari€s. (b) Gray box in (a), solid blue line denotes the length
of the lower portion of the Suwannee River included in the HEC-RAS model domain. (c) Completeness, of the observation records.

The Suwannee River is fed by surface runoff from swamps, flatwoods, and lakes near its headwaters in the poorly
drained tannic and black Okefen6kee Swamp (South Georgia) in the eastern part of the Suwannee watershed
(Katz et al., 1997). Upstream, the river initially flows southwest, merging with the Apalaha (highlighted in
yellow in Figure 1a), andsthen the Withlacoochee River (orange in Figure 1a) 13 km farther downstream. The
dendritic Apalaha and Withlacoochee Rivers drain the central and eastern portions of the Suwannee Watershed,
respectively. The river channelydeepens on its way south, as it bends southward joining with the Santa Fe River
(green in Figure“a), which drains much of the western portion of the watershed. The Suwannee continues on a
south-southwest moderately sinuous course, increasingly restrained within a bedrock-lined channel, eventually
flowing inte the Gulf of Mexico in the Big Bend region of Florida's Gulf Coast (Mossaa & Konwinski, 1998).
The lower,Suwannee Basin (Figure 1b) is a sparsely populated area dominated by poorly drained bottom-
land hardwood swamps, with silviculture and minor agriculture as the main land uses (Liudahl et al., 2005).
The Suwannee estuary extends approximately 16 km upstream from where it drains into the Gulf of Mexico
(Valle-Levinson, 2012).

Dataused in this work consists of in situ observations of the still water level (SWL) at the coast and river discharge
(Q) in the lower Suwannee. SWL represents the oceanographic forcing, that is, the downstream boundary condi-
tion in the HEC-RAS model, while Q acts as the freshwater forcing, that is, the upstream boundary condition.
Hourly SWLs are obtained from the National Oceanographic and Atmospheric Administration (NOAA) (https://
tidesandcurrents.noaa.gov/) for the tide gauge closest to the mouth of the Suwannee: Cedar Key (Figure 1a).
The gauge has 94 years of record (not all years are complete), from three distinct periods: 1914 to 1926, 1932
to 1934, and 1938 to 2020 (Figure 1c). The SWL is composed of the mean sea level (MSL) relative to a datum,
astronomical tide, and the non-tidal residual (NTR). The NTR is primarily composed of the meteorologically
driven surge, along with the seasonal cycle and monthly mean sea level anomalies. Other influences include
precipitation, river discharge, nonlinear interaction with the tide and harmonic prediction errors emanating from
the process of removing the tidal signal (Haigh et al., 2016). The SWL series is detrended to ensure stationarity,
an inherent assumption of the statistical models introduced in Section 3.1. Here we use a linear regression and the
resulting series is adjusted to present-day conditions by adding the MSL of the past 5 years (e.g., Nadal-Caraballo
et al.,, 2016). The NTR is often small relative to tide, consequently significant correlation between the river
discharge and surge can be lost if SWL is used to represent the oceanic forcing (e.g., Moftakhari et al., 2019).
Hence, the tidal signal is removed from the SWL by conducting a harmonic analysis on the SWL record using
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3.1.1 Statistical model the T_Tide Matlab Toolbox (Pawlowicz et al., 2002), and the daily maximum
NTR selected as input for the statistical analysis.
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stream gauge network (https://waterdata.usgs.gov/nwis/rt). We identify 40
USGS stream gauges along the Suwannee River and its tributaries, those with

Addition of tide
the longest record are shown in Figure la. Data availability for the longest
—_ records and those in the lower basin are shown in Figure 1c. The Bell gauge,
which has approximately 45 years of record fro 2 to 1956 and from
3.1.3 Surrogate model 2000 to 2020, is adopted as the upstream bound: espite not possess-

ing the longest record in the lower watershed, Bell i ted because it is

downstream of all major tributaries which simp merical model
set-up. Situated 105 km upstream, the Bell record ot unduly influenced
ownstream of Bell which

provide an opportunity to validate 1 model. The model valida-
tion is undertaken using the st at the Wilcox gauge which is
located around 50 km upstream river mouth and spans 2007-present.

R — Despite evidence of a fallin arge volume to annual basin rainfall
Sl Beseensed iasedisumlevslc ratio (Seavey et al., 20 e Pettitt’s change point test (Pettitt, 1979)

nor the Ma e est (Kendall, 1975; Mann, 1945) are statisti-
cally signific ere
discharge re

Figure 2. Hybrid modeling approach where numbering is aligned with 3 d

section numbers of the main text where the respective part of the analysis :

is explained in detail. Tan boxes denote data inputs, orange boxes are the H tatistical-Hydraulic Modeling Framework

statistical, hydraulic and surrogate models while the green boxes correspond

to the outputs from these models. MDA refers to the Maximum Dissimilarity, yb proaches combining statistical and numerical models, that involve
Algorithm and HT04 to the conditional exceedance approach outlined in deyeloping a surrogate model for the latter, have become increasingly prev-

Heffernan and Tawn (2004).

nt over the past decade. The approach put forward in this paper proceeds

by simulating boundary conditions from a statistical model fit to the obser-

vational records. A subset of the simulated conditions is run through a

model. A surrogate model is then fit to the input and output of the numerical model runs,
aining ndary conditions are propagated through the surrogate model. The precise form of the
d in this paper is summarized in Figure 2. It closely resembles similar recent applications for

high-fidelity

ploy the conditional exceedance approach introduced in Heffernan and Tawn (2004) (hereinafter HT(04)
simulate 10,000 years’ worth of extreme daily synthetic Q-NTR events under present-day climate conditions
that account for the dependence between the two drivers. The HT04 approach models the pairwise dependen-
cies between the cluster maxima of a given variable above a sufficiently high threshold and the other variables,
regardless of whether the latter are simultaneously extreme or not. A separate multivariate regression model is
fit, as each variable is in turn conditioned to be extreme. The approach thus captures the dependence through the
regression parameters and associated residuals rather than prescribing a specific dependence structure by way
of a parametric distribution such as the logistic model or copulas. These earlier approaches assume the class of
dependence in the joint tail regions is homogenous among each pair of variables, which becomes a restrictive
assumption as more variables are considered. Recently, the HT04 model (Santos, Wahl, et al., 2021) and other
approaches such as Bayesian networks (Couasnon et al., 2018) or a cascade of bivariate copulas, so called pair
copula constructions (Bevacqua et al., 2017; Santos, Casas-Prat, et al., 2021) that remove this assumption have
been employed to model the relationship between storm surge and river discharge at multiple sites in a catchment.

The HT04 approach decouples the modeling of the marginal characteristics and the dependence structure.
The marginal behavior of each flooding driver is analyzed individually using the peaks-over-threshold (POT)
approach, where the peak excesses above a sufficiently high threshold are fit to a Generalized Pareto Distribution
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(GPD). For Q, we applied a seven-day storm window following previous studies of similar sized catchments
(e.g., Santos, Wahl, et al., 2021). NTR is declustered using the method described by Smith and Weissman (1994),
where successive exceedances are assumed independent if the number of non-exceedance between them exceeds
some separation criterion. Here, a three-day separation criterion was applied. To obtain a fully specified marginal
distribution for driver X;, the GPD above the threshold u; is combined with the empirical distribution F below
the threshold, yielding the following semiparametric cumulative distribution function (Coles & Tawn, 1991):

F:(x) x < uj
Fi(x) = 1

1—(1—1:",-(141')) [1+y]_§i X >l

Where, f; > 0 and &; € R are the GPD parameters and [y]+ = max(y, 0)

In the dependence analysis, the variables are transformed to common scales'to remove the marginal charac-
teristics and ensure only information regarding the dependence sfructure remains. When implementing the
HTO04 approach, variables are typically converted to standard Gumbel marginal distributions obtained by setting
Y, = —log [—10g (F (X i))]. Letting Y _; be the vector of all drivers excluding Y; on the transformed scale, the HT04
model is generally implemented utilizing the multivariate non-linear regression model:

Y.|Y; = a¥% Y Z for i >w

Where v is a high threshold on ¥;, a € [0, 1]and'b < 1 are parameters, and Z is a vector of residuals. Parameter
estimation is carried out using maximum-likelthood estimation under the temporality assumption that Z follows
a normal distribution with unknowhymean and variance. Asymptotically, ¥; > v is statistically independent of
Z, thus v should be large enough for this condition to hold. The number of simulated events, representing the
10,000 years' worth of extremes dépends on.the average number of events in the observational record exceeding
v. A detailed description of the rejection sampling methodology involving conditioning a variable to exceed v and
independently sampling jointtesidualsfo simulate extreme events is given in Keef et al. (2009) and Wyncoll and
Gouldby (2015), among others.

The NTR and Q péaks that produce extreme along-river levels during a storm event may not occur concurrently.
Keef et al. (2009) modified the HT04 approach to model the largest values within a time window, by fitting
the regression model over a range of lags 1, that is, to Y} ,..|Y . In this study, a lag of +1 day is adopted due to
the relatively short distance between the upstream and downstream boundary conditions. In short, a variable is
conditioned'to exceed v and a joint residual from the associated regression model is independently sampled. The
maximum value of each of the remaining variables across the lags is found by plugging the residuals into the
associated'regression model. The realization is rejected if the conditioned variable is not the most extreme on the
transformed scale. The sampling is repeated conditioning on each variable, in turn, to ensure the proportion of
times each variable is most extreme is the same as the empirical data.

Once paired Q-NTR events are simulated from the model, a tidal level is obtained in accordance with Gouldby
et al. (2014). For each simulated daily maximum NTR, we first sample a year in the 18.6-year nodal tidal cycle
(Haigh et al., 2011). A month is then sampled conditionally on each simulated NTR: the conditional distribution
of months given the percentile that a simulated NTR falls within (NTR;) is shown in Figure 3. An hourly tidal
elevation that co-occurred with a maximum hourly NTR in this year and month combination is sampled assuming
the observations are equally likely. The sampled tidal level is added to the simulated NTR to give the SWL. The
entire procedure yields 10,000 years' worth of simulations under present-day climate conditions based on the
average number of events in the observational record.

3.1.2. Hydraulic Model

In 1D hydraulic modeling, a river's topography is described by a series of cross sections and the average veloc-
ity and water depth at each cross-section is estimated considering only longitudinal flow. The 1D form of the
Hydrologic Engineering Center—River Analysis System (HEC-RAS) model, developed by the U.S. Army
Corps of Engineers, calculates water surface elevations by solving the one-dimensional energy equation from
one cross section to the next using the standard step iterative procedure (HEC, 2002). HEC-RAS can model
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e 3. Conditional distribution of month given NTR percentile (NTR;). Numbers without parenthesis are the conditional
robabilities while the numbers in parenthesis denote the number of observed NTRs within each NTR,—month combination.
Color scale represents the conditional probabilities (hotter color, higher probability). For a simulated NTR, a month is
sampled with probabilities depending on the NTR,, within which the NTR falls. Given an independently sampled year,
an hourly tidal level that co-occurred with a daily maximum NTR is sampled assuming each level within the identified
year-month combination is equally likely.

steady (constant discharge) and unsteady (varying discharge) flow under subcritical, supercritical and mixed
flow regimes (Goodell, 2014). HEC-RAS models have proven sufficiently reliable (e.g., Andrei et al., 2017;
Hutanu et al., 2020; Pathan & Agnihotri, 2020) for diverse applications ranging from flood forecasting (Hicks &
Peacock, 2005; Saleh et al., 2017) to modeling dam breaches (Yi, 2011). In this work, we employ the 1D grad-
ually varied steady-flow HEC-RAS model of the Suwannee River developed by AMEC Environment & Infra-
structure, Inc. (AMEC) for the Suwannee River Water Management District (SRWMD) (AMEC SRWMD, 2013,
2014) for delineating flood insurance maps. The model was calibrated and validated using observational data and
is publicly available from SRWMD (2014). The model covers the Suwannee River and its major tributaries. Here,
the model is modified to only span the portion of the Suwannee River seaward of the Bell gauge which is around
10 km downstream of its confluence with the Santa Fe River, as highlighted in Figure 1a. The modified model
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is composed of 48 transects and is validated using water surface measurements from Wilcox (Figure 1c), as it
possesses a longer record than the Gopher River gauge. The Cedar Key tide gauge is the downstream boundary
of the model.

The HEC-RAS model validation was undertaken on 100 events selected via MDA from the Q- SWL observa-
tions, when stage height is concurrently available at the Wilcox gauge. The MDA is designed to select a subset
that represents the diversity of the data set (Camus, Mendez, & Medina, 2011). After normalizing the input
variables, the MDA algorithm proceeds by transferring a single element into a subset and.iteratively adding the
element remaining in the data set that is most dissimilar, that is, considered farthest in the¢ multidimensional space
from the elements already selected. Although each cluster based technique possesses distinetmerits, for example,
self-organizing maps provide an opportunity for visual inference, the MDA is adopted hereashit best represents
the boundaries of the data set (Camus, Mendez, & Medina, 2011). A root-mean squared error (RMSE) of 0.1 m
was obtained between the observed and modeled water levels at Wilcox for the 100 events. This small average
discrepancy demonstrates the good performance of the model for a variety of eventsirangifig from small, through
moderate, to extreme (orange dots in Figure 4a). Since the Wilcox gauge.is located where fluvial processes and
the most extreme SWLs have the potential to drive water level variations, the validation conveys the suitability of
the model to assess the compounding effects.

3.1.3. Surrogate Model

The number of MDA-selected events to which/Surtegate models are fit is subjective, representing a trade-off
between the computational cost of running the physics-based model and performance of the fitted surrogate
model. The surrogate model performance achieved by an MDA sample size depends on the number and distri-
bution of variables, type of surrogate modelpand cemplexity of the physical process being modeled (Liem
et al., 2015). In previous hydrologic,applications, 100—200 MDA-selected events were typically found to provide
sufficiently accurate surrogate models'(e.g.; Camus, Mendez, & Medina, 2011; Malde et al., 2016). HEC-RAS
is a relatively simple and efficient. model compared to those utilized in similar studies, affording the opportunity
for a larger MDA sample size. For example, Serafin et al. (2019) compared 3,000 surrogate modeled water levels
with the corresponding HEC-RAS-modeled water levels as surrogate model validation.

We develop surrogate models for gach transect using the along-river water level output of the validated HEC-RAS
model for a subset of 1,000 boundary conditions (i.e., Q and SWL) from the large set of events simulated from the
HTO04 model. The surrogate models allow along-river water levels to be predicted for Q-SWL combinations while
limiting the number of HEC-RAS simulations required. The subset of boundary conditions is selected using the
MDA with theaim of optimizing the performance of the surrogate model, given the user-specified subset size.
We conisider three'methods to develop surrogate models: multiple linear regression, radial basis function (Lin &
Chen,2004; Majdisova & Skala, 2017; Soleymani et al., 2016), and scattered interpolation (Amidror, 2002). The
multiple linear regression model is conceptually the simplest but also possesses the most restrictive assumptions.
The moedel comprises a constant intercept term, slope for each explanatory variable (expressing the change in the
response with a one unit increase of the explanatory variable while holding all other variables constant) and a
residual term. As the name suggests, a linear relationship is assumed between the response variable and each of
the exploratory variables. The model also assumes the residuals are independent and normally distributed with a
zero mean and constant variance across all values of the explanatory variables.

The interpolation function in the radial basis function model is a linear combination of radial basis functions, one
centered on each observation. A radial function is any real valued function that decreases monotonically with
distance from a central point. In this work, the radial basis function approximation takes the form of a weighted
sum of Gaussian basis functions. Weights are estimated via the least mean square algorithm and shape parameters
of the Gaussian basis functions, which controls their flatness, are estimated from sample data. In scatter inter-
polation, data points are triangulated (for 2D data) or tetrahedralized (for 3D data) and interpolation is carried
out within each triangle (or tetrahedron) (Amidror et al., 2002). In this study, we deploy three interpolation tech-
niques: linear, nearest, and natural (Boissonnat & Cazals, 2002; Parker et al., 1983). As opposed to the multiple
linear regression model, both the radial basis function and scatter interpolation models can capture nonlinear
relationships between the response and exploratory variables.

The performance of each surrogate model at each transect is assessed through k-fold cross validations. In a
k-fold cross validation, MDA selected events are divided into k-subsets, before each subset is used to validate the
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Figure 4. Data: (a) Observed Q-SWLs (black dots) delineating those chosen by the MDA (orange dots) for the HEC-RAS
model validation. (b) Observed Q-NTRs (gray dots) along with the thresholds (blue and red dashed lines) above which the
conditional'samples (blue dots, red crosses) are drawn and the HT04 model is fit. (¢c) Simulated events (blue dots) plotted
alongside the observations (black dots) and (d) simulated events (blue dots) plotted identifying the events selected by the
MDA (red dots) to run through the validated HEC-RAS model to which the surrogate models are fit. Nine simulated events
are outside of the axis limits and are therefore not displayed. Q is the daily mean discharge and SWL is the sum of daily
maximum hourly NTR and a conditionally sampled tidal level.

surrogate model fit to the remainder of the MDA events. For example, for k = 5, five subsets are created, each
containing 200 events in our case, which are in turn used to validate the surrogate model fit to the events in the
other four subsets. Varying the number of folds in the cross-validation undertaken on the surrogate models will
provide a posteriori validation of the MDA sample size. Finally, the best performing surrogate model is used to
predict water levels at each transect for the Q-SWL events simulated by the HT04 approach in Section 3.1.

3.1.4. Response-Based Return Levels

The proposed framework returns 10,000 years' worth of extreme water levels at each transect of the HEC-RAS
model, allowing response-based return levels to be estimated empirically. Response-based return levels represent
a bottom-up approach where, the return period of the i** highest water level at each transect is ﬁ years. Where

u is the average interarrival time between the N simulated events (in years) and F = 1 — N;+1 is the empirical
cumulative distribution function of water levels at the transect. The transition zone can subsequently be identified
by analyzing individual Q-SWL events that produce the response-based return levels.
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3.2. Comparing Response-Versus Event-Based Return Levels

In the event-based approach, along-river water levels produced by the Q-SWL design event associated with a
given return period are assumed to be representative of this condition. Outside of the univariate domain, design
events are not uniquely defined. To find design event(s) in the bivariate and higher-dimensional domains a hazard
scenario (e.g., OR, AND, Kendall's, Survival Kendall's) must be prescribed alongside the return period. No
hazard scenario is universally superior but each represents a different specific underlying probability. The choice
of scenario should reflect the types of events considered most impactful; thus, the hazard scenario approach
provides a top-down appraisal of the flood hazard (Serinaldi, 2015). The Kendall and/survival Kendall hazard
scenarios are most closely aligned with the univariate return period definition; however, they,do not have a direct
physical interpretation. The Kendall scenarios are consequently generally only considered suitable for prelimi-
nary assessments of multivariate occurrence probabilities (Salvadori et al., 2016). This'study focuses on events
where both discharge and ocean still water level contribute to flooding. Therefore the “AND? scenario is adopted.
This is also in line with similar recent studies assessing the flood hazard from two, drivers in low-lying coastal
catchments (e.g., Jane et al., 2022; Lucey & Gallien, 2022; Moftakhari et al,, 2019),

In the bivariate setting, the “AND” scenario yields an isoline, a curvedcomprising all events where the probability
of both variables exceeding both thresholds corresponds to a specified joint return period. The “most-likely”
approach is a simple strategy for identifying a single design event, by weighting the events on the isoline accord-
ing to the joint distribution of the observations (Salvadori €t'al.52011). The event on the isoline with the maxi-
mum probability density is taken as the design eyént that is, it may be considered the expected event if the return
period arises. Uncertainty in design event selection is accounted for by sampling the probabilistically weighted
events on the isoline to generate an ensemble of/design events (Griler et al., 2013). The interaction of multiple
drivers typically distorts the mapping of the.event-based return levels and the actual return water levels. The
response-based return levels described hereareassumed to be closer to the true return levels, as they are derived
through a bottom-up approach utilizing'a longyalbéit synthetic, record rather than a top-down approach based on
a single or small number of design eventsyEvent-based return levels are compared with the response-based return
levels to examine the robustnes§ of the event-based approach. Comparing the event-based return levels from an
ensemble rather than a single design event permits a more rigorous assessment.

4. Results
4.1. Applicatien of the Statistical-Numerical Hybrid Model

Even weakiextremal dependence can significantly influence flood hazard and thus must be accounted for in a
robustframework,(Zheng et al., 2014). Two-way conditional sampling was applied to the Q and NTR observa-
tions (Figure 4b) to gauge the strength of the dependence when each driver is extreme. In two-way conditional
sampling, cluster maxima of one driver above the threshold are paired with the maximum value of the other
variable within a specified lag. The thresholds and lags are chosen to be consistent with those adopted in the
HT04/model. Kendall's 7 is 0.025 (p-value >0.05) for the sample conditioned on NTR, and —0.06 (p-value >0.05)
for the sample conditioned on Q. The synthetic simulations from the statistical model outlined in Section 3.1.1,
comprising approximately 365,000 realizations representing 10,000 years of extreme events, are displayed in
Figure 4c.

4.2. Comparison of Surrogate Models

The 1,000 simulated events selected by the MDA to be run through the HEC-RAS model are shown in Figure 4d.
The performance of the three surrogate models at each transect, quantified in terms of the RMSE and normalized
RMSE (NRMSE) from the k-fold cross-validations, are shown in Figure 5. As expected, the ability of each model
to predict water levels improves with k, the number of folds (subsets) the MDA selected events are divided into,
since the model is fit to more events. The rate of improvement wanes as k increases, since the number of addi-
tional observations the model is fit to dramatically decreases. In other words, the performance of the surrogate
models is generally very similar for £ = 5,10, 25, and 50. This trend suggests that k = 5 representing a subset of
800 events would give a sufficiently robust surrogate model, highlighting the suitability of a 1,000 sized MDA
sample. All three models demonstrate good accuracy with average RMSEs in the order of centimeters. The ability
of the multiple linear regression model to predict along-river levels steadily decreases (i.e., errors increase) with
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Figure 5. Performance of the surrogate models: (a) multiple linear regression, (b) radial basis function and (c) scattered
interpolation during the k-fold cross-validations with varying values for k (2, 5, 10, 25, and 50). Note the varying scale of the
y-axes.

distance from the river mouth. Errors from the scatter interpolation and radial basis function models follow a
similar spatial pattern, indicating that the models perform best near the mouth of the river and upstream; both
regions where water levels are driven by a single driver. The cross-validation reveals scatter interpolation as the
best surrogate model and it is thus adopted for the subsequent analysis.
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4.3. Ret

of the Transition Zone
ansition zone, return levels are only produced by the corresponding marginal Q or SWL events,

ince water level is driven exclusively by discharge or coastal still water level. On the other hand, inside the tran-

one a return level can be produced by the interaction of Q and SWL events with shorter marginal return

riods. Comparing the individual components of the Q-SWL events that produce the along-river return water
evels will hence allow the identification of the transition zone.

Figure 6 shows the average magnitude of Q (a) and SWL (b) conditions leading to the 5, 10, 25, and 100-year
“response-based” return levels across the model domain. Few of the simulated events in the sample exactly
replicate each “response-based” return period. The average magnitudes of Q and SWL are therefore calculated
based on events with return periods within an interval centered on the return period of interest. The intervals for
the 5, 10, 25, and 100-year return levels are: [4,6]; [8,12]; [20,30]; [80,120] years, respectively. Intervals widen
as return period increases, as shorter return period (e.g., 5-year) events far outnumber those with longer (e.g.,
100-year) return periods in the simulated sample. The magnitude of Q (solid lines in (a)) increases asymptotically
for all return periods with distance from the river mouth. The increase in Q is steep until around km 25 and slower
farther upstream. The average Q attains a value equivalent to the marginal Q return level (dashed lines in (a))
around km 55. The exception is the 100-year return level scenario, where the average Q reaches the corresponding
marginal return level at river km 40. The average 100-year SWL (solid lines in (b)) almost immediately diverges
from the marginal return level (dashed lines in (b)) while the magnitude of the other SWLs remain close to their
corresponding marginal return periods until around km 10.
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Figure 7. Response-based verSus event-based return levels. The 100-year isoline is shown in (a) and (b) with the color
contour denoting the relative probability of events on the isoline (hotter colors indicate higher probabilities). In (a) the
diamond denotes the “most-likely” design event while the circles in (b) are the ensemble of 1,000 design events. (¢) 100-year
return levels agcording to'the two approaches with the transition zone shaded in gray.

As expected, the trend in the average SWLs (solid lines in (b)) mirrors the trend in average Q. The average
SWLs, associated with the shorter return levels decrease relatively uniformly with distance upstream. The 25- and
100-yeareturn levels decrease rapidly until around km 40. The average SWL associated with the 100-year return
level is negligible beyond km 40. By km 55, average SWLs are substantially lower than the marginal SWLs for
all return levels. Based on these trends the transition zone of the Suwannee River approximately spans river km
10 to 55 but shifts toward the river mouth: km 5 to km 40 for low frequency events for example, 100-year events.

4.3.2. Response-Versus Event-Based Return Levels

Event-based along-river levels are derived for a 100-year return period by applying the conditional sampling-copula
theory approach outlined in Jane et al. (2022) to the observations. The approach begins by drawing two condi-
tional samples, similar to that described in Section 3.1.1 and modeling the dependence within each using the best
fitting of 40 copulas. In terms of marginals distributions, the conditional variable is modeled by the GPD and the
non-conditioned variable by the best fitting of a range of suitable for example, truncated/non-truncated parametric
distributions. The 100-year quantile isolines are subsequently derived for each sample. The full 100-year isoline
comprises the outer envelope created by overlaying the (quantile) isolines from the two conditional samples
(Bender et al., 2016). The 100-year isoline including the relative probability of events on the isoline implied by
the observations is shown along with the “most-likely”” design point and the ensemble of 1,000 possible design
events in Figures 7a and 7b. The probability density is concentrated on a portion of the isoline where the SWL is
large relative to Q, hence there is a bias toward selecting these events.
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Figure 7c depicts the estimated 100-year return levels from the response-based approach and an event-based
approach adopting the “most-likely” strategy to select a single design event. The “most-likely” design event strat-
egy results in consistently lower water levels than the response-based return levels. Initially the disparity between
the “most-likely” and response-based return levels decreases with distance from the river mouth, with a minimum
difference of 0.07 m at km 25. The disparity widens moving upstream reaching 0.4 m by the end of the transition
zone, beyond which the difference in the two water levels remains constant. The smallest difference in the water
levels arising closer to the seaward end of the transition zone is likely due to the 100-year “most-likely” design
events being predominantly SWL driven (see Figure 7a). Despite this, the largest differenicedis at the river mouth
where the response-based return levels exceed those given by the “most-likely” design eventsby over a meter. The
joint statistical analysis (Figure 7a) suggests the 100-year SWL at the mouth is approximately 2.4 m NAVD 88
while the SWL in the “most-likely”” design event is approximately 1.25 m NAVD 881 Given ther€ is no fluvial
influence on return levels at the mouth a difference of a little over a meter is to be expected.

Figure 7c also displays the distribution of the 100-year event-based returndevels produced by an ensemble of
1,000 possible design events sampled along the 100-year isoline. The yvariation in the water levels among the
ensemble runs increases with distance upstream, a seemingly intuitive result-asithe water level is increasingly
only dependent upon Q which varies far more than SWL. The result is, also consistent with output from the
HEC-RAS model runs where there is more variation in output-upriver than downriver, and is potentially due
to the uncertainties associated with converting Q into water{levels. The spread of the distribution demonstrates
that the along-river water levels produced by events on the 100-yeasr<isoline can fall far above and far below the
100-year response-based return level. Despite this; the, “most-likely” event is situated close to the median of the
return level distribution from the ensemble and, although'consistently lower than the response-based return level,
for most of the transition zone, the disparity is small.

5. Discussion

The framework proposed in this stiidy derives spatially coherent estimates of return levels along the entire lower
course of the river, enabling the position and drivers of the transition zone to be identified. The statistical mode-
ling only detected weak correlationsiinithe conditional samples of Q and NTR, a likely consequence of the catch-
ment's gentle slope and plentifulgstorage capacity, delaying rainwater reaching the river. Moreover, Q accounts
for groundwater contributionsyto the flow upstream of Bell, which varies over longer time scales than a single
event, potentially further diluting the correlation. Despite weak non-statistically significant correlations in the
conditional samples, thellength of the Suwanee River transition zone was found to be far longer than those found
on the U.S."West Coast: 1 km for the Quillayute River (Serafin et al., 2019) and 0.6-2.1 km for three rivers in
southerfi’California’(Moftakhari et al., 2019), where the dependence between the drivers is much stronger. This
contrast in'transition zone lengths illustrates the influence of river and catchment characteristics, and highlights
the possible threat of compound flooding in localities where it may not necessarily be expected (e.g., places with
low dependence between the upstream and downstream flood drivers). With respect to the Suwannee River, its
substantially shallower slope, at least compared to the Quillayute River, is likely the main reason for its longer
transition zone. Furthermore, along the U.S. West Coast, surge heights are restricted by the narrow continental
shelf, limiting the upstream reach of the ocean's influence.

The divergence in the behavior of the along-river water level and discharge between 100-year and other return
periods suggests the transition zone of the Suwannee River shifts further upstream when Q and SWL combine to
create smaller, more frequent along-river levels, while it is situated closer to the river mouth when more extreme
along-river levels are generates by the two flooding drivers. A possible mechanism responsible for the shift is
the increased efficiency of the river as water levels rise overcoming the blocking effect of a high SWL at work
at lower along-river levels (Dykstra & Dzwonkowski, 2021). The wider interval of the events considered for
the average calculation of the 100-year event scenario (i.e., 80—-120 years) compared to other return periods, to
ensure a sufficient number of events are included in the calculation, may also be a contributing factor for this
divergence.

The differences across the along-river levels from the ensemble of events sampled from the 100-year isoline show
that selecting a design event requires careful consideration to avoid event(s) that lead to under- or over-design.
The disparity of the “most likely” event and the response-based return levels demonstrates a known limita-
tion of event-based approaches that they do not account for “structural performance,” in other words there is
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a mismatch between the return periods of the response (here along-river water levels) and of the drivers (e.g.,
Serinaldi, 2015). However, at this site, the proximity of the “most likely” event and the response-based return
levels within most of the transition zone, appears to justify employing the “most-likely” design event strategy. In
flat floodplains, however, small changes in water level can result in significant changes in flood extent; thus, the
strategy should still be applied with caution.

The transition zone identified by the proposed framework for the Suwannee River generally corroborates previ-
ous findings. Brown et al. (2016) reported a tidal influence on the ground-surface wateginteraction at Manatee
Springs, approximately 12 km downstream of the Wilcox gauge. McPherson and Hammett (1991) indicated
the normal reach of the tide lies between the Manatee Springs and Wilcox gauges. Aceording to Mattson and
Rowan (1989), the Wilcox gauge coincides with the head of the tide. Bales et al. (2006) coneluded only flows
under approximately 450 m? /s at Wilcox are tidally influenced. The spawning patferns of Suwannee River Gulf
sturgeon analyzed over a 2-year period imply the head of the tide is approximately between the Wilcox and Bell
gauges (Sulak & Clugston, 1998). An analytical tide propagation model fit t@ near yearlong records at Wilcox and
six other gauges farther downstream by Laurel-Castillo and Valle-Levinsen (2020) suggest that certain harmonics
reach even farther upstream. Similarly, a report by The Howard T. Odum Florida"Springs Institute (2015) notes
that most of the Lower Suwannee River, south of the mouth of the Santa Fe is tidal during periods of low flow
due to the river’s mild slope. In terms of identifying the transition zone these previous studies suffer several limi-
tations, most notably they are either based on measurements‘at discrete distances along the river or only analyze a
single component of water level (e.g., tide). The adeption of a hybridframework that accounts for multiple drivers
and provides continuous estimates of along-river level negates these shortcomings.

The proposed framework represents a simplification of the flooding process relying on several statistical and
physical assumptions. However, the compofient-wise nature of the framework allows different models to be
“plugged in” to calibrate the assumptions tosser-needs for a given study site. For example, a practitioner may
wish to employ a different approach in the statistical component. One example is the conditional sampling-copula
theory approach, extensively applied in tecent studies to identify the potential for compound events (e.g., Jane
et al., 2022; Wahl et al., 2015). Presently, the framework assumes no seasonality between discharge and NTR.
However, the southeastern U.S. is,exposed to several hydrometerological regimes including tropical cyclones,
warm season thunderstorm_systems, and winter-spring extratropical cyclonic systems (Millar, 1990). Fitting
separate models to thédifferent populations of events, by adopting seasonality as a proxy for the hydrometerolog-
ical conditions, #ill potentially increase the robustness of the modeling (Villarini & Smith, 2010). Partitioning
the data in thiS'way has revealed stronger correlations in the conditional samples (Kim et al., 2022). The rarity
of conditions such as tropical cyclones may necessitate the inclusion of water levels from synthetic events prop-
agated.through a storm surge model to complement the existing in situ records (Dullaart et al., 2021). The flexi-
bility of thestatistical modeling component extends to the inclusion of other drivers that contribute to the flood
hazardisuch as precipitation, waves, or river discharge from multiple tributaries.

MoreJcomplex data-driven surrogate models such as artificial neural networks (Peters et al., 2006) could seam-
lessly replace the simple surrogates in the current framework. Alternatively, integrating lower-fidelity surrogates
(Razavi et al., 2012), simplified simulation models which attempt to preserve the processes in the high fidelity
numerical model, may increase confidence in the results among practitioners (Bomers et al., 2019). In terms of
the hydraulic modeling component, lateral flow variability is typically far more significant in estuarine regions
than along a river. If the transition zone is found to start within an estuary, 2D HEC-RAS or an alternate such
as DELFT3D-FLOW (Lesser et al., 2004) could be “plugged in” as a substitute for the 1D HEC-RAS model. In
regions where the relative contribution of waves to the downstream ocean level is substantial, hydraulic models
can be coupled with wave models (e.g., Kupfer et al., 2022). Adopting rainfall in the statistical modeling compo-
nent, perhaps because global climate model output is used in the absence of in situ discharge data, may necessitate
coupling the hydraulic model with a rainfall-runoff model.

The application of the framework characterizes the present-day compound flood hazard. Future work could
include re-applying the framework to account for projected changes in climate and sea level. For instance, by
2,100 mean sea level is projected to rise by approximately 2 m at Cedar Key under a high emissions scenario
(Sweet et al., 2022). Sea level rise combined with lower freshwater flow, due to increased human extraction in
the wider basin or as a result of climate change (e.g., Neupane et al., 2019), may cause the migration of the estu-
ary and hence the transition zone farther inland (e.g., Nelson et al., 2017). The impact of predicted changes in
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surge height and duration on the flood hazard will potentially be different to, but compounded by, sea level rise
(Harrison et al., 2021). In addition to altering the frequency and intensity of the individual drivers, climate change
can also alter the dependence between them (e.g., Gori et al., 2022; Wahl et al., 2015), potentially escalating the
compound flood hazard including the length of the transition zone.

The outperformance of scatter interpolation and radial basis functions as surrogate models over multiple linear
regression is unsurprising due to the nonlinear interaction of the flooding drivers in transition zones (Bilskie &
Hagen, 2018). A surrogate model is not strictly required for the application of the 1D HEC-RAS model in this
study; however, it plays an important role in ensuring the proposed framework is both,flexible and transfera-
ble. For rivers with longer transition zones or estuaries with more lateral flow, developing a surrogate model
will enable hydraulic models with a greater computational burden, for example, those covering a larger area or
2D models, to form part of the framework. Considering the impact of different climate change futures, often
expressed as a matrix of changes in Q and sea-level rise, potentially involves scalingupithe number of model runs
by several orders of magnitude. Without a surrogate component, the framework could net be applied to explore
different climates futures. Finally, in the event-based approach we calculate the return levels for an ensemble of
possible design events, to account for the uncertainty in choosing a single designrevent. A surrogate model will
enable the uncertainty in the response-based return levels to be quantified,in an analogous fashion by simulating
multiple 10,000 years’ worth of events from the statistical modél"andypropagated through the framework.

Although the framework is transferable, it may not be applicable at every location due to a lack of data. For
instance, the statistical modeling requires overlapping, in situ or numerical riverine and coastal water level
records, potentially partitioned to account for seasonality (Couasnon et al., 2022). High resolution digital eleva-
tion data are a prerequisite for the numerical modeling andmot available everywhere. The numerical modeling
component can explicitly account for modifieations to _the river channel within the model domain and can be
extended to incorporate unsteady flow conditions and processes which require 2D models. However, account-
ing for sources of non-stationarity outS§ide ‘of metéorological conditions will likely require modeling additional
physical processes, for example, incorporating land-use changes will likely necessitate a rainfall-runoff modeling
component and switching to rainfall instead of discharge in the statistical modeling (Wu et al., 2021).

Several case studies identified,the phasé-lag between the principal drivers, storm surge, tide, and rainfall, as a key
predictor of flood severity, in’ transition zones (Gori, Lin, & Smith, 2020; Harrison et al., 2021). For example, a
pulse from the ocean initiatedsflooding in the St. Johns River during Hurricane Irma; however, peak water levels
arose as winds were receding and river discharge increasing (Juarez et al., 2022). The flooding was exacerbated
by increases ifi the magnitude of tides and storm surges in the St. Johns River over the past century, primarily due
to channel’deepening, with the maximum increases found approximately 20-25 km inland (Talke & Jay, 2020).
Currentlynthe hydraulic modeling part of our framework conservatively assumes daily maximum hourly NTR
coincides with peak discharge. Extending the framework to account for phase-lags between the key drivers may
yield more accurate estimations of along-river water levels. Over the past 70 years, the tidal range has also
increased at Cedar Key (Li et al., 2021); however, at approximately 0.87 m, it remains relatively small compared
withsthose in other parts of the world. The method we adopted to account for seasonality between NTR and the
tide has been successfully applied around the coast of the England where the tidal range is far greater (Gouldby
et al., 2017). Given the wide applicability of the framework, another avenue of future work is its implementation
in different catchments on the eastern U.S. coast and farther afield to relate the lengths of the transition zones to
physical catchment characteristics. This will enable stakeholders, such as state and federal agencies, to prioritize
catchments where numerical models able to account for the compound effects between oceanographic and fluvial
processes are most urgently required.

6. Conclusions

A transferable framework that combines multivariate statistical methods with hydraulic and surrogate modeling
has been presented for assessing the compound flood hazard and demonstrated in the Suwannee River, FL. The
statistical modeling part of the framework involved fitting the HT04 model to capture the dependence between
Q-NTR. A long synthetic set of events, where at least one of the drivers is extreme, was then simulated from the
fitted model. The MDA was applied to select a subset of the synthetic Q-SWL events (after including the tide)
to run through the HEC-RAS model, while the remainder were propagated through a surrogate model. An exist-
ing HEC-RAS model was modified to only include the river’s lower course and shown to perform well during
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validation. Scattered interpolation proved to be a superior surrogate model to multiple linear regression and radial
basis functions. The framework estimated the transition zone of the Suwannee River to be longer than those found
in similar studies for the U.S. West Coast (Moftakhari et al., 2019; Serafin et al., 2019). The wider transition
zone of the Suwannee is potentially due to the basin’s shallower topography and increased ground-surface water
interaction both contributing to the catchment’s slow response time, along with the existing tidal regime and
typical surge characteristics. There was substantial variation in the event-based along-river return levels of the
events sampled along the 100-year isoline derived under the “AND” hazard scenario when they were run through
the surrogate model; in other words, the ensemble of events which all have a bivariate retutn period of 100 years
led to a large spread of along-river water levels. This disparity in the return levels highlights@ limitation of certain
event-based approaches that arise due to the difference in the return period of the response (i.ex, along-river levels)
and that of the drivers. Nonetheless, in this case study, the “most-likely” design eventonithe 100=year isoline led
to very similar return levels as compared to the response-based approach for most|of the transition zone.

Data Availability Statement

The still water level data are available from the National Oceanographic and Atmospheric Administration (NOAA)
Tides and Currents database (https://tidesandcurrents.noaa.goy/). River discharge data are available through the
U.S. Geological Survey (USGS) National Water Informatiofi System (https://waterdata.usgs.gov/nwis/rt). Statis-
tical analysis was undertaken in R (R Core Teamg2018) using the . MultiHazard package (Jane et al., 2020). The
hydraulic modeling component utilized a Hydrologic Engineering €enter—River Analysis System (HEC-RAS)
model (HEC, 2002) developed by AMEC SRWMD, (2013; 2014) available at https://www.mysuwanneeriver.
com/DocumentCenter/Index/78.
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