
1. Introduction
Transition zones are stretches of river where extreme water levels can arise through the interaction of multiple 

drivers such as elevated river discharge, storm surge, and high tide (Bilskie & Hagen, 2018). Transition zones are 

likely to exist along rivers throughout the world and tend to be most dramatically revealed during catastrophic 

flood events, such as Hurricane Harvey (2017) where coincident heavy rainfall and surge flooded Houston 

and the surrounding area (Valle-Levinson et al., 2020). In January 2012, elevated inland water levels triggered 

precautionary evacuations in the northern Netherlands, as storm surges blocked gravity-driven drainage for five 

Abstract Flood risk assessments commonly use event-based approaches to reduce the number of scenarios 

required to be run through computationally intensive physical process models. Often the return period of the 

response variable (e.g., a fluvial water level or overtopping discharge) generated by an event (e.g., upstream/

downstream water level or set of sea state variables) does not match that of the event itself; a limitation of 

event-based approaches which can lead to the misspecification of flood risk. We present a transferable hybrid 

statistical-hydraulic modeling framework for rapidly locating transition zones; river reaches where extreme 

water levels are driven by both upstream riverine discharge and downstream sea level. Instead of an event-based 

approach the framework utilizes a surrogate model to reduce computational expense of the hydraulic model. 

The surrogate-based approach allows the empirical estimation of response-based along-river return levels from 

on a large number of plausible discharge–coastal still water level events simulated from the statistical model. 

We assess the robustness of the event-based approach by comparing the associated return levels with the 

response-based return levels. The framework is applied to the Suwannee River in Florida (United States). Three 

surrogate models are evaluated, highlighting the enhanced ability of non-linear models to accurately capture 

discharge-sea level interactions along the river. The along-river return levels of the “most-likely” design event 

are found to lie within the range of variability of the response-based return levels for most of the transition 

zone.

Plain Language Summary Transition zones are stretches of river where water level is driven by 

upstream river flow and downstream sea level. Techniques for evaluating flood risk in coastal rivers commonly 

model a single or small number of flow - sea level combinations representing rare flooding scenarios, for 

example, the flood event expected on average, once every 100 years. In transition zones, many different flow 

- sea level combinations can generate flooding consequently the 100-year flood generated from a single or 

few combinations may not represent the true 100-year flood. We develop a framework linking a statistical 

model with a river flow model to locate transition zones. Thousands of plausible flow - sea level combinations 

are simulated from the statistical model with their dependence preserved. Estimating along-river levels by 

running these combinations through a river flow model takes a very long time, thus we develop a proxy for the 

flow model. The transition zone is located by comparing combinations driving the 100-year water level with 

the upstream river flow and sea level expected with the same frequency. At our case study site, we find the 

100-year water level extracted from our framework differ from those produced by existing techniques thus the 

latter may need to be reconsidered.
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consecutive low tides during a period of prolonged rainfall on an already saturated catchment (Santos, Casas-Prat, 

et al., 2021; van den Hurk et al., 2015). Storm surge and the rainfall that produces the elevated river discharge, 

are often generated by common synoptic conditions (Pfahl & Wernli, 2012), and are statistically dependent (e.g., 

Nasr et al., 2021; Wahl et al., 2015). Hydraulic modeling has shown discharge and surge often interact nonlinearly 

(Bilskie & Hagen, 2018), exacerbating the impact of a flood to a greater (Gori, Lin, & Smith, 2020; Kumbier 

et  al.,  2018; Silva-Araya et  al.,  2018) or lesser degree (Torres et  al.,  2015). Hence combining independently 

derived fluvial and coastal flood maps, as is currently being implemented for example, by the U.S. Federal Emer-

gency Management Agency (FEMA) as part of the National Flood Insurance Program, will likely mischaracterize 

the true flood risk (Bass & Bedient, 2018; Bilskie & Hagen, 2018; Moftakhari et al., 2019).

Hydrodynamic models have been used to identified transition zones during historical events (Eilander et al., 2022; 

Gori, Lin, & Smith,  2020) and hypothetical scenarios based on past storms (Bilskie & Hagen,  2018; Shen 

et al., 2019). At the catchment scale, hydraulic models such as the Hydrologic Engineering Center-River Analy-

sis System (HEC-RAS) (HEC, 2002) provide robust estimates of along-river water levels (Loveland et al., 2021). 

Larger scale oceanic processes such as the wind driven storm surge can be accounted for implicitly in hydraulic 

models through boundary conditions. This is typically carried out by coupling the hydraulic models dynamically 

or, more commonly, through a one-way coupling with a storm surge model such as ADvanced CIRCulation 

(ADCIRC) (Santiago Cabello et al., 2019). To assess the compound flood hazard in transition zones, hydraulic 

models have been combined with statistical modeling of the joint probabilities of the flood drivers either directly 

(Moftakhari et al., 2019; Serafin et al., 2019) or through larger scale climatology (Bass & Bedient, 2018; Gori, 

Lin, & Xi, 2020; Orton et al., 2018). In these hybrid statistical-hydraulic modeling frameworks, boundary condi-

tions to date have taken the form of synthetic events generated from the statistical models.

Despite increases in computational resources, propagating many scenarios through physics-based models often 

remains impractical (e.g., Robinson et al., 2008). One solution for limiting the computational cost is to combine 

a low fidelity numerical model, for example, a one-dimensional steady state model, with a relatively short record 

of synthetic conditions (e.g., Couasnon et al., 2018); however, this can lead to large uncertainties. Certain hybrid 

frameworks that attempt to estimate the flood hazard in transition zones (e.g., Moftakhari et al., 2019; Muñoz 

et al., 2020) and at the coast (e.g., Didier et al., 2019) adopt event-based statistical approaches to reduce the 

number of numerical model runs. Event-based approaches assume the response variable, in this case along-river 

water levels, are produced by the combination of the drivers with the equivalent return period (e.g., a certain 

combination of coastal water level and discharge with a bivariate return period of 50 years is assumed to lead 

to a 50-year water level along the river). Due to the physical interaction of the drivers, in reality, this will likely 

seldom be the case (e.g., Serinaldi, 2015). Generally, the event on a joint return period curve (or isoline) deemed 

“most-likely” according to the observational data is taken to represent the bivariate return period. The event-based 

approach combined with the “most-likely” strategy has the practical advantage of only requiring a single scenario 

per return period to be run through the numerical model. However, even assuming an exact correspondence 

between the return period of the drivers and response, using a single design event prevents a full characterization 

of the along-river levels associated with a bivariate return period. For instance, the “most-likely” event may not 

be the return level event that elicits the most extreme response (Lan et al., 2022), here the event that produces the 

highest along-river levels, potentially leading to under design and under estimation of flood risk.

In this context, surrogate models offer an alternative solution (Robinson et al., 2008). Surrogate models (also 

referred to as “response surfaces” or “meta-models”) are essentially computationally efficient approximations 

of the deterministic physics-based models (Sacks et al., 1989). The physics-based model is run for a subset of 

carefully chosen inputs while the responses of the remaining inputs are estimated by a surrogate model fit to 

these model runs. Data-driven surrogate models empirically approximate the relationship between the inputs (and 

parameters) and the outputs of a complex model without attempting to emulate any of its internal parts (Razavi 

et al., 2012). Past applications of surrogate models in fluvial and coastal flooding studies range from conceptually 

simple look-up tables (Apel et al., 2008) and empirical formulations (van Ormondt et al., 2021) to more complex 

approaches including Gaussian process models (Malde et al., 2016; Parker et al., 2019; Rohmer et al., 2022), krig-

ing (Parker et al., 2019; Rohmer & Idier, 2012), 3D scatter interpolation (Serafin et al., 2019), bilinear interpola-

tion (Couasnon et al., 2022), radial basis functions (Camus, Mendez, Medina, et al., 2011; Gouldby et al., 2014; 

Medellín et al., 2016; Rueda et al., 2016), support vector regression (Bermúdez et al., 2019; Chen et al.,. 2020; 

Jhong et al., 2017), random forests (Zahura & Goodall, 2022; Zahura et al., 2020), and artificial neural networks 

(Bermúdez et al., 2018; Peters et al., 2006; Santos et al., 2019). In a flooding context, the performance of the 
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different models have rarely been compared. An exception is Bass and Bedient (2018), where kriging was shown 

to be a better surrogate than artificial neural networks for a 2D hydrodynamic model loosely coupled with a 

lumped hydrologic-hydraulic model forecasting peak inundation from tropical cyclones in Houston, Texas.

The predictive skill of the surrogate model will at least in part depend on the subset of inputs run through the 

physical models. The Maximum Dissimilarity Algorithm (MDA) (Kennard & Stone, 1969; Willett, 1999) aims 

to optimize surrogate model performance by identifying a user-specified sized subset of data that is most repre-

sentative of the diversity of the underlying data set. Camus, Mendez, and Medina (2011) found the MDA better 

represented the boundaries of a data set (which are often the conditions leading to the most extreme responses) 

than other clustering techniques. Surrogate models aided by the MDA have been successfully developed for 

physics-based models of dune erosion (Santos et al., 2019), wave transformation (Gouldby et al., 2014; Malde 

et  al., 2016; Rohmer et  al., 2022; Rueda et  al., 2016), wave run-up (Medellín et  al.,  2016), flood inundation 

(Bermúdez et al., 2018), and fluid–structure interactions (Lara et al., 2019).

The hybrid frameworks demonstrate that in the transition zones extreme water levels can be produced by individ-

ual discharge and coastal still water levels that are far less severe. Adopting a surrogate model enabled Serafin 

et  al.  (2019) to estimate along-river water levels for a long synthetic record of events, and in turn calculate 

response-based return levels empirically along the river. The authors demonstrated the disparity in the event-based 

return levels, that is, water level given by the associated forcing event, under the assumption of full dependence 

between the forcings, and the response-based return levels for a range of return periods. The disparity may arise at 

least in part due to the assumption of full dependence leading to conservative event-based return periods. A natu-

ral next step is to investigate whether the disparity persists between the event-based and empirical response-based 

return levels, once the dependence between the forcings is accounted for in the derivation of the event-based 

scenarios, such as in Moftakhari et al.  (2019). Comparing water levels generated by the “most-likely” design 

event with those produced by an ensemble of possible design events sampled along the same isoline will provide 

a preliminary assessment of the robustness of the “most likely” strategy.

The aim of this paper is twofold. First, to develop a flexible hybrid statistical-numerical modeling framework 

for rapidly identifying transition zones, which is transferable and expandable. Second, to use the response-based 

return levels generated in finding the transition zone to evaluate the robustness of the widely used event-based 

approach. The framework is implemented for the Suwannee River in northwest Florida representing the first 

application of such a framework to a river on the eastern U.S. coast. The first objective is to derive a long 

synthetic set of river discharge and coastal still water level events by fitting a statistical model that accounts for 

the dependence between the two flooding drivers. The second objective is to validate an existing HEC-RAS 

model for the case study site, through which an MDA-selected subset of synthetic events will be propagated. The 

third objective is to find a suitable data driven surrogate for the HEC-RAS model by evaluating the performance 

of several candidate models. Synthetic events not in the MDA subset will be propagated through the optimal 

surrogate model to obtain along-river water levels. The fourth and final objective is to compute response- and 

event-based return levels. Contrasting the individual components of the discharge and still water level events 

that produce a given return level along the river enables the identification of the transition zone. Comparing the 

along-river response- and event-based return levels will elucidate on the robustness of the event-based approach.

2. Case Study Site and Data
The Suwannee River flows for around 396 km, with an average slope of 0.075 m per km (Valle-Levinson, 2012), 

and discharges into the Gulf of Mexico in northwest Florida. Described as a blackwater river, due to its stained 

hue caused by the tannic acids released by decaying vegetation that seep into its waters, the Suwannee is one 

of a few major rivers (>200 km in length) in the contiguous U.S. without any significant physical alterations 

such as dams, flow diversions, or navigation projects (Benke, 1990). The river drains an area of approximately 

25,770 km 2, almost two thirds of which are in South Georgia and the remainder in North Florida (SRWMD, 2005). 

These larger catchments (>5,000 km 2) are generally less vulnerable to compound events than their smaller peers 

(Bevacqua et al., 2020). However, Dykstra and Dzwonkowski  (2021) show that compound events are a more 

substantial issue for larger catchments in the northeastern Gulf of Mexico than previously believed, due to precip-

itation intensification shortening precipitation-discharge lag times.
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The Suwannee River is fed by surface runoff from swamps, flatwoods, and lakes near its headwaters in the poorly 

drained tannic and black Okefenokee Swamp (South Georgia) in the eastern part of the Suwannee watershed 

(Katz et  al.,  1997). Upstream, the river initially flows southwest, merging with the Apalaha (highlighted in 

yellow in Figure 1a), and then the Withlacoochee River (orange in Figure 1a) 13 km farther downstream. The 

dendritic Apalaha and Withlacoochee Rivers drain the central and eastern portions of the Suwannee Watershed, 

respectively. The river channel deepens on its way south, as it bends southward joining with the Santa Fe River 

(green in Figure 1a), which drains much of the western portion of the watershed. The Suwannee continues on a 

south-southwest moderately sinuous course, increasingly restrained within a bedrock-lined channel, eventually 

flowing into the Gulf of Mexico in the Big Bend region of Florida's Gulf Coast (Mossaa & Konwinski, 1998). 

The lower Suwannee Basin (Figure  1b) is a sparsely populated area dominated by poorly drained bottom-

land hardwood swamps, with silviculture and minor agriculture as the main land uses (Liudahl et  al., 2005). 

The Suwannee estuary extends approximately 16 km upstream from where it drains into the Gulf of Mexico 

(Valle-Levinson, 2012).

Data used in this work consists of in situ observations of the still water level (SWL) at the coast and river discharge 

(Q) in the lower Suwannee. SWL represents the oceanographic forcing, that is, the downstream boundary condi-

tion in the HEC-RAS model, while Q acts as the freshwater forcing, that is, the upstream boundary condition. 

Hourly SWLs are obtained from the National Oceanographic and Atmospheric Administration (NOAA) (https://

tidesandcurrents.noaa.gov/) for the tide gauge closest to the mouth of the Suwannee: Cedar Key (Figure 1a). 

The gauge has 94 years of record (not all years are complete), from three distinct periods: 1914 to 1926, 1932 

to 1934, and 1938 to 2020 (Figure 1c). The SWL is composed of the mean sea level (MSL) relative to a datum, 

astronomical tide, and the non-tidal residual (NTR). The NTR is primarily composed of the meteorologically 

driven surge, along with the seasonal cycle and monthly mean sea level anomalies. Other influences include 

precipitation, river discharge, nonlinear interaction with the tide and harmonic prediction errors emanating from 

the process of removing the tidal signal (Haigh et al., 2016). The SWL series is detrended to ensure stationarity, 

an inherent assumption of the statistical models introduced in Section 3.1. Here we use a linear regression and the 

resulting series is adjusted to present-day conditions by adding the MSL of the past 5 years (e.g., Nadal-Caraballo 

et  al.,  2016). The NTR is often small relative to tide, consequently significant correlation between the river 

discharge and surge can be lost if SWL is used to represent the oceanic forcing (e.g., Moftakhari et al., 2019). 

Hence, the tidal signal is removed from the SWL by conducting a harmonic analysis on the SWL record using 

Figure 1. Case study site. (a) Location of tide and stream gauges in the Suwannee River and its main tributaries. (b) Gray box in (a), solid blue line denotes the length 

of the lower portion of the Suwannee River included in the HEC-RAS model domain. (c) Completeness of the observation records.

uncor
rec

tedby surface runoff from swampce runoff from sw

k Okefenokee Swamp (Southenokee Swamp

Upstream, the river initially , the river ini

a), and then the Withlacoocd then the With

aha and Withlacoochee Riverd Withlacooc

y. The river channel deepens river channel de

n Figurere 1a1a), which drains m), w

h-southwest moderately sinuohwest moderatel

lowing into the Gulf of Mexinto the Gulf of

The lower Suwannee Basilower Suwanne

land hardwood swampsd hardwood sw

ed p

The Suwannee estuaThe Suwanne

(Valle-Levinson, (Valle-L

Data used inData u

(Q) in th(Q

tion i

H

er and its main tributaries. (b) Grmain tributarie

n. (c) Completeness of the obserCompleteness of the

f



Water Resources Research

JANE ET AL.

10.1029/2022WR032481

5 of 21

the T_Tide Matlab Toolbox (Pawlowicz et al., 2002), and the daily maximum 

NTR selected as input for the statistical analysis.

Daily mean Q data are obtained from the U.S. Geological Survey (USGS) 

stream gauge network (https://waterdata.usgs.gov/nwis/rt). We identify 40 

USGS stream gauges along the Suwannee River and its tributaries, those with 

the longest record are shown in Figure 1a. Data availability for the longest 

records and those in the lower basin are shown in Figure 1c. The Bell gauge, 

which has approximately 45 years of record from 1932 to 1956 and from 

2000 to 2020, is adopted as the upstream boundary. Despite not possess-

ing the longest record in the lower watershed, Bell is selected because it is 

downstream of all major tributaries which simplifies the numerical model 

set-up. Situated 105 km upstream, the Bell record is not unduly influenced 

by tides. Moreover, there are two gauges located downstream of Bell which 

provide an opportunity to validate the numerical model. The model valida-

tion is undertaken using the stage recorded at the Wilcox gauge which is 

located around 50 km upstream of the river mouth and spans 2007-present. 

Despite evidence of a falling annual discharge volume to annual basin rainfall 

ratio (Seavey et al., 2011), neither the Pettitt’s change point test (Pettitt, 1979) 

nor the Mann–Kendall trend test (Kendall, 1975; Mann, 1945) are statisti-

cally significant at Bell. Since there is no evidence of non-stationarity, the 

discharge records are not detrended.

3. Methods
3.1. Hybrid Statistical-Hydraulic Modeling Framework

Hybrid approaches combining statistical and numerical models, that involve 

developing a surrogate model for the latter, have become increasingly prev-

alent over the past decade. The approach put forward in this paper proceeds 

by simulating boundary conditions from a statistical model fit to the obser-

vational records. A subset of the simulated conditions is run through a 

high-fidelity numerical model. A surrogate model is then fit to the input and output of the numerical model runs, 

before the remaining boundary conditions are propagated through the surrogate model. The precise form of the 

approach adopted in this paper is summarized in Figure 2. It closely resembles similar recent applications for 

estimating the compound flood hazard in coastal catchments by Parker et al. (2019) and Serafin et al. (2019). 

Each component of the method is described in more detail in the following subsections.

3.1.1. Statistical Model

We employ the conditional exceedance approach introduced in Heffernan and Tawn (2004) (hereinafter HT04) 

to simulate 10,000 years’ worth of extreme daily synthetic Q-NTR events under present-day climate conditions 

that account for the dependence between the two drivers. The HT04 approach models the pairwise dependen-

cies between the cluster maxima of a given variable above a sufficiently high threshold and the other variables, 

regardless of whether the latter are simultaneously extreme or not. A separate multivariate regression model is 

fit, as each variable is in turn conditioned to be extreme. The approach thus captures the dependence through the 

regression parameters and associated residuals rather than prescribing a specific dependence structure by way 

of a parametric distribution such as the logistic model or copulas. These earlier approaches assume the class of 

dependence in the joint tail regions is homogenous among each pair of variables, which becomes a restrictive 

assumption as more variables are considered. Recently, the HT04 model (Santos, Wahl, et al., 2021) and other 

approaches such as Bayesian networks (Couasnon et al., 2018) or a cascade of bivariate copulas, so called pair 

copula constructions (Bevacqua et al., 2017; Santos, Casas-Prat, et al., 2021) that remove this assumption have 

been employed to model the relationship between storm surge and river discharge at multiple sites in a catchment.

The HT04 approach decouples the modeling of the marginal characteristics and the dependence structure. 

The marginal behavior of each flooding driver is analyzed individually using the peaks-over-threshold (POT) 

approach, where the peak excesses above a sufficiently high threshold are fit to a Generalized Pareto Distribution 

Figure 2. Hybrid modeling approach where numbering is aligned with 

section numbers of the main text where the respective part of the analysis 

is explained in detail. Tan boxes denote data inputs, orange boxes are the 

statistical, hydraulic and surrogate models while the green boxes correspond 

to the outputs from these models. MDA refers to the Maximum Dissimilarity 

Algorithm and HT04 to the conditional exceedance approach outlined in 

Heffernan and Tawn (2004).
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(GPD). For Q, we applied a seven-day storm window following previous studies of similar sized catchments 

(e.g., Santos, Wahl, et al., 2021). NTR is declustered using the method described by Smith and Weissman (1994), 

where successive exceedances are assumed independent if the number of non-exceedance between them exceeds 

some separation criterion. Here, a three-day separation criterion was applied. To obtain a fully specified marginal 

distribution for driver 𝑋𝑖 , the GPD above the threshold 𝑢𝑖 is combined with the empirical distribution 𝐹𝑖𝐹𝐹  below 

the threshold, yielding the following semiparametric cumulative distribution function (Coles & Tawn, 1991): 

𝐹𝑖𝐹𝐹 (𝑥) =

⎧⎪⎧⎧⎪⎪⎪⎨⎪⎪⎪⎨⎨⎪⎪⎪⎩⎪⎪
𝐹𝑖𝐹𝐹 (𝑥) 𝑥 ≤ 𝑢

1 −
(
1 − 𝐹𝑖𝐹𝐹 (𝑢𝑖)

) ⌈
1 +

𝜉𝑖 (𝑥 − 𝑢𝑖)
𝛽𝑖

⌉−
1
𝜉𝑖

+

 

Where, 𝛽𝑖  > 0 and 𝜉𝑖  ∈ R are the GPD parameters and [𝑦]+ = 𝑚𝑎𝑥(𝑦, 0

In the dependence analysis, the variables are transformed to common scales to remove the marginal charac-

teristics and ensure only information regarding the dependence structure remains. When implementing the 

HT04 approach, variables are typically converted to standard Gumbel marginal distributions obtained by setting 

𝑌𝑖𝑌𝑌 = −log
[
−log (𝐹𝑖𝐹𝐹 (𝑋𝑖))

]
 . Letting 𝒀 −𝑖 be the vector of all drivers excluding  on the transformed scale, the HT04 

model is generally implemented utilizing the multivariate non-linear regression model:

𝒀−𝒀𝒀 𝒊|𝑌𝑌 𝑣 

Where 𝑣 is a high threshold on 𝑌𝑖𝑌𝑌 , 𝒂 ∈ [0  and  are parameters, and 𝒁 is a vector of residuals. Parameter 

estimation is carried out using maximum-likelihood estimation under the temporality assumption that 𝒁 follows 

a normal distribution with unknown mean and variance. Asymptotically, 𝑌𝑖𝑌𝑌 > 𝑣 is statistically independent of 

Z, thus 𝑣 should be large enough for this condition to hold. The number of simulated events, representing the 

10,000 years' worth of extremes, depends on the average number of events in the observational record exceeding 

v. A detailed description of the rejection sampling methodology involving conditioning a variable to exceed v and 

independently sampling joint residuals to simulate extreme events is given in Keef et al. (2009) and Wyncoll and 

Gouldby (2015), among others.

The NTR and Q peaks that produce extreme along-river levels during a storm event may not occur concurrently. 

Keef et al.  (2009) modified the HT04 approach to model the largest values within a time window, by fitting 

the regression model over a range of lags τ, that is, to 𝑗,𝑡𝒀𝒀 +𝜏 |𝒀 𝑖 . In this study, a lag of ±1 day is adopted due to 

the relatively short distance between the upstream and downstream boundary conditions. In short, a variable is 

conditioned to exceed v and a joint residual from the associated regression model is independently sampled. The 

maximum value of each of the remaining variables across the lags is found by plugging the residuals into the 

associated regression model. The realization is rejected if the conditioned variable is not the most extreme on the 

transformed scale. The sampling is repeated conditioning on each variable, in turn, to ensure the proportion of 

times each variable is most extreme is the same as the empirical data.

Once paired Q-NTR events are simulated from the model, a tidal level is obtained in accordance with Gouldby 

et al. (2014). For each simulated daily maximum NTR, we first sample a year in the 18.6-year nodal tidal cycle 

(Haigh et al., 2011). A month is then sampled conditionally on each simulated NTR: the conditional distribution 

of months given the percentile that a simulated NTR falls within (NTRp ) is shown in Figure 3. An hourly tidal 

elevation that co-occurred with a maximum hourly NTR in this year and month combination is sampled assuming 

the observations are equally likely. The sampled tidal level is added to the simulated NTR to give the SWL. The 

entire procedure yields 10,000 years' worth of simulations under present-day climate conditions based on the 

average number of events in the observational record.

3.1.2. Hydraulic Model

In 1D hydraulic modeling, a river's topography is described by a series of cross sections and the average veloc-

ity and water depth at each cross-section is estimated considering only longitudinal flow. The 1D form of the 

Hydrologic Engineering Center–River Analysis System (HEC-RAS) model, developed by the U.S. Army 

Corps of Engineers, calculates water surface elevations by solving the one-dimensional energy equation from 

one cross section to the next using the standard step iterative procedure (HEC, 2002). HEC-RAS can model 
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steady (constant discharge) and unsteady (varying discharge) flow under subcritical, supercritical and mixed 

flow regimes (Goodell,  2014). HEC-RAS models have proven sufficiently reliable (e.g., Andrei et  al.,  2017; 

Huţanu et al., 2020; Pathan & Agnihotri, 2020) for diverse applications ranging from flood forecasting (Hicks & 

Peacock, 2005; Saleh et al., 2017) to modeling dam breaches (Yi, 2011). In this work, we employ the 1D grad-

ually varied steady-flow HEC-RAS model of the Suwannee River developed by AMEC Environment & Infra-

structure, Inc. (AMEC) for the Suwannee River Water Management District (SRWMD) (AMEC SRWMD, 2013, 

2014) for delineating flood insurance maps. The model was calibrated and validated using observational data and 

is publicly available from SRWMD (2014). The model covers the Suwannee River and its major tributaries. Here, 

the model is modified to only span the portion of the Suwannee River seaward of the Bell gauge which is around 

10 km downstream of its confluence with the Santa Fe River, as highlighted in Figure 1a. The modified model 

Figure 3. Conditional distribution of month given NTR percentile (NTRp ). Numbers without parenthesis are the conditional 

probabilities while the numbers in parenthesis denote the number of observed NTRs within each NTRp —month combination. 

Color scale represents the conditional probabilities (hotter color, higher probability). For a simulated NTR, a month is 

sampled with probabilities depending on the NTRp within which the NTR falls. Given an independently sampled year, 

an hourly tidal level that co-occurred with a daily maximum NTR is sampled assuming each level within the identified 

year-month combination is equally likely.uncorFigure 3.Figure C
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is composed of 48 transects and is validated using water surface measurements from Wilcox (Figure 1c), as it 

possesses a longer record than the Gopher River gauge. The Cedar Key tide gauge is the downstream boundary 

of the model.

The HEC-RAS model validation was undertaken on 100 events selected via MDA from the Q- SWL observa-

tions, when stage height is concurrently available at the Wilcox gauge. The MDA is designed to select a subset 

that represents the diversity of the data set (Camus, Mendez, & Medina,  2011). After normalizing the input 

variables, the MDA algorithm proceeds by transferring a single element into a subset and iteratively adding the 

element remaining in the data set that is most dissimilar, that is, considered farthest in the multidimensional space 

from the elements already selected. Although each cluster based technique possesses distinct merits, for example, 

self-organizing maps provide an opportunity for visual inference, the MDA is adopted here as it best represents 

the boundaries of the data set (Camus, Mendez, & Medina, 2011). A root-mean squared error (RMSE) of 0.1 m 

was obtained between the observed and modeled water levels at Wilcox for the 100 events. This small average 

discrepancy demonstrates the good performance of the model for a variety of events ranging from small, through 

moderate, to extreme (orange dots in Figure 4a). Since the Wilcox gauge is located where fluvial processes and 

the most extreme SWLs have the potential to drive water level variations, the validation conveys the suitability of 

the model to assess the compounding effects.

3.1.3. Surrogate Model

The number of MDA-selected events to which surrogate models are fit is subjective, representing a trade-off 

between the computational cost of running the physics-based model and performance of the fitted surrogate 

model. The surrogate model performance achieved by an MDA sample size depends on the number and distri-

bution of variables, type of surrogate model, and complexity of the physical process being modeled (Liem 

et al., 2015). In previous hydrologic applications, 100–200 MDA-selected events were typically found to provide 

sufficiently accurate surrogate models (e.g., Camus, Mendez, & Medina, 2011; Malde et al., 2016). HEC-RAS 

is a relatively simple and efficient model compared to those utilized in similar studies, affording the opportunity 

for a larger MDA sample size. For example, Serafin et al. (2019) compared 3,000 surrogate modeled water levels 

with the corresponding HEC-RAS-modeled water levels as surrogate model validation.

We develop surrogate models for each transect using the along-river water level output of the validated HEC-RAS 

model for a subset of 1,000 boundary conditions (i.e., Q and SWL) from the large set of events simulated from the 

HT04 model. The surrogate models allow along-river water levels to be predicted for Q-SWL combinations while 

limiting the number of HEC-RAS simulations required. The subset of boundary conditions is selected using the 

MDA with the aim of optimizing the performance of the surrogate model, given the user-specified subset size. 

We consider three methods to develop surrogate models: multiple linear regression, radial basis function (Lin & 

Chen, 2004; Majdisova & Skala, 2017; Soleymani et al., 2016), and scattered interpolation (Amidror, 2002). The 

multiple linear regression model is conceptually the simplest but also possesses the most restrictive assumptions. 

The model comprises a constant intercept term, slope for each explanatory variable (expressing the change in the 

response with a one unit increase of the explanatory variable while holding all other variables constant) and a 

residual term. As the name suggests, a linear relationship is assumed between the response variable and each of 

the exploratory variables. The model also assumes the residuals are independent and normally distributed with a 

zero mean and constant variance across all values of the explanatory variables.

The interpolation function in the radial basis function model is a linear combination of radial basis functions, one 

centered on each observation. A radial function is any real valued function that decreases monotonically with 

distance from a central point. In this work, the radial basis function approximation takes the form of a weighted 

sum of Gaussian basis functions. Weights are estimated via the least mean square algorithm and shape parameters 

of the Gaussian basis functions, which controls their flatness, are estimated from sample data. In scatter inter-

polation, data points are triangulated (for 2D data) or tetrahedralized (for 3D data) and interpolation is carried 

out within each triangle (or tetrahedron) (Amidror et al., 2002). In this study, we deploy three interpolation tech-

niques: linear, nearest, and natural (Boissonnat & Cazals, 2002; Parker et al., 1983). As opposed to the multiple 

linear regression model, both the radial basis function and scatter interpolation models can capture nonlinear 

relationships between the response and exploratory variables.

The performance of each surrogate model at each transect is assessed through k-fold cross validations. In a 

k-fold cross validation, MDA selected events are divided into k-subsets, before each subset is used to validate the 
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surrogate model fit to the remainder of the MDA events. For example, for k = 5, five subsets are created, each 

containing 200 events in our case, which are in turn used to validate the surrogate model fit to the events in the 

other four subsets. Varying the number of folds in the cross-validation undertaken on the surrogate models will 

provide a posteriori validation of the MDA sample size. Finally, the best performing surrogate model is used to 

predict water levels at each transect for the Q-SWL events simulated by the HT04 approach in Section 3.1.

3.1.4. Response-Based Return Levels

The proposed framework returns 10,000 years' worth of extreme water levels at each transect of the HEC-RAS 

model, allowing response-based return levels to be estimated empirically. Response-based return levels represent 

a bottom-up approach where, the return period of the 𝑖th highest water level at each transect is 
𝜇

1−𝐹
 years. Where 

𝜇 is the average interarrival time between the 𝑁 simulated events (in years) and 𝐹 = 1 − 𝑖

𝑁+1
 is the empirical 

cumulative distribution function of water levels at the transect. The transition zone can subsequently be identified 

by analyzing individual Q-SWL events that produce the response-based return levels.

Figure 4. Data: (a) Observed Q-SWLs (black dots) delineating those chosen by the MDA (orange dots) for the HEC-RAS 

model validation. (b) Observed Q-NTRs (gray dots) along with the thresholds (blue and red dashed lines) above which the 

conditional samples (blue dots, red crosses) are drawn and the HT04 model is fit. (c) Simulated events (blue dots) plotted 

alongside the observations (black dots) and (d) simulated events (blue dots) plotted identifying the events selected by the 

MDA (red dots) to run through the validated HEC-RAS model to which the surrogate models are fit. Nine simulated events 

are outside of the axis limits and are therefore not displayed. Q is the daily mean discharge and SWL is the sum of daily 

maximum hourly NTR and a conditionally sampled tidal level.uncorFigure 4.ure 4. Data: (a) ObserData: (a)
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3.2. Comparing Response-Versus Event-Based Return Levels

In the event-based approach, along-river water levels produced by the Q-SWL design event associated with a 

given return period are assumed to be representative of this condition. Outside of the univariate domain, design 

events are not uniquely defined. To find design event(s) in the bivariate and higher-dimensional domains a hazard 

scenario (e.g., OR, AND, Kendall's, Survival Kendall's) must be prescribed alongside the return period. No 

hazard scenario is universally superior but each represents a different specific underlying probability. The choice 

of scenario should reflect the types of events considered most impactful; thus, the hazard scenario approach 

provides a top-down appraisal of the flood hazard (Serinaldi, 2015). The Kendall and survival Kendall hazard 

scenarios are most closely aligned with the univariate return period definition; however, they do not have a direct 

physical interpretation. The Kendall scenarios are consequently generally only considered suitable for prelimi-

nary assessments of multivariate occurrence probabilities (Salvadori et al., 2016). This study focuses on events 

where both discharge and ocean still water level contribute to flooding. Therefore the “AND” scenario is adopted. 

This is also in line with similar recent studies assessing the flood hazard from two drivers in low-lying coastal 

catchments (e.g., Jane et al., 2022; Lucey & Gallien, 2022; Moftakhari et al., 2019).

In the bivariate setting, the “AND” scenario yields an isoline, a curve comprising all events where the probability 

of both variables exceeding both thresholds corresponds to a specified joint return period. The “most-likely” 

approach is a simple strategy for identifying a single design event, by weighting the events on the isoline accord-

ing to the joint distribution of the observations (Salvadori et al., 2011). The event on the isoline with the maxi-

mum probability density is taken as the design event, that is, it may be considered the expected event if the return 

period arises. Uncertainty in design event selection is accounted for by sampling the probabilistically weighted 

events on the isoline to generate an ensemble of design events (Gräler et al., 2013). The interaction of multiple 

drivers typically distorts the mapping of the event-based return levels and the actual return water levels. The 

response-based return levels described here are assumed to be closer to the true return levels, as they are derived 

through a bottom-up approach utilizing a long, albeit synthetic, record rather than a top-down approach based on 

a single or small number of design events. Event-based return levels are compared with the response-based return 

levels to examine the robustness of the event-based approach. Comparing the event-based return levels from an 

ensemble rather than a single design event permits a more rigorous assessment.

4. Results
4.1. Application of the Statistical-Numerical Hybrid Model

Even weak extremal dependence can significantly influence flood hazard and thus must be accounted for in a 

robust framework (Zheng et al., 2014). Two-way conditional sampling was applied to the Q and NTR observa-

tions (Figure 4b) to gauge the strength of the dependence when each driver is extreme. In two-way conditional 

sampling, cluster maxima of one driver above the threshold are paired with the maximum value of the other 

variable within a specified lag. The thresholds and lags are chosen to be consistent with those adopted in the 

HT04 model. Kendall's τ is 0.025 (p-value >0.05) for the sample conditioned on NTR, and −0.06 (p-value >0.05) 

for the sample conditioned on Q. The synthetic simulations from the statistical model outlined in Section 3.1.1, 

comprising approximately 365,000 realizations representing 10,000 years of extreme events, are displayed in 

Figure 4c.

4.2. Comparison of Surrogate Models

The 1,000 simulated events selected by the MDA to be run through the HEC-RAS model are shown in Figure 4d. 

The performance of the three surrogate models at each transect, quantified in terms of the RMSE and normalized 

RMSE (NRMSE) from the k-fold cross-validations, are shown in Figure 5. As expected, the ability of each model 

to predict water levels improves with k, the number of folds (subsets) the MDA selected events are divided into, 

since the model is fit to more events. The rate of improvement wanes as k increases, since the number of addi-

tional observations the model is fit to dramatically decreases. In other words, the performance of the surrogate 

models is generally very similar for k = 5,10, 25, and 50. This trend suggests that k = 5 representing a subset of 

800 events would give a sufficiently robust surrogate model, highlighting the suitability of a 1,000 sized MDA 

sample. All three models demonstrate good accuracy with average RMSEs in the order of centimeters. The ability 

of the multiple linear regression model to predict along-river levels steadily decreases (i.e., errors increase) with 
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distance from the river mouth. Errors from the scatter interpolation and radial basis function models follow a 

similar spatial pattern, indicating that the models perform best near the mouth of the river and upstream; both 

regions where water levels are driven by a single driver. The cross-validation reveals scatter interpolation as the 

best surrogate model and it is thus adopted for the subsequent analysis.

Figure 5. Performance of the surrogate models: (a) multiple linear regression, (b) radial basis function and (c) scattered 

interpolation during the k-fold cross-validations with varying values for k (2, 5, 10, 25, and 50). Note the varying scale of the 

y-axes.
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4.3. Return Levels

4.3.1. Delineation of the Transition Zone

Outside the transition zone, return levels are only produced by the corresponding marginal Q or SWL events, 

since water level is driven exclusively by discharge or coastal still water level. On the other hand, inside the tran-

sition zone a return level can be produced by the interaction of Q and SWL events with shorter marginal return 

periods. Comparing the individual components of the Q-SWL events that produce the along-river return water 

levels will hence allow the identification of the transition zone.

Figure 6 shows the average magnitude of Q (a) and SWL (b) conditions leading to the 5, 10, 25, and 100-year 

“response-based” return levels across the model domain. Few of the simulated events in the sample exactly 

replicate each “response-based” return period. The average magnitudes of Q and SWL are therefore calculated 

based on events with return periods within an interval centered on the return period of interest. The intervals for 

the 5, 10, 25, and 100-year return levels are: [4,6]; [8,12]; [20,30]; [80,120] years, respectively. Intervals widen 

as return period increases, as shorter return period (e.g., 5-year) events far outnumber those with longer (e.g., 

100-year) return periods in the simulated sample. The magnitude of Q (solid lines in (a)) increases asymptotically 

for all return periods with distance from the river mouth. The increase in Q is steep until around km 25 and slower 

farther upstream. The average Q attains a value equivalent to the marginal Q return level (dashed lines in (a)) 

around km 55. The exception is the 100-year return level scenario, where the average Q reaches the corresponding 

marginal return level at river km 40. The average 100-year SWL (solid lines in (b)) almost immediately diverges 

from the marginal return level (dashed lines in (b)) while the magnitude of the other SWLs remain close to their 

corresponding marginal return periods until around km 10.

Figure 6. Solid lines are the average (a) Q and (b) SWL driving return water levels across the domain. Dashed lines represent 

marginal return period events. Gray shaded area depicts the transition zone.

.3. Return Levelsurn Lev

4.3.1.1. Delineation of theDelineation

Outside the transitioOutside the tr

since water levelsince w

sition zone a sition z

periods. Cpe

levels wl

F

reclid lines are the average (a) Q anare the average (

eturn period events. Gray shadederiod events. Gray 



Water Resources Research

JANE ET AL.

10.1029/2022WR032481

13 of 21

As expected, the trend in the average SWLs (solid lines in (b)) mirrors the trend in average Q. The average 

SWLs associated with the shorter return levels decrease relatively uniformly with distance upstream. The 25- and 

100-year return levels decrease rapidly until around km 40. The average SWL associated with the 100-year return 

level is negligible beyond km 40. By km 55, average SWLs are substantially lower than the marginal SWLs for 

all return levels. Based on these trends the transition zone of the Suwannee River approximately spans river km 

10 to 55 but shifts toward the river mouth: km 5 to km 40 for low frequency events for example, 100-year events.

4.3.2. Response-Versus Event-Based Return Levels

Event-based along-river levels are derived for a 100-year return period by applying the conditional sampling-copula 

theory approach outlined in Jane et al. (2022) to the observations. The approach begins by drawing two condi-

tional samples, similar to that described in Section 3.1.1 and modeling the dependence within each using the best 

fitting of 40 copulas. In terms of marginals distributions, the conditional variable is modeled by the GPD and the 

non-conditioned variable by the best fitting of a range of suitable for example, truncated/non-truncated parametric 

distributions. The 100-year quantile isolines are subsequently derived for each sample. The full 100-year isoline 

comprises the outer envelope created by overlaying the (quantile) isolines from the two conditional samples 

(Bender et al., 2016). The 100-year isoline including the relative probability of events on the isoline implied by 

the observations is shown along with the “most-likely” design point and the ensemble of 1,000 possible design 

events in Figures 7a and 7b. The probability density is concentrated on a portion of the isoline where the SWL is 

large relative to Q, hence there is a bias toward selecting these events.

Figure 7. Response-based versus event-based return levels. The 100-year isoline is shown in (a) and (b) with the color 

contour denoting the relative probability of events on the isoline (hotter colors indicate higher probabilities). In (a) the 

diamond denotes the “most-likely” design event while the circles in (b) are the ensemble of 1,000 design events. (c) 100-year 

return levels according to the two approaches with the transition zone shaded in gray.
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Figure 7c depicts the estimated 100-year return levels from the response-based approach and an event-based 

approach adopting the “most-likely” strategy to select a single design event. The “most-likely” design event strat-

egy results in consistently lower water levels than the response-based return levels. Initially the disparity between 

the “most-likely” and response-based return levels decreases with distance from the river mouth, with a minimum 

difference of 0.07 m at km 25. The disparity widens moving upstream reaching 0.4 m by the end of the transition 

zone, beyond which the difference in the two water levels remains constant. The smallest difference in the water 

levels arising closer to the seaward end of the transition zone is likely due to the 100-year “most-likely” design 

events being predominantly SWL driven (see Figure 7a). Despite this, the largest difference is at the river mouth 

where the response-based return levels exceed those given by the “most-likely” design event by over a meter. The 

joint statistical analysis (Figure 7a) suggests the 100-year SWL at the mouth is approximately 2.4 m NAVD 88 

while the SWL in the “most-likely” design event is approximately 1.25 m NAVD 88. Given there is no fluvial 

influence on return levels at the mouth a difference of a little over a meter is to be expected.

Figure 7c also displays the distribution of the 100-year event-based return levels produced by an ensemble of 

1,000 possible design events sampled along the 100-year isoline. The variation in the water levels among the 

ensemble runs increases with distance upstream, a seemingly intuitive result as the water level is increasingly 

only dependent upon Q which varies far more than SWL. The result is also consistent with output from the 

HEC-RAS model runs where there is more variation in output upriver than downriver, and is potentially due 

to the uncertainties associated with converting Q into water levels. The spread of the distribution demonstrates 

that the along-river water levels produced by events on the 100-year isoline can fall far above and far below the 

100-year response-based return level. Despite this, the “most-likely” event is situated close to the median of the 

return level distribution from the ensemble and, although consistently lower than the response-based return level, 

for most of the transition zone, the disparity is small.

5. Discussion
The framework proposed in this study derives spatially coherent estimates of return levels along the entire lower 

course of the river, enabling the position and drivers of the transition zone to be identified. The statistical mode-

ling only detected weak correlations in the conditional samples of Q and NTR, a likely consequence of the catch-

ment's gentle slope and plentiful storage capacity, delaying rainwater reaching the river. Moreover, Q accounts 

for groundwater contributions to the flow upstream of Bell, which varies over longer time scales than a single 

event, potentially further diluting the correlation. Despite weak non-statistically significant correlations in the 

conditional samples, the length of the Suwanee River transition zone was found to be far longer than those found 

on the U.S. West Coast: 1 km for the Quillayute River (Serafin et al., 2019) and 0.6–2.1 km for three rivers in 

southern California (Moftakhari et al., 2019), where the dependence between the drivers is much stronger. This 

contrast in transition zone lengths illustrates the influence of river and catchment characteristics, and highlights 

the possible threat of compound flooding in localities where it may not necessarily be expected (e.g., places with 

low dependence between the upstream and downstream flood drivers). With respect to the Suwannee River, its 

substantially shallower slope, at least compared to the Quillayute River, is likely the main reason for its longer 

transition zone. Furthermore, along the U.S. West Coast, surge heights are restricted by the narrow continental 

shelf, limiting the upstream reach of the ocean's influence.

The divergence in the behavior of the along-river water level and discharge between 100-year and other return 

periods suggests the transition zone of the Suwannee River shifts further upstream when Q and SWL combine to 

create smaller, more frequent along-river levels, while it is situated closer to the river mouth when more extreme 

along-river levels are generates by the two flooding drivers. A possible mechanism responsible for the shift is 

the increased efficiency of the river as water levels rise overcoming the blocking effect of a high SWL at work 

at lower along-river levels (Dykstra & Dzwonkowski, 2021). The wider interval of the events considered for 

the average calculation of the 100-year event scenario (i.e., 80–120 years) compared to other return periods, to 

ensure  a sufficient number of events are included in the calculation, may also be a contributing factor for this 

divergence.

The differences across the along-river levels from the ensemble of events sampled from the 100-year isoline show 

that selecting a design event requires careful consideration to avoid event(s) that lead to under- or over-design. 

The disparity of the “most likely” event and the response-based return levels demonstrates a known limita-

tion of event-based approaches that they do not account for “structural performance,” in other words there is 
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a mismatch between the return periods of the response (here along-river water levels) and of the drivers (e.g., 

Serinaldi, 2015). However, at this site, the proximity of the “most likely” event and the response-based return 

levels within most of the transition zone, appears to justify employing the “most-likely” design event strategy. In 

flat floodplains, however, small changes in water level can result in significant changes in flood extent; thus, the 

strategy should still be applied with caution.

The transition zone identified by the proposed framework for the Suwannee River generally corroborates previ-

ous findings. Brown et al. (2016) reported a tidal influence on the ground-surface water interaction at Manatee 

Springs, approximately 12  km downstream of the Wilcox gauge. McPherson and Hammett  (1991) indicated 

the normal reach of the tide lies between the Manatee Springs and Wilcox gauges. According to Mattson and 

Rowan (1989), the Wilcox gauge coincides with the head of the tide. Bales et al. (2006) concluded only flows 

under approximately 450 m3∕s at Wilcox are tidally influenced. The spawning patterns of Suwannee River Gulf 

sturgeon analyzed over a 2-year period imply the head of the tide is approximately between the Wilcox and Bell 

gauges (Sulak & Clugston, 1998). An analytical tide propagation model fit to near yearlong records at Wilcox and 

six other gauges farther downstream by Laurel-Castillo and Valle-Levinson (2020) suggest that certain harmonics 

reach even farther upstream. Similarly, a report by The Howard T. Odum Florida Springs Institute (2015) notes 

that most of the Lower Suwannee River, south of the mouth of the Santa Fe is tidal during periods of low flow 

due to the river’s mild slope. In terms of identifying the transition zone these previous studies suffer several limi-

tations, most notably they are either based on measurements at discrete distances along the river or only analyze a 

single component of water level (e.g., tide). The adoption of a hybrid framework that accounts for multiple drivers 

and provides continuous estimates of along-river level negates these shortcomings.

The proposed framework represents a simplification of the flooding process relying on several statistical and 

physical assumptions. However, the component-wise nature of the framework allows different models to be 

“plugged in” to calibrate the assumptions to user-needs for a given study site. For example, a practitioner may 

wish to employ a different approach in the statistical component. One example is the conditional sampling-copula 

theory approach, extensively applied in recent studies to identify the potential for compound events (e.g., Jane 

et al., 2022; Wahl et al., 2015). Presently, the framework assumes no seasonality between discharge and NTR. 

However, the southeastern U.S. is exposed to several hydrometerological regimes including tropical cyclones, 

warm season thunderstorm systems, and winter-spring extratropical cyclonic systems (Millar,  1990). Fitting 

separate models to the different populations of events, by adopting seasonality as a proxy for the hydrometerolog-

ical conditions, will potentially increase the robustness of the modeling (Villarini & Smith, 2010). Partitioning 

the data in this way has revealed stronger correlations in the conditional samples (Kim et al., 2022). The rarity 

of conditions such as tropical cyclones may necessitate the inclusion of water levels from synthetic events prop-

agated through a storm surge model to complement the existing in situ records (Dullaart et al., 2021). The flexi-

bility of the statistical modeling component extends to the inclusion of other drivers that contribute to the flood 

hazard such as precipitation, waves, or river discharge from multiple tributaries.

More complex data-driven surrogate models such as artificial neural networks (Peters et al., 2006) could seam-

lessly replace the simple surrogates in the current framework. Alternatively, integrating lower-fidelity surrogates 

(Razavi et al., 2012), simplified simulation models which attempt to preserve the processes in the high fidelity 

numerical model, may increase confidence in the results among practitioners (Bomers et al., 2019). In terms of 

the hydraulic modeling component, lateral flow variability is typically far more significant in estuarine regions 

than along a river. If the transition zone is found to start within an estuary, 2D HEC-RAS or an alternate such 

as DELFT3D-FLOW (Lesser et al., 2004) could be “plugged in” as a substitute for the 1D HEC-RAS model. In 

regions where the relative contribution of waves to the downstream ocean level is substantial, hydraulic models 

can be coupled with wave models (e.g., Kupfer et al., 2022). Adopting rainfall in the statistical modeling compo-

nent, perhaps because global climate model output is used in the absence of in situ discharge data, may necessitate 

coupling the hydraulic model with a rainfall-runoff model.

The application of the framework characterizes the present-day compound flood hazard. Future work could 

include re-applying the framework to account for projected changes in climate and sea level. For instance, by 

2,100 mean sea level is projected to rise by approximately 2 m at Cedar Key under a high emissions scenario 

(Sweet et al., 2022). Sea level rise combined with lower freshwater flow, due to increased human extraction in 

the wider basin or as a result of climate change (e.g., Neupane et al., 2019), may cause the migration of the estu-

ary and hence the transition zone farther inland (e.g., Nelson et al., 2017). The impact of predicted changes in 
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surge height and duration on the flood hazard will potentially be different to, but compounded by, sea level rise 

(Harrison et al., 2021). In addition to altering the frequency and intensity of the individual drivers, climate change 

can also alter the dependence between them (e.g., Gori et al., 2022; Wahl et al., 2015), potentially escalating the 

compound flood hazard including the length of the transition zone.

The outperformance of scatter interpolation and radial basis functions as surrogate models over multiple linear 

regression is unsurprising due to the nonlinear interaction of the flooding drivers in transition zones (Bilskie & 

Hagen, 2018). A surrogate model is not strictly required for the application of the 1D HEC-RAS model in this 

study; however, it plays an important role in ensuring the proposed framework is both flexible and transfera-

ble. For rivers with longer transition zones or estuaries with more lateral flow, developing a surrogate model 

will enable hydraulic models with a greater computational burden, for example, those covering a larger area or 

2D models, to form part of the framework. Considering the impact of different climate change futures, often 

expressed as a matrix of changes in Q and sea-level rise, potentially involves scaling up the number of model runs 

by several orders of magnitude. Without a surrogate component, the framework could not be applied to explore 

different climates futures. Finally, in the event-based approach we calculate the return levels for an ensemble of 

possible design events, to account for the uncertainty in choosing a single design event. A surrogate model will 

enable the uncertainty in the response-based return levels to be quantified in an analogous fashion by simulating 

multiple 10,000 years’ worth of events from the statistical model and propagated through the framework.

Although the framework is transferable, it may not be applicable at every location due to a lack of data. For 

instance, the statistical modeling requires overlapping, in situ or numerical riverine and coastal water level 

records, potentially partitioned to account for seasonality (Couasnon et al., 2022). High resolution digital eleva-

tion data are a prerequisite for the numerical modeling and not available everywhere. The numerical modeling 

component can explicitly account for modifications to the river channel within the model domain and can be 

extended to incorporate unsteady flow conditions and processes which require 2D models. However, account-

ing for sources of non-stationarity outside of meteorological conditions will likely require modeling additional 

physical processes, for example, incorporating land-use changes will likely necessitate a rainfall-runoff modeling 

component and switching to rainfall instead of discharge in the statistical modeling (Wu et al., 2021).

Several case studies identified the phase-lag between the principal drivers, storm surge, tide, and rainfall, as a key 

predictor of flood severity in transition zones (Gori, Lin, & Smith, 2020; Harrison et al., 2021). For example, a 

pulse from the ocean initiated flooding in the St. Johns River during Hurricane Irma; however, peak water levels 

arose as winds were receding and river discharge increasing (Juarez et al., 2022). The flooding was exacerbated 

by increases in the magnitude of tides and storm surges in the St. Johns River over the past century, primarily due 

to channel deepening, with the maximum increases found approximately 20–25 km inland (Talke & Jay, 2020). 

Currently, the hydraulic modeling part of our framework conservatively assumes daily maximum hourly NTR 

coincides with peak discharge. Extending the framework to account for phase-lags between the key drivers may 

yield more accurate estimations of along-river water levels. Over the past 70  years, the tidal range has also 

increased at Cedar Key (Li et al., 2021); however, at approximately 0.87 m, it remains relatively small compared 

with those in other parts of the world. The method we adopted to account for seasonality between NTR and the 

tide has been successfully applied around the coast of the England where the tidal range is far greater (Gouldby 

et al., 2017). Given the wide applicability of the framework, another avenue of future work is its implementation 

in different catchments on the eastern U.S. coast and farther afield to relate the lengths of the transition zones to 

physical catchment characteristics. This will enable stakeholders, such as state and federal agencies, to prioritize 

catchments where numerical models able to account for the compound effects between oceanographic and fluvial 

processes are most urgently required.

6. Conclusions
A transferable framework that combines multivariate statistical methods with hydraulic and surrogate modeling 

has been presented for assessing the compound flood hazard and demonstrated in the Suwannee River, FL. The 

statistical modeling part of the framework involved fitting the HT04 model to capture the dependence between 

Q-NTR. A long synthetic set of events, where at least one of the drivers is extreme, was then simulated from the 

fitted model. The MDA was applied to select a subset of the synthetic Q-SWL events (after including the tide) 

to run through the HEC-RAS model, while the remainder were propagated through a surrogate model. An exist-

ing HEC-RAS model was modified to only include the river’s lower course and shown to perform well during 
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validation. Scattered interpolation proved to be a superior surrogate model to multiple linear regression and radial 

basis functions. The framework estimated the transition zone of the Suwannee River to be longer than those found 

in similar studies for the U.S. West Coast (Moftakhari et al., 2019; Serafin et al., 2019). The wider transition 

zone of the Suwannee is potentially due to the basin’s shallower topography and increased ground-surface water 

interaction both contributing to the catchment’s slow response time, along with the existing tidal regime and 

typical surge characteristics. There was substantial variation in the event-based along-river return levels of the 

events sampled along the 100-year isoline derived under the “AND” hazard scenario when they were run through 

the  surrogate model; in other words, the ensemble of events which all have a bivariate return period of 100 years 

led to a large spread of along-river water levels. This disparity in the return levels highlights a limitation of certain 

event-based approaches that arise due to the difference in the return period of the response (i.e., along-river levels) 

and that of the drivers. Nonetheless, in this case study, the “most-likely” design event on the 100-year isoline led 

to very similar return levels as compared to the response-based approach for most of the transition zone.

Data Availability Statement
The still water level data are available from the National Oceanographic and Atmospheric Administration (NOAA) 

Tides and Currents database (https://tidesandcurrents.noaa.gov/). River discharge data are available through the 

U.S. Geological Survey (USGS) National Water Information System (https://waterdata.usgs.gov/nwis/rt). Statis-

tical analysis was undertaken in R (R Core Team, 2018) using the MultiHazard package (Jane et al., 2020). The 

hydraulic modeling component utilized a Hydrologic Engineering Center–River Analysis System (HEC-RAS) 

model (HEC,  2002) developed by AMEC SRWMD  (2013; 2014) available at https://www.mysuwanneeriver.

com/DocumentCenter/Index/78.

References
AMEC, SRWMD. (2013). Lower Suwannee River Watershed Redelination Report.

AMEC, SRWMD. (2014). Upper Suwannee River Watershed Redelineation Report.

Amidror, I. (2002). Scattered data interpolation methods for electronic imaging systems: A survey. Journal of Electronic Imaging., 11(2), 

157–176. https://doi.org/10.1117/1.1455013

Andrei, A., Robert, B., & Erika, B. (2017). Numerical limitations of 1D hydraulic models using MIKE11 or HEC-RAS software - Case study of Baraolt 

River, Romania. IOP Conference Series: Materials Science and Engineering, 245, 072010. https://doi.org/10.1088/1757-899X/245/7/072010

Apel, H., Merz, B., & Thieken, A. H. (2008). Quantification of uncertainties in flood risk assessments. International Journal of River Basin 
Management, 6(2), 149–162. https://doi.org/10.1080/15715124.2008.9635344

Bales, J., Tomlinson, S. A., & Tillis, G. (2006). Flow and salt transport in the Suwannee River Estuary, Florida, 1999–2000: Analysis of data and 
three-dimensional simulations. U.S. Geological Survey. Professional Paper No. 1656-B.

Bass, B., & Bedient, P. (2018). Surrogate modeling of joint flood risk across coastal watersheds. Journal of Hydrology, 558, 159–173. https://

doi.org/10.1016/j.jhydrol.2018.01.014

Bender, J., Wahl, T., Müller, A., & Jensen, J. (2016). A multivariate design framework for river confluences. Hydrological Sciences Journal, 
61(3), 3471–3482. https://doi.org/10.1080/02626667.2015.1052816

Benke, A. C. (1990). A perspective on America’s vanishing streams. Journal of the North American Benthological Society, 9, 77–88. https://doi.

org/10.2307/1467936

Bermúdez, M., Cea, L., & Puertas, J. (2018). A rapid flood inundation model for hazard mapping based on least squares support vector machine 

regression. Journal of Flood Risk Management, 12, e12522. https://doi.org/10.1111/jfr3.12522

Bermúdez, M., Cea, L., & Puertas, J. (2019). A rapid flood inundation model for hazard mapping based on least squares support vector machine 

regression. Journal of Flood Risk Management, 12(Suppl. 1), e12522. https://doi.org/10.1111/jfr3.12522

Bevacqua, E., Maraun, D., Hob k Haff, I., Widmann, M., & Vrac, M. (2017). Multivariate statistical modelling of compound events 

via pair-copula constructions: Analysis of floods in Ravenna (Italy), Hydrology and Earth System Sciences, 21, 2701–2723. https://doi.

org/10.5194/hess-21-2701-2017

Bevacqua, E., Vousdoukas, M. I., Zappa, G., Hodges, K., Shepherd, T. G., Maraun, D. L., et  al. (2020). More meteorological events that 

drive compound coastal flooding are projected under climate change, Commun. Earth and Environment, 1, 47. https://doi.org/10.1038/

s43247-020-00044-z

Bilskie, M., & Hagen, S. (2018). Defining flood zone transitions in low-gradient coastal regions. Geophysical Research Letters, 45, 2761–2770. 

https://doi.org/10.1002/2018GL077524

Boissonnat, J. D., & Cazals, F. (2002). Smooth surface reconstruction via natural neighbour interpolation of distance functions. Computational 
Geometry, 22(1–3), 185–203. https://doi.org/10.1016/S0925-7721(01)00048-7

Bomers, A., Schielen, R. M. J., & Hulscher, S. J. M. H. (2019). Application of a lower-fidelity surrogate hydraulic model for historic flood recon-

struction. Environmental Modelling and Software, 117, 223–236. https://doi.org/10.1016/j.envsoft.2019.03.019

Brown, A. L., Young, C., & Martin, J. B. (2016). Groundwater-surface water interactions in the Suwannee River basin. Florida Scientist, 79(4), 

220–238. Retrieved from http://www.jstor.org/stable/44113187

Camus, P., Mendez, F. J., & Medina, R. (2011). A hybrid efficient method to downscale wave climate to coastal areas. Coastal Engineering, 58, 

851–862. https://doi.org/10.1016/j.coastaleng.2011.05.007

Camus, P., Mendez, F. J., Medina, R., & Cofiño, A. S. (2011). Analysis of clustering and selection algorithms for the study of multivariate wave 

climate. Coastal Engineering, 58, 453–462. https://doi.org/10.1016/j.coastaleng.2011.02.003

Acknowledgments
This project is funded, in part, by the 

US Coastal Research Program (USCRP) 

as administered by the US Army Corps 

of Engineers® (USACE), Department 

of Defense under Grant W912HZ-20-2-

0052. The content of the information 

provided in this publication does not 

necessarily reflect the position or the 

policy of the government, and no official 

endorsement should be inferred. The 

authors acknowledge the USACE and 

USCRP's support of their effort to 

strengthen coastal academic programs 

and address coastal community needs in 

the United States. T.W. also acknowl-

edges support from the USACE Climate 

Preparedness and Resilience Commu-

nity of Practice and Programs and the 

National Science Foundation under Grant 

AGS-1929382. The development of the 

MultiHazard package which was used in 

the statistical analysis component of the 

work was funded by the South Florida 

Water Management District. We would 

also like to thank three anonymous 

reviewers for their insightful feedback 

which helped to improve this manuscript.

uncor
rec

ted
 proo

freturn preturn

ghlights a limiights a 

e response (i.e., along-se (i.e., a

sign event on the 100-year ient on the 100-y

h for most of the transition zonof the transiti

eanographic and Atmosphericphic and

noaa.gov/ov/). River discharge d). River disch

formation System (ion System (https://wahttp

m,m, 20182 ) using the MultiHazng the Mul

ydrologic Engineering Centedrologic Engineering Cen

EC SRWMD  (WMD  (201320 ; 2014) av) av

wer Suwannee River Watershed Redeannee River Waters

Upper Suwannee River Watershed Rannee River Water

attered data interpolation methods fdata interpolation m

doi.org/10.1117/1.1455013.1117/1.1455013

t, B., & Erika, B. (2017). Numerical limrika, B. (2017). N

ania. IOP Conference Series: MateriP Conference Series
Merz, B., & Thieken, A. H. (2008).  & Thieken, A. H. (

agement, 66(2), 149–162. (2), 149–162 https://doi.o

s, J., Tomlinson, S. A., & Tillis, G. (2mlinson, S. A., & Till

three-dimensional simulationsmensional simulatio . U.S

Bass, B., & Bedient, P. (2018). SuB., & Bedient, P. (2

doi.org/10.1016/j.jhydrol.20oi.org/10.1016/j.jhy

Bender, J., Wahl, T., Müllerder, J., Wahl, T.

6161(3), 3471–3482. (3), 3471–3 http

Benke, A. C. (1990). ABenke A C (

org/10.2307/146/10

Bermúdez, M., Bermúd

regression

BermúdeB

reg

Be

n 

Climate

Commu-

ams and thehe 

ation under Grant der Grant 

development of the ment of the 

kage which was used inch was used in 

alysis component of thecomponent of the 

the South Florida the South Florida 

strict. We would ict. We wou

onymous ymou

feedback



Water Resources Research

JANE ET AL.

10.1029/2022WR032481

18 of 21

Chen, B., Harp, D. R., Pawar, R. J., Stauffer, P. H., Viswanathan, H. S., & Middleton, R. S. (2020). Frankenstein's ROMster: Avoiding pitfalls of 

reduced-order model development. International Journal of Greenhouse Gas Control, 93, 102892. https://doi.org/10.1016/j.ijggc.2019.102892

Coles, S. G., & Tawn, J. A. (1991). Modelling extreme multivariate events. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 53(2), 377–392. https://doi.org/10.1111/j.2517-6161.1991.tb01830.x

Couasnon, A., Scussolini, P., Tran, T. V. T., Eilander, D., Muis, S., Wang, H., et al. (2022). A flood risk framework capturing the seasonality of 

and dependence between rainfall and sea levels - An application to Ho Chi Minh City. Vietnam, Water Resources Research, e2021WR030002. 

https://doi.org/10.1029/2009WR008395

Couasnon, A., Sebastian, A., & Morales-Nápoles, O. (2018). A copula-based Bayesian network for modeling compound flood hazard from 

riverine and coastal interactions at the catchment scale: An application to the Houston Ship channel, Texas. Water, 10(9), 1190. https://doi.

org/10.3390/w10091190

Didier, D., Baudry, J., Bernatchez, P., Dumont, D., Sadegh, M., Bismuth, E., et al. (2019). Multihazard simulation for coastal flood mapping: 

Bathtub versus numerical modelling in an open estuary, Eastern Canada. Journal of Flood Risk Management, 12, e12505. https://doi.

org/10.1111/jfr3.12505

Dullaart, J. C. M., Muis, S., Bloemendaal, N., Chertova, M. V., Couasnon, A., & Aerts, C. J. H. (2021). Accounting for tropical cyclones 

more than doubles the global population exposed to low-probability coastal flooding, Commun. Earth and Environment, 2, 135. https://doi.

org/10.1038/s43247-021-00204-9

Dykstra, S. L., & Dzwonkowski, B. (2021). The role of intensifying precipitation on coastal river flooding and compound river-storm surge 

events, northeast Gulf of Mexico. Water Resources Research, 57, e2020WR029363. https://doi.org/10.1029/2020WR029363

Eilander, D., Couasnon, A., Leijnse, T., Ikeuchi, H., Yamazaki, D., Muis, S., et al. (2022). A globally-applicable framework for compound flood 

hazard modeling. EGUsphere. Retrieved from 10.5194/egusphere-2022-149

Goodell, C. (2014). Breaking the HEC-RAS Code: A user’s guide to automating HEC-RAS. h2ls, Portland, OR.

Gori, A., Lin, N., & Smith, J. (2020). Assessing compound flooding from landfalling tropical cyclones on the North Carolina coast. Water 
Resources Research, 56, e2019WR026788. https://doi.org/10.1029/2019WR026788

Gori, A., Lin, N., & Xi, D. (2020). Tropical cyclone compound flood hazard assessment: From investigating drivers to quantifying extreme water 

levels. Earth's Future, 8, e2020EF001660. https://doi.org/10.1029/2020EF001660

Gori, A., Lin, N., Xi, D., & Emanuel, K. (2022). Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard. 

Nature Climate Change, 12, 171–178. https://doi.org/10.1038/s41558-021-01272-7

Gouldby, B., Méndez, F. J., Guanche, Y., Rueda, A., & Mínguez, R. (2014). A methodology for deriving extreme nearshore sea conditions for 

structural design and flood risk analysis. Coastal Engineering, 88, 15–26. https://doi.org/10.1016/j.coastaleng.2014.01.012

Gouldby, B., Wyncoll, D., Panzeri, M., Franklin, M., Hunt, T., Hames, D., et al. (2017). Multivariate extreme value modelling of sea conditions 

around the coast of England. Proceedings of the Institution of Civil Engineers-Maritime Engineering (Vol. 170, pp. 3–20). Thomas Telford 

Ltd. https://doi.org/10.1680/jmaen.2016.16

Gräler, B., van den Berg, M., Vandenberghe, S., Petroselli, A., Grimaldi, S., De Baets, B., & Verhoest, N. (2013). Multivariate return periods in 

hydrology: A critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 17(4), 

1281–1296. https://doi.org/10.5194/hess-17-1281-2013

Haigh, I. D., Eliot, M., & Pattiaratchi, C. (2011). Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal 

levels. Journal of Geophysical Research, 116(C6). https://doi.org/10.1029/2010JC006645

Haigh, I. D., Wadey, M. P., Wahl, T., Ozsoy, O., Nicholls, R. J., Brown, J. M., et al. (2016). Spatial and temporal analysis of extreme sea level and 

storm surge events around the coastline of the UK. Scientific Data, 3(1), 1–14. https://doi.org/10.1038/sdata.2016.107

Harrison, L. M., Coulthard, T. J., Robins, P. E., & Lewis, M. J. (2021). Sensitivity of estuaries to compound flooding. Estuaries and Coasts. 

https://doi.org/10.1007/s12237-021-00996-1

HEC. (2002). User’s manual. Retrieved from www.hec.usace.army.mil/software/hec-ras/

Heffernan, J. E., & Tawn, J. A. (2004). A conditional approach for multivariate extreme values (with discussion). Journal of the Royal Statistical 
Society Series B (Statistical Methodology), 66(3), 497–546. https://doi.org/10.1111/j.1467-9868.2004.02050.x

Hicks, F. E., & Peacock, T. (2005). Suitability of HEC-RAS for flood forecasting. Canadian Water Resources Journal, 30(2), 159–174. https://

doi.org/10.4296/cwrj3002159

Huţanu, E., Mihu-Pintilie, A., Urzica, A., Paveluc, L. E., Stoleriu, C. C., & Grozavu, A. (2020). Using 1D HEC2004-RAS modeling and LiDAR 

data to improve flood hazard maps’ accuracy: A casestudy from Jijia floodplain (NE Romania). Water, 12(6), 1624. https://doi.org/10.3390/

w12061624

Jane, R., Cadavid, L., Obeysekera, J., & Wahl, T. (2020). Multivariate statistical modelling of the drivers of compound flood events in South 

Florida. Natural Hazards and Earth System Sciences, 20, 2681–2699. https://doi.org/10.5194/nhess-20-2681-2020

Jane, R., Wahl, T., Santos, V. M., Misra, S. K., & White, K. D. (2022). Assessing the potential for compound storm surge and extreme river 

discharge events at the catchment scale with statistical models: Sensitivity analysis and recommendations for best-practice. Journal of Hydro-
logic Engineering, 27(3), 04022001. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002154

Jhong, B. C., Wang, J. H., & Lin, G. F. (2017). An integrated two-stage support vector machine approach to forecast inundation maps during 

typhoons. Journal of Hydrology, 547, 236–252. https://doi.org/10.1016/j.jhydrol.2017.01.057

Juárez, B., Stockton, S. A., Serafin, K. A., & Valle-Levinson, A. (2022). Compound flooding in a subtropical estuary caused by Hurricane Irma 

2017. Geophysical Research Letters, e2022GL099360. https://doi.org/10.1029/2022GL099360

Katz, B. G., DeHan, R. S., Hirten, J. J., & Catches, J. S. (1997). Interactions between ground water and surface water in the Suwannee River 

basin, Florida. Journal of the American Water Resources Association, 33(6), 1237–1254. https://doi.org/10.1111/j.1752-1688.1997.tb03549.x

Keef, C., Tawn, J. A., & Svensson, C. (2009). Spatial risk assessment for extreme river flows. Journal of Applied Statistics, 58, 601–618. https://

doi.org/10.1111/j.1467-9876.2009.00672.x

Kendall, M. G. (1975). Rank correlation methods. Oxford University Press.

Kennard, R. W., & Stone, L. A. (1969). Computer aided design of experiments. Technometrics, 11(1), 137–148. https://doi.org/10.1080/004017

06.1969.10490666

Kim, H., Villarini, G., Jane, R., Wahl, T., Misra, S., & Michalek, A. (2022). On the generation of high-resolution probabilistic design events 

capturing the joint occurrence of rainfall and storm surge in coastal basins. International Journal of Climatology, 1–11. https://doi.org/10.1002/

joc.7825

Kumbier, K., Carvalho, R. C., Vafeidis, A. T., & Woodroffe, C. D. (2018). Investigating compound flooding in an estuary using hydrodynamic model-

ling: A case study from the Shoalhaven river, Australia. Hazards Earth System Sciences, 18, 463–477. https://doi.org/10.5194/nhess-18-463-2018

uncor
rec

ted
 proo

fulation for coation fo

Managementgement, 12, e

H. (2021). Accounting for tropic). Accounting for t

un. Earth and Environmentand Environment, 2, 135. 

astal river flooding and compound er flooding and com

https://doi.org/10.1029/2020WR029i.org/10.1029/2020W

2022). A globally-applicable framewoglobally-applicab

ng HEC-RASRAS. h2ls, Portland, OR.. h2ls, Portland,

om landfalling tropical cyclones on alling tropical

2019WR026788026788

d hazard assessment: From investigatassessment: From in

029/2020EF001660EF001660

yclone climatology change greatly eyclone climatology change g

0.1038/s41558-021-01272-7038/s41558-021-01272-7

& Mínguez, R. (2014). A methodologez, R. (2014). A methodolog

Engineeringng, , 88, 15–26. 15–26. https://doi.oh

, M., Hunt, T., Hames, D., et al. (201nt, T., Hames, D., et

of the Institution of Civil Engineersstitution of Civil En
6.166

erghe, S., Petroselli, A., Grimaldi, S.S., Petroselli, A., Grim

al review focusing on synthetic desigfocusing on synthet

.5194/hess-17-1281-2013ess-17-1281-2013

iaratchi, C. (2011). Global influences. (2011). Global inf

hysical Researchrch, , 1161 (C6). C6) https://do

M. P., Wahl, T., Ozsoy, O., Nicholls, Rhl, T., Ozsoy, O., Nich

ts around the coastline of the UK. he coastline of th Sc
 Coulthard, T. J., Robins, P. E., & Lrd, T. J., Robins, P

.org/10.1007/s12237-021-00996-1007/s12237-021-009

02). User’s manual. Retrieved from r’s manual. R w

nan, J. E., & Tawn, J. A. (2004). A co, & Tawn, J. A. (20

Society Series B (Statistical Methodoeries B (Statistical M
Hicks, F. E., & Peacock, T. (2005). SPeacock

doi.org/10.4296/cwrj3002159i.org/10.4296/cwrj30

Huţanu, E., Mihu-Pintilie, A., nu, E., Mihu-Pinti

data to improve flood hadata to improve

w12061624w12061624

Jane, R., Cadavid, LJane, R., 

Florida. Florid Natura
Jane, R., WahJane R

discharg

logic
Jhon



Water Resources Research

JANE ET AL.

10.1029/2022WR032481

19 of 21

Kupfer, S., Santamaria-Aguilar, S., Van Niekerk, L., Lück-Vogel, M., & Vafeidis, A. (2022). Investigating the interaction of waves and river 

discharge during compound flooding at Breede Estuary, South Africa, Nat. Hazards Earth System Sciences, 22, 187–205. https://doi.

org/10.5194/nhess-22-187-2022

Lan, M., Gardoni, P., Luo, R., Zhu, J., & Lo, S. (2022). Risk-driven statistical modeling for hurricane-induced compound events: Design event 

implementation for industrial areas subjected to coastal floods and winds. Ocean Engineering, 251, 111–159. https://doi.org/10.1016/j.

oceaneng.2022.111159

Lara, J. L., Lucio, D., Tomas, A., Paolo, B. D., & Losada, I. J. (2019). High-resolution time-dependent probabilistic assessment of the hydrau-

lic performance for historic coastal structures: Application to Luarca Breakwater. Philosophical Transactions of the Royal Society A, 377, 

20190016. https://doi.org/10.1098/rsta.2019.0016

Laurel-Castillo, J. A., & Valle-Levinson, A. (2020). Tidal and subtidal variations in water level produced by ocean-river interactions in a subtrop-

ical estuary. Journal of Geophysical Research: Oceans, 125, e2018JC014116. https://doi.org/10.1029/2018JC014116

Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., & Stelling, G. S. (2004). Development and validation of a three-dimensional morphological 

model. Coastal Engineering, 51, 883–915. https://doi.org/10.1016/j.coastaleng.2004.07.014

Liem, R. P., Mader, C. A., & Martins, J. R. R. A. (2015). Surrogate models and mixtures of experts in aerodynamic performance prediction for 

aircraft mission analysis. Aerospace Science and Technology, 43, 126–151. https://doi.org/10.1016/j.ast.2015.02.019

Lin, G. F., & Chen, L. H. (2004). A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology, 289(1–4), 1–8. 

https://doi.org/10.1016/j.jhydrol.2003.10.015

Liudahl, K., Weatherspoon, R. L., & Readle, E. L. (2005). Soil survey of Dixie County, Florida. United States Department of Agriculture, Natural 
Resources Conservation ServiceIn cooperation with the University of Florida, Institute for Food and Agricultural Sciences.

Li, S., Wahl, T., Talke, S. A., Jay, D. A., Orton, P. M., Xinghui, L., et al. (2021). Evolving tides aggravate nuisance flooding along the U.S. coast-

line. Science Advances, 7(10), eabe2412. https://doi.org/10.1126/sciadv.abe2412

Loveland, M., Kiaghadi, A., Dawson, C. N., Rifai, H. S., Misra, S. K., Mosser, H., & Parola, A. (2021). Developing a modeling framework 

to simulate compound flooding: When storm surge interacts with riverine flow. Frontiers in Climate, 2, 609610. https://doi.org/10.3389/

fclim.2020.609610

Lucey, J. T. D., & Gallien, T. W. (2022). Characterizing multivariate coastal flooding events in a semi-arid region: The implications of copula 

choice, sampling, and infrastructure. Natural Hazards and Earth System Sciences, 22, 2145–2167. https://doi.org/10.5194/nhess-22-2145-2022

Majdisova, Z., & Skala, V. (2017). Radial basis function approximations: Comparison and applications. Applied Mathematical Modelling, 51, 

728–743. https://doi.org/10.1016/j.apm.2017.07.033

Malde, S., Wyncoll, D., Oakley, J., Tozer, N., & Gouldby, B. (2016). Applying emulators for improved flood risk analysis. In E3S Web Conference 

(Vol. 7, p. 04002). https://doi.org/10.1051/e3sconf/20160704002

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13, 245–259. https://doi.org/10.2307/1907187

Mattson, R. A., & Rowan, M. E. (1989). The Suwannee River estuary: An overview and research and management needs. In F. E. Davis (Ed.), 

Water: Laws and Management. Betheseda, MD:American Water Resources Association (pp. 14B17–14B31).

McPherson, B. F., & Hammett, K. M. (1991). Tidal rivers of Florida. In R. J. Livingston (Ed.), The Rivers of Florida, Ecological Studies (Vol. 

83, pp. 31–46). Springer-Verlag. https://doi.org/10.1007/978-1-4612-3036-6_3

Medellín, G., Brinkkemper, J. A., Torres-Freyermuth, A., Appendini, C. M., Mendoza, E. T., & Salles, P. (2016). Run-up parameterization and 

beach vulnerability assessment on a barrier island: A downscaling approach. Natural Hazards and Earth System Sciences, 16, 167–180. https://

doi.org/10.5194/nhess-16-167-2016

Miller, A. J. (1990). Flood hydrology and geomorphic effectiveness in the central Appalachians. Earth Surface Processes and Landforms, 15, 

119–134. https://doi.org/10.1002/esp.3290150203

Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew, R. A., & Sanders, B. F. (2019). Linking statistical and hydrodynamic modeling 

for compound flood hazard assessment in tidal channels and estuaries. Advances in Water Resources, 128, 28–38. https://doi.org/10.1016/j.

advwatres.2019.04.009

Mossaa, J., & Konwinski, J. (1998). Thalweg variability at bridges along a large karst river: The Suwannee River, Florida. Engineering Geology, 

49(1), 15–30. https://doi.org/10.1016/S0013-7952(97)00034-3

Muñoz, D. F., Moftakhari, H., & Moradkhani, H. (2020). Compound effects of flood drivers and wetland elevation correction on coastal flood 

hazard assessment. Water Resources Research, 56, e2020WR027544. https://doi.org/10.1029/2020WR027544

Nadal-Caraballo, N. C., Melby, J. A., & Gonzalez, V. M. (2016). Statistical analysis of historical extreme water levels for the U.S. North Atlan-

tic coast using Monte Carlo Life-cycle simulation. Journal of Coastal Research, 317, 35–45. https://doi.org/10.2112/jcoastres-d-15-00031.1

Nasr, A. A., Wahl, T., Rashid, M. M., Camus, P., & Haigh, I. D. (2021). Assessing the dependence structure between oceanographic, fluvial, 

and pluvial flooding drivers along the United States coastline, Hydrol. Earth System Science, 25, 6203–6222. https://doi.org/10.5194/

hess-25-6203-2021

Nelson, N. G., Ward, S., & Ward, D. (2017). Implications of altered freshwater flows on estuarine fish and shellfish: A case study of the lower 
Suwannee River, white paper prepared for the Florida climate Institute. UF Levin College of Law, and UF/IFAS Nature Coast Biological 

Station.

Neupane, R. P., Ficklin, D. L., Knouft, J. H., Ehsani, N., & Cibin, R. (2019). Hydrologic responses to projected climate change in ecologically 

diverse watersheds of the Gulf Coast, United States. International Journal of Climatology, 39, 2227–2243. https://doi.org/10.1002/joc.5947

Orton, P. M., Conticello, F. R., Cioffi, F., Hall, T. M., Georgas, N., Lall, U., et al. (2018). Flood hazard assessment from storm tides, rain and sea 

level rise for a tidal river estuary. Natural Hazards, 102(2), 729–757. https://doi.org/10.1007/s11069-018-3251-x

Parker, J. A., Kenyon, R. V., & Troxel, D. E. (1983). Comparison of interpolating methods for image resampling. IEEE Transactions on Medical 
Imaging, 2(1), 31–39. https://doi.org/10.1109/TMI.1983.4307610

Parker, K., Ruggiero, P. K., Serafin, K., & Hill, D. (2019). Emulation as an approach for rapid estuarine modeling. Coastal Engineering, 150, 

79–93. https://doi.org/10.1016/j.coastaleng.2019.03.004

Pathan, A. I., & Agnihotri, P. G. (2020). Application of new HEC-RAS version 5 for 1D hydrodynamic flood modeling with special reference 

through geospatial techniques: A case of river Purna at Navsari, Gujarat, India, model. Earth Systems and Environment, 1–12. https://doi.

org/10.1007/s40808-020-00961-0

Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. 

Computers and Geosciences, 28(8), 929–937. https://doi.org/10.1016/S0098-3004(02)00013-4

Peters, R., Schmitz, G., & Cullmann, J. (2006). Flood routing modelling with artificial neural networks. Advances in Geosciences, 9, 131–136. 

https://doi.org/10.5194/adgeo-9-131-2006

Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Journal of the Royal Statistical Society: Series C, 28(2), 126–135. 

https://doi.org/10.2307/2346729

uncor
rec

ted
 proo

fan-rivean-rive

8JC014116JC0141

n of a three-dimensithree-di

ts in aerodynamic performance podynamic performa

.1016/j.ast.2015.02.019st.2015.02.01

tion network.. Journal of HydrologyJournal of Hyd

Florida. United States Department ofUnited States Depar
nstitute for Food and Agricultural Scior Food and Agric

Evolving tides aggravate nuisance flog tides aggravate nui

be2412

Mosser, H., & Parola, A. (2021). DH., & Parola,

h riverine flow. flow. Frontiers in ClimateFrontiers in 

variate coastal flooding events in a sestal flooding even

Earth System SciencesEarth System Sciences, , 2222, 2145–216, 21

n approximations: Comparison and approximations: Comparison and 

3

uldby, B. (2016). Applying emulators2016). Applying 

sconf/20160704002160704002

ainst trend. d. EconometricaEconometrica, , 1313, 245–2

The Suwannee River estuary: An ove Suwannee River est

heseda, MD:, MD:American Water Resoumerican Wate

M. (1991). Tidal rivers of Florida. I). Tidal rivers of Fl

lag. https://doi.org/10.1007/978-1-46s://doi.org/10.1007

J. A., Torres-Freyermuth, A., Appenres-Freyermuth, A.

sessment on a barrier island: A downsbarrier island

ess-16-167-201667-2016

0). Flood hydrology and geomorphicydrology and geo

ps://doi.org/10.1002/esp.329015020org/10.1002/esp.32

H., Schubert, J. E., AghaKouchak, ubert, J. E., AghaKo

mpound flood hazard assessment in flood hazar

vwatres.2019.04.00919.04.009

ossaa, J., & Konwinski, J. (1998). Th& Konwinski, J. (19

49(1), 15–30. 0. https://doi.org/10.1https

Muñoz, D. F., Moftakhari, H., &oz, D. F., Moftakhar

hazard assessment. azard assessment. Water R
Nadal-Caraballo, N. C., MNadal-Caraballo,

tic coast using Monttic coast usin

Nasr, A. A., Wahl, Nasr, A.

and pluvial fand p

hess-25-62hes

Nelson, NN

Suw
S

N



Water Resources Research

JANE ET AL.

10.1029/2022WR032481

20 of 21

Pfahl, S., & Wernli, H. (2012). Quantifying the Relevance of cyclones for precipitation extremes. Journal of Climate, 25(19), 6770–6780. https://

doi.org/10.1175/JCLI-D-11-00705.1

R Core Team. (2018). R: A Language and Environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://

www.R-project.org/

Razavi, S., Tolson, B. A., & Burn, D. H. (2012). Review of surrogate modeling in water resources. Water Resources Research, 48, W07401. 

https://doi.org/10.1029/2011WR011527

Robinson, T. D., Eldred, M. S., Willcox, K. E., & Haimes, R. (2008). Surrogate-based optimization using multifidelity models with variable 

parameterization and corrected space mapping. AIAA Journal, 46(11), 2814–2822. https://doi.org/10.2514/1.36043

Rohmer, J., & Idier, D. (2012). A meta-modelling strategy to identify the critical offshore conditions for coastal flooding. Natural Hazards and 
Earth System Sciences, 12, 2943–2955. https://doi.org/10.5194/nhess-12-2943-2012

Rohmer, J., Idier, D., Thieblemont, R., Le Cozannet, G., & Bachoc, F. (2022). Partitioning the contributions of dependent offshore forcing 

conditions in the probabilistic assessment of future coastal flooding. Natural Hazards and Earth System Sciences, 22, 3167–3182. https://doi.

org/10.5194/nhess-22-3167-2022

Rueda, A., Gouldby, B., Mendez, F. J., Tomas, A., Losada, I. J., Lara, J. L., & Diaz-Simal, P. (2016). The use of wave propagation and reduced 

complexity inundation models and metamodels for coastal flood risk assessment. Journal of Flood Risk Management, 9, 390–401. https://doi.

org/10.1111/jfr3.12204

Sacks, J., Welch, W. J., Mitchell, J. S. B., Henry, P. W., Mitchell, T. J., & Wynn, H. P. (1989). Design and experiments of computer experiments. 

Statistical Sciences, 4(4), 409–423. https://doi.org/10.1214/ss/1177012413

Saleh, F., Ramaswamy, V., Wang, Y., Georgas, N., Blumberg, A., & Pullen, J. (2017). A multi-scale ensemble-based framework for forecast-

ing compound coastal-riverine flooding: The Hackensack-Passaic watershed and Newark Bay. Advances in Water Resources, 110, 371–386. 

https://doi.org/10.1016/j.advwatres.2017.10.026

Salvadori, G., De Michele, C., & Durante, F. (2011). On the return period and design in a multivariate framework. Hydrology and Earth System 
Sciences, 15(11), 3293–3305. https://doi.org/10.5194/hess-15-3293-2011

Salvadori, G., Durante, F., De Michele, C., Bernardi, M., & Petrella, L. (2016). A multivariate copula-based framework for dealing with hazard 

scenarios and failure probabilities. Water Resources Research, 52, 3701–3721. https://doi.org/10.1002/2015WR017225

Santiago-Collazo, F. L., Bilskie, M. V., & Hagen, S. C. (2019). A comprehensive review of compound inundation models in low-gradient coastal 

watersheds. Environmental Modelling and Software, 119, 166–181. https://doi.org/10.1016/j.envsoft.2019.06.002

Santos, V. M., Casas-Prat, M., Poschlod, B., Ragno, E., van den Hurk, B., Hao, Z., et al. (2021). Statistical modelling and climate variability of 

compound surge and precipitation events in a managed water system: A case study in The Netherlands, Hydrology and Earth System Sciences, 

25(6), 3595–3615. https://doi.org/10.5194/hess-25-3595-2021

Santos, V. M., Wahl, T., Jane, R., Misra, S. K., & White, K. D. (2021). Assessing compound flooding potential with multivariate statistical models 

in a complex estuarine system under data constraints. Journal of Flood Risk Management, 14(4), e12749. https://doi.org/10.1111/jfr3.12749

Santos, V. M., Wahl, T., Long, J. W., Passeri, D. L., & Plant, N. G. (2019). Combining numerical and statistical models to predict storm-induced 

dune erosion. Journal of Geophysical Research: Earth Surface, 124, 1817–1834. https://doi.org/10.1029/2019JF005016

Seavey, J. R., Pine, W. E., III, Frederick, P., Sturmer, L., & Berrigan, M. (2011). Decadal changes in oyster reefs in the Big bend of Florida's Gulf 

coast. Ecosphere, 2(10), 114. https://doi.org/10.1890/ES11-00205.1

Serafin, K. A., Ruggiero, P., Parker, K., & Hill, D. F. (2019). What's streamflow got to do with it? A probabilistic simulation of the competing 

oceanographic and fluvial processes driving extreme along-river water levels. Natural Hazards and Earth System Sciences, 19(7), 1415–1431. 

https://doi.org/10.5194/nhess-19-1415-2019

Serinaldi, F. (2015). Dismissing return periods! Stoch. Environmental Research and Risk Assesment, 29(4), 1179–1189. https://doi.org/10.1007/

s00477-014-0916-1

Shen, Y., Morsy, M. M., Huxley, C., Tahvildari, N., & Goodall, J. L. (2019). Flood risk assessment and increased resilience for coastal urban 

watersheds under the combined impact of storm tide and heavy rainfall. Journal of Hydrology, 157, 124159. https://doi.org/10.1016/j.

jhydrol.2019.124159

Silva-Araya, W., Santiago-Collazo, F., Gonzalez-Lopez, J., & Maldonado-Maldonado, J. (2018). Dynamic modeling of surface runoff and storm 

surge during hurricane and tropical storm events. Hydrology, 5, 13. https://doi.org/10.3390/hydrology5010013

Smith, R. L., & Weissman, I. (1994). Estimating the extremal index. Journal of the Royal Statistical Society: Series B, 56(3), 515–528. https://

doi.org/10.1111/j.2517-6161.1994.tb01997.x

Soleymani, S. A., Goudarzi, S., Anisi, M. H., Hassan, W. H., Idris, M. Y. I., Shamshirband, S., & Ahmedy, I. (2016). A novel method to water 

level prediction using RBF and FFA. Water Resources Management, 30(9), 3265–3283. https://doi.org/10.1007/s11269-016-1347-1

SRWMD, (2005). MFL establishment for the lower Suwannee River & Estuary. Little Fanning, Fanning & Manatee Springs, Technical Report.

SRWMD. (2014). Retrieved from https://www.mysuwanneeriver.com/DocumentCenter/Index/78

Sulak, K. J., & Clugston, J. P. (1998). Early life history stages of Gulf sturgeon in the Suwannee River, Florida. Transactions of the American 
Fisheries Society, 127(5), 758–771. https://doi.org/10.1577/1548-8659(1998)127<0758:ELHSOG>2.0.CO;2

Sweet, W. V., Hamlington, B. D., Kopp, R. E., Weaver, C. P., Barnard, P. L., Bekaert, D., et al. (2022). Global and regional sea level rise scenar-

ios for the United States: Updated mean Projections and extreme water level probabilities along U.S. Coastlines. In NOAA Technical Report 
NOS 01 (p. 111). National Oceanic and Atmospheric Administration, National Ocean Service. Retrieved from https://oceanservice.noaa.gov/

hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf

Talke, S. A., & Jay, D. A. (2020). Changing tides: The role of natural and anthropogenic factors. Annual Review of Marine Science, 12, 121–151. 

https://doi.org/10.1146/annurev-marine-010419-010727

The Howard T. Oden Florida Springs Institute. (2015). Lower Suwannee River springs restoration plan. Retrieved from https://floridaspringsin-

stitute.org/wp-content/uploads/2018/07/Lower-Suwannee-River-Springs-Restoration-Action-Plan-final.pdf

Torres, J. M., Bass, B., Irza, N., Fang, Z., Proft, J., Dawson, C., et al. (2015). Characterizing the hydraulic interactions of hurricane storm surge 

and rainfall-runoff for the Houston-Galveston region. Coastal Engineering, 106, 7–19. https://doi.org/10.1016/j.coastaleng.2015.09.004

Valle-Levinson, A. (2012). Impact of record flooding of a subtropical river on estuary/ocean exchange. Ocean Dynamics, 62, 77–85. https://doi.

org/10.1007/s10236-011-0491-7

Valle-Levinson, A., Olabarrieta, M., & Heilman, L. (2020). Compound flooding in Houston-Galveston Bay during hurricane Harvey. Science of 
the Total Environment, 747, 141272. https://doi.org/10.1016/j.scitotenv.2020.141272

van den Hurk, B., van Meijgaard, E., de Valk, P., van Heeringen, K.-J., & Gooijer, J. (2015). Analysis of a compounding surge and precipitation 

event in The Netherlands. Environmental Research Letters, 10(3), 1–10. https://doi.org/10.1088/1748-9326/10/3/035001

van Ormondt, M., Roelvink, D., & van Dongeren, A. P. (2021). A model-derived empirical formulation for wave run-up on naturally sloping 

beaches. Journal of Marine Science and Engineering, 9(11), 1185. https://doi.org/10.3390/jmse9111185

uncor
rec

ted
 proo

fons of depens of de

Sciencesnces, , 2222, 3167

). The use of wave propagation se of wave propaga

lood Risk ManagementManagemen , 99, 390–401., 39

9). Design and experiments of compgn and experiments o

17). A multi-scale ensemble-based fmulti-scale ensem

and Newark Bay. ark Bay. Advances in WaterAdvances i

and design in a multivariate framewgn in a multiv

2011

a, L. (2016). A multivariate copula-b6). A multivariate c

52, 3701–3721. –3721. https://doi.org/10.1https://doi

). A comprehensive review of compo. A comprehensive review of

9, 166–181. 166–181. https://doi.org/10.1016/jhttps://doi.org/10.1016

, van den Hurk, B., Hao, Z., et al. (2n Hurk, B., Hao, Z., et al. (2

naged water system: A case study in Tr system: A case

ss-25-3595-202195-2021

 & White, K. D. (2021). Assessing coe, K. D. (2021). Asse

ta constraints. constraints. Journal of Flood RiskJournal of
asseri, D. L., & Plant, N. G. (2019). CD. L., & Plant, N. G. 

sical Research: Earth Surfacearch: Earth Surface, 124
ederick, P., Sturmer, L., & Berrigan, MP., Sturmer, L., & B

14. https://doi.org/10.1890/ES11-002doi.org/10.1890/ES

P., Parker, K., & Hill, D. F. (2019). W, & Hill, D. F

fluvial processes driving extreme alonocesses driving extre

0.5194/nhess-19-1415-2019s-19-1415-2019

15). Dismissing return periods! Stochmissing return perio

4-0916-1

Morsy, M. M., Huxley, C., TahvildaM. M., Huxl

ersheds under the combined impactunder the combine

hydrol.2019.124159019.124

Silva-Araya, W., Santiago-Collazo, F., Santia

surge during hurricane and troprge during hurricane 

Smith, R. L., & Weissman, I. h, R. L., & Weissm

doi.org/10.1111/j.2517-6doi.org/10.1111

Soleymani, S. A., GoudSoleymani, S. A

level prediction usp

SRWMD, (2005).SRWMD

SRWMD. (201SRWM

Sulak, K. JSu

Fishe
Swee



Water Resources Research

JANE ET AL.

10.1029/2022WR032481

21 of 21

Villarini, G., & Smith, J. A. (2010). Flood peak distributions for the eastern United States. Water Resources Research, 46(6), W06504. https://

doi.org/10.1029/2009WR008395

Wahl, T., Jain, S., Bender, J., Meyers, S. D., & Luther, M. E. (2015). Increasing risk of compound flooding from storm surge and rainfall for major 

US cities. Nature Climate Change, 5(12), 1093–1097. https://doi.org/10.1038/nclimate2736

Willett, P. (1999). Dissimilarity-based algorithms for selecting structurally diverse sets of compounds. Journal of Comparative Biology, 6, 

447–457. https://doi.org/10.1089/106652799318382

Wu, W., Westra, S., & Leonard, M. (2021). Estimating the probability of compound floods in estuarine regions. Hydrology and Earth System 
Sciences, 25, 2821–2841. https://doi.org/10.5194/hess-25-2821-2021

Wyncoll, D., & Gouldby, B. (2015). Integrating a multivariate extreme value method within a system flood risk analysis model. Journal of Flood 
Risk Management, 8, 145–160. https://doi.org/10.1111/jfr3.12069

Yi, X. (2011). A dam break analysis using HEC-RAS. Journal of Water Resource and Protection, 3(6), 370–379. https://doi.org/10.4236/

jwarp.2011.36047

Zahura, F. T., & Goodall, J. L. (2022). Predicting combined tidal and pluvial flood inundation using a machine learning surrogate model. Journal 
of Hydrology: Regional Studies, 41, 101087. https://doi.org/10.1016/j.ejrh.2022.101087

Zahura, F. T., Goodall, J. L., Sadler, J. M., Shen, Y., Morsy, M. M., & Behl, M. (2020). Training machine learning surrogate models from a 

high-fidelity physics-based model: Application for real-time street-scale flood prediction in an urban coastal community. Water Resources 
Research, 56, e2019WR027038. https://doi.org/10.1029/2019WR027038

Zheng, F., Westra, S., Leonard, M., & Sisson, S. A. (2014). Modeling dependence between extreme rainfall and storm surge to estimate coastal 

flooding risk. Water Resources Research, 50(3), 2050–2071. https://doi.org/10.1002/2013WR014616

uncor
rec

ted
 proo

f, 370–379. 370–37

machine learning surrogatearning su

ning machine learning surrogate mohine learning surro

n in an urban coastal community.n coastal commu W

tween extreme rainfall and storm surreme rainfall and sto

002/2013WR0146163WR0146


