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the subsequent estimation of their joint annual exceedance probabilities (AEPs). The
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magnitude of the joint AEPs to extreme discharge and extreme nitrate loads exhibit
different structures across the different sites, highlighting the different roles of these
two quantities in controlling their compounding. In examining the ranges in design
values for a given AEP, we found that the largest variability in highly likely val-

ues was generally associated with high agricultural intensity, high hog density, and

fertilizer expenditures.

1 | INTRODUCTION winds) (Tilloy et al., 2021, 2020; Zscheischler et al., 2020).

While there are growing efforts to examine the joint risk

Compound extremes have been receiving growing atten-
tion and have been identified as a priority research area
by the World Climate Research Program. Compound
extremes can be largely grouped into four main categories:
preconditioned, multivariate, spatially, and temporally
compounding (Zscheischler et al., 2020). Among the mul-
tivariate compounding events, we can include, for example,
compound flooding (e.g., riverine and coastal flooding),
compound drought and heat (e.g., high temperature and
low precipitation), humid heatwave (e.g., high temperature
and atmospheric humidity), and compound precipitation
and wind extremes (e.g., heavy precipitation and extreme

of compound events related to hydrologic variables such as
floods (Sebastian et al., 2017; Wahl et al., 2015; Zellou &
Rahali, 2019) and droughts (Manning et al., 2018; Ribeiro
et al.,, 2019), one multivariate compound event that has
received limited attention in the literature is the potential
connection between water quantity and water quality. For
instance, Oeurng et al. (2010) focused on a basin located in
south-west France and examined 19 flood events; they found
that nitrate transport was correlated with total precipitation,
flood duration, peak discharge, and total water yield, while
peak nitrate concentrations were not strongly controlled by
peak discharge. Wang et al. (2017) developed a bivariate
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model to relate discharge and nitrate/phosphorous to identify
management strategies to mitigate water quality and quality
issues of reservoir inflows. Liu et al. (2022) used a copula-
based approach to develop an index that integrates water
quality and quantity. Despite these efforts, the emphasis is
generally not within the realm of a compound framework
using multivariate extreme value analysis.

The natural hazards associated with water quantity and
quality events have large societal and economic implica-
tions, especially in areas that have been experiencing a major
intensification in agricultural practices. For example, since
the 1940s the US Midwest has experienced a switch from
perennial vegetation to seasonal row cropping, with large
areas that have been intensively cultivated in corn and soy-
bean (Zea mays and Glycine max). As a consequence of the
changes in agricultural practices, nitrogen pollution has had
major environmental and public health impacts. The Mis-
sissippi River Basin acts as the thread connecting the US
Midwest to the Gulf of Mexico, where these large nitrogen
loads cause algae blooms and the “Dead Zone” (Mueller
& Helsel, 1996; Turner & Rabalais, 1994). From a human
health perspective, the Environmental Protection Agency lim-
its nitrate in drinking water to 10 mg/L because of issues
related to “blue baby syndrome” with growing awareness
of the chronic health effects for even lower concentrations
over long exposure periods (Ward et al., 2018). Because of
these issues, the Mississippi River/Gulf of Mexico Water-
shed Nutrient Task Force was established in 1997, which led
to an action plan in 2008 for the establishment of nutrient
reduction strategies for each of the 12 states along the Mis-
sissippi River. The Nutrient Reduction Strategy called for
a 45% reduction in annual nitrogen. The America’s Water-
shed Initiative’s 2020 report card for the Mississippi River
Basin (https://americaswatershed.org/reportcard/) rated the
river’s water quality as very poor, with conditions worsening
with respect to their 2015 report card. Despite these major
warnings, nitrate loads have increased in recent years. For
instance, according to the lowa Nutrient Reduction Strategy
(https://store.extension.iastate.edu/product/15915) the nitrate
loads between 2006 and 2010 have increased by ~5% com-
pared to the 1980-1986 period. Jones et al. (2018) analyzed
the nitrate loads leaving Iowa between 1999 and 2016, and
found that they have been increasing over the study period.
Moreover, they did not attribute these changes to discharge or
cropping intensity, and mentioned tile drainage as a poten-
tial factor. As we look into the future, Zhang et al. (2022)
found that nitrate loads are projected to increase. Assuming
that agricultural and management practices remain the same,
they project an increase up to 30% in nitrogen loading, and
attributed about half of this increase to heavy precipitation.

Issues related to water quality are just one side of the coin.
The central United States is an area of the country that has
been significantly affected by flooding as well, with the 2019
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Core Ideas

* The bivariate models using nitrate loads and dis-
charge across different sites in the state of lowa are
developed.

» Joint annual exceedance probabilities of two key
events when at least one is extreme are estimated.

* The largest variability in highly likely values tends
to be associated with high agricultural intensity.

Missouri-Mississippi flood being the latest major event affect-
ing the region. These events cause numerous fatalities and
claim a large economic toll. Because of its impacts, many
studies have examined the changes in the magnitude of annual
maximum flood peaks. For instance, Villarini et al. (2011)
examined trends in annual flood peaks at gauges with 75
years of record for the Midwest (16 in Iowa), finding that it
was possible to detect abrupt or gradual changes only at a
handful of sites. Archfield et al. (2016) examined the mul-
tidimensional behavior of flood changes for stream gauges
across the United States, finding limited evidence for changes
in the flood frequency, duration, peak magnitude, and volume
in Jowa. Another important characteristic of annual maximum
flood peaks is the frequency of events, for which there is
stronger evidence of change. For example, Mallakpour and
Villarini (2015) examined the frequency of annual maximum
daily floods from 1962 to 2011 using a peaks-over-threshold
(POT) approach. They found over 20 gauges in Iowa with
a significant trend in the frequency of flood events. Slater
and Villarini (2016) analyzed the number of days above
the action and minor-stage flood level established by the
National Weather Service and found increasing trends. Neri
et al. (2019) showed that there are increasing trends in the
number of flood events in the spring, summer, and fall
seasons.

Intuitively, given that nitrate loads represent the product of
nitrate concentration and discharge, it is reasonable to assume
that nitrate loads are large when discharge is large, as is the
case during floods. Hence, we can hypothesize that flood-
ing and nitrate loads represent compound hazards, and they
should be studied together rather than in isolation, evalu-
ating the risks of co-occurring extremes of water quantity
and quality. One key approach for analyzing the joint risk
of compound events is through copulas. Copulas have been
widely used in hydrology because of their flexibility (Chen &
Guo, 2019; Genest & Favre, 2007; Salvadori & De Michele,
2007; Zhou et al., 2021), and represent the modeling tool
used here. Therefore, the goal of this study is to model the
dependence between discharge and nitrate loads when at least
one is extreme in different agricultural watersheds in Iowa,
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FIGURE 1 Location of the seven USGS stations and their basin boundaries, with information about the corn and soybean in 2020 as

background (https://nassgeodata.gmu.edu/CropScape/). The scatterplots show the results based on the two samples conditioning on discharge (blue
circles) and N loads (red crosses). The values in each scatterplot represent the Kendall’s tau coefficient depending on whether N loads or discharge

are the conditioning variable.

estimating their joint annual exceedance probabilities (AEPs)
using bivariate copulas.

The rest of this paper is organized as follows. We describe
data and methodology in the next section. Then, we present
our results and discussion in Section 3. Section 4 summarizes
the main findings and concludes the study.

2 | DATA AND METHODOLOGY

This study focuses on seven USGS sites in Iowa (Figure 1).
We select these locations because they satisfied two condi-
tions (1) the measurements of both daily mean discharge and
daily mean nitrate plus nitrite (NO; + NO,) loads (we will
refer to it as “N loads”) are available; and (2) the period of
record for daily N loads is longer than 10 years. There are
some gaps in the daily N loads time-series data (Figure 2).
In this study, we calculate the daily N loads by multiplying
N concentrations by daily discharge (units:ton/day). Further-
more, we select the years in which the completeness of the
data records for both daily discharge and N load are over 70%
during the March—-November months (i.e., we excluded the

winter season because of frozen conditions and extremely lim-
ited sampling during these months). Table 1 presents basic
information of the sites and basins used in this study. The
catchments are a few thousand square kilometers in size, with
two of them almost an order of magnitude larger than the rest
(i.e., 16,425 and 32,374 kmz). Agriculture is very intensive in
this area, with the percentage of the basins cultivated in corn
and soybean ranging between 55% and 82%. There is also a
large number of hogs, generally part of animal feeding oper-
ations or concentrated animal feeding operations, and large
expenses in fertilizers, all pointing to large amounts of nitrates
applied and available in these basins.

In this study, we use a POT method that selects events above
a sufficiently high threshold (Smith, 1984). The advantage
of using a POT approach over an annual-maximum one is
that it allows us to select the multiple extremes in the same
block regardless of the year in which they happened (San-
tos et al., 2021). We apply a two-sided conditional sampling
method that can address an asymmetric problem as extreme
discharges and extreme N loads do not have to happen con-
currently. Accordingly, we have two types of POT events to
select, depending on whether N loads or discharge are the
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FIGURE 2 Completeness of data record for daily discharge (left panel) and N load (right panel) at the seven selected USGS sites (see their

location in Figure 1).

conditioning variables (Bender et al., 2016; Jane et al., 2020;
Kim et al., 2022). For the conditioning variable, we first select
the POT events by setting a threshold that returns five events
per year on average and allows only one peak in a + 5-day
window to ensure independence of the POT events (Lang
et al., 1999). Then, we also select the concurrent events as the
largest daily value of non-conditioning variable (i.e., N loads
or discharge depending on whether discharge and N loads
are the conditioning variables, respectively) within a 7-day
window of selected POT events.

To model the bivariate relation between two variables (i.e.,
peak discharge and concurrent N loads, or peak N loads and
concurrent discharge), we use copulas and the framework
described by Jane et al. (2020). A copula C is a multivariate
cumulative distribution function (CDF) with uniform dis-
tributed marginals in [0,1] (Joe, 1997). Sklar’s theorem (Sklar,
1959) states that the joint CDF H of two variables X and Y,
with marginal CDFs F and G, can be expressed as follows:

H (x,y) = C[F(x),G(y)] ey

where if F and G are continuous, then C is unique.
Any bivariate joint distribution can thus be decomposed
into a copula and the two marginal distributions, enabling
the dependence between the variables to be modeled,
through a copula, independently from their marginal dis-
tributions. Copulas consequently offer more flexibility
than traditional bivariate modeling approaches where the

joint distribution often constrains the choice of marginal
distributions.

Parametric (or theoretical) copula families are copulas that
can be expressed explicitly using one or more parameters.
When combined with parametric marginal distributions, para-
metric copula families yield a fully parametric joint CDF, and
thus provide a convenient way of describing the dependence
between a pair of variables. Essentially the copula family con-
trols the form of the dependence while the parameter(s) reflect
the strength of the dependence. The rich array of bivariate
copula families can represent a range of correlations, sym-
metries, and tail dependence, that is, the tendency for the
extremes to coincide (Genest & Favre, 2007). The parame-
ter(s) is typically estimated either directly from a dependence
measure such as Kendall’s T (if a theoretical relationship
exists) or through inference based on the true empirical copula
(Sadegh et al., 2017). Early applications of copulas in hydrol-
ogy primarily concerned flood frequency analysis (e.g., De
Michele & Salvadori, 2003; Favre et al., 2004). Since then,
bivariate copulas have gone on to account for spatial corre-
lations of extremes at neighboring sites (e.g., Bender et al.,
2016), been used in stochastic design storm generators (e.g.,
Kim et al., 2022; Vandenberghe et al., 2010) among other
applications encompassing a variety of hydroclimatic vari-
ables (Tootoonchi et al., 2022). A flurry of recent studies
chose copulas to model the joint probabilities of co-occurring
high freshwater fluxes (rainfall/river discharge) and high sea
levels (e.g., Wahl et al., 2015); this is motivated by impactful
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events such as Hurricane Sandy (2012) and Hurricane Harvey
(2017), where the interaction of these drivers likely exacer-
bated flooding. For more information on copulas, the reader
is referred to Nelsen (2007).

Here we select the marginal distributions and apply the
copula modeling based on the following steps regardless of
the conditioning variable. The first step is to fit the marginal
distributions to the POT values of the conditioning variable
and the corresponding conditioned variable. For the POT
events, we use the generalized Pareto distribution as it is the
appropriate distribution when dealing with exceedances of
a high threshold. For the conditioned variable, we select an
appropriate distribution among 12 possible candidates (i.e.,
Birnbaum-Saunders, exponential, gamma, lognormal, nor-
mal, Tweedie, Weibull, logistic, Laplace, Gumbel, reversed
Gumbel, and generalized gamma) with respect to the Akaike
information criterion (AIC; Akaike, 1978). After estimating
the marginal distributions, we consider 40 possible copula
models (independence, Gaussian, Student 7, Clayton, Gumbel,
Frank, Joe, BB1, BB6, BB7, BBS, Survival Clayton, Survival
Gumbel, Survival Joe, Survival BB1, Survival BB6, Survival
BB7, Survival BBS, rotated Clayton (90, 270°), rotated Gum-
bel (90, 270°), rotated Joe (90, 270°%), rotated BB1 (90, 270°),
rotated BB6 (90, 270°), rotated BB7 (90, 270°), rotated BB8
(90, 270°), Tawn type 1, rotated Tawn type 1 (90, 180, 270°),
Tawn type 2, rotated Tawn type 2 (90, 180, 270°)) and select
the “best” one based on AIC. Consequently, we obtain two
bivariate models for each station, which we bring together
using the methodology described by Bender et al. (2016) to
estimate the isolines for different joint AEPs. Given the two
isolines (i.e., one from each copula model), we overlap them
and take their outer envelope. To estimate the most proba-
ble event, we first generate 1,000,000 sample pairs of two
samples (i.e., extreme discharge and N loads or extreme N
loads and discharge) from the fitted models through Monte
Carlo simulations; we then calculate the relative probability
of events along the isoline using a kernel density estimate.
Finally, we identify the most probable event on the com-
bined isoline based on the relative probability of each point.
A detailed description of combining two isolines is provided
by Bender et al. (2016) and Jane et al. (2020). We assume
stationary in our statistical modeling.

3 | RESULTS AND DISCUSSION

Figure | shows the statistical correlation between discharge
and N load events for each site depending on which one is the
conditioning variable, hence there are two Kendall’s 7 values.
Based on Kendall’s 7, the discharge and N loads are correlated
for each of the basins, with correlation coefficients ranging
from 0.33 to 0.66. All of Kendall’s 7 correlations are signifi-
cant at the 5% level, pointing to the need to treat these events

Journal of Environmental Quality 711

combined, rather than in isolation from each other. More-
over, many of the POT events are the same regardless of the
conditioning variable, indicating that extreme discharge and
extreme N loads tend to occur together.

To develop a bivariate model, we need to estimate the
marginal distribution of each variable and a copula. Figures 3
and 4 show the results from fitting the marginal distribu-
tions for the samples conditioned on discharge and N loads
for each of the seven sites. The generalized Pareto distribu-
tion can describe well the conditioning variable (left columns
in Figures 3 and 4) across the different sites. For the non-
conditioning variable, we consider 12 possible distributions
and select the best one with respect to AIC. As summarized in
Table 2, the gamma and lognormal distributions are selected
most frequently as marginal distributions for the N loads, and
the generalized gamma (gamma3) and lognormal distribu-
tions are selected most frequently as marginal distributions
for discharge. Moreover, as shown in the middle column of
Figures 3 and 4, the fitted distributions can accurately repre-
sent the observations. The results from fitting all 12 marginal
distributions are shown in Figures S1 and S2.

In addition to the marginal distributions, we need to select
a copula model, and we use AIC as selection criterion. As
shown in Table 2, there is not a single model that is fre-
quently selected, suggesting that the dependence structure
between the two variables is not homogeneous across the
state: this variability in dependence is visualized in the right
column of Figures 3 and 4, where different sites exhibit
different bivariate relationships requiring different copulas.
Despite this variability, the selected copulas reproduce the
joint dependence between discharge and N loads.

Once we have identified the different distributions and cop-
ulas, we can use this information to estimate the isolines for
various AEPs, as shown in Figure 5 for return periods of 2,
5, 10, 25, 50, and 100 years (i.e., 0.5, 0.2, 0.1, 0.04, 0.02, and
0.01 AEPs) at the seven sites. These curves represent the outer
envelope of the isolines derived from the two conditional sam-
ples. As expected from the different bivariate models, each
location has a different structure. If we use the relative prob-
ability of occurrence of a given pair for the combined isoline,
USGS 05412500 exhibits a tight range with a very high den-
sity (Figure 5a) compared to the other locations. One possible
reason for this behavior has to do with the selected copulas, for
which most of the mass is concentrated along a narrow region.
Moreover, compared to the other basins, the percentage of
the basin cultivated in corn and soybean for USGS 05412500
is the smallest among the selected watersheds, together with
some of the smallest expenses in fertilizer and hog density.

The other basins have a much wider range of highly likely
values (Figure 5). Compared to USGS 05412500, these basins
are characterized by higher agricultural intensity, higher
expenses in terms of fertilizers, and generally higher hog den-
sity. When we look at the three nested sites USGS 05482300,
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FIGURE 3  Left column: Results of fitting the POT discharge events with a generalized Pareto distribution (GP). Middle column: Results of
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intervals. In all the panels, the black circles are the observations. Each row provides the results for each USGS station.
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05482500, and 05484500, the range with a high probabil-
ity density is narrower for USGS 05484500, which is the
largest basin and the most downstream station. It has the low-
est percentage of harvested corn and soybeans acreage (i.e.,
73% vs. 82%), the lowest hog density (i.e., 216 vs. 252 and 260
hogs/km?) and the lowest amount of dollars spent in fertilizers
(i.e., $14 M/km? vs. ~$15 M/km?). Thus, one possible way to
interpret these results is that, all else equal, there is a broader
range of highly likely discharge and N loads values for basins
that have been subject to intensive agriculture, compared to
those who have been exporting lower N loads.

There is also variability in terms of the dependence of
the most probable bivariate event on discharge values. For
instance, for USGS 05412500, 05464420, 05484500, and
06817000, the most probable events tend to align on a sloped
line for increasing AEPs, pointing to their dependence on
both N loads and discharge. On the other hand, for USGS
05465500, 0548230, and 05482500, much of the variability
in the most probable AEP values is driven by N loads, with
discharge values around 2000 m3/s, 200 m3/s, and 300 m3/s.
While it is not immediately possible to come up with a defini-
tive reason for these differences, one element that these three
sites have in common is that they are basins that have been
subject to high agricultural intensity, a high density of hogs,
and large expenditures in terms of fertilizer.

The results in Figure 5 are based on using the “best”
marginal distribution. Here, we also explore the sensitivity of
the results to the selection of marginal distribution, comparing
the results in Figure 5 against those obtained from the second-
and third-best marginal distributions. The second- and third-

best marginal distributions for discharge and N loads fit well
the observations, with small differences in performance com-
pared to the best one according to the AIC (see Figures S3 and
S4). The combined isolines show that there are small differ-
ences up to 0.1 AEPs, which become larger for smaller AEPs
(Figure S5). Moreover, the combined isolines with the best
marginal distributions mostly estimates larger discharge and
N loads for a given AEP, resulting in more conservative design
values in light of the observed compounding. One element
worth highlighting is that the largest differences among iso-
lines tend to occur when the generalized gamma distribution
(Gam3) is selected for discharge; this is a distribution with a
heavier tail than the others, leading to generally larger events
for low AEPs.

4 | CONCLUSIONS

In this study, we developed bivariate models to describe the
compound effects of extreme discharge and extreme N loads at
seven locations across the state of lowa. The main conclusions
of our work can be summarized as follows:

e The generalized Pareto distribution describes well the
observational peak discharge and N loads records, while
the lognormal, Weibull, generalized gamma, and gamma
distributions are appropriate for the coinciding N loads and
discharge. In terms of copula models, the selected copula
varies across sites reflecting the diverse nature of bivariate
dependence across the sites.
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e The joint AEPs exhibit different dependence structures,
highlighting differences in the controlling roles of dis-
charge and N loads.

e We examined the role of agricultural intensity (i.e., har-
vested corn and soybean acreage as a percentage of the
entire watershed), hog density (i.e., proxy for manure,
hence nitrate), and fertilizer expenditures in explaining the
variability in results. We found that the basins for which
there was a broad range of highly likely values for a given
AEP were also some of the most intensively farmed ones,
with high hog density and fertilizer expenditures.

e Different marginal distributions tend to describe well the
observations. We show that the isolines tend to be sensi-
tive to the choice of marginal distribution, especially for
low AEPs due to the large sampling uncertainties and the
relatively short records considered here.

The results of our study about water quantity and qual-
ity expand our understanding of the nature of compound
extremes to a topic that has received limited attention in the
literature. While our emphasis was on N loads at seven sites
in Iowa, the methodology and approach are general and could
be extended to other sites for which long-term records are
available as well as to other pollutants.

We provide an initial assessment of the potential drivers
that could explain the variability in results among the different
sites. However, more work needs to be performed to be able to
attribute more definitively the observed variability to different
drivers (e.g., average width of the riparian buffer). This could
be aided by considering a broader set of stations even beyond
Iowa. With that said, one potential issue with a future study
of this kind is that it would require locations with long term-
records. There is limited availability of continuous nitrate data
not just in lowa but across the contiguous United States. Our
capability of understanding the connections between water
quantity and quality in a holistic way resides in availability
of high-quality and long-term records, and the prioritization
of limited resources towards this goal.
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