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Abstract
Compound extremes can arise from combinations of multiple drivers, and even non-

extreme univariate events can combine to cause large societal and economic impacts.

In this study, we model multivariate compound events focusing on the potential inter-

action of nitrate loads and discharge. We use daily discharge and nitrate loads at seven

US Geological Survey sites in the state of Iowa. We apply a two-sided conditional

sampling method, which derives two joint probabilities conditioning on discharge

and nitrate loads, respectively. Our results show that there is a dependence between

discharge and nitrate loads, which can be described through bivariate modeling and

the subsequent estimation of their joint annual exceedance probabilities (AEPs). The

magnitude of the joint AEPs to extreme discharge and extreme nitrate loads exhibit

different structures across the different sites, highlighting the different roles of these

two quantities in controlling their compounding. In examining the ranges in design

values for a given AEP, we found that the largest variability in highly likely val-

ues was generally associated with high agricultural intensity, high hog density, and

fertilizer expenditures.

1 INTRODUCTION

Compound extremes have been receiving growing atten-

tion and have been identified as a priority research area

by the World Climate Research Program. Compound

extremes can be largely grouped into four main categories:

preconditioned, multivariate, spatially, and temporally

compounding (Zscheischler et al., 2020). Among the mul-

tivariate compounding events, we can include, for example,

compound flooding (e.g., riverine and coastal flooding),

compound drought and heat (e.g., high temperature and

low precipitation), humid heatwave (e.g., high temperature

and atmospheric humidity), and compound precipitation

and wind extremes (e.g., heavy precipitation and extreme
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winds) (Tilloy et al., 2021, 2020; Zscheischler et al., 2020).

While there are growing efforts to examine the joint risk

of compound events related to hydrologic variables such as

floods (Sebastian et al., 2017; Wahl et al., 2015; Zellou &

Rahali, 2019) and droughts (Manning et al., 2018; Ribeiro

et al., 2019), one multivariate compound event that has

received limited attention in the literature is the potential

connection between water quantity and water quality. For

instance, Oeurng et al. (2010) focused on a basin located in

south-west France and examined 19 flood events; they found

that nitrate transport was correlated with total precipitation,

flood duration, peak discharge, and total water yield, while

peak nitrate concentrations were not strongly controlled by

peak discharge. Wang et al. (2017) developed a bivariate
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model to relate discharge and nitrate/phosphorous to identify

management strategies to mitigate water quality and quality

issues of reservoir inflows. Liu et al. (2022) used a copula-

based approach to develop an index that integrates water

quality and quantity. Despite these efforts, the emphasis is

generally not within the realm of a compound framework

using multivariate extreme value analysis.

The natural hazards associated with water quantity and

quality events have large societal and economic implica-

tions, especially in areas that have been experiencing a major

intensification in agricultural practices. For example, since

the 1940s the US Midwest has experienced a switch from

perennial vegetation to seasonal row cropping, with large

areas that have been intensively cultivated in corn and soy-

bean (Zea mays and Glycine max). As a consequence of the

changes in agricultural practices, nitrogen pollution has had

major environmental and public health impacts. The Mis-

sissippi River Basin acts as the thread connecting the US

Midwest to the Gulf of Mexico, where these large nitrogen

loads cause algae blooms and the “Dead Zone” (Mueller

& Helsel, 1996; Turner & Rabalais, 1994). From a human

health perspective, the Environmental Protection Agency lim-

its nitrate in drinking water to 10 mg/L because of issues

related to “blue baby syndrome” with growing awareness

of the chronic health effects for even lower concentrations

over long exposure periods (Ward et al., 2018). Because of

these issues, the Mississippi River/Gulf of Mexico Water-

shed Nutrient Task Force was established in 1997, which led

to an action plan in 2008 for the establishment of nutrient

reduction strategies for each of the 12 states along the Mis-

sissippi River. The Nutrient Reduction Strategy called for

a 45% reduction in annual nitrogen. The America’s Water-

shed Initiative’s 2020 report card for the Mississippi River

Basin (https://americaswatershed.org/reportcard/) rated the

river’s water quality as very poor, with conditions worsening

with respect to their 2015 report card. Despite these major

warnings, nitrate loads have increased in recent years. For

instance, according to the Iowa Nutrient Reduction Strategy

(https://store.extension.iastate.edu/product/15915) the nitrate

loads between 2006 and 2010 have increased by ∼5% com-

pared to the 1980–1986 period. Jones et al. (2018) analyzed

the nitrate loads leaving Iowa between 1999 and 2016, and

found that they have been increasing over the study period.

Moreover, they did not attribute these changes to discharge or

cropping intensity, and mentioned tile drainage as a poten-

tial factor. As we look into the future, Zhang et al. (2022)

found that nitrate loads are projected to increase. Assuming

that agricultural and management practices remain the same,

they project an increase up to 30% in nitrogen loading, and

attributed about half of this increase to heavy precipitation.

Issues related to water quality are just one side of the coin.

The central United States is an area of the country that has

been significantly affected by flooding as well, with the 2019

Core Ideas
∙ The bivariate models using nitrate loads and dis-

charge across different sites in the state of Iowa are

developed.

∙ Joint annual exceedance probabilities of two key

events when at least one is extreme are estimated.

∙ The largest variability in highly likely values tends

to be associated with high agricultural intensity.

Missouri-Mississippi flood being the latest major event affect-

ing the region. These events cause numerous fatalities and

claim a large economic toll. Because of its impacts, many

studies have examined the changes in the magnitude of annual

maximum flood peaks. For instance, Villarini et al. (2011)

examined trends in annual flood peaks at gauges with 75

years of record for the Midwest (16 in Iowa), finding that it

was possible to detect abrupt or gradual changes only at a

handful of sites. Archfield et al. (2016) examined the mul-

tidimensional behavior of flood changes for stream gauges

across the United States, finding limited evidence for changes

in the flood frequency, duration, peak magnitude, and volume

in Iowa. Another important characteristic of annual maximum

flood peaks is the frequency of events, for which there is

stronger evidence of change. For example, Mallakpour and

Villarini (2015) examined the frequency of annual maximum

daily floods from 1962 to 2011 using a peaks-over-threshold

(POT) approach. They found over 20 gauges in Iowa with

a significant trend in the frequency of flood events. Slater

and Villarini (2016) analyzed the number of days above

the action and minor-stage flood level established by the

National Weather Service and found increasing trends. Neri

et al. (2019) showed that there are increasing trends in the

number of flood events in the spring, summer, and fall

seasons.

Intuitively, given that nitrate loads represent the product of

nitrate concentration and discharge, it is reasonable to assume

that nitrate loads are large when discharge is large, as is the

case during floods. Hence, we can hypothesize that flood-

ing and nitrate loads represent compound hazards, and they

should be studied together rather than in isolation, evalu-

ating the risks of co-occurring extremes of water quantity

and quality. One key approach for analyzing the joint risk

of compound events is through copulas. Copulas have been

widely used in hydrology because of their flexibility (Chen &

Guo, 2019; Genest & Favre, 2007; Salvadori & De Michele,

2007; Zhou et al., 2021), and represent the modeling tool

used here. Therefore, the goal of this study is to model the

dependence between discharge and nitrate loads when at least

one is extreme in different agricultural watersheds in Iowa,
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F I G U R E 1 Location of the seven USGS stations and their basin boundaries, with information about the corn and soybean in 2020 as

background (https://nassgeodata.gmu.edu/CropScape/). The scatterplots show the results based on the two samples conditioning on discharge (blue

circles) and N loads (red crosses). The values in each scatterplot represent the Kendall’s tau coefficient depending on whether N loads or discharge

are the conditioning variable.

estimating their joint annual exceedance probabilities (AEPs)

using bivariate copulas.

The rest of this paper is organized as follows. We describe

data and methodology in the next section. Then, we present

our results and discussion in Section 3. Section 4 summarizes

the main findings and concludes the study.

2 DATA AND METHODOLOGY

This study focuses on seven USGS sites in Iowa (Figure 1).

We select these locations because they satisfied two condi-

tions (1) the measurements of both daily mean discharge and

daily mean nitrate plus nitrite (NO3 + NO2) loads (we will

refer to it as “N loads”) are available; and (2) the period of

record for daily N loads is longer than 10 years. There are

some gaps in the daily N loads time-series data (Figure 2).

In this study, we calculate the daily N loads by multiplying

N concentrations by daily discharge (units:ton/day). Further-

more, we select the years in which the completeness of the

data records for both daily discharge and N load are over 70%

during the March–November months (i.e., we excluded the

winter season because of frozen conditions and extremely lim-

ited sampling during these months). Table 1 presents basic

information of the sites and basins used in this study. The

catchments are a few thousand square kilometers in size, with

two of them almost an order of magnitude larger than the rest

(i.e., 16,425 and 32,374 km2). Agriculture is very intensive in

this area, with the percentage of the basins cultivated in corn

and soybean ranging between 55% and 82%. There is also a

large number of hogs, generally part of animal feeding oper-

ations or concentrated animal feeding operations, and large

expenses in fertilizers, all pointing to large amounts of nitrates

applied and available in these basins.

In this study, we use a POT method that selects events above

a sufficiently high threshold (Smith, 1984). The advantage

of using a POT approach over an annual-maximum one is

that it allows us to select the multiple extremes in the same

block regardless of the year in which they happened (San-

tos et al., 2021). We apply a two-sided conditional sampling

method that can address an asymmetric problem as extreme

discharges and extreme N loads do not have to happen con-

currently. Accordingly, we have two types of POT events to

select, depending on whether N loads or discharge are the
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F I G U R E 2 Completeness of data record for daily discharge (left panel) and N load (right panel) at the seven selected USGS sites (see their

location in Figure 1).

conditioning variables (Bender et al., 2016; Jane et al., 2020;

Kim et al., 2022). For the conditioning variable, we first select

the POT events by setting a threshold that returns five events

per year on average and allows only one peak in a ± 5-day

window to ensure independence of the POT events (Lang

et al., 1999). Then, we also select the concurrent events as the

largest daily value of non-conditioning variable (i.e., N loads

or discharge depending on whether discharge and N loads

are the conditioning variables, respectively) within a 7-day

window of selected POT events.

To model the bivariate relation between two variables (i.e.,

peak discharge and concurrent N loads, or peak N loads and

concurrent discharge), we use copulas and the framework

described by Jane et al. (2020). A copula C is a multivariate

cumulative distribution function (CDF) with uniform dis-

tributed marginals in [0,1] (Joe, 1997). Sklar’s theorem (Sklar,

1959) states that the joint CDF H of two variables X and Y,

with marginal CDFs F and G, can be expressed as follows:

𝐻 (𝑥, 𝑦) = 𝐶 [𝐹 (𝑥), 𝐺(𝑦)] (1)

where if F and G are continuous, then C is unique.

Any bivariate joint distribution can thus be decomposed

into a copula and the two marginal distributions, enabling

the dependence between the variables to be modeled,

through a copula, independently from their marginal dis-

tributions. Copulas consequently offer more flexibility

than traditional bivariate modeling approaches where the

joint distribution often constrains the choice of marginal

distributions.

Parametric (or theoretical) copula families are copulas that

can be expressed explicitly using one or more parameters.

When combined with parametric marginal distributions, para-

metric copula families yield a fully parametric joint CDF, and

thus provide a convenient way of describing the dependence

between a pair of variables. Essentially the copula family con-

trols the form of the dependence while the parameter(s) reflect

the strength of the dependence. The rich array of bivariate

copula families can represent a range of correlations, sym-

metries, and tail dependence, that is, the tendency for the

extremes to coincide (Genest & Favre, 2007). The parame-

ter(s) is typically estimated either directly from a dependence

measure such as Kendall’s τ (if a theoretical relationship

exists) or through inference based on the true empirical copula

(Sadegh et al., 2017). Early applications of copulas in hydrol-

ogy primarily concerned flood frequency analysis (e.g., De

Michele & Salvadori, 2003; Favre et al., 2004). Since then,

bivariate copulas have gone on to account for spatial corre-

lations of extremes at neighboring sites (e.g., Bender et al.,

2016), been used in stochastic design storm generators (e.g.,

Kim et al., 2022; Vandenberghe et al., 2010) among other

applications encompassing a variety of hydroclimatic vari-

ables (Tootoonchi et al., 2022). A flurry of recent studies

chose copulas to model the joint probabilities of co-occurring

high freshwater fluxes (rainfall/river discharge) and high sea

levels (e.g., Wahl et al., 2015); this is motivated by impactful
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KIM ET AL. 711

events such as Hurricane Sandy (2012) and Hurricane Harvey

(2017), where the interaction of these drivers likely exacer-

bated flooding. For more information on copulas, the reader

is referred to Nelsen (2007).

Here we select the marginal distributions and apply the

copula modeling based on the following steps regardless of

the conditioning variable. The first step is to fit the marginal

distributions to the POT values of the conditioning variable

and the corresponding conditioned variable. For the POT

events, we use the generalized Pareto distribution as it is the

appropriate distribution when dealing with exceedances of

a high threshold. For the conditioned variable, we select an

appropriate distribution among 12 possible candidates (i.e.,

Birnbaum-Saunders, exponential, gamma, lognormal, nor-

mal, Tweedie, Weibull, logistic, Laplace, Gumbel, reversed

Gumbel, and generalized gamma) with respect to the Akaike

information criterion (AIC; Akaike, 1978). After estimating

the marginal distributions, we consider 40 possible copula

models (independence, Gaussian, Student t, Clayton, Gumbel,

Frank, Joe, BB1, BB6, BB7, BB8, Survival Clayton, Survival

Gumbel, Survival Joe, Survival BB1, Survival BB6, Survival

BB7, Survival BB8, rotated Clayton (90, 270˚), rotated Gum-

bel (90, 270˚), rotated Joe (90, 270˚), rotated BB1 (90, 270˚),

rotated BB6 (90, 270˚), rotated BB7 (90, 270˚), rotated BB8

(90, 270˚), Tawn type 1, rotated Tawn type 1 (90, 180, 270˚),

Tawn type 2, rotated Tawn type 2 (90, 180, 270˚)) and select

the “best” one based on AIC. Consequently, we obtain two

bivariate models for each station, which we bring together

using the methodology described by Bender et al. (2016) to

estimate the isolines for different joint AEPs. Given the two

isolines (i.e., one from each copula model), we overlap them

and take their outer envelope. To estimate the most proba-

ble event, we first generate 1,000,000 sample pairs of two

samples (i.e., extreme discharge and N loads or extreme N

loads and discharge) from the fitted models through Monte

Carlo simulations; we then calculate the relative probability

of events along the isoline using a kernel density estimate.

Finally, we identify the most probable event on the com-

bined isoline based on the relative probability of each point.

A detailed description of combining two isolines is provided

by Bender et al. (2016) and Jane et al. (2020). We assume

stationary in our statistical modeling.

3 RESULTS AND DISCUSSION

Figure 1 shows the statistical correlation between discharge

and N load events for each site depending on which one is the

conditioning variable, hence there are two Kendall’s τ values.

Based on Kendall’s τ, the discharge and N loads are correlated

for each of the basins, with correlation coefficients ranging

from 0.33 to 0.66. All of Kendall’s τ correlations are signifi-

cant at the 5% level, pointing to the need to treat these events

combined, rather than in isolation from each other. More-

over, many of the POT events are the same regardless of the

conditioning variable, indicating that extreme discharge and

extreme N loads tend to occur together.

To develop a bivariate model, we need to estimate the

marginal distribution of each variable and a copula. Figures 3

and 4 show the results from fitting the marginal distribu-

tions for the samples conditioned on discharge and N loads

for each of the seven sites. The generalized Pareto distribu-

tion can describe well the conditioning variable (left columns

in Figures 3 and 4) across the different sites. For the non-

conditioning variable, we consider 12 possible distributions

and select the best one with respect to AIC. As summarized in

Table 2, the gamma and lognormal distributions are selected

most frequently as marginal distributions for the N loads, and

the generalized gamma (gamma3) and lognormal distribu-

tions are selected most frequently as marginal distributions

for discharge. Moreover, as shown in the middle column of

Figures 3 and 4, the fitted distributions can accurately repre-

sent the observations. The results from fitting all 12 marginal

distributions are shown in Figures S1 and S2.

In addition to the marginal distributions, we need to select

a copula model, and we use AIC as selection criterion. As

shown in Table 2, there is not a single model that is fre-

quently selected, suggesting that the dependence structure

between the two variables is not homogeneous across the

state: this variability in dependence is visualized in the right

column of Figures 3 and 4, where different sites exhibit

different bivariate relationships requiring different copulas.

Despite this variability, the selected copulas reproduce the

joint dependence between discharge and N loads.

Once we have identified the different distributions and cop-

ulas, we can use this information to estimate the isolines for

various AEPs, as shown in Figure 5 for return periods of 2,

5, 10, 25, 50, and 100 years (i.e., 0.5, 0.2, 0.1, 0.04, 0.02, and

0.01 AEPs) at the seven sites. These curves represent the outer

envelope of the isolines derived from the two conditional sam-

ples. As expected from the different bivariate models, each

location has a different structure. If we use the relative prob-

ability of occurrence of a given pair for the combined isoline,

USGS 05412500 exhibits a tight range with a very high den-

sity (Figure 5a) compared to the other locations. One possible

reason for this behavior has to do with the selected copulas, for

which most of the mass is concentrated along a narrow region.

Moreover, compared to the other basins, the percentage of

the basin cultivated in corn and soybean for USGS 05412500

is the smallest among the selected watersheds, together with

some of the smallest expenses in fertilizer and hog density.

The other basins have a much wider range of highly likely

values (Figure 5). Compared to USGS 05412500, these basins

are characterized by higher agricultural intensity, higher

expenses in terms of fertilizers, and generally higher hog den-

sity. When we look at the three nested sites USGS 05482300,
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F I G U R E 3 Left column: Results of fitting the POT discharge events with a generalized Pareto distribution (GP). Middle column: Results of

fitting the N loads with several distributions (Gam, gamma distribution; LogN, lognormal distribution; Weib, Weibull distribution). Right column:

Results of transformed realizations to the original scale based on the best-fitting copula. Here, the realizations are transformed to original scale by

using inverse quantile functions of the selected marginal distributions. In the first two columns, the dashed lines represent the 95% confidence

intervals. In all the panels, the black circles are the observations. Each row provides the results for each USGS station.
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F I G U R E 4 Left column: Results of fitting the POT N loads events with a generalized Pareto distribution (GP). Middle column: Results of

fitting the discharge with several distributions (LogN, lognormal distribution; Weib, Weibull distribution; Gam3, generalized gamma distribution).

Right column: Results of transformed realizations to the original scale based on the best-fitting copula. Here, the realizations are transformed to

original scale by using inverse quantile functions of the selected marginal distributions. In the first two columns, the dashed lines represent the 95%

confidence intervals. In all the panels, the black circles are the observations. Each row provides the results for each USGS station. POT,

peaks-over-threshold.
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F I G U R E 5 Quantile isolines and most probable events (black dots) for return periods of 2, 5, 10, 25, 50, and 100 years (i.e., 0.5, 0.2, 0.1, 0.04,

0.02, and 0.01 AEPs) at the seven sites in Figure 1.

05482500, and 05484500, the range with a high probabil-

ity density is narrower for USGS 05484500, which is the

largest basin and the most downstream station. It has the low-

est percentage of harvested corn and soybeans acreage (i.e.,

73% vs. 82%), the lowest hog density (i.e., 216 vs. 252 and 260

hogs/km2) and the lowest amount of dollars spent in fertilizers

(i.e., $14 M/km2 vs. ∼$15 M/km2). Thus, one possible way to

interpret these results is that, all else equal, there is a broader

range of highly likely discharge and N loads values for basins

that have been subject to intensive agriculture, compared to

those who have been exporting lower N loads.

There is also variability in terms of the dependence of

the most probable bivariate event on discharge values. For

instance, for USGS 05412500, 05464420, 05484500, and

06817000, the most probable events tend to align on a sloped

line for increasing AEPs, pointing to their dependence on

both N loads and discharge. On the other hand, for USGS

05465500, 0548230, and 05482500, much of the variability

in the most probable AEP values is driven by N loads, with

discharge values around 2000 m3/s, 200 m3/s, and 300 m3/s.

While it is not immediately possible to come up with a defini-

tive reason for these differences, one element that these three

sites have in common is that they are basins that have been

subject to high agricultural intensity, a high density of hogs,

and large expenditures in terms of fertilizer.

The results in Figure 5 are based on using the “best”

marginal distribution. Here, we also explore the sensitivity of

the results to the selection of marginal distribution, comparing

the results in Figure 5 against those obtained from the second-

and third-best marginal distributions. The second- and third-

best marginal distributions for discharge and N loads fit well

the observations, with small differences in performance com-

pared to the best one according to the AIC (see Figures S3 and

S4). The combined isolines show that there are small differ-

ences up to 0.1 AEPs, which become larger for smaller AEPs

(Figure S5). Moreover, the combined isolines with the best

marginal distributions mostly estimates larger discharge and

N loads for a given AEP, resulting in more conservative design

values in light of the observed compounding. One element

worth highlighting is that the largest differences among iso-

lines tend to occur when the generalized gamma distribution

(Gam3) is selected for discharge; this is a distribution with a

heavier tail than the others, leading to generally larger events

for low AEPs.

4 CONCLUSIONS

In this study, we developed bivariate models to describe the

compound effects of extreme discharge and extreme N loads at

seven locations across the state of Iowa. The main conclusions

of our work can be summarized as follows:

• The generalized Pareto distribution describes well the

observational peak discharge and N loads records, while

the lognormal, Weibull, generalized gamma, and gamma

distributions are appropriate for the coinciding N loads and

discharge. In terms of copula models, the selected copula

varies across sites reflecting the diverse nature of bivariate

dependence across the sites.
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• The joint AEPs exhibit different dependence structures,

highlighting differences in the controlling roles of dis-

charge and N loads.

• We examined the role of agricultural intensity (i.e., har-

vested corn and soybean acreage as a percentage of the

entire watershed), hog density (i.e., proxy for manure,

hence nitrate), and fertilizer expenditures in explaining the

variability in results. We found that the basins for which

there was a broad range of highly likely values for a given

AEP were also some of the most intensively farmed ones,

with high hog density and fertilizer expenditures.

• Different marginal distributions tend to describe well the

observations. We show that the isolines tend to be sensi-

tive to the choice of marginal distribution, especially for

low AEPs due to the large sampling uncertainties and the

relatively short records considered here.

The results of our study about water quantity and qual-

ity expand our understanding of the nature of compound

extremes to a topic that has received limited attention in the

literature. While our emphasis was on N loads at seven sites

in Iowa, the methodology and approach are general and could

be extended to other sites for which long-term records are

available as well as to other pollutants.

We provide an initial assessment of the potential drivers

that could explain the variability in results among the different

sites. However, more work needs to be performed to be able to

attribute more definitively the observed variability to different

drivers (e.g., average width of the riparian buffer). This could

be aided by considering a broader set of stations even beyond

Iowa. With that said, one potential issue with a future study

of this kind is that it would require locations with long term-

records. There is limited availability of continuous nitrate data

not just in Iowa but across the contiguous United States. Our

capability of understanding the connections between water

quantity and quality in a holistic way resides in availability

of high-quality and long-term records, and the prioritization

of limited resources towards this goal.
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