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Abstract

In 2015, Brosnan and Chow, and independently Guay-Paquet, proved the
Shareshian—Wachs conjecture, which links the Stanley—Stembridge conjecture in
combinatorics to the geometry of Hessenberg varieties. This link is made precise
through Tymoczko’s permutation group action on the cohomology ring of regular
semisimple Hessenberg varieties. In previous work, the authors exploited this con-
nection to prove a graded version of the Stanley—Stembridge conjecture for a special
case in which only irreducible representations of the permutation group indexed by
partitions with at most two parts can appear. In this manuscript, we derive a
new set of linear relations satisfied by the multiplicities of certain permutation rep-
resentations in Tymoczko’s representation. We also show that these relations are
upper-triangular in an appropriate sense and that they uniquely determine the mul-
tiplicities. As an application of these results, we prove an inductive formula for the
multiplicity coefficients corresponding to partitions with a maximal number of parts.

Mathematics Subject Classifications: 14M17, 05E05
1 Introduction

Recent results have forged exciting new connections between algebraic combinatorics and
the geometry and topology of certain subvarieties of the flag variety called Hessenberg
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varieties. In particular, the Shareshian-Wachs conjecture [12], proven in 2015 by Bros-
nan and Chow [5] and independently by Guay-Paquet [8], established a new connec-
tion between Hessenberg varieties and the long-standing Stanley—Stembridge conjecture
in combinatorics. This conjecture states that the chromatic symmetric function of the
incomparability graph of a (3+1)-free poset is e-positive, i.e., it is a non-negative linear
combination of elementary symmetric functions. The Stanley-Stembridge conjecture is
well-known in the field of combinatorics and related to various other deep conjectures
about immanants.

The results mentioned above establish the following research problem: use the proper-
ties of Hessenberg varieties to prove the Stanley—Stembridge conjecture. The problem can
in fact be made more specific, as follows. The results of Brosnan—Chow and Guay-Paquet
connect the dot action representation, defined by Tymoczko in [15] on the cohomology
groups of regular semisimple Hessenberg varieties, to the Stanley—Stembridge conjecture.
From this it follows that if Tymoczko’s dot action representation is a permutation repre-
sentation in which each point stabilizer is a Young subgroup, then the Stanley—Stembridge
conjecture is true. We refer the reader to [9, Introduction and Section 2] for a more
leisurely account of the historical background and motivation for this circle of ideas.

There are already partial results to the problem stated above. For instance, we used
Hessenberg varieties to prove a graded refinement of the Stanley—Stembridge conjecture in
the so-called abelian case by giving an inductive description of the nontrivial permutation
representations that appear in that case [9]. Moreover, in that manuscript we addition-
ally stated a conjecture which gives, in the general case, an inductive description of the
multiplicities of certain nontrivial permutation representations [9, Conjecture 8.1]. One
motivation for the present manuscript was to prove this conjecture using the geometry and
combinatorics of Hessenberg varieties. In doing so, we discovered new properties obeyed
by the multiplicities of the so-called tabloid representations in Tymoczko’s representation.

We now describe the results of this manuscript in more detail. Hessenberg varieties
in type A are subvarieties of the full flag variety Flags(C™) of nested sequences of lin-
ear subspaces in C". These varieties are parameterized by a choice of linear operator
X € gl(n,C) and Hessenberg function h : {1,2,...,n} — {1,2,...,n}. (For details see
Section 2.) For the purpose of this discussion it suffices to consider only the case when the
operator is a regular semisimple operator S in gl(n, C); we denote the corresponding Hes-
senberg variety by Hess(S,h). As mentioned above, Tymoczko defined [15] an action of
the symmetric group &,, on H*(Hess(S, h)) for each i > 0. From the work of Shareshian—
Wachs, Brosnan—-Chow, and Guay-Paquet it follows that in order to prove the (graded)
Stanley—Stembridge conjecture, it suffices to prove that the cohomology H*(Hess(S, h))
for each 7 is a non-negative combination of the tabloid representations M* [6, Part II,
Section 7.2] of &,, for p a partition of n. In other words, given the decomposition

H*(Hess(S, h)) =Y _ ¢, M" (1)

ukEn

in the representation ring Rep(&,,) of G, it suffices to show that the coefficients ¢, ; are
non-negative.
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We take a moment to mention here that the coefficients ¢, ; appearing in (1) were
previously known to satisfy a matrix equation

E N/\,ucu,i = Yxi

pukn

where the y,; are derived from the Betti numbers, i.e. the dimensions of ordinary coho-
mology groups, of certain regular Hessenberg varieties. Here, Ny, =" K, K, , where
the K, , K,,,, are Kostka numbers [9, Section 2]. However, the Kostka numbers and the
matrix N are computationally unwieldy, and it was not clear (to us) how to exploit the
above matrix equation to prove the non-negativity of the c,;. Another motivation for
this manuscript was to find other relations satisfied by these coefficients which are more
computationally tractable.

The main results of this manuscript are as follows. Let n be a positive integer and
h:{1,2,...,n} — {1,2,...,n} a Hessenberg function. Let i > 0 be a fixed non-negative
integer and X; = (c,;) denote the (column) vector whose entries are the coefficients
appearing in (1) above.

e In Corollary 23, we derive a family of (new) matrix equations AX; = W, satisfied
by the column vectors X; for ¢ > 0. The matrix A = (A(X, ft))a un is obtained by
counting certain subsets of the permutation group &,, using the data of a pair of
partitions A\, u - n, and is independent of both the choice of Hessenberg function
h and the integer ¢ > 0. The column vectors W; are obtained by counting certain
subsets of the permutation group &,, using the data of a partition A\, the Hessenberg
function A, and the integer ¢ > 0.

e In Theorem 29, we prove that the above matrix A = (A(X, 1)) is upper-triangular,
with 1°s along the diagonal, with respect to an appropriately chosen linear order on
the set Par(n) of partitions of n. We additionally prove an inductive formula for its
matrix entries (Proposition 24, cf. also Corollary 40).

e Generalizing results of [9, Section 4], we obtain a sink set decomposition of the sub-
sets of &,, defining the column vector W; above (Proposition 50). As a consequence
we obtain an inductive formula for the entries of W; for the special case in which A
has the maximal possible number of parts (Theorem 65).

e As an application of the above results, we prove [9, Conjecture 8.1]; more precisely,
we obtain an inductive formula for the coefficients ¢, ; in (1) for the special case in
which g has the maximal possible number of parts (Theorem 66), thus providing
further evidence for the Stanley—Stembridge conjecture.

Some remarks are in order. Firstly, the main contribution of this manuscript are
the new linear relations in Corollary 23; most particularly, the upper-triangularity of
the matrix A gives substantial reason to expect that these matrix equations will play a
significant role in the solution to the full Stanley—Stembridge conjecture. Secondly, we

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(3) (2022), #P3.16 3



are aware that there exist other proofs of our conjecture as stated in [9, Conjecture 8.1],
using the coproduct structure on the ring of symmetric functions [10]. Thirdly, in his
original paper on the subject, Stanley derives a different set of linear relations obeyed by
the coefficients ¢, [13, 14, Theorem 3.4, cf. also the erratum posted on Stanley’s personal
webpage|, in which he uses a notion of sink sequences. It should be noted that Stanley’s
definition of sink sequences uses the cardinality of the sinks in an inductively defined set
of graphs, whereas the sink set decompositions which are used in our arguments are a
decomposition based on the sink subsets (i.e. not just their cardinalities, but the subsets
themselves). As of this writing, we are not aware of a precise relationship between our
linear relations and those of Stanley’s.

We now give a brief overview of the contents of the manuscript. Section 2 is devoted
to the setup and definitions of appropriate notation and terminology. In Section 3 we
derive the new matrix equations AX; = W, and in Section 4 we prove that A is upper-
triangular, with 1’s along the diagonal. We also derive the inductive formula for the
numbers A(A, ). In Section 5 we derive a separate inductive formula for the entries of
the “constant vector” W;. Finally, in Section 6 we prove Conjecture 8.1 from [9].

Finally, we take a moment to report on a recent development in this line of inquiry,
which was made public after the initial announcement of our results in the present
manuscript. Specifically, Abreu and Nigro [2] have shown that the coefficients ¢, ; are
uniquely determined by a set of linear relations known as the modular law, first obtained
by Guay-Paquet using entirely different methods from ours [7]. It should be noted that
the modular law relates coefficients ¢, ; associated to different Hessenberg functions h,
whereas our linear relations are between the c,; for a fized Hessenberg function. As of
this writing, we do not know whether some combination of these relations can solve the
conjecture. We leave this open for future work.

2 Background and Terminology

In this section we briefly recall the setting of our paper. For a more leisurely account we
refer to [9]. Let n be a positive integer and set [n] := {1,2,...,n}. Hessenberg varieties
in Lie type A are subvarieties of the (full) flag variety Flags(C™), which is the collection
of sequences of nested linear subspaces of C™:

Flags(C") ={Ve,=({0}cWViC---CV,.y CV,=C") | dimc(V;) =14, Vi € [n]}.

A Hessenberg variety in Flags(C™) is specified by two pieces of data: a Hessenberg
function, that is; a nondecreasing function h : [n] — [n]| such that k(i) > i for all i,
and a choice of an element X in gl(n,C). We frequently write a Hessenberg function by
listing its values in sequence, i.e., h = (h(1),h(2),...,h(n)). The Hessenberg variety
associated to the linear operator X and Hessenberg function h is defined as

Hess(X, h) = {Va € Flags(C") | XV; C Vj, for all i}. (2)

When the linear operator X is chosen to be a regular semisimple operator S (i.e., di-
agonalizable with distinct eigenvalues), we refer to the corresponding Hessenberg variety

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(3) (2022), #P3.16 4



Hess(S, h) as a regular semisimple Hessenberg variety. Tymoczko defined an action
of the symmetric group &,, on the cohomology of a regular semisimple Hessenberg variety
H*(Hess(S, h)) which is called the dot action [15]. She defines the dot action by first
defining a &,,-action on the T-equivariant cohomology ring H}.(Hess(S, h)) in terms of its
Goresky-Kottwitz-MacPherson description, which is a purely combinatorial characteriza-
tion of this ring using certain labelled graphs. She then shows that this &,-action descends
to an action on the ordinary cohomology H*(Hess(S,h)). (The reader can find a more
detailed synopsis of this story in [1, Section 8].) Tymoczko’s dot action on H*(Hess(S, h))
preserves the grading on cohomology, so in fact &,, acts on each H*(Hess(S, h)) for i > 0
(the cohomology is concentrated in even degrees). For p a partition of n, we denote by
M*" the complex vector space with basis given by the set of tabloids of shape p. Since G,,
acts on the set of tabloids, M* is a G,-representation, and is called the tabloid represen-
tation (corresponding to u) [6, Part II, Section 7.2]. It is well-known that the set of these
tabloid representations form a Z-basis for the representation ring Rep(S,,) of &,,, so we
can decompose H*(Hess(S, h)) with respect to Tymoczko’s dot action as follows:

H*(Hess(S,h)) = Z c,M" and  H*(Hess(S,h)) = ZCW-M“ (3)

ukn pukn

where ¢, c,; € Z.

As explained in the Introduction, the motivation of this manuscript is to prove the
graded Stanley—Stembridge conjecture. We refer the reader to [9] for more history; for
the present manuscript we take the ‘graded Stanley—Stembridge conjecture’ to mean the
following.

Conjecture 1. Let n be a positive integer, h : [n] — [n] be a Hessenberg function, and
S be a regular semisimple linear operator. Then the integers c,,; appearing in (3) are
non-negative.

2.1 Hessenberg data

For later use, we introduce some Lie-theoretic and combinatorial notation associated to
Hessenberg varieties. We fix a Hessenberg function h : [n] — [n].

Let t C gl(n, C) denote the Cartan subalgebra of diagonal matrices and let ¢; denote the
coordinate on t reading off the (7,7)-th matrix entry along the diagonal. Denote the root
system of gl(n, C) by ®. Then the positive roots of gl(n,C) are &+ = {t,—t; | 1 < i < j <
n} where t;,—t; € ®* corresponds to the root space spanned by the elementary matrix E;,
denoted gy, ;. Similarly, the negative roots of gl(n,C) are ®~ = {t;—t; | 1 < j < i < n}.
We denote the simple positive roots in ®* by A = {a; :=t; —t;41 | 1 < i < n—1}.
Finally, it is clear that each root t; —¢; € ® can be uniquely identified with an ordered
pair (i,7), with i # j. We will make this identification below whenever it is notationally
convenient.

For each permutation w € G,,, let

inv(w) :={(i,7) | i > j and w(i) < w(y)}

ot
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denote the set of inversions of w. Note that we adopt the nonstandard notation of listing
the larger number in the pair (7,7) € inv(w) first. This is because we identify inv(w)
with a subset of negative roots in Section 5 below. Under the correspondence between
ordered pairs and roots discussed in the last paragraph, this set indexes the negative roots
which become positive under the action of w. This action can be expressed concretely as
w(ts = 1) = tu@) = tu()-

The Hessenberg function h : [n] — [n] uniquely determines two subsets of roots as
follows:

O, ={t;—t;|i>jand i < h(j)} and P =, UDT ={t, —¢; | i < h(j)}.

Let invy(w) := inv(w) N ®,; this set of inversions is used later to compute the Betti
numbers of certain Hessenberg varieties.

Recall that an ideal I of @~ is defined to be a collection of negative roots such that if
acl, e, and a+ B € ®, then a+ B € I. The relation defining ®,” immediately
implies that

Iy =@\ @, ={t; —t; |1 > h(j)}

is an ideal in ®~. We call it the ideal corresponding to h.
Given an ideal I C &, its lower central series is the sequence of ideals defined
inductively by

L=1 and I;={y+08|v,8€j_1andy+3€ ®} forall j>2.

The height of an ideal I is the length of its lower central series and we denote it by
ht(I).

Example 2. Let h = (2,4,4,5,5). Then
O, = {ty —t1,l3 —lo,ty —tg,ty — ls, t5 — t4}
and
I ={ts —ti,ts — ti, t5 — t1,t5 — to, t5 — t3}
and ht(I,) = 2 since
([h)g = {t5 — tl} and (Ih)g = .

The data of a Hessenberg function can also be encoded by way of a graph. Given a
Hessenberg function h : [n] — [n], the incomparability graph associated to h is the
graph I'y, = (V},, E),) with vertex set Vj, = [n] and edge set E, = {{i,7} |7 < j and h(i) >
j}. Notice that the edges of I, correspond bijectively to the roots in @, .

Example 3. The graph corresponding to the Hessenberg function h = (2,4, 4,5,5) from
Example 2 is
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In many ways, the combinatorial structure of the graph I', and the ideal I, mirror
one another. For example, [9, Proposition 5.8] shows that m(I'y,) = ht(l,) + 1, where
m(I'y) denotes the maximum cardinality of an independent subset of vertices (that is,
vertices which are pairwise nonadjacent) in I',. The reader can confirm this equation
for the Hessenberg function h = (2,4,4,5,5) appearing in Example 2 and Example 3.
This correspondence is essential for the arguments of Section 5 below. Furthermore, the
structure of the ideal I}, and that of the graph I';, is closely connected to the dot action
representation. The following theorem relates the multiplicities of the tabloid represen-
tations appearing in (3) with the height of I,. This is a restatement of [9, Corollary
5.12].

Theorem 4. Let ¢, and c,; be the coefficients appearing in (3). Then ¢, = c¢,; =0 for
all p=n with more than m(I'y,) = ht(I,) + 1 parts.

2.2 Partitions and subsets

In this section we establish some combinatorial terminology and notation which we use
below. Let n be a positive integer.

Definition 5. Let A = (A,..., \z) = n. We define J to be the subset of [n — 1] defined
by
J>\ = [n—1]\{)\1,)\14‘)\2,...,/\1+"‘+)\k_1}

Remark 6. We frequently identify the set [n—1] := {1,2,...,n—1} with the set of simple
positive roots A by the association «; + i. Under this identification, we may view J, as
the subset of simple roots

J)\ = A \ {Oé)\l, Oé)\1+>\2, Ce ,()[)\1_,_,.._;,_)%71} Q A

We illustrate in Example 7 how Definition 5 can be visualized. Note that any partition
of n corresponds to a Young diagram with n boxes, and by slight abuse of notation we
denote both the partition A = (A1, A, ..., Ax) and the corresponding Young diagram as \.

Example 7. Let A = (5,4,4,2) I 15. Using the Young tableau of this diagram which
fills the boxes of A\ with the integers {1,2,...,n} in order starting from the top left and
reading across rows from left to right, starting from the top row to the bottom row, as
indicated below, the set Jy = [14] \ {5,9, 13} corresponds to those boxes which are not at
the rightmost end of a row. In the figure below, these boxes are shaded in grey.

213145
6 9
10111 (12|13
14115
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Recall that the dual (or transpose) partition of A is the partition A" obtained by
swapping the rows and the columns of the Young diagram of \. We will also be interested
in the set Jy corresponding to \'. In fact it will be useful to introduce notation for the
complement of Jy.. We let

Jy:=[n—-1]\ Jv. (4)

Example 8. Continuing Example 7, let A = (5,4,4,2) F 15. Then it is straightforward
to see that N = (4,4,3,3,1) and Jy = [14] \ {4,8,11,14} and thus J) := [14] \ Jy =
{4,8,11,14}. Below, the shaded boxes in the figure on the left correspond to the elements
of Jy/, while the shaded boxes in the figure on the right correspond to those in J := A\ Jy.
Note that the diagram for A is drawn, but the labelling of the boxes corresponds to the
Young tableau of the dual partition A" with filling as in Example 7. The box labelled
15 in the diagram is contained in neither Jy nor J, since both sets are contained in
[n — 1] = [14], not [n] = [15].

1159 (12|15 11519 (12|15
2161(10|13 2161(10|13
3|7 (11|14 317 (11114
418 418

We will also be interested in certain subdiagrams of a Young diagram A. First recall
that for A = (A1, ..., \x) a partition with Ay > 0, the integer k is often called the number
of parts of A (also known as the length of \). By definition, the number of parts of A
is equal to A}, the first entry of the dual partition \'. Thus we will sometimes use the
notation A} for the number of parts.

We will also need to refer to the number of boxes in the bottom row of A\, which is
equal to Ay ; however, to avoid cumbersome notation we denote this as r(A) and call it
the bottom length of \. (Thus, if A has k parts, then r(\) = A.) It follows from the
definitions that the maximum number of boxes in a column of \ is exactly A}, and there
are precisely 7(\) many such columns in \.

In the inductive arguments given in the later sections, we will need to remove columns
from A as follows.

Definition 9. Let )\ be a partition of n and let ¢ be a positive integer. Then we denote by
Alf] the partition obtained by removing the leftmost ¢ columns from the Young diagram
associated to A.

Example 10. Let A = (6,4,2,1) and let £ = 2. Then A[2] is the partition A\ = (4,2)
obtained by removing the leftmost 2 columns of A. In the figure below, the boxes that
are removed are shaded, and the white boxes correspond to the smaller partition A[2].
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Remark 11. Using the terminology and notation introduced above, we note that if X is a
partition of n with exactly k parts and r = r()\), and ¢ € Z with 1 < /¢ < r — 1, then the
partition A[¢] still has k parts, while A[r| is a partition of n — rk which has strictly fewer
than k parts.

Definition 12. Let A be a partition. We say a consecutive sequence {s,s+1,...,s+t} C
[A1] is a step of X if
)‘;:)‘;H :"‘:Xsﬂ

and if this sequence is maximal with respect to this property, i.e., assuming the quantities
are defined, both X,_; # X, and X, ., # A, (with the convention that \j = 0).

The terminology above is motivated by viewing the Young diagram of A as an (upside-
down) staircase.

Example 13. If A = (8,5,3,2) so that X = (4,4,3,2,2,1,1,1) as in the diagram below

then there are four steps of A, namely A; = {1,2}, Ay = {3}, A3 = {4,5}, A, = {6,7,8}.
Each step gives the labels of a set of columns (starting from the left) of A with the same
length.

It is clear that every column in A belongs to exactly one step of A, giving us the
following decomposition.

Definition 14. The step decomposition of A\ - n is the decomposition
A] =AU Ay U U Aggepn)

where each A; is a step of A and step(A) is a positive integer which we call the number of
steps (or step number) of \. We will always assume that the A; are listed in increasing
order, i.e. Ay = {1,2,...,a1}, Ay = {a; +1,...,as}, and so on, for some sequence of
integers 1 < a; < ap < -+ < dgep(n) = A1

Example 15. Continuing with Example 13 above, the step decomposition of the partition
A=(8,5,3,2) is

AU A UAsUA ={1,2} u{3}u{4,5} Lu{6,7,8}.

Since there are 4 steps, we have step(\) = 4.
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3 Linear equations satisfied by representation multiplicities

The main result of this section, Theorem 18, gives a set of linear equations satisfied by
the multiplicity coefficients ¢, and c,; of equation (3). In Corollary 23 below, we also
reformulate our main result into a family of matrix equations by applying Theorem 18 to
the special cases when the set J below is chosen to be J, for a partition A of n.

The following sets of permutations play a key role in the analysis below.

Definition 16. Let J C [n— 1] and i € Z, i > 0. We define

o w(j) < h(w(j+1)) for all j € J and
W h) = {“’ €Gnl 1) s hw i+ 1) forall j e [n—1]\J [ EEn
We also define
Wi(J,h) == W(J,h) N{w € &, | |invy(w)| = i}.

Note that
W(J, ) = | |[Wi(J.h)

where the union is taken over all i such that W;(J, h) # @.
Remark 17. Identifying J as a subset of A as in Remark 6 we may also identify the sets
Wi(J,h) as

Wi(J,h) == {w € &, | w(J) C &, and w™ ' (A\ J) C I, and |inv,(w)| =i} C &,.

We use the above interpretation of the W(J, h)-sets, below, when we connect them with
the Betti numbers of certain Hessenberg varieties.

Next, let w € &,, be a permutation. Then we let
Desp(w) i= {i € [n — 1] | w(i) > w(i + 1)} (5)
denote the set of right descents of w (also called the descents of w) and
Des(w) i= {i € [n — 1] | w7 (i) > w'(i + 1)} (6)

denote the set of left descents of w (also called the inverse descents of w, i.c. descents
of w™1).} Both of these sets have a natural interpretation in terms of the one-line notation
for w. The set of left descents corresponds to the set of ordered pairs (7,7 4+ 1) such that
1+ 1 appears before ¢ in the one-line notation for w. Similarly, the set of right descents
corresponds to the pairs (4,7 4+ 1) such that, in the one-line notation of w, the (i 4 1)-st
entry is less than the i-th entry.

For two subsets J and K of [n — 1] we also define

D(J,K):={w e &, | Desp(w) =[n—1]\ J and Desg(w) C[n—1]\ K}. (7)

The goal of this section is to prove the following.

'We note that both sets of terminology are used in the literature. For instance, in [4, p.17] we see the
terms ‘left and right descents’, whereas in other research manuscripts such as [3, 16], the terms ‘descent
and inverse descents’ are used.
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Theorem 18. Let J C [n—1] andi € Z, i > 0. Then

Wi, h)[ = cui [D(J, )] (8)
and
WD) =Y e D, Ju)- (9)

We organize this section as follows. In Section 3.1 we prove Theorem 18 modulo some
elementary lemmas and a previous result of Brosnan-Chow, and in Section 3.2 we record
the proofs of the lemmas. Put together, this section therefore paves the way for Section 4,
in which we re-organize a certain subset of these linear relations obtained in Theorem 18
(namely, those for which J = J,) into a set of matrix equations, one for each i > 0. The
analysis of this matrix equation will occupy much of the remainder of the paper.

3.1 Proof of Theorem 18 modulo some lemmas

The proof of Theorem 18 relies on three results which we list below. The first is a
result of Brosnan-Chow [5] which relates the representation multiplicities in (3) to the
Betti numbers of regular Hessenberg varieties. The last two are straightforward inclusion-
exclusion arguments.

For a given subset J C [n — 1], let X; € gl(n,C) be the regular element such that

X; = Nj; +S; where
Ny, = Z Ejjn
j€d

and S; is a semisimple linear operator such that N; is a regular nilpotent element in the
Levi subalgebra 34(Ss). A Hessenberg variety associated to such a regular operator X; as
above is called a regular Hessenberg variety. Moreover, let &; := (s; |i € J) be the
subgroup of the symmetric group generated by the simple reflections s; := s,, for < € J.
The theorem of Brosnan and Chow, which we recall below, identifies the dimension of the
subspaces H?*(Hess(S,h))®’ with the dimension of the degree-2i-cohomology (i.e., the
2i-th Betti number) of a certain regular Hessenberg variety.

Theorem 19. (Brosnan—Chow, [5, Theorem 127]) Let n be a positive integer and h :
[n] = [n] a Hessenberg function. Let X; and &; for J C [n — 1] be as above, and S be a
reqular semisimple operator. Then for each non-negative integer v, we have

dim(H? (Hess(S, h)))S7 = dim H*(Hess(X;, h)).

The next two results are straightforward inclusion-exclusion arguments which are
based on a combinatorial formula for the Betti numbers of regular Hessenberg varieties
obtained by the second author [11].
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Lemma 20. Let J C [n — 1], h any Hessenberg function, and i € Z with i > 0. Then

Wi, k)| = > (=)W dim(H* (Hess(X;, h))). (10)

I:JCI

Lemma 21. Let p be a partition of n and J C [n—1]. Then

ID(J, J) = Y (=D dim(rr)©r. (11)

I:JCI

We now give a proof of Theorem 18, assuming Lemma 20 and Lemma 21 and using
Theorem 19.

Proof of Theorem 18. We have:

Wi, )| = ) (=D dim(H* (Hess(X;, ) by Lemma 20
I.JCrI
= Z (=M= Z Cpi dim(M*™) S by Theorem 19
I:JCI pkn
= Z Cpui ( Z (_1)|f|—|J\ dim(M“)61>
pkn I:JCI

= ZCW |D(J,J,)| by Lemma 21

uEn

which proves equation (8). Equation (9) follows directly from (8) by summing over i. [J

3.2 Mbobius inversion on the Boolean lattice

We now give proofs of the elementary lemmas used in the previous section. Both follow
from an application of the well-known Mo6bius inversion formula on the Boolean lattice,
which is a version of the principle of inclusion-exclusion. We will need the following Betti
number formula [11, Lemma 1].

Theorem 22. Let J C [n — 1] and h be any Hessenberg function. Then for each non-
negative integer 1, we have

dim(H* (Hess(Xs, b)) = {w € &, | w™(j) < h(w™(j +1))Vj € J and |inv,(w)| = 3}].
Using the above, we first prove Lemma 20.

Proof of Lemma 20. Let W; == {w € &, | |invy(w)| = i} and for each I C A define
fr:W; —{0,1} as follows:

fr(w) = {1 if w e Wi(I,h)

)0 else.
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For each I C A, let us also define a function g; : W; — {0, 1} by

1 ifw () <h(w ' (j+1)) forall j €1
) () < h(w™(G + 1))
0 else.

Then it is clear that, by definition of f;,

Wil h) =Y falw).

weW;

Next we examine the RHS of (10). By Theorem 22 the RHS is equal to

> (=) w e Wi | w(j) < h(w™(j + 1)) for all j € T},

I.JCI

On the other hand, from the definition of g;, this is in turn equal to

> OIS ) = 3 (<) g (w).

I1:JCI weW; weW; 1:JCI

Therefore, to prove the proposition it would suffice to show that

fr=% (-0,

I.JCI

(12)

By definition of g; and fr we have g; = > ;. ;c; fr so (12) follows immediately from the

Mobius inversion formula on the Boolean lattice. This completes the proof.

]

To prove Lemma 21 we first recall the following well-known description of the numbers
dim(M*)®7, which can be easily seen from the fact that the integer dim(M*#)®! counts

the number of double cosets &,\&,,/S; [4, Section 2.4]:

dim(M*)°" = [{w € &,, | Des(w) C [n — 1]\ I and Desg(w) C [n — 1]\ J,}|.

(13)

Proof of Lemma 21. Consider A, := {w € &,, | Desg(w) C [n—1]\ J,}. On A, define

for each I C [n — 1] a function f; : A, — {0,1} by

fi(w) = {1 if Desy(w) = [n — 1]\ I

0 else.

On A, also define for each I C [n — 1] a function g; as follows:

or() = {1 if Desy(w) C [n— 1]\ I

0 else.
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Then it is clear that [D(J, J,)[ = 3", ¢4, fs(w) by definition of f.
We now examine the RHS of (11). We have

RHS = ) (~)/=MI dim(ar+) S

I:JCI
= > ()" {w e &, | Desy(w) C [n— 1]\ I and Desp(w) C [n— 1]\ J,}| by (13)
I:JCI
= > (=N gr(w)
I:JCI weA,
=3 3 g ).
weA, I:JCI

Thus it suffices to show that

fr(w) = Z (=)= Mlg,.

I.JCI

As in the proof of the previous lemma, this follows immediately from the Mdbius inversion
formula on the Boolean lattice. This completes the proof. n

4 The matrix equation AX =W

We now introduce the matrix equation that is the subject of this section. We will be
particularly interested in the sets W;(J, h) in the case that J = J,. Thus, we introduce
notation for the cardinality of the sets in (7) for the case J = J, and K = J, for two
partitions A, u = n. Specifically, we define

A ) = DAy, Tl (14)

Using the above notation, Theorem 18 has an immediate corollary, as follows. Let Par(n)
denote the set of partitions of n.

Corollary 23. Let A = (A(X, it)) s pepar(n) be the matriz whose coefficients are the inte-
gers (14) and leti € Z, i > 0. Let X; be the (column) vector whose entries are the ¢, ; € Z
specified in (3). Let W; be the (column) vector whose entries are the integers [W;(Jy, h)|.
Then AX; = W,.

The main results of this section show that the matrix A has computationally convenient
properties with respect to an appropriate choice of total order on Par(n), in a sense we
now explain. The previous section showed that the multiplicity coefficients ¢, ; in (3)
obey a set of linear equations, where there is one such linear equation for each partition
A F n, and by putting these together, Corollary 23 interprets this set of linear equations
as a single matrix equation AX; = W,. Here, each row corresponds to a single linear
equation associated to a partition A. Since the coefficients ¢, ; are also indexed by the
set of partitions of n, we see that the matrix A = (A(A, 1)) is in fact a square matrix.
With this in mind, we can state the main results of this section. Proposition 24 states
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that certain matrix entries of A have an inductive description or are equal to 0. Next,
Theorem 29 states that — with respect to an appropriately defined total order on the set
of partitions of n — the matrix A is upper-triangular with 1’s along the diagonal.

We begin with a precise statement of the first main result. Recall that A[¢] denotes
the partition obtained by deleting the first ¢ columns from A as in Definition 9.

Proposition 24. Let A\ = n be a partition with exactly k parts. Let = n be a partition
with at most k parts. Then

1. if e < Mg, then
Dy, J,) = @ and therefore A(\, ) =0

and

2. if w = i, then for any € € Z with 0 < € < Mg, there exists a natural bijection
between the sets
D(Ix, Ju) and D(Ixg; Juig)

and in particular we have
A(X, 1) = AAE], ple]).

Before proving Proposition 24, we state the second main result of this section — an
upper-triangularity property of the matrix A with respect to an appropriate total order
on the set of partitions of n. We have the following.

Definition 25. Let n be a positive integer and let Par(n) denote the set of partitions of
n. We define a total ordering < on Par(n) as follows:

A1 e N (15)

Remark 26. We are not aware of where, or whether, the above total order has been studied
or used elsewhere in the literature, particularly in the area related to chromatic symmetric
functions and the Stanley—Stembridge conjecture.

Example 27. Let n = 6 and consider A = (3,3) and p = (4,1, 1). Note that A and u are
incomparable in the dominance order, but A = (2,2,2) and ¢/ = (3,1,1,1) 80 N <jex 1/
and therefore, according to our definition (15), we have A < p.

Remark 28. Tt is straightforward to see that lexicographical order of Par(n), which is a
total order, respects the dominance (partial) ordering on Par(n), in the sense that p <A
implies © <jex A. It is also well known that p <\ if and only if their dual partitions
satisfy the reverse relation, i.e. A < /. It follows that the total order < of Definition 25
on Par(n) respects the reversed dominance order.

We now state our upper-triangularity theorem.
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Theorem 29. The matriz (A(X, jt)) ) uepar(n), written with respect to the total order (15)
on the indexing set Par(n), is upper-triangular with 1’s along the diagonal. Equivalently,
for A\, i € Par(n), we have the following:

1. If p < X with respect to the total order (15) then D(Iy,J,) = @, so in particular,
AN, ) = 0.

2. The set D(Jy, Jy\) contains a unique element, so in particular, A(\,\) = 1.

Example 30. When n = 2 we get the matrix:

(A(/\aﬂ))&uef’ar(?) - {A((l, 1’)

and similarly for n = 3 we have Par(3) = {(3) < (2,1) < (1,1,1)} and it can be checked
directly that we get the matrix

((3),(3)) A((3),(2,1)) A((3),(1,1,1))
(A()‘v M)))\,“epar(i’)) = A((Qv 1)7 (3)) A((Qv 1)7 (2a 1)) A((2v 1)a (L 17 1))
AL LD, (3) AL LD, 21) A(L1L1),(1,1,1))

Given that A is upper-triangular, it is natural to ask whether every entry above the
diagonal is non-zero. The next example shows that the answer is no, i.e., it can happen
that A < p (so A(A, ) lies strictly above the diagonal) but that A(X, u) = 0.

Example 31. Let n = 6 and A = (3,3). In this case [5]\J\ = {1,3,5}, soif w € D(I,, J,,)
then (in the one-line notation of w) 2 appears to the left of 1, 4 is to the left of 3, and 6 is
to the left of 5. When = A = (3, 3), the permutation w has Desg(w) C [5]\ J33) = {3},
and thus w = [2,4,6,1,3,5] is the unique permutation in D(Jy, J,). This shows that
A((3,3),(3,3)) = 1, as expected. Consider now the case p = (4,1,1). Then [5]\ Ju1,1) =
{4,5}. Any w € D(J,, J,) must satisfy Desg(w) C {4,5}. However, given the constraints
on the left descents of w, no such permutation can exist. Thus, although A < u, we still
have A(A, 1) = 0.

The previous example shows that determining when A(\, p) is non-zero (for A < p)
is not immediate. On the other hand, we observe in the above example that, although
(3,3) < (4,1,1) for our total order <, these two partitions are incomparable in the
dominance order (c.f. Example 27 and Remark 28). This motivates the following question,
which (as far as we know) remains open. We leave further investigation of this question
to future work.
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Question 32. If A(\, u) # 0, then is it true that p < \?

Returning to the previous discussion, the remainder of this section is devoted to the
proofs of Proposition 24 and Theorem 29. We need several preliminaries. Let J = {i; <
ip < -+ <ig} C[n—1]. The staircase decomposition (of [n]) corresponding to J
is the decomposition

n] = {io=1,2,..., i1 }U{ir4+1, 0142, ... o} - -U{igr+1, .. iU {ie+1, .. n =g ).

where by convention we set ig := 1 and iy, := n. Each subset appearing in the above
decomposition is called a staircase, and we denote by F(J) := ¢ + 1 the number of
staircases in the associated staircase decomposition. The motivation for the “staircase”
terminology comes from studying the set of right descents of a permutation w € G,,. It
follows directly from the definition of Desg(w) in (5) that if Desg(w) C J = {iy < iy <
-+ < g} C[n —1] then for all 0 < s < ¢ we have

w(is +1) < wliy +2) < -+ < wigp) (16)

on each staircase {is + 1,75 +2,...,4541} of J.

We also find it convenient to introduce analogous terminology for the permutations
themselves. Let w € &, and {is + 1,is + 2,...,i501} C [n — 1] for iszy1 > is be a
sequence of consecutive integers, possibly of length 1 (when ig 1 = is+ 1). We say w is
a staircase on the interval {i¢s + 1,75+ 2,...,%541} if (16) holds. We also say that
{is + 1,is+ 2,...,is41} is a staircase of w. A staircase {is + 1,i5s+ 2,...,i511} of w
is maximal if neither {is,is + 1,45+ 2,... 4541} nor {is + 1,45+ 2,...,is41,0501 + 1} i
a staircase of w. The following is immediate from the definition of the right descent set
given in (5) and we omit the proof.

Lemma 33. Let w € &,,. Suppose J = {i; < iy < -+ <iz}. Letig:=1 andipq :=n. If
Desg(w) C J, then w is a staircase on each interval {is+1,is+2,... is1} for0 < s </,
and there are at most £ + 1 mazimal staircases in the staircase decomposition of w. In
particular, suppose p = (fi1,..., 1) @S a partition of n with k parts, and Desg(w) C
n—1\J, ={p, i +p2, ..., 1+ -+ pg_1}. Then there are at most F([n—1]\J,) =k
maximal staircases of w.

Example 34. Let w = [1,4,7,8,2,5,6,3] € &g. Then Desg(w) = {4,7} since it is
between the 4th and 5th entries, as well as the 7th and 8th entries, that there is a decrease
in the one-line notation of w. The maximal staircases of w are {1,2,3,4}, {5,6, 7} and {8}.
Note that Desg(w) C [7] \ J, where p1 = (4,3, 1). In this case, F([7]\ J,) =F({4,7}) =3

is the number of maximal staircases of w, in agreement with the lemma above.

We now turn our attention to left descents. As already noted, for a permutation
w € &, if i € Desy(w) then the pair (i,7 + 1) has the property that ¢ + 1 appears before
i in the one-line notation of w. Let w € &,, and i € [n]. For a given staircase of w, we
say ¢ occurs in that staircase if i appears in the segment of the one-line notation of w
corresponding to that staircase.
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Example 35. Continuing with Example 34, let w = [1,4,7,8,2,5,6,3] € &s. Then
{1,2,3,4} is a staircase, and we say that 7 appears in that staircase since 7 occurs as one
of the entries in positions 1, 2, 3, or 4 in the one-line notation of w.

Note that any j € [n] occurs in exactly one maximal staircase of w for any w € &,,.

Lemma 36. Let w € &,,. Suppose that {j,j+1,...,7+—1} C Desy(w) is a sequence
of € consecutive integers contained in Desp(w). Then the { + 1 many integers j + { >
JH+l—1>---> 741> 5 must appear in distinct mazximal staircases of w, each strictly to
the right of the previous one. In particular, the number of mazximal staircases of w must
be greater than or equal to € + 1.

Proof. Within each staircase, the entries in the one-line notation of w must be increasing,
so any pair of consecutive integers which must appear in inverted order cannot appear
in the same staircase. Moreover, if they must be inverted, then the smaller integer must
appear to the right of the greater integer i.e., must appear in a staircase strictly to the
right of the greater integer. O]

The next statement follows from Lemmas 33 and 36.

Corollary 37. Suppose K C [n—1] is a subset of [n—1] containing a consecutive sequence
of length 0. Let = (p1, ..., k) be a partition of n with k parts. Then the set

D(ln -1\ K, J,) ={w € &, | Des (w) = K and Desg(w) C [n—1]\ J,} (17)
is empty if £+ 1> k.

Proof. Suppose w € &,, and that Desy(w) = K. Since K contains a consecutive sequence
of length ¢, from Lemma 36 it follows that the number of maximal staircases of w is at
least £ + 1. On the other hand, if Desg(w) C [n — 1]\ J, then by Lemma 33, we have
F([n—1]\ J,) = k, and w has at most k£ maximal staircases. Since ¢+ 1 > k, this cannot
occur. Hence (17) is empty as desired. O

In fact, we can say more. The following statement is straightforward and we omit the
proof.

Lemma 38. Let p be a partition of n with k many parts. Let w € &, and suppose
Desy(w) contains a sequence {a,a + 1,...,a+ k — 2} C [n — 1] of maximal cardinality
k—1 and Desg(w) C [n — 1]\ J,. Then:

1. Desg(w) = [n— 1]\ J,,, so the one-line notation of w contains precisely k mazimal
staircases, and

2. for each i such that 0 < ¢ < k—1, the element a+1i in the sequence {a,a+1,..., a+
k — 1} must appear in the (i + 1)st staircase of the one-line notation of w (counting

from the left).
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In particular, the staircases in which each a+1i must occur is fixed, and exactly one element
in the sequence {a,a+1,...,a+ k — 1} occurs in each of the k maximal staircases.

In the course of the argument below it will be useful to have the following terminology.
Suppose w € &,, and suppose m € Z, 1 < m < n. There is a map (which is not a group
homomorphism)

dpm Sy = G

obtained by deleting the entries {1,2,...,m} = [m] in the one-line notation of w, and
interpreting what remains as a permutation of n — m, under the identification {m +
ILm+2,...,n}y={1,2,...,n—m} given by j +— j —m. We will refer to this procedure
of applying d, ,, as ignoring the [m] entries (of the one-line notation of w).

Example 39. Let m = 2 and n = 5. Let w = [4,3,2,5,1]. Then ds2(w) = [2,1, 3]
because we first ignore the entries 1 and 2 in w = [4,3,2,5,1] to obtain [4,3,5] and then
use the identification j + j — 2 to obtain [2, 1, 3].

We are now ready to prove Proposition 24.

Proof of Proposition 24. The proof can be separated into two parts according to the cases
given in the statement of the proposition. For simplicity denote r := ;.

We begin with the case pp < r = A\g, which itself can be separated into two subcases,
namely, pu, = 0 and 0 < pp < . First suppose up = 0, i.e., p has strictly fewer than k
parts. From the definition of the set J,, it follows that there are » many distinct sequences
in [n — 1]\ Jx = Jy, of the form

(1,2, k=14 {k+1,k+2,...,2k—1},... . {r =Dk +1,... kr—1}.

This means in particular that the set [n—1]\J) contains at least one consecutive sequence
of length k£ — 1. Applying Corollary 37, we immediately obtain that D(], J,) = @ if p
has strictly fewer than k parts.

Next suppose that p has k parts (i.e. g > 0) but g < r = ;. Seeking a contradiction,
suppose that w € D(J, J,), so Desy(w) = [n—1]\J, and Desg(w) C [n—1]\ J,. Then w
satisfies the hypotheses of Lemma 38 and it follows that the given conditions completely
determine the staircases in which the integers {1,2,..., kr} must occur in the one-line
notation of w. In fact, since these are the smallest kr integers in [n] and since each
staircase must have increasing entries, the hypotheses determine the precise location (not
just the staircase) in which these entries must occur. In particular, the r many integers
{1,k+1,2k+1,...,(r — 1)k 4+ 1} must appear in the rightmost staircase of w, which
contains j; many entries. This implies that p; > r, contradicting the assumptions of this
case. This concludes the proof of statement (1) of the proposition.

Now we consider the case of up > r = A\;. By similar reasoning as in the previous
paragraph, it follows that if a permutation w € &,, satisfies Desy(w) = [n — 1] \ Jy = Jx
and Desg(w) C [n—1]\ J,, then w is determined by the location (in the one-line notation)
of the integers {kr + 1,kr+2,...,n} = [n— kr|, i.e., the image of w under the map d,, j,
described above. It is straightforward to see that w is also determined by its image under
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the map d,, ¢ for any 1 < ¢ < r. In what follows, for concreteness we make the argument
in detail for the special case ¢ = r; the argument for ¢ such that 1 < ¢ < r is addressed
below. Consider the image in &,,_g, of the set

D(Jy, J,) ={w € &,, | Desy(w) = [n — 1]\ J) and Desg(w) C [n — 1]\ J,} (18)

under the map d, . which ignores the [kr] entries. By the above argument, d, . is
injective on (18). To prove the desired claim, it suffices to show that

e (D(Jx, 1)) = DAnpy, Jup)

that is, that the image of (18) under d,, x, is precisely

D(Iapr Jupr)) = {w' € Sy | Desp(w') = [n—kr — 1]\ Jpy and Desg(w’) C [n—kr — 1]\ J,p}- (19)

To see this, we first show that any w' = d, x(w) for w in (18) must lie in (19). Since
Desy(w) = [n— 1]\ J\» = Jy, we already know that the j € [n — 1] such that j 4+ 1 occurs
before j in the one-line notation for w with j > kr are precisely the ones of the form

{kr+ 1 kr+2, . onp\{kr+ X kr + X+ XN o, kr+ A+ N}

where A = (N, A}, ..., \}) has ¢ parts and \] = --- = X\, = k by assumption. Notice
that A\[r]" = (N1, Al4g, ..., A}). Under the identification of {kr + 1,kr +2,...,n} with
[n — kr| given by j + j — kr, this means that w' has left descent set [n — kr — 1] \ Jyp.

Next we need to show that Desg(w’) C [n—kr—1]\ J,p. It follows from the above that
the entries {1,2, ..., kr} distribute themselves in the k staircases of the one-line notation
of w in such a way that each staircase contains precisely r many of the entries within
{1,2,...,kr}. Therefore, when ignoring the [kr| entries in w to obtain w’, the locations
where the right descents can possibly occur are precisely at

{pn—rop+pe = 2r o+ g — (B — 1)}

which is exactly the set [n—kr —1]\ J,, for the partition p[r] = (u—7r, po—7r, ..., e —1).
In particular we conclude Desg(w') C [n — kr — 1] \ J,) as desired.

Thus d,, x, sends the set (18) into the set (19). In fact, the argument given above
is reversible, i.e., any v’ € &,,_y, lying in (19) can be extended to an element in &,, by
reversing the correspondence to j — j+kr and adding the entries {1,2, ..., kr} in exactly
the locations specified by the hypotheses in (18), and it is clear that this extension then
lies in (18). This proves the claim in the special case ¢ = r. For any 1 < ¢ < r, by
arguments similar to those above it follows that the entries of d,, s (w) corresponding to

the integers {1,2,...,(r — £)k} are already determined, and so an argument essentially
identical to the one above proves the desired claim. This concludes the proof of the
proposition. O

From Proposition 24 we readily obtain the following.
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Corollary 40. Let A\, i be partitions of n and suppose that there exists ¢ € Z,¢ > 1, such
that the dual partitions X' and u' agree up to the €-th entry, i.e. X, = p, forall1 < s < L.
Then

AN, ) = AL, pld]).

Proof. The argument is a simple induction on the number of steps (in the sense of Defi-
nition 12) in the partitions A and g on which they agree. More precisely, suppose

A] =AU Ay U - U Ageep(n)

is the step decomposition of A and define u to be the index of the step in which ¢ occurs,
i.e., suppose £ € A,.

We first consider the base case. Suppose u = 1. Let k denote the number of parts
of A\. Then the Young diagrams of A and p both contain as their leftmost ¢ columns a
rectangular k x £ box. Proposition 24 then implies A(\A, p) = A(A[€], p[f]) as desired. This
proves the base case.

Now suppose u > 1. Also suppose by induction that the claim is proved for u — 1.
Since u > 1 we know A\ and p both contain a rectangular k£ x r box where £ is the number
of parts of both A and p and r = )y is the bottom length of both A and p. Another
application of Proposition 24 implies that A(X\, u) = A(A[r], p[r]). By assumption, the
dual partitions of A[r] and p[r] agree up to entry ¢ — r, and in the step decomposition
of A[r], the number ¢ — r occurs in step A,—_; since we have deleted a full step from A to
obtain A[r]. Hence by induction we know A((A[r])[¢ —r], (ur])[¢ —r]) = A(A[r], p[r]), but
from Definition 9 it is clear that v[s][t] = v[s + t] for any partition v and s,¢ for which
the statement makes sense, so the result follows. O

We are finally in a position to prove the upper-triangularity property.

Proof of Theorem 29. Since N >1o, 11/, there exists some ¢ € Z~; such that \, = X, for all
0<s</land Ny >y, If no such £ exists, then A; > p; and we may apply Propo-
sition 24 directly. By Corollary 40, we know A(A, u) = A(A[], u[¢]). By construction,
A[{] and p[f] have the property that (A[¢]"); > (u[¢]')1. Hence by Proposition 24, we have
A(N[0], u[f]) = 0, as desired.

We also need to show that for any A\, we have A(A\,\) = 1. Indeed, applying Corol-
lary 40 to £ = A; — 1 we obtain that A(A\, A) = A(A[A; — 1], \[\; — 1]). By construction,
A[A; — 1] is a partition with only one column. Therefore we are now reduced to showing
that if a partition v is of the form v = (1,1,...,1) then A(v,v) = 1. Let v be such a
partition of m for some positive integer m < n. By definition, J, = @ = J, so we have
m —1]\J, = [m —1] = A\ J,. This means D(J,, J,) consists of permutations w in &,,
with the property that every pair (¢,7 4 1) for all 1 < i < m — 1 appears inverted in the
one-line notation of w, and that for all ¢ such that 1 <i < m—1, we have w(i) > w(i+1).
The only such permutation is the longest element [m,m —1,...,2,1] € &,,, so D(J,, J,)
is a singleton set and A(v,v) = 1 as desired. This concludes the proof. ]
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5 An inductive formula for the W-vector

We saw in Corollary 23 that the coefficients ¢, ; of (3), when written as a column vector
X; = (cu,i), satisfy a matrix equation AX; = W;. In order to solve this matrix equation,
we need to analyze the “constant vector” W; for each ¢. This is the purpose of this section.

Recall that the vector W; is defined to have entries |W; ([, h)|, where the sets W;(Jx, h)
are introduced in Definition 16, and A varies over the partitions of n. The main result
(Theorem 65) of this section is an inductive description of the set W;(Jx, h) in the case
that A has k = ht(I,) + 1 parts. However, we also emphasize that this assumption —
namely, that A has exactly k = ht(I;) + 1 parts — is not required for many of the results
in this section which lead up to Theorem 65.

For simplicity, in this section we identify the subsets J C [n — 1] with subsets of the
simple roots {a; | i € J} C A, as explained in Remark 6. Recall that, as explained
in Remark 17, this identification yields a corresponding root-theoretic description of the
sets W;(Jx, h). This Lie-theoretic language is more convenient for our purposes here and
below, so henceforth we use these root-theoretic identifications.

5.1 Sink sets and subsets of height k

In order to obtain our inductive formula, we exploit the structural relationship between
the ideal I}, and graph I'j, alluded to in Section 2. Recall the following notation from [9].

e We let A(I',) denote the set of all acyclic orientations of I'y, and A (I'y,) denote the
set of all acyclic orientations with exactly k sinks.

e Given w € A(T'}) we denote the subset of vertices that occur as sinks of w by sk(w).
Note that each independent set of vertices in I', occurs as the sink set of some
acyclic orientation and sk(w) is independent for each w € A(T).

e Let SKi(T'y,) be the set of all possible sink sets (or, independent sets) of T" of cardi-
nality k.

e The maximum sink set size m(I',) is the maximum of the cardinalities of the sink
sets sk(w) associated to all possible acyclic orientations of I'y, i.e.,

m(Ty,) := max{|sk(w)| |w € A(T})}.
The sink set decomposition is

AnTn) = || {we Alh) |sk(w) =T}, (20)

TeSKg(Ty)

With this terminology in place, our goal is to extend the sink set decomposition of A (')
to a sink set decomposition of the set W(J, h).

For T' € SK(I'y) let I'4[T] := 'y, — T be the graph obtained from I', be deleting
the vertices in T" and all incident edges. Then T',[T] is the incomparability graph for a
Hessenberg function h[T] : [n — k] — [n — k] as shown in [9, Lemma 4.3].
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Remark 41. It is not difficult to see from the definitions of ht(I;) and m(I'y) that
m(Crir) < m(T), or equivalently, that ht(Inm) < ht(I,) (cf. also [9, Proposition 5.8,
Corollary 5.12, Lemma 5.13]).

Note that any acyclic orientation of I', induces an acyclic orientation of I',[T], as
demonstrated in the example below.

Example 42. Let h = (2,3,5,6,7,8,8,8), and consider the following acyclic orientation
w of I'}, displayed below.

1 2 3 4 5 6 7 3

This acyclic orientation has 7' = sk(w) = {1, 3,6}, where the vertices in sk(w) and all
incident edges are highlighted in red for emphasis. For this graph, we have m(I';) = 3.
The graph below shows I'[T] with the acyclic orientation induced from I',.

2 4 ) 7 8

which corresponds to the Hessenberg function A[T] = (1,3,4,5,5). Note that we could
also re-index the vertices of T'[T] to obtain the following acyclic graph.

1 2 3 4 )

An orientation w € A(T'),) assigns each edge e a source and a target; we notate the
source (respectively target) of e according to the orientation w by src,(e) (respectively
tgt,,(€)). Given an orientation w of I';, we let

asc(w) := {e = {a, b} | src,(e) = a,tgt,(e) = b, and a < b}.

In other words, if I';, is drawn as in Example 42 with the labels of the vertices increasing
from left to right, then asc(w) counts the number of edges which point to the right.
Given a sink set 7' € SK(I',) the degree of T is

deg,(T) := min{asc(w) | w € A(I'y) and sk(w) = T'}.

For example, deg,,(T') = 3 for the h and T' as appearing in Example 42. The next lemma
is [9, Lemma 4.8], and shows that in practice it is easy to compute deg,(T") for any
T € SK(I'y,).

Lemma 43. ([9, Lemma 4.8]) Let T € SK(I'y). Then
deg,(T) = {e={a,b} € E(I'y) |a < b, be T}|.

We will see that sink sets in 'y, correspond bijectively to certain subsets of roots in
I;,. In particular, we need the following definition.
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Definition 44. Let R C ®~. We say R is a subset of height k if there exist integers
@592, - Qk, Qo1 € [n] such that ¢; < g2 < ... < @ < @1 and R = {t,, — tg,, ty —
tass - stgey — tat- We let Ry (1) denote the set of all subsets of height k£ in an ideal I,

* ) VGk+1

and define R(1) := | |- Re(1).

It is easy to show that R C &~ is a subset of height k if and only if there exists w € G,,
such that w(R) is a subset of simple roots corresponding to k consecutive vertices in the
Dynkin diagram for gl(n,C). The set R(I) can also be used to compute the height of the
ideal. The following is [9, Lemma 5.5].

Lemma 45. ([9, Lemma 5.5]) Let I be a nonempty ideal in ®~. Then
ht(I) = max{|R| | R € R(I)}.
Recall that [9, Section 5] defines a bijection:

SKk(Fh) — Rk—l(Ih); T — RT = {ﬂz = tg — tgi

1<i<k—1} (21)

41

where T'= {{; < ly < -+ < {}}. By Lemma 45, this bijection shows that the maximum
size of any sink set in I'; is precisely ht(I},) + 1, as noted in Section 2.

Example 46. Let h and T be an in Example 42. The bijection defined in (21) above
associates T'= {1, 3,6} € SK3(I'y,) to the subset

{t3 —t1,t6 — t3} € Ro(Th).

Since 3 = m(I',) = ht(I'y) + 1, we know that [, cannot contain any subsets of height
k > 3. This line of reasoning is essential for proving the inductive formulas later in this
section.

5.2 Another sink-set decomposition

Throughout this section, A\ = (A, Ag,..., \z) is a partition of n with k parts. In this
section we will show that the sets W(Jy, h) have a sink set decomposition. First we define
a subset of W(J5, h) associated to each sink set.

Definition 47. Given T' = {{; < {5 < -+ < l;} € SKi(I'y) we define
Wi(Dx, b, T) :={w e W;(Ix,h) |w(l;) =k —j+1,1<j <k}

and let Wy, h,T) = UW;(Ja, h,T) where the union is taken over all i such that
Wi("]])nh?T) 7£ <.

The conditions defining W(Jx, h, T) tell us that if w € W(Jy, h,T') then:

k,k—1,...,2,1 appear in positions {1, {s, ..., lk_1, ) in the one-line notation for w. (22)

In particular, (k,k —1,...,2,1) is a subsequence of the one-line notation for w.
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Example 48. Let h = (2,3,5,6,7,8,8,8) and T'= {1, 3,6} as in Example 42. Consider
A = (3,3,2); in this case Jy = {a3,a6}. We have, for example, that w € W(Jx, h,T)
where

w=1[3,6,2,8,5,1,7,4].

Note that in the example above, w™({ay, as}) = {t3 — t1,ts — t3} = Ry, where Ry
was computed in Example 46. The next lemma shows that this property characterizes
the elements of W;(Jlx, h, T').

Lemma 49. Let T € SKy(I'y). Then w € W;(Ix, h,T) if and only if w € W;(Jx, h) and
Rr = U}_l({Oél, L ,Oék,l}>.

Proof. It w € W;(Jx, h,T) for T = {4y, 05, ..., 0}, then w € W;(Jy, h) and
w N ag—j) = w  (tyej — tpejr) =tg, —tg, forall j=1,... k-1
by definition of W;(Jy, h,T). Now the definition of Ry given in (21) implies
w ' ({an, ..., 1}) = Ry € Re_1(I)

as desired.
To show the converse, suppose w € W;(Jy, h) and w='({aq,...,ax_1}) = Ry where
T = {61782, C. ,gk} S SKk<Fh) Then

wil({al,&g, N ,Oékfl}) = RT = {th — tgl,tgs — tg2, e ,tgk — tgkil}.

All that remains to show is that w({;) = k —j+ 1 for all 1 < j < k. The equation
above implies w(¢;) € {1,2,...,k}. Observe that w™'({ay,...,ar-1}) = Ry implies
w(Rr) = {a1,...,ap_1}. Thus we also know w({;) = w(l;+1) + 1 since

w(tgj_H — tgj) = tw(e; 1) — twiy) € {ag, ..., ap_1}.

This can only be the case if {1 = k, {5 = k — 1, and so on. We conclude w(¢;) =k —j+1
for each k as desired. O

The next proposition generalizes the sink set decomposition given in (20) and gives a
sink set decomposition of the set W;(Jy, h) for each i.

Proposition 50. Let n be a positive integer and h : [n] — [n] a Hessenberg function. Let
1€ 2,1 >0 and X\ be a partition of n with k parts. Then

Wilnh) = || Wil hT). (23)

TeSK ()

We call the decomposition (23) the sink set decomposition of W(J, k).
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Proof. 1t is straightforward from the definition of the sets W;(Jx, h,T) that the RHS
of (23) is contained in the LHS. Thus we have only to prove the opposite inclusion. Let
w € Wi(Jx, h). By definition, w™ (A \ J)) C I;. Since {ay,...,ap_1} € A\ Ty = Jy it
follows immediately that

tw—1(1) — tw—1(2), tw—l(Q) — tw—l(g), ... ,tw—l(k,l) — tw—l(k) eI,

In particular, R = w™'({ay,...,ax_1}) is a subset of I}, of height k — 1. Since (21) is a
bijection, there exists a unique sink set 7' € SKy(I'y) such that R = Ry and therefore
w € W;(Jx, h, T) by Lemma 49. O

5.3 Inductive Formulas

Our next goal is to identify each set W;(J, h, T)) with a subset of permutations in &,,_.
The following notation generalizes [9, Definition 7.3].

Definition 51. Suppose T' € SKy (') with 7' = {{; < ly < -+ < {;;} and A F n with k
parts. Define a permutation in &,,, denoted wr, by:

Lo wp(l;) =k—j5+1,1<j <k, ie wyp satisfies (22), and

2. the remaining entries in the one-line notation of wy list the integers [n] \ T in
increasing order from left to right.

Example 52. Let h = (2,3,5,6,7,8,8,8) and T = {1, 3,6} as in Example 42. Then
wr = [3,4,2,5,6,1,7,8]

where the entries in positions ¢; = 1, {5 = 3 and {3 = 6 are bolded for emphasis. Note
that wr need not be an element of W(Jy,h,T). For example wr ¢ W(Jy, h,T) when
A = (3,3,2) is the same partition considered in Example 48 since

w}l(a4) = w;l(t4 — t5) =ty —ty4 € Oy
so wr does not satisfy the condition that wy'(A\ Jy) C 1.

For each sink set T'= {{; < ly < --- <t} let fr: ([n] \ T) — [n — k] be the bijection
such that ¢7(j) = j — 7/ where j' denotes the number of elements ¢ € T such that i < j.
This bijection can be used to give explicit formulas for wy, as noted in the following
remark.

Remark 53. The conditions defining wy can be written explicitly in formulas involving fr
as follows.

e If j > k then wy'(j), the position of j in the one-line notation for wy, is the unique
element of [n] such that f7(w;'(j)) = j — k, and

e if j € [n]\ T we have wr(j) = fr(j) + k.
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In fact, the above formulas uniquely determine the bijection f7, which must then be as
defined in the preceding paragraph.

Example 54. We continue Example 52 from above. Here k = 3 and wr = [3,4,2,5,6,1,
7,8]. In particular, we have T'= {1, 3,6} and

fr(2) =1, fr(4) = 2, f7(5) = 3, f7(7) = 4, f(8) = 5.

Notice that fr is the natural bijection we used to relabel the vertices of I'y[T] in Exam-
ple 42. The reader can easily verify the formulas given in Remark 53 in this case. For
example,

wr(2) = f7(2) +3 =4 and fr(w;'(6)) = fr(5) =3 =6—3.
The following is a generalization of [9, Lemma 7.6].

Lemma 55. Let T = {{; < ly < -+ < l} be a sink set of cardinality k. Each element
w € 6, satisfying condition (1) of Definition 51 can be written uniquely as w = wro

where o € Stab({y, o, ..., ly).

Proof. The hypotheses on w determine the entries in positions ¢, fs, ..., £, in one-line
notation. The other entries must be a permutation of the set [n| \ {¢1,0s,..., 0}, and
the hypotheses on w place no conditions on this permutation. Recall that for wy and any
permutation o € &,,, right-composition with ¢ acts on the positions, i.e. if wy sends @

to wr(i), then wyro sends i to wr(o(i)). Thus, if o stabilizes ¢1, 4o, ..., {k, then w = wro
satisfies w(¢;) = wr(¢;) =k —j+ 1 for all j =1,..., k. Moreover, it is straightforward
to see that such a o is unique. ]

Corollary 56. Each w € W;(Jx,h,T) can be written uniquely as w = wrpo where
o € Stab(fl,fg, e ,gk)

Proof. By definition, each element of W;(Jy, h, T') satisfies condition (1) of Definition 51.
]

Example 57. Let w = [3,6,2,8,5,1,7,4] € W(J(332),h,T) for h = (2,3,5,6,7,8,8,8),
as shown in Example 48. In this case, the factorization w = wro gives us

o=11,5,3,8,4,6,7,2] € Stab(1, 3,6).
The bijection f; defined above induces a natural isomorphism:
Stab(£1,£2, o 7€k’) — Gk, O 2,

defined as follows. Given o € Stab({q, (s, ..., {,), delete positions £y, ls, ..., ¢} from the
one-line notation for o and then apply f; to the remaining entries to obtain x,. The result
is clearly an element in &,,_; and each element of G,,_;. arises in this way.

Example 58. The element 0 = [1,5,3,8,4,6,7,2] € Stab(1, 3,6) obtained in Example 57
above maps to xz, = [3,5,2,4,1] € Gs.
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By Lemma 55, for each T' € SKy(I'y,) we get a well defined bijection
Ur: {w € &, : w satisfies condition (1) of Definition 51 } — &,,_

defined by Yy (wyro) = x,. Note that Ur is very similar to the map d,, ,, : &,, = &,
defined in Section 4 and used in the proof of Proposition 24. Indeed, using the language
of that section, applying W7 can be described as ignoring the [k] entries in the one-line
notation of w.

Recall that there is a natural Lie subalgebra of gl(n,C) obtained by “setting the
variables in row/columns {¢1, (s, ..., ¢} equal to zero.” More precisely, there is a natural
Lie algebra isomorphism

(X €gl(n,C)| X;; = 0if {i, j}NT # &} = gl(n — k,C). (24)

defined explicitly on the basis {Ej; [{i,7} NT = @} of the LHS by Ej; — E¢, (i) (j)-

Recall that for each T' € SK(I'y,) we have an associated Hessenberg function h[T] :
[n — k] — [n — k] whose incomparability graph is obtained by deleting the vertices in
T and any incident edges from I'y. In fact, this Hessenberg function corresponds to the
Hessenberg space H N gl(n — k, C) under the identification in (24). (See [9, Section 4] for
more details on this perspective.) We identify the set of roots

QT :={ti—t; e ®|{i,j}NnT =02} C
with the root system of gl(n — k, C) via
t; — tj — th(i) — th(j). (25)

Example 59. We demonstrate the identifications from (24) and (25) in the running
example started in Example 42, with h = (2,3,5,6,7,8,8,8). To visualize what is going
on, we represent gl(8, C) as an 8 x 8 grid with a star placed in the (4, j)-box precisely when
the root (i,7) is contained in ®;. The boxes highlighted in grey correspond the roots in
@\ @[T] so the white boxes containing a star correspond to the roots in ®, [T := ®[T|N Py,
to be discussed further below.

x| x| x| x| x| *]*
x| x| x| x| x| *
* x| x| *
x| x|k x| x| *]*
* | x| *
x| x| x| x| x| *
gl(8,C) : gl(5,C) : x| * | *
x| x| x| K| x| *
* | x| *
x| x| x| x| *
* | *
x x| x| *
x| x| *
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Note that the map in (25) is an isomorphism of root systems, where ®[T7] is viewed as
a subroot system of ® (since @[T is closed under addition in ®). Moreover, the subsets
®,[T] := @, N @[T] and @}, [T] := ¢}, N P[T] correspond to Py and P, respectively,
via (25).
Remark 60. The root system isomorphism given in (25) is compatible with the cor-
)

responding identification Stab(ly,...,¢) given in (24) in the following sense. If o €
Stab(ly,...,0) and t; — t; € ®[T] then o(t; — t;) € ®[T] and

te —te=0(ti =) &ty — tire) = To(tine) = trr(s)-
Recall that for a permutation w € &,, we define
inv(w) :=={(4,7) | ¢ > j and w(i) < w(y)}.

We identify inv(w) with the subset of negative roots @~ Nw ™ (®T) = {t; — t; | (i,]) €
inv(w)} throughout this section. Then (25) gives a bijection between inv(c) N ®[T] and
inv(z,) and a bijection between inv, (o) N @[T and invypy ().

Lemma 61. Let T € SKy(I',). Then
1. inv(wr) = {(i,j)|i > jand i € T}, and
2. if w=wyo for o € Stab({y,..., ) then

inv(w) = inv(wy) U (inv(o) N O[T]). (26)

Proof. We begin by proving statement (1). If (i,7) € inv(wr) then i > j and wr(i) <
wr(j). Ifi ¢ T, then wy(j) > wr(i) > k so from the construction of wy we conclude
j ¢ T. But the entries in the one-line notation of wy for ¢,7 ¢ T cannot be inverted,
by Definition 51(2). Hence wr(j) > wp(i), yielding a contradiction. Therefore ¢ € T
as desired. On the other hand, consider (¢,7) with ¢ > j and ¢ € T. Since i € T, we
may write ¢ = ¢;, for some iy with 1 <ig < k. If j € T', then j = ¢, for some j, with
1 < jo < k such that jy < iy (since j < 7) and we have

wT(z) = U)T(éi(J) =k—ig+1<k-— Jo+1= wT(gjo) = U)T(j)
so (i,7) € inv(wy). If j ¢ T, then wr(j) > k and therefore
wr(i) < k < wr(jf)

so (4,7) € inv(wr) also. This proves (1).

Next we prove (2). Let w be as given. Note that since o € Stab(¢y, ..., ), we have
w(T) = wr(T) = {1,2,...,k}. Our proof relies on this fact, as well as the formulas
given in Remark 53. We first show the inclusion inv(w) C inv(wr) U (inv(c) N ®[T7]). Let
(1,7) € inv(w). If i € T then (4,j) € inv(wy) by (1). If i & T, then k£ < w(i) < w(j)
so j ¢ T as above and we conclude (i,j) € ®[T]. Since o € Stab(ly,...,0;) and o is a
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permutation o also preserves the complement [n]\ {¢1,..., ¢} =[n] —T. Hence if i ¢ T
then o(i) € T also. Using this fact and the formulas from Remark 53 we now have

fr(o(i)) + k = wro(i) < wro(j) = fr(o(j)) + k = fr(o(i)) < fr(o(j)) = o(i) < o(j)

since f.! is an increasing function. Therefore (i, j) € inv(a) N ®[T].
To prove the opposite inclusion, suppose (i,j) € inv(wr). By (1), we know ¢ € T'. If
7 €T then

w(i) = wro(i) = wr(i) < wr(j) = wro(j) = w(j)
so (i,7) € inv(w). If j ¢ T then w(j) = wro(j) > k and

w(i) = wro(i) = wr(i) < k < w(j)

so (i,7) € inv(w) in this case also. Hence inv(wr) C inv(w). Next suppose (i,j) €
inv(o) N ®[T]. This means i,j ¢ T and thus we know, as above, that o(7),0(j) ¢ T also.
Hence

w(i) = wro(i) = fr(o(i)) +k < fr(o(j)) +k = wro(j) = w(j)
since fr is increasing and o(i) < o(j) by assumption. Therefore inv(c) N ®[7] C inv(w)
also. This completes the proof. O

Example 62. Continuing the running example, we have
wWro = w = [3, 6,2,8,5,1,7, 4] S W(J(&g,g), h, T)

where wy = [3,4,2,5,6,1,7,8] and 0 = [1,5,3,8,4,6,7,2] € Stab(1,3,6). In this case it
can be checked that

where
inv(wr) = {(6,1), (6,2), (6,3), (6,4), (6,5),(3,1), (3,2)}

and
inv(o) N®[T] ={(8,2),(8,4),(8,5),(8,7), (5,2), (5,4), (7,4)}.

It is, in general, not the case that {(w) = l(wr) + (o) (where ¢(w) denotes the
Bruhat length of w € &,,); indeed, this is not true for the example above. Therefore the
decomposition of the inversions given in Lemma 61 above is not a simple application of
known formulas for the inversion set of a given permutation (see [4, Sections 2.4-2.5]).

Lemma 63. Let A = (A1, Ao, ..., \x) be a partition of n with exactly k parts and T €

1w (J)) N @[T is mapped to Iy under the identification in (25) and
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2. wr (A \ Jy) N ®[T] is mapped to {a,. .. ,an_—1} \ Jayy under the identification
in (25),

where A[1] = (A1 — L, A2 —1,..., A — 1).

Proof. By definition, wr(T) = {1,2,...,k}. Therefore

)~ luztin) € T & {wr'(),wr' G+1)}INT =0
e {j,i+1n{L,2,.. k=0

and we conclude that w;'(a;) € ®[T] if and only if k+1 < j < n—1. This shows that, for
the remainder of the argument, and since we are only interested in simple roots o such
that w}l(aj) lands in ®[7T], we may assume that j > k. To simply notation we define
Ipy4r = {aipr oy € J,\m} and Jf\[1]+k = {kt1, Q1 b\ Japj+x- Then by definition

Iy ={ax} U Iay+x and A\ Jy = {a, ..., op U Ji[1]+k-

Thus, wz' (Jx) N ®[T] = wp' (Tapyx) and wi (AN Jx) N O[T] = wy' (I5py;4,). From the
formula given in Remark 53 we have
—1 o _
wr (@5) = tuzi) ~ tugt e 7 L)~ berr ) = biok — Bk
under the identification in (25). Therefore (25) maps wy' (Jpyx) to Iy and wr'( Sopen)
to {au, ..., ap_p—1} \ Jap) as desired. O

The next lemma is the technical heart of our argument. Notice that this is the first
time we require the assumption that k& = ht(I},) + 1.

Lemma 64. Let A = (A1, Mg, ..., \g) be a partition of n with k parts, where k = ht(1I),) +
L and T € SKi(I'y). Then w = wro € W\, h,T) if and only if Yr(w) = x, €
W(Iapg, hTT).

Proof. By Corollary 56, each w € W(Jy,h,T) is of the form w = wpo for a unique
o € Stab(ly, s, ..., ) and

wt(Jy) € @, and w(A\Jy) C I

Since @[T is invariant under o and ®,[T] = ®[T] N Py, intersecting the sets appearing in
the equations above with ®[T7 yields

o~ (wr' (Jx) N @[T]) € @4[T] and o (wp' (AN In) N @[T]) C L[] (27)

where [,[T] := ®[T] N I;. The forward direction of the statement now follows directly
from Lemma 63 and Remark 60.

On the other hand, if x, € W(Jpj, h[T]) then Lemma 63 and Remark 60 together
imply that equation (27) still holds. In order to show w = wro € W(Jy, h,T) we must
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prove w () € @, and w({ay,...,ax_1}) C I,. The latter fact is straightforward,
since from the definition of wr we have

w ' ({ou, ..., ar-1}) = Ry C I,
Thus, we have only to show that w™'(ay) € ®,. If not, then w=(ay) € I;, and
R = ’LU_l({Oél, ey O, ak}) Q Ih

is a subset of height £ in [,. Lemma 45 now implies ht(l},) > k — 1, a contradiction. We
conclude that w € W(J, h,T) as desired. O

We are now ready to prove the main result of this section.

Theorem 65. Let A be a partition of n with k parts, where k = ht(I) +1 and T €
SKi(I'n). Then Wy maps Wi(Ja, h, T) bijectively onto Wi_aeg, (ry(Irp, A[T1]).

Proof. Let w € W;(Jx,h,T) and T = {{; < ly < -+ < {y}. By Corollary 56, w = wro
for a unique o € Stab(¢y,...,¢;) and ¥r(w) = z, by definition. Lemma 64 implies
Uy W(Ia, b, T) = W(Ixp, h[T1]) is a bijection, so we have only to show that this bijection
respects the grading as indicated. But this follows from Lemma 61 by intersecting both
sides of (26) with ®,. We obtain

invy, (w) = invy, (wr) U (inv(o) N O,[T7)

SO
i = |invp(w)| = |invy(wr)| + [invep (2,)| = degy (T') + |invir ()]

where the equation above follows directly from Lemma 43 and Remark 60. From this it
follows that Wp(w) € Wi_deg, (r1(Jap), R[T]) as desired. O

6 Inductive formulas for the multiplicities associated to maxi-
mal sink sets

The main result of this section is a first application of the results obtained in the pre-
vious sections. Specifically, we derive an inductive formula for the multiplicities ¢, ;
of the tabloid representations in the decomposition of the dot action representation on
H?*(Hess(S, h)), for partitions p with the maximal number of parts. This result proves
9, Conjecture 8.1].

In the following we use the notation and terminology of Section 5. Let n be a positive
integer, h : [n] — [n] a Hessenberg function, Ty, its associated incomparability graph. Let
k = ht(I) + 1. Let w € Ax(I',) be an acyclic orientation of I'y, and let T' = sk(w) be
the sink set of w of maximal size k. We can delete the vertices of T" and all incident
edges from I'y to obtain a strictly smaller graph I'y7} associated to a smaller Hessenberg
function A[T] : [n — k] — [n — k] (see [9, Section 4] for more details).
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Let S,—x € gl(n — k,C) be a regular semisimple operator. The cohomology of the
Hessenberg variety Hess(S, 1, h[T]) € Flags(C"*) has a dot action of the permutation
group &,,_; and therefore has a corresponding decomposition analogous to (3). We denote
the coefficients for this decomposition by cg,ﬂ- as follows:

H*(Hess(Sur, h[T)) = > cf ,M". (28)

wH(n—k)

With the notation in place we can state our inductive formula, which was first stated
as Conjecture 8.1 in [9].

Theorem 66. Let n be a positive integer and h : [n] — [n] a Hessenberg function. Let
k = ht(I) + 1. Suppose u 't n is a partition of n with exactly k = ht(I) + 1 parts. Then

for all v > 0 we have
Z T
TESKk(Fh)

Proof. Let Parsy(n) denote the set of all partitions of n with at least k parts and Parg(n)
denote the set of all partitions of n with exactly k parts. Let A = (A(), [4)) A u€Pars . (n)-
By definition, if A € Parsy(n) and A < yu, then u has at least k parts so A is the lower
right-hand |Parsy(n)| x |Pars;(n)| submatrix of A. In particular, A is upper-triangular
since A is by Theorem 29. We consider the matrix equation

AX,; =W, where X, = (Cpuyi) peParsy () and Wi = (Wi, h)|)aeParsy,(n)- (30)

The matrix equation appearing in (30) is consistent since we already know a priori that
there exists a solution, given by the coefficients ¢, ; of (3). Moreover, since A is upper-
triangular, this solution is unique. Furthermore, c,; = 0 for all partitions y with more
than k parts by Theorem 4. We may therefore rewrite the matrix equation A X; = W;
as the following system of linear equations, one equation for each partition A - n with
exactly k parts:

Wi@nh)l = 3 (). (31)

pePary (n)

In order to proved the desired result, it suffices to show that the RHS of (29) satisfies,
as p varies among all partitions of n with exactly k parts, the linear relations obtained
in (31). From the sink set decomposition of W;(Jx, h) given in Proposition 50 and the
bijection between W;(Ix, h, T) and W_qeg, (1) (Jrp, [T]) given in Theorem 65 we obtain

WiInB)l = Y Wisaeg, @Iy, b))

TEeSK,(T1)

= D D Cuidemm D@, Il

TeSK(Ty) p'H(n—k)
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where the second equality follows from Theorem 18, applied to J = Jxpj, A[T] and n — k.
Notice that [D(Japy, Ju)| = A(A[1], i) by (14).

From Remark 41 it follows that for any 7" € SKk(Fh), the height of the ideal I is at
most k—1= ht([ ») and hence the coefficient cM i—deg,, (T) appearing in the last expression
above is zero if 1/ has more than k parts. Therefore we may rewrite the above expression
and exchange the summation operations as follows:

Z Z ,u i—degy, (T) A()\[ ]JIU’/) = Z Z CZ’,ifdegh(T) A(A[l]ﬁil)

TeSKg(Ty) p'H(n—k) TeSKy(Ty) % |_ (n—k)
' has <k parts

- Z Z CZ’,ifdegh(T) A()‘[l]a ,LL/)

,u’)—(n—k) TeSKy(Ty)
1’ has < k parts

Next we observe that any partition ' of n — k which has at most k parts is equal to u[l]
for a unique partition p of n with the properties that p has exactly k parts. Indeed, it is
not hard to see that p:= (pf + 1,15+ 1,..., p) + 1) is precisely this (unique) p.

Using this correspondence p <> p[l] = p/, we may therefore conclude that the last
expression in the displayed equations above is equal to

Z Z CZ[I},i—degh(T) A(A[L], p[1])

nePary(n) TeSKy(Ty)

which is in turn equal to

> D g | A H)

pePary (n) TeSKg(Ty)

by Corollary 40. Putting the above together we have obtained

Wi(Jx, h)| = Z Z C;j;[l],i—degh(T) A(A, ). (32)

neParg(n) TeSKg(Ty)

This proves the desired result. O

Acknowledgements

We are grateful for the hospitality and financial support of the Fields Institute for Research
in the Mathematical Sciences in Toronto, Canada. The Fields Research Fellowship allowed
us to spend a fruitful month together at the Fields Institute in August 2018, during which
we had many of the ideas in this manuscript. Finally, we thank the anonymous referees
for extremely careful and thorough readings of the manuscript and for the many helpful
comments which improved the paper.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(3) (2022), #P3.16 34



References

1]

H. Abe and M. Harada and T. Horiguchi and M. Masuda. The cohomology rings of
regular nilpotent Hessenberg varieties in Lie type A. Int. Math. Res. Not., 17 (2019),
5316-5388.

A. Abreu and A. Nigro. Chromatic symmetric functions from the modular law. J.
Combin. Theory Ser. A, 180 (2021), Paper No. 105407, 30.

R. Adin and E. Bagno and E. Eisenberg and S. Reches and M. Sigron. On two-sided
gamma-positivity for simple permutations. Electron. J. Combin., 25 (2018), no. 2,

#P2.38.

A. Bjorner and F. Brenti. Combinatorics of Cozeter groups, volume 231 of Graduate
Texts in Mathematics. Springer, New York, 2005.

P. Brosnan and T. Chow. Unit interval orders and the dot action on the co-homology
of regular semisimple Hessenberg varieties. Adv. Math., 329 (2018), 955-1001.

W. Fulton. Young tableauz, volume 35 of London Mathematical Society Student Texts.
Cambridge University Press, Cambridge, 1997.

M. Guay-Paquet. A modular relation for the chromatic symmetric functions of (3+1)-
free posets, arXiv:1306.2400.

M. Guay-Paquet. A second proof of the Shareshian-Wachs conjecture, by way of a
new Hopf algebra, arXiv:1601.05498.

M. Harada and M. Precup. The cohomology of abelian Hessenberg varieties and the
Stanley-Stembridge conjecture. Algebraic Combinatorics, 2 (2019), no. 6, 1059-1108.

S. J. Lee. Personal communication.

M. Precup. The Betti numbers of regular Hessenberg varieties are palindromic.
Transform. Groups, 23 (2018), 491-499.

J. Shareshian and M. L. Wachs. Chromatic quasisymmetric functions. Adv. Math.,
295 (2016), 497-551.

R. P. Stanley. A symmetric function generalization of the chromatic polynomial of a
graph. Adv. Math., 111 (1995), 166-194.

R. P. Stanley. FErratum to “A symmetric function generalization of the chro-
matic polynomial of a graph”, Theorem 3.4. http://math.mit.edu/~rstan/pubs/
pubfiles/xg_erratum.pdf

J. S. Tymoczko. Permutation actions on equivariant cohomology of flag varieties. In
Toric topology, volume 460 of Contemp. Math., pages 365-384. Amer. Math. Soc.,
Providence, RI, 2008.

M. Visontai. Some remarks on the joint distribution of descents and inverse descents.
Electron. J. Combin., 20 (2013), no. 1, #P52.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(3) (2022), #P3.16 35



	Introduction
	Background and Terminology
	Hessenberg data
	Partitions and subsets

	Linear equations satisfied by representation multiplicities
	Proof of Theorem 18 modulo some lemmas
	Möbius inversion on the Boolean lattice

	The matrix equation AX=W
	An inductive formula for the W-vector
	Sink sets and subsets of height k
	Another sink-set decomposition
	Inductive Formulas

	Inductive formulas for the multiplicities associated to maximal sink sets

