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A NEW APPROACH TO THE GENERALIZED
SPRINGER CORRESPONDENCE

WILLIAM GRAHAM, MARTHA PRECUP, AND AMBER RUSSELL

ABSTRACT. The Springer resolution of the nilpotent cone is used to give a geo-
metric construction of the irreducible representations of Weyl groups. Borho
and MacPherson obtain the Springer correspondence by applying the decom-
position theorem to the Springer resolution, establishing an injective map from
the set of irreducible Weyl group representations to simple equivariant perverse
sheaves on the nilpotent cone. In this manuscript, we consider a generaliza-
tion of the Springer resolution using a variety defined by the first author. Our
main result shows that in the type A case, applying the decomposition theo-
rem to this map yields all simple perverse sheaves on the nilpotent cone with
multiplicity as predicted by Lusztig’s generalized Springer correspondence.

1. INTRODUCTION

In 1976, Springer introduced a geometric construction of the irreducible represen-
tations of the Weyl group of a semisimple algebraic group G on the cohomology of
algebraic varieties called Springer fibers [26L27]. Springer’s work was foundational
to the field of geometric representation theory. There are many current research
directions connected to Springer’s classical result, ranging from exploring modular
versions of his work [2,[3], to applying geometry, topology, and combinatorics to
better understand Springer fibers [14120129].

The Springer fibers are the fibers of the Springer resolution

JI ./\7 - N
which is a resolution of singularities of the nilpotent cone N of g = LieG. In this
manuscript, we consider an extension of the Springer resolution, which is a map

wzﬁop:MvL)./\N/LN,

from a variety M to the nilpotent cone that factors through the Springer resolution.
We refer to this map as the extended Springer resolution. The variety M was
defined by the first author in [16], and used to construct an analogue of the Springer
resolution for M = Spec R(OP"). Here R(OPT) denotes the ring of regular functions
on (5’”, the simply connected cover of the principal nilpotent orbit OP" C N.
Although M is not smooth, it is locally a quotient of a smooth variety by a finite
group. The variety M and the map 1) are defined precisely in Section 2.4 below.

When viewed through the lens of the derived category of G-equivariant per-
verse sheaves, the Springer correspondence is an injective map from the set of
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irreducible representations of the Weyl group to the set of simple G-equivariant
perverse sheaves on the nilpotent cone. The latter set is indexed by the pairs
(O, L), where O is a nilpotent orbit and L is an irreducible G-equivariant local sys-
tem on O. Since the Springer correspondence is an injection, we recover only some
of the pairs (O, £) in this manner. Those missing from the Springer correspondence
were described by Lusztig. He established a bijection between irreducible represen-
tations of what he called relative Weyl groups and all simple G-equivariant perverse
sheaves on N [21], proving that the Springer correspondence is a special case of
what is now known as the generalized Springer correspondence. Historically, this
result was the beginning of Lusztig’s consideration of character sheaves, a key tool
in the study of irreducible representations of finite groups of Lie type. A summary
of this work can be found in [10].

Unlike the proof of the Springer correspondence given by Borho and MacPherson
[8], Lusztig’s proof of the generalized Springer correspondence does not proceed by
applying the decomposition theorem to the pushforward of the constant sheaf on
a single variety. Although Shoji’s treatment of the generalized Springer correspon-
dence in [25] Section 11] (based on Lusztig’s work) makes use of the decomposition
theorem, the generalized Springer correspondence is obtained through pushforwards
from multiple varieties. Our main result, stated precisely in Theorem [5.3] below,
applies this strategy in the case of G = SL,,(C) to the extended Springer resolution
M — N. This theorem shows that the pushforward of the constant sheaf on M to
the nilpotent cone N is the direct sum of all the so-called Lusztig sheaves used in
the generalized Springer correspondence. This then implies that the pushforward
is the direct sum of all the G-equivariant perverse sheaves on N, each occurring
with multiplicity as determined by the generalized Springer correspondence. The
fact that all G-equivariant perverse sheaves appear here was obtained by the third
author in [24], using different methods and without the multiplicity result.

We believe that the geometry of the extended Springer resolution will yield fur-
ther insights into both Springer fibers and the generalized Springer correspondence.
In forthcoming work, the authors will characterize irreducible components of the
fibers of the map v : M — AN, and use the geometric information to analyze
the generalized Springer correspondence from this new perspective. The gener-
alized Springer correspondence is related to relative Weyl groups, each of which
is a smaller symmetric group, and acts on the cohomology of ¥~!(z) for certain
x € N. Since the map 9 factors through the Springer resolution, our construction
yields a new connection between the representation theory of these smaller sym-
metric groups and the geometry of Springer fibers. This connection sheds light on
the Springer fibers themselves and yields previously unknown geometric features of
these fibers.

The arguments below rely heavily on the structure theory of the derived category
of constructible sheaves. The proof of our main result is comprised of two main
steps. In broad terms, the first step requires us to analyze the decomposition
theorem when applied to a quotient map X — X/Z where Z is a finite abelian
group acting on a variety X. We then apply this general analysis in the special
case of 7 : M — N. The second step of our argument is comprised of studying the
simple perverse sheaves that appear as summands of 7,C M[dim/\/]. In particular,
for G = SL,(C) we prove that each simple perverse sheaf that arises in this way
pushes forward to a single Lusztig sheaf under the map p.
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The contents of the paper are as follows. Section [2] covers background infor-
mation and definitions, including the definition of the partial Springer resolution
NP, In Section Bl we study the pushforward of the constant sheaf C 7 along 7).
As indicated above, some of our analysis in this section is carried out in a more
general setting. Section M studies the intersection cohomology complexes appearing
in 7.C 5;[dim N]. We show that each of these pushes forward to an intersection

cohomology complex on NPT for a particular parabolic subgroup P of SL,(C). Fi-
nally, we realize each of these as an induced complex and prove our main result,
Theorem [5.3] in Section [}l We conclude with an explicit example for G = SLg(C),
and a discussion of future work.

2. PRELIMINARIES

2.1. Group actions and local systems. We work with schemes over the ground
field C. Given a scheme X, Cyx denotes the constant sheaf on X with rational
coefficients. The Lie algebra of an algebraic group is denoted by the corresponding
fraktur letter; if G is an algebraic group, its identity component is denoted Gy, and
the component group is G/Go.

Suppose Z is a finite group acting freely on X on the right, and V is a repre-
sentation of Z. There is a corresponding local system Ly on X/Z, defined as the
sheaf of locally constant sections of the vector bundle V = X x? V — X/Z. By
abuse of terminology, we may refer to X x? V as a local system on X/Z.

If G is an algebraic group acting on X, G* denotes the stabilizer in G of x € X.
The component group G*/GY of the stabilizer is sometimes called the equivariant
fundamental group of the orbit G - . Suppose V is a representation of G*/G%,
viewed as a representation of G* via the map G* — G*/Gj. Then V corresponds
to a local system Ly on G - x, defined as the sheaf of locally constant sections of
the vector bundle G x&" V — G/G* = G - x.

If Z is a subgroup of G, and M is a Z-variety, the mixed space G xZ M is the
quotient of G' x M by the action of Z defined by (h,m)z = (hz,2z"'m) for z € Z.
The equivalence class in G x# M of (g,m) € G x M is denoted [g, m], or [g,m]z if
we wish to make the group explicit.

2.2. Local systems on the principal orbit. Throughout the rest of the paper,
G denotes a simply connected semisimple algebraic group over C with Lie algebra
g and center Z. The group of characters of Z is denoted by Z (with analogous
notation for other finite groups). Set T,q = T/Z. We denote the set of nilpotent
elements in g, known as the nilpotent cone, by A'. The group G has a dense orbit
in AV, called the principal nilpotent orbit. We denote this orbit by OP" and refer
to its elements as principal nilpotent elements.

Let v € g be a principal nilpotent element. Choose a standard triple {v, s, v_}
with nilpositive element v and semisimple element s € t. Since ad, acts semisimply
on g, we can decompose g into its ads-eigenspaces:

g= @gj, where g; = {z € g | [s,2] = jz}.
JEZ

For any k, we let g>, = €P;>), 0; and g> = P,-, 8:- Let t = go, u = g>0, and
b = t 4+ u. The corresponding subgroups of G are T', U, and B = TU; B is a Borel
subgroup of G with maximal torus 7.
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Let ® denote the root system of g, with positive roots ®* chosen so that u is the
sum of the positive root spaces. The flag variety of G is G/B, and W = Ng(T')/T
is the corresponding Weyl group. Much of this paper is focused on the case in which
G = SL,(C) and g = s1,(C). When G = SL,(C) we may assume B is the subgroup
of upper triangular matrices; the Weyl group in this case is the symmetric group
Sn. We have G¥ = ZU". Since UY is connected, being unipotent, the component
group G /Gy is identified with Z. Therefore any character x € Z corresponds to a
local system L, on G -v = OP".

2.3. The Springer resolution. We denote the Springer resolution by x : N =
N where

N :={(gB,z) e G/BXN | g~ ' -z cul}.
Here g~! - z denotes the adjoint action Ad(g~!)(x) = g~ !

projection onto the second factor. Given x € A/, the fiber

p @) ={(gB,x) | g~ -weu}
is the Springer fiber of z. We can identify the Springer fiber with its image in
G /B under the projection to the first factor; under this identification,

pHx) ={gB|g -z eul
Sometimes G/B is denoted by B and the Springer fiber in G/B is denoted B*.

zg. The map p is simply

Remark 2.1. There is an isomorphism of varieties
GxPu—= N, [ga]~ (9B, g-x)

(cf. [19} pg. 66]). We use this identification frequently below. Under this identifi-
cation,
p:GxBPu—sN, [ga]—g-x

Viewed as a subset of G x P u, the Springer fiber over z is
(2.1) pH @) ={lg.g 2] g7t eul.

2.4. The extended Springer resolution. We now recall from [16] the definition
of the variety which is the main geometric focus of this paper.

Let A C &' denote the subset of simple roots. Then g, = Doca o Since
[s,v] = 2v, we have v € ga, and we can choose root vectors E, for each o € A so
that v = )" .\ Eo. Since the center Z acts trivially on g, the action of T' on g
factors through the map T'— Tpq = T/Z. The map Tpq — Tag -V given by ¢ — ¢-v
embeds T,4 in go, so go is an affine toric variety for T4, which we denote by

Vad = g2 = @ Ja-
aEA
The composition V,q — u — u/[u, u] is an isomorphism, and using this, we identify
Vad with u/[u, u]. Via this identification, V,q acquires a B-action (the subgroup U
acts trivially), and the projection p : u — u/[u,u] = V,4 is B-equivariant.

An affine toric variety is characterized by the character group of the torus, which
can be viewed as a subset of the dual Lie algebra of the torus, together with a cone
in the real span of the set of characters. (The character group is a lattice in its
real span.) The toric variety V,q corresponds to the lattice given by the character
group of T,q, and the cone equal to the set of R>¢-linear combinations of simple
roots. The simple roots can be viewed as characters of either T,y or T. We define
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Y to be the toric variety for T obtained by changing the lattice for V.4 but keeping
the same cone: that is, V corresponds to the lattice given by the character group
of T', and the cone equal to the set of R>p-linear combinations of simple roots. It
follows that V/Z = Vaq (see [15], Section 2.2]).

The composition T'— B — B/U is an isomorphism, so identifying T with B/U,
there is a natural projection B — T'. Via this projection, V acquires a B-action
(where U acts trivially), and the projection 7 : V — V4 is B-equivariant.

The variety M and map 9 : M — N discussed in Section [ are defined as
follows. First, consider the maps p : u — u/[u,u] = Vg and 7 : V — V/Z = Vg4
defined in the paragraphs above. Set

u:=VYxy  u={(v,y) | 7(v) =py)},

i.e., we form the following Cartesian diagram.

u—u

Lk

y—"1

Because the maps p and 7 are both B-equivariant, B acts on 1. We define M =

G xBU. Let n: U — u denote projection onto the second factor. We then define
K M = N to be the map induced from 7, so 77 maps the element [g, x) € M to
[g,n(x)] € N. The extended Springer resolution is the variety M together
with the map 1 : M = N, where 1 is the composition

VML N LN
of 77 with the usual Springer resolution u.

2.5. Intersection cohomology sheaves and the decomposition theorem.
The decomposition theorem plays an important role in this paper, and we briefly
discuss and state it here. The original version of this theorem is due to Beilinson,
Bernstein, Deligne, and Gabber [4]; we will also need a generalization which can be
found in [I2] or [II]. Statements and discussions of the theorem relevant for this
paper can also be found in [I3], [7], and [19]. Before we state the decomposition
theorem, we first discuss its essential ingredients, namely intersection cohomology
complexes. These are the simple perverse sheaves, and objects in the bounded
constructible derived category D®(X) of a variety X.

A perverse sheaf is a constructible complex of sheaves of C-vector spaces which
satisfies certain support and co-support conditions. The intersection cohomology
complexes are determined up to canonical isomorphism in D®(X) by more restric-
tive conditions. Suppose X is a complex algebraic variety, and let U be a nonsin-
gular, dense open subvariety of X. Given a local system £ on U, and an integer
d, we let £[d] be the complex in D?(X) with £ shifted to the —dth location. The
intersection cohomology complex IC(X, L) is the object in D*(X) uniquely
determined up to canonical isomorphism by the following properties: the restriction
to U is L[dim X],

dim{z € X | HL(IC(X,L)) # 0} < —i for all i > dim X
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and
dim{z € X | HL.(DIC(X, L)) # 0} < —i for all i > —dim X,

where H’ denotes the stalk at z of the cohomology sheaf of the complex, and
D denotes the Verdier dual. If X is smooth and L., is the trivial local sys-
tem, IC(X, Lirip) = Cx[dim X] (recall that Cy denotes the constant sheaf on X).
Spaces with the property that IC(X, L) = Cx[dim X] are called rationally
smooth. Examples of rationally smooth varieties include M (which is rationally
smooth since it is locally a quotient of a smooth variety by a finite group) and N
(see [T, §2.3]).

Suppose j : Z — X is the inclusion of a closed subvariety. Since we are only
working in the derived setting, we use the notation j,. rather than Rj. to denote
the derived direct image D°(Z) — DP®(X). The functor j, is fully faithful and
induces an equivalence of categories between D®(Z) and the set of objects in D?(X)
supported on Z [I3 Section 2.3]. Moreover, for any F € D%(Z), there is a natural
isomorphism j*j.F — F (cf. [I8 p. 102]). By convention, if we are working with
DP(X), we omit the symbol j., and write IC(Z, L) for j.IC(Z, L), where L is a
local system on an open subset of Z. More generally, if S is a closed subvariety of
Z and L is a local system on an open subset of X, IC(S, £) may denote an element
of D*(Z) or D*(X). There is a natural isomorphism j*IC(S, L) — IC(S, L), where
IC(S, L) is viewed on the left hand side as an element of D’(Z) and on the right
hand side as an element of D*(X).

All simple perverse sheaves in D’(X) are of the form IC(S, L) for some closed
subvariety S and local system L. Note that if S has two different open dense
subvarieties U; and Us, and local systems £1 on U; and L5 on Us that agree on the
intersection Uy N Us, then IC(S, £1) and IC(S, L) are canonically isomorphic.

Let f : X — Y be an algebraic map of irreducible complex varieties. Then f is
semismall if for all d,

dim{p € X | dim f~*(p) > d} < dim X — 2d.

If f is semismall, then f is generically finite. The map f is small if the inequality
above is strict for d > 0. A finite map is small.

We now state a version of the decomposition theorem for perverse sheaves. The
first statement here can be found in [I2] or [II]. The second statement comes from
[7] and is a specialization of the original version found in [4].

Theorem 2.2 (The decomposition theorem). Let f: X — 'Y be a proper map of
complex algebraic varieties.

(1) Let L be a semisimple local system on X. Then the derived pushforward
fIC(X, L) is a finite direct sum of shifted simple perverse sheaves on'Y.

(2) If f is semismall and X is rationally smooth, then f.Cx [dim X| is perverse,
so no nontrivial shifts occur in (1). That is,

(2.2) £ Cx[dim X] = P IC(S;, Li) @V,

where each S; is a locally closed subvariety of Y, L; is an irreducible local
system on an open set of S; and V; is a vector space with dimension equal
to the multiplicity of IC(S;, L;) in the sum.
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2.6. The Springer correspondence and Lusztig’s generalized Springer cor-
respondence. The Springer correspondence is an injective map from the set of
isomorphism classes of irreducible W-representations to pairs (O, L), where O is
a nilpotent orbit and £ is an irreducible local system on 0. Note that each pair
(O, L) corresponds to a simple perverse sheaf IC(O, L) on N. In [7], Borho and
MacPherson give a proof of the Springer correspondence which relies on the theory
of perverse sheaves. They apply Theorem to the Springer resolution to obtain

(2.3) pCildimN] = € I1C(0, L) ® Vio,r).
(0,£)

The left side of (23] is called the Springer sheaf; it is the derived pushforward of
the constant sheaf on A¥ along the Springer resolution. On the right side of ([Z3)),
the sum is over the pairs (O, £) that appear in the Springer correspondence. One
can show that the Weyl group acts on the left side of (23)). This implies that each
Vio,c) is a W-representation; it is precisely the irreducible representation of W
mapping to (O, L) under the Springer correspondence.

Since the Springer correspondence is an injection, we recover only some of the
pairs (O, £) in this manner. Those missing from the Springer correspondence were
described by Lusztig in all cases [2I]. Following Lusztig, we consider triples ¢ =
(L,Op, LF), where L is a standard Levi subgroup of G, Oy, is a nilpotent orbit of
L, and £* is a local system on Q. A triple satisfying certain conditions is called
a cuspidal datum (see [I, Definition 8.5.1]), and Lusztig has classified all such
triples. The relative Weyl group corresponding to a cuspidal datum c is the
group W(L) := Ng(L)/L. Although W (L) is defined even if ¢ is not cuspidal, the
cuspidal hypothesis is required to ensure that W (L) is a Coxeter group. Details can
be found in [21I] and [22]. An exposition in language closer to ours can be found
in [I, Section 8.5]. The generalized Springer correspondence is a bijection
between the set of simple perverse sheaves on the nilpotent cone and irreducible
representations of relative Weyl groups associated to cuspidal data.

Suppose P is a parabolic subgroup of G with Levi decomposition P = LUp,
where L is part of a cuspidal datum c for G. The corresponding decomposition
of Lie algebras is p = [ 4+ up. By means of the isomorphism [ ~ p/up, the Lie
algebra [ acquires a P-action, where Up acts trivially. The projection ¢ : [+up — [
is P-equivariant, and takes N7 + up to Ny. Note that Up acts trivially on N7,
when N7, is viewed as a subvariety of p/up, but Ny, is not Up-invariant when N7,
is viewed as a subvariety of N7 + up.

Let NP = GxP (N +up) denote the variety considered by Borho and MacPher-
son in [7]; here N7, is the nilpotent cone of L. We write [g, z]p for the equivalence
class of (g,z) in /\7P7 where g € G and z € N, +up. Borho and MacPherson call
the map up : NP — N defined by up([g,x]p) = g - x a partial resolution of N it
is analogous to the Springer resolution. Note that using an isomorphism analogous
to the one defined in Remark 21, N'* can be identified with the variety of pairs
(gP,x) € G/P x N such that g=! -z € NI + up.

Let mp ‘NP =G xP N be the map induced from ¢ : [+ up — [. We have the
following diagram:

N(H—PNP 2=GXP(NL+HP)W—P>G><P./\/‘L.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3898 WILLIAM GRAHAM, MARTHA PRECUP, AND AMBER RUSSELL

By the induction of complexes defined in [23] (see, in particular, [23, (1.9.3)] and
[6, 2.6.3]), each L-equivariant object in the derived category D®(NT7) determines a
G-equivariant object in the derived category D(G x¥ N7). We denote the cor-
responding functor by Indg. Consider the simple perverse sheaf Indg IC(Og, Lh)
on G xT N, where O, and L are from the cuspidal datum ¢ = (L, Op, £LF). We
define

(2.4) Ag i= pp,mp* nd$ IC(Or, £Y)[dim up]

to be the Lusztig sheaf associated to c. In [I, Section 8.5], A. is denoted by
ind¥_p, 1C(Oy, LY).

The Lusztig sheaf A, decomposes as a sum of simple perverse sheaves, each
of which corresponds to an irreducible representation of W(L). The general-
ized Springer correspondence is obtained by considering the Lusztig sheaves A,
as c varies over all cuspidal data. When L = T, the only cuspidal datum is
¢ = (T,0q0}, L{.;,,) where Oy is the zero orbit. In this case, the relative Weyl
group is the full Weyl group W and the Lusztig sheaf is the Springer sheaf. We
therefore recover the Springer correspondence as a special case of the generalized
Springer correspondence.

Remark 2.3. Lusztig’s generalized Springer correspondence is proven for connected
reductive algebraic groups over any algebraically closed field (of possibly positive
characteristic p) and Q,-sheaves. Although the discussion in this paper focuses
on the characteristic zero setting and C-sheaves, most of the results generalize to
the positive characteristic setting. The only potential difficulty is our analysis of
varieties with a finite group action (e.g. the Z-action on M ) in Section[3 However,
if X is a variety defined over an algebraically closed field of characteristic p and Z
is a finite abelian group acting on X, the results of Section Bl hold whenever p is
relatively prime to |Z].

2.7. Cuspidal data and Lusztig sheaves for G = SL,,(C). When G = SL,(C),
the Springer correspondence and its generalization have a more direct description.
In this setting, the only pairs (O, L) appearing on the right hand side of (2.3)
are those corresponding to the trivial local system L;.;, on each orbit O, thus
the Springer correspondence gives a bijection between irreducible representations
of S, and nilpotent orbits. We adopt the conventions of [I9], so the irreducible
Sn-representation V) indexed by the partition A - n corresponds to the nilpotent
orbit O, of nilpotent matrices with Jordan type A. Note that our conventions may
differ from some others appearing in the literature up to tensoring V) with the sign
representation.

Let v € Oy. Each irreducible local system on the orbit O, corresponds to a
unique irreducible representation of the equivariant fundamental group G*/Gg, as
described in SectionZT]above (in fact, this correspondence is an equivalence of cate-
gories). If A = [A1, Ag, ..., A], we have G¥ /G ~ Z,, where m = ged (A1, Az, - .., Ak).
The center Z of GG is isomorphic to the cyclic group Z,. Since Z is a subgroup of
G”, we obtain a map Z — G”/GY. This his map is always surjective in the type A set-

tlng7 so we obtain an injective map G¥ / Gy — Z of the character groups. Suppose

X € Z is in the i image of this map; note that the order of x divides m. We denote
the corresponding G-equivariant local system on Oy by L, ; it depends on the orbit
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O, as well as on y, but we omit A from the notation. Recall that if A\ = [n], then
O, = OP" is the principal orbit and G*/G§ ~ Z.

From [2I] and [22], it follows that there is a character of Z associated to each
Lusztig sheaf A, (see [2I], Section 14.2]). In the type A setting, this association is
a bijection (see [22, Section 5.1]). See also [I, Theorem 8.5.8]. Given x € Z, we
denote by c, the unique cuspidal datum associated to x, and A, the Lusztig sheaf
constructed from cy. If x has order d, then ¢, = (L,0}",LL), where the Levi
subgroup L is of the form S(GL4(C) x --- x GL4(C)) with n/d factors, OF" is the
principal orbit in N7, and £§ is a local system defined precisely in Section Bl below
(see also [22, §5]). The relative Weyl group in this case is isomorphic to S, 4.

Given a character x of order d, we obtain an induced local system £, on precisely
those orbits Oy for which A = [Aq, ..., Ag] is a partition of n such that d divides \;
for all 4. Let A denote the partition of n/d obtained by dividing each part of A by
d. The Lusztig sheaf A, corresponding to x decomposes as:

(2.5) A, = B 1C0s L)@V
)\:[)\1,‘..,)\16]'*71
d|A1,...,d| Mg

The generalized Springer correspondence can be stated explicitly in this type A
setting as the bijection between simple perverse sheaves on the nilpotent cone and
irreducible representations of the relative Weyl groups given by 1C(Oj, Ly)— Vi
Example 2:4] computes the decomposition [2ZH) for G = SL4(C).

Example 2.4. The group G = SL4(C) has center Z = {w*I;}, where w =
exp(mi/2) and Iy is the 4 x 4 identity matrix. Write Z = {1, x1, X2, X3}, where
X% denotes the central character such that y(wly) = w¥, and ¢ is the trivial char-
acter. The Lusztig sheaf corresponding to the trivial character is the Springer sheaf
1+C . Equation ([2.3) becomes

/,L*Qﬁ[dim./\/’] = @IC(@)\, EL) ® Vi.

A4

The Lusztig sheaf corresponding to xo is
Ay, = (IC(Op), £x2) ® Vigy) @ (IC(Op2.2): £,) © Vi)

where the vector spaces V) for A F 2 are representations of W(L) ~ S5. Similarly,
the Lusztig sheaves corresponding to x; and y3 are:

Ay, = IC(@[4]3 Ly,)® V[l] and Ay, = IC(6[4]"CX3) ® V[l]a

where V) corresponds to the only representation of the trivial group W(L) ~ S;
in both these cases. Since dim(V}; 1)) = dim(V}g)) = 1 and dim(V}y;) = 1, we see
that the only simple perverse sheaves with multiplicity more than one in this case
are those coming from the Springer sheaf.

In the next sections, we apply the decomposition theorem to the extended
Springer resolution when G = SL,(C). We will show that we recover all of the
Lusztig sheaves A, as summands of the pushforward of the constant sheaf. That
is, we recover all the simple perverse sheaves on the nilpotent cone. Moreover, each
occurs with multiplicity given by the dimension of the corresponding irreducible
representation of S, /4.
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3. PUSHING FORWARD THE CONSTANT SHEAF TO A

The main results of the next few sections concern the pushforward of the constant
sheaf C 7 via the composition

In this section, we study the pushforward under the first map 7 : M = N. We
prove some of the needed results in a more general setting. The main general result
is Proposition

3.1. Pushing forward along a finite quotient map. Throughout this subsec-
tion, X will denote an n-dimensional complex variety with a left action of a finite
abelian group Z. It will frequently be convenient to use the right Z-action on X
defined by the formula xz := z7'z; we write Y = X/Z for the quotient of X by Z
(with either action). We will assume that there is an open set X,., C X such that
Z acts freely on X,¢q, and let V.. = X,¢q/Z. We have the following commutative
diagram, where the horizontal maps are open embeddings, and the vertical maps
are quotient maps.

Xpeg —— X

A

YTeg]—>Y

The maps 7 and p are finite, so they are trivially both small and semi-small. More-
over, the map p is étale. The fibers of 7 are exactly the orbits of Z on X.

Let x : Z — C* denote a character of Z, and let £, denote the local system
defined, as in Section 2.I] by the sheaf of locally constant sections of the line bundle
Vy = XyegXZCy over X,eg/Z = Yyeq. These local systems are studied in [3, Section
3.2]; Lemma [31]is essentially a special case of [3, Lemma 3.6].

Lemma 3.1. With notation as above, we have

pCx,., = P Ly
x62
For x € Z , define
Xy ={r e X |Z% Cker(x)}.

Since Z is abelian, the set X, is Z-stable; let Yy, = X, /Z = n(X,). Because X,
is Z-stable, if y € Y, the entire preimage 7 1(y) lies in Xy. In fact, since Z is
abelian and 7w~ !(y) is a single Z-orbit, the stabilizer groups Z* are the same for all
x €n (y).

Given y € 2, write H, = ker x. If x is understood, we write H = H,. We can
view x either as a character of Z or of Z/H.

Lemma 3.2. The set X, is open in X. Hence Y, is open in Y.

Proof. By definition, z € X \ X, if and only if there exists g € Z \ H such that
x € X9={zreX|gr=ux} Thus,

X\ X, =UgenuaX?.
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Since each X9 is closed and Z is finite, X \ X, is closed and thus X, is open in X.
Finally, 7 : X — Y is proper, so m(X \ X, ) =Y \ Yy is closed in Y. Thus, Y, is
open in Y. ([l

Lemma 3.3. The group Z/H acts freely on X, /H.

Proof. Let Z,T denote the images of z € Z and z € X, in Z/H and X, /H,
respectively. Suppose z € Z and x € X, such that Zx = . We must show that
Z = . By definition, Z% = Z implies zx = hx for some h € H. Thus, zh "'z = z,
implying zh~! € Z* C H. Hence z € H, so Z = €, as desired. |

By definition, the open set X, contains X,., and hence Y, contains Y;..4.

Lemma 3.4. We have
Vy = Xpog/H x?H C,.

Proof. By definition, V, = X,., xZ C,, equals (X,.., x Cy)/Z, where Z acts by the
mixing action z(u,c) = (uz~1, zc). We have

(3.1) (Xreg X C)/Z = ((Xreg x Cx)/H) /(Z/H).
Since H acts trivially on C,, the right hand side of (B1)) is equal to ((Xyeq/H) X
C,)/(Z/H), which by definition equals X,.,/H x%/H C,. O

Proposition 3.5. The local system L, on Y,eq = Xreq/Z extends to a local system
(also denoted by L) on'Y,.

Proof. It is equivalent to showing that there is a local system on Y, whose restriction
to Yreq is L. Since Z/H acts freely on X, /H, we have a local system associated
to the line bundle X, /H x%/# C, on (X, /H)/(Z/H) = X,/Z. By Lemma 3.4
the restriction of this local system to X,.,/H is equal to L,. |

Recall that n = dim X = dimY. As noted above, given y € Y, the stabi-
lizer group Z® is independent of the choice of z € 7~ !(y); a choice of such x
gives an identification of 77 1(y) with Z/Z*. Given a complex F of sheaves on
Y, the cohomology sheaf #*(F) has stalk at y € Y denoted by #}(F). We have
dim #},(7.Cy) = dim H*(7~"(y)). Because 7 is a finite map, this dimension is 0 if
i >0, and is equal to |7~ 1(y)| = |Z/Z*| if i = 0.

The next result describes the pushforward of the constant sheaf on X under the
quotient map 7 : X — Y. The strategy of the proof is to first use the decompo-
sition theorem and Lemma [B.1] to show that 7,.C y[n] equals the expression in the
statement of Proposition plus possible extra terms, and then to use dimension
arguments to show that these extra terms do not appear.

Proposition 3.6. Let m: X — Y be the quotient of an n-dimensional variety X
by the action of a finite abelian group Z, such that Z acts freely on an open subset
Xreg of X. Assume that X is rationally smooth. With notation as above, we have
(1) mCxn] =B,z 1C(Y,Ly), and

(2) dimH,"(IC(Y,Ly)) is equal to 1 if y € Yy and is 0 otherwise.
(3) If y €Yy, then
)

HS(IC’(Y, L)) =0 for all integers k.

Hence, if i : Y \Y, — Y is the inclusion, we have i*IC(Y,Ly) = 0 in
DY(Y \ Yy).

(3.2
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(4) If j : Yy = Y is the inclusion, then IC(Y, L) = (jy 1 Ly[n].

Proof. Because X is rationally smooth, C [n] is a perverse sheaf. Since 7 is a small
map, m.Cy[n] is perverse as well. By the Decomposition Theorem (Theorem
above),

(3.3) .Cx[n @ IC(Y;, L))

where Y; is a closed subvariety of Y and ﬁi is a local system on an open subvariety
of ¥;. We claim that for each x € Z, the sheaf IC(Y, L) occurs in the sum, so the
sum takes the form

(3.4) mCxlnl= | @PIC(Y.L,) | &K,
x€Z

where /I is a sum of IC' complexes for local systems on subvarieties of Y. To verify
the claim, recall that by Lemma [3.1]

pLx..,[n = D L

xGZ

Each term in the decomposition of 7,.Cx[n] is of the form IC(Y;, L;), where Y;
is a closed subvariety of Y. Recall that j : Y,.y — Y. By base change, j*m, =
p+«i*. Hence, the restriction of the right side of (B3] to Y,e4 equals EBxef Ly[n].
Therefore, for each x, there exists an 4 such that the restriction of IC(Y;, £;) to Y4
is L, [n]. To finish proving the claim, it suffices to verify that the only intersection
cohomology complex on Y whose restriction to Y4 is £, [n] is IC(Y, L, ). To see
this, suppose that the restriction of IC(Y;, L;) to Yyeq equals Ly [n]. Since the
support of IC(Y;, L;) is Y;, we must have Y; =Y, and then £; is a local system on
an open subset V; of Y. This implies that the restrictions of £, and £; to V; N Y,
agree. But if two local systems on open sets agree on the intersection of those
open sets, then the corresponding IC-complexes are canonically isomorphic. We
conclude that IC(Y;, £;) = IC(Y, L,), as desired. This proves the claim.
Now let y € Y and x € 7~ !(y). By the remarks preceding the proposition,

(35)  dimH,"(m.Cx[n) = dimH(m.Cy) = [ ()] = |2/27),
and
(3.6) dim H}(m.Cx[n]) = 0if k # —n.
Combining (34), (33), and (BEI) we see that for any y € Y,
(3.7) 12/2"| = dim H, " (m.Cx(n]) = Y dimH, " (IC(Y, Ly)) + dim H, ™(K)
XEZ
and
(3.8) dim H} (IC(Y, Ly)) = dim HE(K) = 0 if k # —n.

By Proposition B.5, £, extends to a local system (again denoted by L,) on Y,
so IC(Y, Ly )|y, = Ly[n]. Therefore if y € Yy, then dimH " (IC(Y, L)) = 1. We
claim that the number of characters Y € Z such that y € Y, is |Z/Z"|. Indeed,

y € Yy if and only if Z% is contained in ker x. This is equivalent to saying that x
is pulled back from a character X of Z/Z® by the quotient map Z — Z/Z*. Thus,
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the number of x € Z such that y € Y, is equal to the number of distinct characters
of Z/Z*, which is equal to |Z/Z*| since Z/Z* is an abelian group. This proves the
claim.

The discussion in the previous paragraphs shows that the contribution to the
sum on the right hand side of (3.7 from the characters x such that y € Y, is equal
to |Z/Z"|. Hence, for k = —n and all y € Y, we have H}(K) = 0. As this equality
is also true for k # —n by (B8], it holds for all integers k. Since K is a direct
sum of IC-sheaves, this is only possible if & = 0. Assertion (1) of the proposition
follows. Similarly, if y ¢ Y,, we have dimH, " (IC(Y,Ly)) = 0. Since we have
already proved that if y € Y, , then dim H,™(IC(Y, L)) = 1, assertion (2) follows.
Since dim HE(IC(Y,Ly)) = 0 for k # —n by [B8), assertion (3) follows as well.
Finally, assertion (4) is a consequence of (3) and the fact that the restriction of
IC(Y,Ly) to Yy is Ly[n]. O

3.2. The subvarieties V, and V,q,. In this section, we consider the setup from
Section Bl in the case that X =V, Y = V,4, and Z is the center of G = SL,,(C).
We write Vod,reg = (Vad)reg a0d Vaa = (Vad)y. The goal of this section is to give
an explicit description of V, and V,q, for each x € Z (see Proposition 314 and
Corollary B.T5]).

In this setting Z = {w¥I,} = Z, where w = exp(2mi/n) and I,, is the n x n
identity matrix. We use the notation wh = wkI,. Let Xk : Z — C* be the character
defined by x,(2) = 2* for 2 € Z.

Lemma 3.7.
(1) Let r =n/ged(n,c). Then ker x. = {1,w", w?",...}.
(2) Suppose x € Z has order d. Then ker x = ker x,,/q = {1, w2, ..}

Proof. (1) ker x. is the cyclic group generated by the lowest power of w in ker x..
Since the smallest positive integer k such that n|ck is k = r, the lowest power of w
in ker x. is w".

(2) By definition we have x*(w) = x(w¥), so x? = 1 implies {1,w? w??, ...} C
ker x. Conversely, suppose w* € ker y, but k is not a multiple of d. Then 1 < m =
ged(k,d) < d and w™ € kerx, so x™ = 1. This contradicts the assumption that

the order of x is d. |
Let aq, ..., ap—1 be the simple roots associated to the Lie algebra g = sl,,(C),
and Ay, ..., A,—1 denote the fundamental dominant weights (we follow the conven-

tions of [I7), Section 13.1]). We let p1) denote the unique weight in the same coset of
;i (modulo the root lattice) such that uy = 2?2—11 agicy, where the ag; € Q satisfy
0 < ag; < 1 for all k. We say . occurs in uy if age # 0.

Recall that \j, is expressed as a linear combination of simple roots via the formula

1
(3.9) A= ((n — k) +2(n — k) + - - + k(n — k)
Fh(n—k — Dogrs + kln —k — 2)appe + -+ kan,l).

We can use this formula to compute py, as demonstrated in Example B8

Example 3.8. Let n = 12. We can view the weights as elements of R'? whose
coordinates add up to 0, and each simple root is a; = ¢; —€;41 for 1 <i <n —1.
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Using equation (3.9]) we compute the cosets of the fundamental dominant weights
modulo the root lattice. For example,

1
AL = E(llal-i-looéz + 9as3 + 8 + Tas + 6as + bar + das + 3ag + 210 + a11),

Ao = %(10(11 +20a2 + 18as + 16 + 14as + 12as + 10ar + 8as + 6oy + 4aio + 2a11),
A3z = %(9a1+18a2 + 27a3 + 24as + 21las + 18as + 157 + 12ais + 99 + 610 + 3v11),
Ay = 1—12(8a1+16a2 + 24as3 + 32a4 + 28as + 24as + 2007 + 16as + 129 + 8aio + 4aar),
A5 = 1—12(7a1 + ldas + 21as + 284 + 35a5 + 30as + 257 +20as+ 1509+ 1010 +5a11),

1
A = 5(6041—1—12042—&—18043 +2404+30a5 + 36 + 307 + 24as + 18y + 12019 +6a11);

the fundamental weights A7, ..., A11 are given by similar formulas. Each p; is
obtained from A; by taking the fractional portion of the coefficients a;:

u1 = Alv

1
Ho = 6(50&1 + 4oy + 33 + 204 + a5 + Doy + dag + 3ag + 2a019 + au),

1
w3 = =(3aq + 20 + ag + 3as + 2a6 + a7 + 3ag + 2019 + a11),

4
1
[y = §(2a1 + ag + 204 + a5 + 2a7 + ag + 2a10 + @11),
1
ps = 5 (Tan + 202 + 9as + 4oy + 1las + 6ag + a7 + 8as + 3ag + 10a10 + 5ai1),

12
1
He = 5(041 + a3+ a5 +ar + ag+ ainn).
We can compute p; for 7 <4 < 11 using the same methods. In this case we find:

a1 and aq1 occur in all

g and aqg occur in all p; except g

as and ag occur in all p; except pg, ps

a4 and ag occur in all u; except s, pg, to
as and a7 occur in all u;,

and ag occurs in all u; for odd .

Given a weight A\ of T, we write e* for the corresponding function on 7. If A
is in the root lattice, e* can also be viewed as a function on T,q. Set z; = e
and v; = et for all 1 < i < n — 1. By definition, V = Spec A, where A

1l

Clvyy ...y vp—1,21,...,2n—1]/I for some ideal I, and V,q = SpecClz1,...,2,_1]
C"~1. The ideal I contains all elements of the form
R
for all ay, as, ..., an_1, by, ba, ..., b,_1 € Z such that
aypiy +agpia + o+ Ap_1fin_1 = broag +baag + -+ by 10, 1.
We view v1, ..., Up_1, Z1, ..., Tn_1 as coordinates on C?*~2, and V as the sub-

scheme of C2"~2 defined by the ideal I.
Given a point z in V, we write v;(z) and x;(x) for the values of the coordinate
functions v; and x; at . Similarly, if y € V,4, ;(y) is the value of the coordinate
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x; at y. Recall that m : V — V,q is the quotient by Z. We have 7(z) = y if and
only if x;(z) = x;(y) for all 4. If z € Z, we have w(zx) = 7(z), so z;(zx) = z;(x)
for all 4.

The center Z acts on € C?"~2 by

z(v(x),va(x), ...y vp—1(x), 21 (), ..., Tn1(x))
= (zv1(2), 22va(2), ..., 2" o1 (2), 21 (), . . Tt (2)).

The action of Z on the coordinate functions v; and z; is given by z-v; = 2 %v; and
z - x; = x;, respectively. The Z-action on C?"~2 preserves the subscheme V since
the ideal I is T-invariant.

Example 3.9. We continue Example B8 for n = 12. Rewriting u; for ¢ = 1,2,4
as a function on T and expanding in terms of v; and x;, we find that

12 _ ,11,10,9.8.7,6.5.4.3 2
UV = X1 Lo X3Lyl5Lgl7rlglglygL11,

6 _ 5,4,3,2 5 4.3 2
Vg = TITT3T4T5T7TgTHTIT 11,

3 2 2 2 2
Vg = L1274 T5T7T8T 1T 11-

Using similar methods, we obtain

4 3,.2 3.2 3,..2
'US = $1$2$3$5$6$7$9$10$11,
12 7,2,9,..4,.11_6 8,.3.,.10,.5

Us = T1Lal3Ly x5 Lel7XLgL10L 115
2
Vg = T1X3TL5L7T9T11-

Lemma [3.10 tells us when a. occurs in uy; the reader can verify this result when
n = 12 using the data provided in Example 3.8

Lemma 3.10. Let c € {1,...,n — 1} and let r = n/ gced(n,c). Then a. occurs in
i (for 1 <k <mn-—1) if and only if k is not a multiple of r.

Proof. We prove the equivalent statement that o, does not occur in puy if and only
if r divides k. The root a, does not occur in py if and only if the coefficient of a. in
Lk is an integer. Equation (8.9) shows that if ¢ < k then this coefficient is equal to
c(n—k)/n; if ¢ > k then this coefficient is equal to [k(n—k—(c—k))]/n = k(n—c)/n.
In either case, the coefficient is an integer if and only if n divides ck. Writing
s = ged(n, ¢), we have n = rs and ¢ = ms, where r and m are relatively prime.
Then n = rs divides ck = kms if and only if  divides km if and only if  divides
k. O

Note that if » = n/ ged(n, ¢), the lemma implies that a. occurs in each p;. Our
first step toward computing V, is to compute the stabilizer groups Z* for x € V.

Lemma 3.11. For x € V, Z® = Nker xi where the intersection is over all k €
{1,...,n — 1} such that vi(x) # 0.

Proof. Given z,2' € V, we have z = 2’ if and only if zx(z) = zx(2') and v (x) =
vi(2') for all k. Hence, for z € Z, we have z € Z* if and only if zp(z2) = xi(x)
and vg(zx) = vi(z) for all k. The first equality always holds, by the discussion
above. We have v (zz) = xx(2)vr(x), and this equals vg () if and only if xx(z) =1
whenever vy (z) # 0, which is equivalent to the assertion of the lemma. O

Motivated by Lemma BTl we now examine the condition vg(z) = 0.
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Lemma 3.12. Suppose x € V. We have vg(xz) = 0 if and only if x;(x) = 0 for
some t such that a; occurs in .

Proof. We have up = Z?:_ll ap;oy for ap; € Q such that 0 < ag; < 1. Choose a
positive integer d such that dag; € Z for all i. Then duy = Z?;ll dag;a;, so in the
ring A, we have

n—1
(3.10) v = H i,
i=1

The root a; occurs in py if and only if ax; > 0. So evaluating both sides of (B.10)

at x, we see that if a; occurs in py and x;(x) = 0, then vi(z)? = 0, and hence

vg(z) = 0. On the other hand, if z;(z) # 0 for all ¢ such that «; occurs in py, then

(vi(z))? # 0, so vi(z) # 0. O
Proposition describes the stabilizer groups Z* for x € V.

Proposition 3.13. Letx € V, and {c1,ca,...,ce} be the set of integers k such that
xp(z) = 0. Let r; = n/ged(n,¢;) and r = lem(rq,ra,...,7r¢). (Note that r divides
n.) Then Z* = ker x,.

Proof. By Lemma BI2] vy (x) = 0 if and only if 2;(x) = 0 for some i such that «;
occurs in py. Equivalently, vg(xz) = 0 if and only if «., occurs in uy for some 7.
Finally, by Lemma 310 o, occurs in uy if and only if & is not a multiple of ;. We
therefore conclude that vg(x) # 0 if and only if k£ is a multiple of r. The desired
statement now follows from Lemma B.11] O

Let x : Z — C* be a character of Z. Recall that V, = {x € V | Z® C ker x}. If
X has order n then ker x = {1}, so V,, = V,¢,. The main result of this section is
Proposition B.14] which describes V,.

Proposition 3.14. Suppose x € Z has order d and let z € V. Then x € V, if and
only if for each k in {1,...,n— 1}, xx(x) # 0 if d does not divide k.

Proof. Let x € V, and let ¢;, ..., ¢; be the integers k with xy(z) = 0. The
proposition is equivalent to the assertion that x € V, if and only if d divides ¢; for
all 4.

Proposition BI3] says that Z* = ker x,., where r = lem(rq,7r2,...,7¢) for r; =
n/ ged(n, ¢;). Applying this fact together with Lemma [B.7] we now have:

2 €V, & Z% Cery = ker Y, /g < r divides g & r; divides g for all i.

Finally, we have that r; divides & for all 7 if and only if d divides ged(n, ¢;) for all i.
The last condition is equivalent to requiring that d divide ¢; for all ¢, as desired. [

Corollary 3.15. Suppose x € V. Then x € Vyeqy if and only if xi(x) # 0 for each
ke{l,...,n—1}.

Proof. By definition, x € V,., if and only if Z* = {1}. Since {1} = ker x when x
has order n, Proposition B14] implies that V., consists of the set of z € V such
that zx(x) #0 for all k € {1,...,n — 1}. O

Corollary 3.16. Suppose x € Z has order d. Then Y € Vaa,x if and only if for
each k in {1,...,n — 1}, xx(y) # 0 if d does not divide k. In particular, Vod reg
consists of the set of y € V,q such that zi(y) # 0 for allk € {1,...,n—1}.
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Proof. By definition, y isin V,q , if y = m(x) for x € V,. In this case, zx(y) = zx(x),
so the result follows from Proposition [3.14] and Corollary O

3.3. The subvarieties MVX and /\7X. Recall that we have 1 : u — u, defined by
n=nxl:u=V Xy u—u="Vy Xy,, U

The Z-action on U comes from the action on the first factor, and we have u/Z = u.
As varieties, U = V X g>4 and u = Vyq X g>4. Both ut and u have B-actions and the
map 7 is B-equivariant. From this we obtain

T M=GxBu—>N=3Gx5u

The Z-action on M is the restriction of the left G-action to the subgroup Z; note
that for z € Z, g € G, and x € V, we have

zlg, 2] = [29,2] = [g2, 2] = [g, 2],

where the second equality is because z is Cenﬁral, and the third holds since Z C B.
The equality 11/Z = u implies that M/Z = N (see [16]).

Proposition 3.17. Let x € Z.

(1) We haveu,, =V, Xy, u and iy, = Vaqy Xy, U. As varieties, Uy, = Vy X g>4
and Uy = E‘}dvx X g>4. _
(2) We have My, = G xB 1, and Ny, = G xBu,.

Proof. (1) Suppose 4 = (x,u) € U, where x € V and u € u. Then Z®%) = Z% 5o
u € uy if and only if z € V,. This proves that u, =V, Xy, , u. Since u, is the
image of u, under the map 7, it follows that u, = V,q, Xv,, t. The assertions
about the structure of i, and u, as varieties follow from writing u = V,q X g>a4.
(2) If [g,u] € M, then Z19:8 = 7T g [g,u] € MVX if and only if u € u,. Hence
MVX = G xB1u,. The assertion ./\N/'X = G xB u, follows because ./\N/X is the image of

M, under 7. O

Example 3.18. Let n = 6 and x = x3 € 2; note that x is a character of order
d = 2. In this example, we consider the intersections ./\~/'X N pu~t(v) for various
nilpotent elements v € N. Here u~'(v) is the Springer fiber over v; recall from
@) that p'(v) = {[g,9~'v] | g~* - v € u}. Proposition BIT shows that N is
determined by u,: we have [g,g7'v] € N, if and only if g~'v € u,. We have
Uy =p *(Vaa,y ), where p: u — Vog = u/[u,u] is the natural projection. Write

(3.11) p(g*1 v) = 1By, + c2Eg, + c3Fg, + caFo, + 5.

We deduce from Proposition B4 that (g,g71-v) € /\7X if and only if ¢; # 0 for all
odd k.

It is well-known that the irreducible components of u~!(v) for v € O, are in-
dexed by standard tableaux of shape A. Indeed, if we construct these components as
Steinberg does in [28], §2], each standard tableau S € ST()) corresponds to an open
subset Cs C u~!(v) of maximal dimension. The decomposition of ~*(v) into irre-
ducible components is u~!(v) = U SeST( Aﬁs. In this example, it is straightforward
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to show that Cs C /\~/X whenever S is one of the following standard tableaux.

L2 3]4 1[2]5]6
(312) [3]4 [4] 6] [ 1]2]3]4]5]6]
_ 56 3

This computation is discussed in greater detail for the first standard tableau above
in Example [5.4]

Corollary implies that u,., consists of the elements of u such that the
coeflicient of each root vector corresponding to a simple root is nonzero. This set
is exactly the set of principal nilpotent elements in u. Therefore, /\N/reg is the set of
[9,v] € GxPuwhere v is principal nilpotent in u. The map p : [g,v] — g-v identifies
/\7}6(] with the principal nilpotent orbit OP" in N. As discussed in Section 2.2] each
character x of Z induces a local system £, on OP" and consequently on ./\/Teg
We are now in the setting of Section BI with X = Mand Y = N. Applying
Proposition [3.6] to 7 : M= N yields the following result.

Proposition 3.19. Let 7 : M — N denote the map induced by n : 1 — u. Then

CildimN] = P ICN, Ly)

x€2

Moreover, if i is the inclusion ofJ\N/\J\N/X into N, then i*IC’(J\N/', Ly)=0

4. IC SHEAVES ON N aND NP

In this section we continue our study of the IC-complexes IC(N, L,) for x € Z.
The main result of the section is Theorem A6l which shows that the pushfor-
ward of this complex to the variety N studied in [7] is equal to the IC-complex
IC(NF,L,).

We continue to assume G = SL,(C). Throughout this section, we fix positive
integers d and r such that n = dr. Let Ly be the Levi subgroup of GG containing T
whose simple roots are the o € A such that k is not divisible by d. Then Ly is a
block diagonal matrix with d x d blocks; that is,

Ly 2 S(GL4(C) x GL4(C) x --- x GL4(C)),

with r factors on the right hand side. We let P; denote the standard parabolic
subgroup of G with Levi factor Ly and unipotent radical U,. Since B is upper
triangular, P; is block upper triangular.

Let I; denote the identity matrix in GL4(C). The center Z(Lg) of Ly consists
of the block diagonal matrices where the i-th block is a;I; for a; € C, subject
to the condition (ajas---a,)? = 1. For simplicity, we denote such a matrix by
zda(ai,...,a.). The identity component Z(Ly)o is the subset of elements of Z(Lgy)
satisfying ajas - - - a, = 1. Therefore, the component group Cq = Z(Lg)/Z(La)o is
isomorphic to Z4. The character group 6‘; is generated by the character

@ z4(ar,...,ap) = aras - a,.
The inclusion map Z — Z(Lg) induces a surjection Z — Cy, with kernel
{1,w? w2 ...}. Pullback via this surjection yields an injective map Cd - 7.
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Lemma 4.1.
(1) The map Cy — Z takes @ to .
(2) If x € Z is a character of order d, then x is the image of an element of Cy.

Proof. (1) holds by direct calculation. (2) follows since any element x of 7 of order
d is a power of x,, which is the image of an element of Cjy. ]

Remark 4.2. By abuse of notatlon we will frequently use the same letter y for an
element of Cd and its image in 7.

For the remainder of this section, since d is fixed, we simplify the notation by
writing P = LUp for P; = LyUy. We write U, = UN L. We let x € 7 denote a
character of order d. We may repeat these assumptions for emphasis.

Let v4 be the matrix which has entries equal to 1 above the diagonal in each d x d
block, and zeroes elsewhere. In other words, v, is the sum of simple root vectors
corresponding to ay € A such that k is not divisible by d. Thus, v, is a principal
nilpotent element of [. The next proposition describes the stabilizer groups P"¢
and L”? and the corresponding component groups.

Lemma 4.3.
(1) LY = Z(L)U/“.
(2) PYe = L"Up.
(3) The inclusions Z(L) C LY C P¥4 induce identifications of component
groups
Z(L)/Z(L)o = L /(L"*)o = P"*/(P"*)o.

Proof. Statement (1) follows from a straightforward computation of the stabilizer
of a principal nilpotent element in GL4(C), which we omit. We prove (2). Suppose
p=ul € P’ with u € Up and ¢ € L. For any = € [, the image of ufx under the
projection p — [ equals fx. Since ulvy = vy4 € |, we see that fvy = vg, so £ € L¥4.
This implies that v € U}, proving (2). Finally, the equalities in (3) follow from
the fact that the groups U}? and U;? are unipotent, and therefore connected. [

We have a Levi decomposition p = [@ up. Let N, denote the nilpotent cone in
[. Recall from Section that

NP =G xP (N, +up);

we write [g,z]p for the element of NP corresponding to (g,x) for g € G, z €
N7 + up. Borho and MacPherson defined a stratification of NP indexed by L-
orbits on the nilpotent cone N ; the stratum corresponding to the orbit O C N,
is G xP (Op +up) (see [7, Section 2.10]; note that O + up is P-stable). The

stratum corresponding to the principal nilpotent orbit OF" in N7, is denoted N,ig

Lemma 4.4. Suppose x € 7 has order d, and let P = Py, L = Lg. Then un
(Ogr + up) =U,.

Proof. Write x € u as a sum of root vectors:

x—ZaalXal—i— Z agXg,

Bed+—A
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3910 WILLIAM GRAHAM, MARTHA PRECUP, AND AMBER RUSSELL

where the «; are the simple roots and a., € C for all v € ®+. We have x € O +up
if and only if for each simple root «; of L, a,, # 0. The simple roots of L are the
a; where ¢ is not divisible by d. By Propositions B.14] and BT « is in u, if and
only if a, is nonzero when ¢ is not divisible by d. Hence, z is in u, if and only if
zisinun (O +up). O

There is a semismall map pp : N = NP [7, Lemma 2.10(e)], defined as follows.
Given g € G and x € u (resp. x € N, +up), temporarily write [g, 2] (resp. [g, z]p)
for the equivalence class of (g,z) in N = G xB u (resp. in NP = G xP (N, +up)).
By definition, pp([g, z]5) = [g,z]p. We have pn = up o pp, where as in Section 2.6]
wp(lg,xz]p) = g - (see [7, Section 2.10]).

Proposition 4.5. Suppose x € Z has order d, and let P = P;. The map pp : N =
NP satisfies pp (erzg) = N Moreover, pp takes N isomorphically onto J\/',«e

Proof. Since OF" +up is B-invariant (as it is P-invariant), the intersection (O} +
up) Nu is B-invariant. The definition of pp implies that
pp Nfg) = G P ((OF +up) Nu).

By Lemma 4] (OF" + up) Nu=1u,, so

—1/ 7P B A/

P (Nreg):Gx uX:NXa
where the last equality is by Proposition B.I7l This proves the first assertion of the
proposition. _

We now show that pp takes N, isomorphically onto Nﬂzg Borho and MacPher-
son [, Lemma 2.10(b)] show that the fiber of pp over the stratum corresponding
to Oy, is isomorphic to the Springer fiber B7; here By, is the flag variety for L, and
x is an element of Op. For the stratum corresponding to the principal orbit OF",
the Springer fiber B7 is a single point. Hence pp induces a bijection

(41) NX :pP (NTIZq) _>N7iq
Since ./\/’fe)g is smooth, Zariski’s Main Theorem implies that (£J]) is an isomorphism
of schemes, completing the proof. O

Observe that OP" can be viewed as an open dense subset of any of N, J\N/, or
NP, Indeed, the Springer resolution u : N — N is an isomorphism over OP"; the
map pu factors through pp : N = NP (see the remarks before Proposition F3),
and pp takes the open set ./\7X (which contains OP") isomorphically onto its image.
A character x of Z corresponds to a local system L, on OP", and we obtain IC

complexes IC(N, L) and IC(NF, L,).

Theorem 4.6. Suppose x € Z has order d, and let P = P;. Then (pp)IC(N, Ly)
=ICNF,L,).

Proof. By the Decomposition Theorem (see Theorem Z2), (pp)IC(N, L) is a
direct sum of shifted IC' complexes on NP. We claim that the shifts are all trivial.
To prove the claim, it suffices to show that (pp).l C(/\~/ L) is perverse, since
no nontrivial shift of an intersection cohomology complex remains perverse (see

[T, p. 37]). Observe that the composition pp o1 : M — NP is semismall, since pp
is semismall and 7 is finite. Moreover, M is rationally smooth, since it is locally
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a quotient of a smooth variety by a finite group. Therefore, by [7} Section 1.7],
(pp o 1)«C sy is perverse. By Proposition [3.19,

(ppon) L= (pP)*(@XEZIC(N7 L))

Since the right hand side satisfies the support condition to be a perverse sheaf, each
summand also satisfies the same support condition and therefore each summand is
also perverse. The claim follows.

The proper base change theorem implies that the pushforward (pp). commutes
with the restriction to the open set /\7X = /\~f£g. Since pp is an isomorphism over
this open set, and the local system £, extends to this open set, the perverse sheaf
(pp)IC(N, L) restricts to £, [n] on ./\N/',f:g (where n = dimN). Arguing as in the
proof of Proposition 3.6 we see that the only intersection cohomology complex on
NP whose restriction to N2 is Ly [n] is IC(Np, L,). Therefore, IC(NP, L) must

reg

occur as a summand in (pp). IC(N, L,). Hence we can write
(pp) IC(N, Ly) = ICINT, L,) & K,

where K is a direct sum of intersection cohomology complexes on subvarieties of
NP, To complete the proof, we must show that K = 0.

As a step toward this, we claim that if IC(Z, F) occurs in K, then Z must be
contained in NP \./\7Tig. Indeed, if not, then Z ﬂ./\7£g would be open and dense in
Z, so it would contain a point z of the smooth open set where the local system F is

defined. Therefore H:((pp)IC(N, L)) would be at least 2-dimensional, since it
would have contributions from IC(N'F, L) and IC(Z, F). This contradicts the fact
that the restriction of (pp).JC(N, L) to ./\7£g is £y [n]. Therefore Z C NP \/\7759,
proving the claim.

Consider the Cartesian diagram

N\N, —— N
lp}v lf’P
NPARE, Iy P
where p’» is the restriction of pp. By the proper base change theorem,
(o) ICN Ly) = (pp)+i"IC(N, £) = 0,

where the second equality holds since i*IC (/\7 , L) = 0 by Proposition B.I9 Since
K is a direct summand in (pp),IC(N, Ly), we deduce that j*K = 0.

We know that K, if nonzero, is a direct sum of terms of the form IC(Z,F),
where Z is a subvariety of NP \./\Nfrpeg. Observe that for such a Z, following the
conventions of Section 28] we have j*IC(Z, F) = IC(Z,F). Such a complex has
a nonzero stalk at any point z in the open set of Z where the local system F is
defined. Since j*K = 0, we see that no term of the form IC(Z, F) can appear in
KC, and therefore K = 0, as desired. O

5. THE GENERALIZED SPRINGER CORRESPONDENCE AND LUSZTIG SHEAVES

Recall that our goal is to prove that ¢.C 7 is a direct sum of Lusztig sheaves,
which were defined in Section above. In order to proceed we need to realize
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each IC (/\N/ P L) as an induced complex. After some preliminary discussion, we
prove our main theorem, which is Theorem [(.3] below.

We keep the notation of Section @l Thus, G = SL,(C), x € Z has order d, and
vg €N, Py = LUy are as in Section @l As in that section, we write P = LUp for
Py = LyUy.

We recall some notation from Section The projection ¢ : p =[+up — [is
P-equivariant, where the P-action on the target is the extension of the adjoint L-
action to P by requiring that Up acts trivially. We use the same notation ¢ for the
induced maps N7, +up — Ny and O +up — O}, which are also P-equivariant.
The map ¢ induces a map 7p : NP — G xP N,

Note that if z € [, even though ¢(x) € [ is the same element as x, the notation
indicates that the P-action is different. Indeed, if v € Up, then v -2 = x + y for
some y € up, but u - g(x) = g(z). Given z € [, we will write T = ¢(z) for the same
element, but with trivial action of Up. Recall that v denotes a principal nilpotent
element.

Lemma 5.1. P-v is open in Np +up.

Proof. Observe that P - v has the same dimension as N7 + up. Indeed, P¥ = G¥
has dimension n — 1, so dim P - v = dim P — (n — 1); on the other hand, dim Ny, =
dimL —(n—1), so dim Ny +dimup =dim L+dimUp — (n—1) = dim P — (n—1).
This verifies the assertion about dimensions. Since N7 + up is irreducible, the
closure of P - v must equal N, + up. Since any orbit is open in its closure (see
[19, Section 2.1]), P - v is open in N, + up. O

Remark 5.2. An alternative proof of Lemma [5.1]is as follows. We know that OP" =
G - v is open and dense in AV. Since NP 5 N is an isomorphism over OP", we
can identify G - v with its inverse image in NP , and that inverse image is therefore
open and dense in N'F. We write OF" for either the orbit L -v4 or L-74. The fiber

over eP of the projection NF — G/P is identified with OF" +up. The intersection
of G - v with this fiber is open and dense in the fiber, and is identified with P - v,
completing the proof.

Lemma 1] implies that the character x of Z is the pullback of a character of
Cy, which we again denote by x (cf. Remark [£2]). By Lemma 3] the component
group LV /LY of L” is equal to Cy. Therefore, x induces a local system £§ on the
orbit OF". The Lusztig sheaf A, is defined by

Ay = pp,mpIndG IC(Ny, LE)[dp],
where dp = dimup. Recall the map ¢ : M = N, which factors as
M 7 N PP NP _EP L Af
Our main theorem is the following.

Theorem 5.3. Let 9 : M — N be the extended Springer resolution. Then

$.CimldimN] = EP A,

xEZ

Proof. By Proposition and Theorem (6] we have

(pp o M:CrldimN] = P IC(N, L,).

xez
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Comparing with the definition of the Lusztig sheaf, we see that it suffices to prove
that as G-equivariant perverse sheaves on A", we have

(5.1) wp IndG(IC(Ny, LE)[dp] = ICNT, L),

From the map ¢ : O +up — O} we obtain a local system ¢*£L on OF" + up.
We have

mp Ind§ IC(N, LL)[dp] = IndE(¢* IC(N, LL))[dp]
= Ind§ IC(NL, + up, " LE)[dp]
= IC(N'", Ind%(q" LE)).

Here the first equality is because 7p = Indg(q) and IndIGD is a functor; the second
equality is because of the compatibility of IC complexes with smooth pullback
(see [19, Lemma 2.15]); and the third equality is because induction equivalence is
compatible with the construction of IC-complexes (see [0, §5.2]). To complete the
proof, it suffices to show that there is some G-stable open set of NP on which
the restrictions of the local systems IndIGg(q*Ei) and L, are isomorphic. This is
equivalent to showing that there is some P-stable open set of OF" + up on which
the restrictions of q*Ei and £, are isomorphic. We will verify this for the open set
P~VOfO§T+up.
The map ¢ induces (by restriction) a map of orbits

(5.2) qg:P-v— P71

here the notation 7 is as discussed at the beginning of the section. We need to
check that

(5.3) 0" (LX|Pw) = Ly|po.
The map (52)) corresponds to the map of component groups
PY/PY =G" )Gl = Z — P”/Py = L"/L§ = Z(L)/Z(L)o.

By construction, under this map of component groups the character x of Cy =
Z(L)/Z(L)p pulls back to the character of Z which we have also denoted by .
This implies (B.3]), and the result follows. O

Theorem 5.3 implies that we can use the geometry of M to study the generalized
Springer correspondence. For example, Z must permute the irreducible components
of the “generalized Springer fibers” 1 ~1(v) for each v € A. This is referred to
as a monodromy representation. From the discussion in [7, §1.2], it follows that
the multiplicity of IC(O,,Ly) in ¥.C 5[dim ] is exactly the multiplicity of the
irreducible Z-representation with character x in the monodromy representation on
the irreducible components of =1 (v) for v € O,. Example[5.4lis a continuation of
Example [3I8], and computes this monodromy representation in a few cases.

Example 5.4. Let n =6 and y € Z be the character of order d = 2. Consider the
following standard tableau of shape A = [2,2,2].

112
S=|3]|4
6
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Example B.I8 shows that Cg C J\N/X where Cg is the open subset of the Springer
fiber ;1~1 (o) of maximal dimension constructed as by Steinberg in [28, §2]. Let
goB € ! (v2) denote a generic element. Then equation ([B.I1I) becomes

p(g5 " - vo) = Euy + c2Eu, + Eoy + Ea,,

and p(gy " - v2) corresponds to the coordinate values (1,c2,1,0,1) € V,q (we have
Vaa = SpecClz1,...,2,_1] = C*" 1 as in Section B2). This confirms Cg C /\~/X
since ¢ # 0 for all odd k.

Recall from Section that we identify V with a subscheme of

C?""2 ~ SpecClx1, ..., Tn_1;V15- -+, Vp_1].
Note that = € V satisfies 7(2) = p(gy * - v2) if and only if x has coordinates
(1,¢9,1,0,1;0,0,v3,0,0) where v3 = 1

since v = 12375 and ay occurs in py, for all k # 3 (so vi(z) = 0 for all k # 3).
In other words, there are exactly two points in M over each point of Cs C N. Tt
is straightforward to show that 7771(Cg) consists of precisely two irreducible com-
ponents (which are also irreducible components of 1»~!(13)), each corresponding to
the two possible values for v3, namely vs € {£1}. These irreducible components are
permuted by the Z-action (given by v3 — w3v3 = —wv3); yielding a Z-representation
with character ¢ + x, where ¢ is the trivial character. The Z-action on all other
irreducible components of 1 ~1(1s) is trivial.

Continuing in this way, we can compute 771 (C's) for the other standard tableaux
appearing in (312). Our computations show that when S is either of

123|4| 125\6\
56 3104

then 777 1(C) consists of precisely two irreducible components, permuted by the
Z-action as above. We also show that Z acts trivially on all other irreducible
components of ¢~ (v) for v € Oy 9.

When S is the standard tableau with a single row, then the correspondingvnilpo—
tent element v of A is regular so u~!(v) is a single point. The fiber in M over
pu~t(v) consists of exactly 6 points and Z acts by the regular representation on
these components of =1 (v).

These monodromy computations show that we expect the simple G-equivariant
sheaves corresponding to the local system £, to appear with a total multiplicity of
4, since y only appears in the Z-action on 77 1(C's) for S from ([B.I2). In particular:

. IC(@[Q,QVQ},EX) has multiplicity 1,

o ] 0(5[4,2],,@() has multiplicity 2, and

e IC(Ojg, Ly) has multiplicity 1.
The table in Table [ gives the generalized Springer correspondence for SLg(C).
The reader may confirm the information of the table in Figure [Il by computing
the generalized Springer correspondence for SLg(C) as discussed in Section 27
Column 6 of the table shows that the multiplicities computed above using the
monodromy action match those of the simple perverse sheaves appearing in the
generalized Springer correspondence since dim(Vjy;11)) = 1, dim(Vj2,1}) = 2, and
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TABLE 1. The generalized Springer correspondence for SLg(C).

Local systems on each orbit are identified by the

order of the corresponding central character. Each simple perverse sheaf has multiplicity given by dimension of an

irreducible S,, /4 representation (where d denotes the order of the character).

Local Ld =T Ld = S(GLg X GLg) Ld = S(GLg X GL3) Ld = S(GLQ X GLQ X GLQ) Ld =G (Cuspidal)
Orbit System Sn/d = Ss Sn/d =55 Sn/d =55 Sn/d =53 Sn/d trivial
M,1,1,1,1,1] | Triv || dimV =1
2,1,1,1,1] | Triv | dmV =5
2,2,1,1] Triv || dimV =9
[2,2,2] Triv || dimV =5
Order 2 dimV =1; [1,1,1]
3,11, 1] Triv_ || dimV = 10
3,2, 1] Triv || dimV = 16
[3,3] Triv dimV =5
Order 3 dimV =1; [1,1]
Order 3 dimV =1; [1,1]
[4,1,1] Triv dimV =10
[4,2] Triv dimV =9
Order 2 dimV = 2; [2,1]
[5,1] Triv dimV =5
[6] Triv dimV =1
Order 6 dimV =1
Order 3 dimV =1; [2]
Order 2 dimV =1; [3]
Order 3 dimV =1; [2]
Order 6 dimV =1
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The reader may note that there is a combinatorial connection between the stan-
dard tableaux appearing in ([B:I2)) and the partitions of 3 indexing irreducible rep-
resentations of the relative Weyl group S3 appearing in column 6 of Figure[Il This
pattern generalizes. In a forthcoming paper, the authors give an explicit descrip-
tion of the irreducible components of ¥~!(v) as v € N varies and compute the
monodromy representation.

The discussion in Section tells us that, in the type A case, only the sim-
ple perverse sheaves corresponding to G,4-equivariant local systems (that is, the
trivial local systems) appear in the Springer correspondence. In other types, there
are (G q-equivariant local systems which do not appear in the Springer correspon-
dence. For example, if the center Z is trivial, then G = G4, so any G-equivariant
local system is G,q-equivariant, and therefore any local systems missing from the
Springer correspondence are G 4-equivariant. This phenomenon occurs in type G,
where exactly one local system is missing from the Springer correspondence (see
[9, Section 13.3]). Since the center is trivial in type Ga, the construction of this
paper does not yield all the simple perverse sheaves on the nilpotent cone. Even
if the center is nontrivial, there can be missing G 4-equivariant local systems. An
example in classical types occurs in type Cg, for the orbit indexed by the partition
[6,4,2]. The relevant data can be found in [B]. In this example, the G,4-equivariant
fundamental group is Zs X Zso, so there are four G,4-equivariant local systems on
this orbit, but only three of these occur in the Springer correspondence. Even
though the results of Theorem [E3] may not hold in full generality, many of the
arguments above do hold in the general setting, and it is likely 4, C M[dim./\/’] is a
sum of Lusztig sheaves in this case also. The authors plan to study the geometric
constructions of this manuscript for arbitrary reductive algebraic groups in future
work.
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