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A NEW APPROACH TO THE GENERALIZED

SPRINGER CORRESPONDENCE

WILLIAM GRAHAM, MARTHA PRECUP, AND AMBER RUSSELL

Abstract. The Springer resolution of the nilpotent cone is used to give a geo-
metric construction of the irreducible representations of Weyl groups. Borho
and MacPherson obtain the Springer correspondence by applying the decom-
position theorem to the Springer resolution, establishing an injective map from
the set of irreducible Weyl group representations to simple equivariant perverse
sheaves on the nilpotent cone. In this manuscript, we consider a generaliza-
tion of the Springer resolution using a variety defined by the first author. Our
main result shows that in the type A case, applying the decomposition theo-
rem to this map yields all simple perverse sheaves on the nilpotent cone with
multiplicity as predicted by Lusztig’s generalized Springer correspondence.

1. Introduction

In 1976, Springer introduced a geometric construction of the irreducible represen-
tations of the Weyl group of a semisimple algebraic group G on the cohomology of
algebraic varieties called Springer fibers [26, 27]. Springer’s work was foundational
to the field of geometric representation theory. There are many current research
directions connected to Springer’s classical result, ranging from exploring modular
versions of his work [2, 3], to applying geometry, topology, and combinatorics to
better understand Springer fibers [14, 20, 29].

The Springer fibers are the fibers of the Springer resolution

µ : Ñ → N

which is a resolution of singularities of the nilpotent cone N of g = LieG. In this
manuscript, we consider an extension of the Springer resolution, which is a map

ψ = η̃ ◦ µ : M̃
η̃
−→ Ñ

µ
−−→ N ,

from a variety M̃ to the nilpotent cone that factors through the Springer resolution.

We refer to this map as the extended Springer resolution. The variety M̃ was
defined by the first author in [16], and used to construct an analogue of the Springer

resolution for M = SpecR(Õpr). Here R(Õpr) denotes the ring of regular functions

on Õpr, the simply connected cover of the principal nilpotent orbit Opr ⊂ N .

Although M̃ is not smooth, it is locally a quotient of a smooth variety by a finite

group. The variety M̃ and the map ψ are defined precisely in Section 2.4 below.
When viewed through the lens of the derived category of G-equivariant per-

verse sheaves, the Springer correspondence is an injective map from the set of
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irreducible representations of the Weyl group to the set of simple G-equivariant
perverse sheaves on the nilpotent cone. The latter set is indexed by the pairs
(O,L), where O is a nilpotent orbit and L is an irreducible G-equivariant local sys-
tem on O. Since the Springer correspondence is an injection, we recover only some
of the pairs (O,L) in this manner. Those missing from the Springer correspondence
were described by Lusztig. He established a bijection between irreducible represen-
tations of what he called relative Weyl groups and all simple G-equivariant perverse
sheaves on N [21], proving that the Springer correspondence is a special case of
what is now known as the generalized Springer correspondence. Historically, this
result was the beginning of Lusztig’s consideration of character sheaves, a key tool
in the study of irreducible representations of finite groups of Lie type. A summary
of this work can be found in [10].

Unlike the proof of the Springer correspondence given by Borho and MacPherson
[8], Lusztig’s proof of the generalized Springer correspondence does not proceed by
applying the decomposition theorem to the pushforward of the constant sheaf on
a single variety. Although Shoji’s treatment of the generalized Springer correspon-
dence in [25, Section 11] (based on Lusztig’s work) makes use of the decomposition
theorem, the generalized Springer correspondence is obtained through pushforwards
from multiple varieties. Our main result, stated precisely in Theorem 5.3 below,
applies this strategy in the case of G = SLn(C) to the extended Springer resolution

M̃ → N . This theorem shows that the pushforward of the constant sheaf on M̃ to
the nilpotent cone N is the direct sum of all the so-called Lusztig sheaves used in
the generalized Springer correspondence. This then implies that the pushforward
is the direct sum of all the G-equivariant perverse sheaves on N , each occurring
with multiplicity as determined by the generalized Springer correspondence. The
fact that all G-equivariant perverse sheaves appear here was obtained by the third
author in [24], using different methods and without the multiplicity result.

We believe that the geometry of the extended Springer resolution will yield fur-
ther insights into both Springer fibers and the generalized Springer correspondence.
In forthcoming work, the authors will characterize irreducible components of the

fibers of the map ψ : M̃ → N , and use the geometric information to analyze
the generalized Springer correspondence from this new perspective. The gener-
alized Springer correspondence is related to relative Weyl groups, each of which
is a smaller symmetric group, and acts on the cohomology of ψ−1(x) for certain
x ∈ N . Since the map ψ factors through the Springer resolution, our construction
yields a new connection between the representation theory of these smaller sym-
metric groups and the geometry of Springer fibers. This connection sheds light on
the Springer fibers themselves and yields previously unknown geometric features of
these fibers.

The arguments below rely heavily on the structure theory of the derived category
of constructible sheaves. The proof of our main result is comprised of two main
steps. In broad terms, the first step requires us to analyze the decomposition
theorem when applied to a quotient map X → X/Z where Z is a finite abelian
group acting on a variety X. We then apply this general analysis in the special

case of η̃ : M̃ → Ñ . The second step of our argument is comprised of studying the
simple perverse sheaves that appear as summands of η̃∗CM̃[dimN ]. In particular,
for G = SLn(C) we prove that each simple perverse sheaf that arises in this way
pushes forward to a single Lusztig sheaf under the map µ.
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The contents of the paper are as follows. Section 2 covers background infor-
mation and definitions, including the definition of the partial Springer resolution

ÑP . In Section 3, we study the pushforward of the constant sheaf CM̃ along η̃.
As indicated above, some of our analysis in this section is carried out in a more
general setting. Section 4 studies the intersection cohomology complexes appearing
in η̃∗CM̃[dimN ]. We show that each of these pushes forward to an intersection

cohomology complex on ÑP for a particular parabolic subgroup P of SLn(C). Fi-
nally, we realize each of these as an induced complex and prove our main result,
Theorem 5.3, in Section 5. We conclude with an explicit example for G = SL6(C),
and a discussion of future work.

2. Preliminaries

2.1. Group actions and local systems. We work with schemes over the ground
field C. Given a scheme X, CX denotes the constant sheaf on X with rational
coefficients. The Lie algebra of an algebraic group is denoted by the corresponding
fraktur letter; if G is an algebraic group, its identity component is denoted G0, and
the component group is G/G0.

Suppose Z is a finite group acting freely on X on the right, and V is a repre-
sentation of Z. There is a corresponding local system LV on X/Z, defined as the
sheaf of locally constant sections of the vector bundle V = X ×Z V → X/Z. By
abuse of terminology, we may refer to X ×Z V as a local system on X/Z.

If G is an algebraic group acting on X, Gx denotes the stabilizer in G of x ∈ X.
The component group Gx/Gx

0 of the stabilizer is sometimes called the equivariant
fundamental group of the orbit G · x. Suppose V is a representation of Gx/Gx

0 ,
viewed as a representation of Gx via the map Gx → Gx/Gx

0 . Then V corresponds
to a local system LV on G · x, defined as the sheaf of locally constant sections of
the vector bundle G×Gx

V → G/Gx ∼= G · x.
If Z is a subgroup of G, and M is a Z-variety, the mixed space G ×Z M is the

quotient of G ×M by the action of Z defined by (h,m)z = (hz, z−1m) for z ∈ Z.
The equivalence class in G×Z M of (g,m) ∈ G×M is denoted [g,m], or [g,m]Z if
we wish to make the group explicit.

2.2. Local systems on the principal orbit. Throughout the rest of the paper,
G denotes a simply connected semisimple algebraic group over C with Lie algebra

g and center Z. The group of characters of Z is denoted by Ẑ (with analogous
notation for other finite groups). Set Tad = T/Z. We denote the set of nilpotent
elements in g, known as the nilpotent cone, by N . The group G has a dense orbit
in N , called the principal nilpotent orbit. We denote this orbit by Opr and refer
to its elements as principal nilpotent elements.

Let ν ∈ g be a principal nilpotent element. Choose a standard triple {ν, s, ν−}
with nilpositive element ν and semisimple element s ∈ t. Since ads acts semisimply
on g, we can decompose g into its ads-eigenspaces:

g =
⊕

j∈Z

gj , where gj = {x ∈ g | [s, x] = jx}.

For any k, we let g≥k =
⊕

i≥k gi and g>k =
⊕

i>k gi. Let t = g0, u = g>0, and
b = t+ u. The corresponding subgroups of G are T , U , and B = TU ; B is a Borel
subgroup of G with maximal torus T .
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Let Φ denote the root system of g, with positive roots Φ+ chosen so that u is the
sum of the positive root spaces. The flag variety of G is G/B, and W = NG(T )/T
is the corresponding Weyl group. Much of this paper is focused on the case in which
G = SLn(C) and g = sln(C). When G = SLn(C) we may assume B is the subgroup
of upper triangular matrices; the Weyl group in this case is the symmetric group
Sn. We have Gν = ZUν . Since Uν is connected, being unipotent, the component
group Gν/Gν

0 is identified with Z. Therefore any character χ ∈ Ẑ corresponds to a
local system Lχ on G · ν = Opr.

2.3. The Springer resolution. We denote the Springer resolution by µ : Ñ →

N where
Ñ := {(gB, x) ∈ G/B ×N | g−1 · x ∈ u}.

Here g−1 · x denotes the adjoint action Ad(g−1)(x) = g−1xg. The map µ is simply
projection onto the second factor. Given x ∈ N , the fiber

µ−1(x) = {(gB, x) | g−1 · x ∈ u}

is the Springer fiber of x. We can identify the Springer fiber with its image in
G/B under the projection to the first factor; under this identification,

µ−1(x) = {gB | g−1 · x ∈ u}.

Sometimes G/B is denoted by B and the Springer fiber in G/B is denoted Bx.

Remark 2.1. There is an isomorphism of varieties

G×B u → Ñ , [g, x] (→ (gB, g · x)

(cf. [19, pg. 66]). We use this identification frequently below. Under this identifi-
cation,

µ : G×B u → N , [g, x] (→ g · x.

Viewed as a subset of G×B u, the Springer fiber over x is

(2.1) µ−1(x) = {[g, g−1x] | g−1 · x ∈ u}.

2.4. The extended Springer resolution. We now recall from [16] the definition
of the variety which is the main geometric focus of this paper.

Let ∆ ⊆ Φ
+ denote the subset of simple roots. Then g2 =

⊕
α∈∆

gα. Since
[s, ν] = 2ν, we have ν ∈ g2, and we can choose root vectors Eα for each α ∈ ∆ so
that ν =

∑
α∈∆

Eα. Since the center Z acts trivially on g, the action of T on g

factors through the map T → Tad = T/Z. The map Tad → Tad ·ν given by t (→ t ·ν
embeds Tad in g2, so g2 is an affine toric variety for Tad, which we denote by

Vad := g2 =
⊕

α∈∆

gα.

The composition Vad → u → u/[u, u] is an isomorphism, and using this, we identify
Vad with u/[u, u]. Via this identification, Vad acquires a B-action (the subgroup U
acts trivially), and the projection p : u → u/[u, u] = Vad is B-equivariant.

An affine toric variety is characterized by the character group of the torus, which
can be viewed as a subset of the dual Lie algebra of the torus, together with a cone
in the real span of the set of characters. (The character group is a lattice in its
real span.) The toric variety Vad corresponds to the lattice given by the character
group of Tad, and the cone equal to the set of R≥0-linear combinations of simple
roots. The simple roots can be viewed as characters of either Tad or T . We define
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V to be the toric variety for T obtained by changing the lattice for Vad but keeping
the same cone: that is, V corresponds to the lattice given by the character group
of T , and the cone equal to the set of R≥0-linear combinations of simple roots. It
follows that V/Z = Vad (see [15, Section 2.2]).

The composition T → B → B/U is an isomorphism, so identifying T with B/U ,
there is a natural projection B → T . Via this projection, V acquires a B-action
(where U acts trivially), and the projection π : V → Vad is B-equivariant.

The variety M̃ and map ψ : M̃ → N discussed in Section 1 are defined as
follows. First, consider the maps p : u → u/[u, u] = Vad and π : V → V/Z = Vad

defined in the paragraphs above. Set

ũ := V ×Vad
u = {(v, y) | π(v) = p(y)},

i.e., we form the following Cartesian diagram.

ũ !!

""

u

p

""

V
π

!! Vad

Because the maps p and π are both B-equivariant, B acts on ũ. We define M̃ :=
G ×B ũ. Let η : ũ → u denote projection onto the second factor. We then define

η̃ : M̃ → Ñ to be the map induced from η, so η̃ maps the element [g, x] ∈ M̃ to

[g, η(x)] ∈ Ñ . The extended Springer resolution is the variety M̃, together

with the map ψ : M̃ → N , where ψ is the composition

ψ : M̃
η̃

!! Ñ
µ

!! N

of η̃ with the usual Springer resolution µ.

2.5. Intersection cohomology sheaves and the decomposition theorem.

The decomposition theorem plays an important role in this paper, and we briefly
discuss and state it here. The original version of this theorem is due to Bĕılinson,
Bernstein, Deligne, and Gabber [4]; we will also need a generalization which can be
found in [12] or [11]. Statements and discussions of the theorem relevant for this
paper can also be found in [13], [7], and [19]. Before we state the decomposition
theorem, we first discuss its essential ingredients, namely intersection cohomology
complexes. These are the simple perverse sheaves, and objects in the bounded
constructible derived category Db(X) of a variety X.

A perverse sheaf is a constructible complex of sheaves of C-vector spaces which
satisfies certain support and co-support conditions. The intersection cohomology
complexes are determined up to canonical isomorphism in Db(X) by more restric-
tive conditions. Suppose X is a complex algebraic variety, and let U be a nonsin-
gular, dense open subvariety of X. Given a local system L on U , and an integer
d, we let L[d] be the complex in Db(X) with L shifted to the −dth location. The
intersection cohomology complex IC(X,L) is the object in Db(X) uniquely
determined up to canonical isomorphism by the following properties: the restriction
to U is L[dimX],

dim{x ∈ X | Hi
x(IC(X,L)) *= 0} < −i for all i > dimX
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and

dim{x ∈ X | Hi
x(DIC(X,L)) *= 0} < −i for all i > − dimX,

where Hi
x denotes the stalk at x of the cohomology sheaf of the complex, and

D denotes the Verdier dual. If X is smooth and Ltriv is the trivial local sys-
tem, IC(X,Ltriv) = CX [dimX] (recall that CX denotes the constant sheaf on X).
Spaces with the property that IC(X,Ltriv) = CX [dimX] are called rationally

smooth. Examples of rationally smooth varieties include M̃ (which is rationally
smooth since it is locally a quotient of a smooth variety by a finite group) and N
(see [7, §2.3]).

Suppose j : Z ↪→ X is the inclusion of a closed subvariety. Since we are only
working in the derived setting, we use the notation j∗ rather than Rj∗ to denote
the derived direct image Db(Z) → Db(X). The functor j∗ is fully faithful and
induces an equivalence of categories between Db(Z) and the set of objects in Db(X)
supported on Z [13, Section 2.3]. Moreover, for any F ∈ Db(Z), there is a natural
isomorphism j∗j∗F → F (cf. [18, p. 102]). By convention, if we are working with
Db(X), we omit the symbol j∗, and write IC(Z,L) for j∗IC(Z,L), where L is a
local system on an open subset of Z. More generally, if S is a closed subvariety of
Z and L is a local system on an open subset of X, IC(S,L) may denote an element
of Db(Z) or Db(X). There is a natural isomorphism j∗IC(S,L) → IC(S,L), where
IC(S,L) is viewed on the left hand side as an element of Db(Z) and on the right
hand side as an element of Db(X).

All simple perverse sheaves in Db(X) are of the form IC(S,L) for some closed
subvariety S and local system L. Note that if S has two different open dense
subvarieties U1 and U2, and local systems L1 on U1 and L2 on U2 that agree on the
intersection U1 ∩ U2, then IC(S,L1) and IC(S,L2) are canonically isomorphic.

Let f : X → Y be an algebraic map of irreducible complex varieties. Then f is
semismall if for all d,

dim{p ∈ X | dim f−1(p) ≥ d} ≤ dimX − 2d.

If f is semismall, then f is generically finite. The map f is small if the inequality
above is strict for d > 0. A finite map is small.

We now state a version of the decomposition theorem for perverse sheaves. The
first statement here can be found in [12] or [11]. The second statement comes from
[7] and is a specialization of the original version found in [4].

Theorem 2.2 (The decomposition theorem). Let f : X → Y be a proper map of

complex algebraic varieties.

(1) Let L be a semisimple local system on X. Then the derived pushforward

f∗IC(X,L) is a finite direct sum of shifted simple perverse sheaves on Y .

(2) If f is semismall and X is rationally smooth, then f∗CX [dimX] is perverse,
so no nontrivial shifts occur in (1). That is,

(2.2) f∗CX [dimX] ∼=
⊕

i

IC(Si,Li)⊗ Vi,

where each Si is a locally closed subvariety of Y , Li is an irreducible local

system on an open set of Si and Vi is a vector space with dimension equal

to the multiplicity of IC(Si,Li) in the sum.
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2.6. The Springer correspondence and Lusztig’s generalized Springer cor-

respondence. The Springer correspondence is an injective map from the set of
isomorphism classes of irreducible W -representations to pairs (O,L), where O is
a nilpotent orbit and L is an irreducible local system on O. Note that each pair
(O,L) corresponds to a simple perverse sheaf IC(O,L) on N . In [7], Borho and
MacPherson give a proof of the Springer correspondence which relies on the theory
of perverse sheaves. They apply Theorem 2.2 to the Springer resolution to obtain

(2.3) µ∗CÑ [dimN ] =
⊕

(O,L)

IC(O,L)⊗ V(O,L).

The left side of (2.3) is called the Springer sheaf ; it is the derived pushforward of

the constant sheaf on Ñ along the Springer resolution. On the right side of (2.3),
the sum is over the pairs (O,L) that appear in the Springer correspondence. One
can show that the Weyl group acts on the left side of (2.3). This implies that each
V(O,L) is a W -representation; it is precisely the irreducible representation of W
mapping to (O,L) under the Springer correspondence.

Since the Springer correspondence is an injection, we recover only some of the
pairs (O,L) in this manner. Those missing from the Springer correspondence were
described by Lusztig in all cases [21]. Following Lusztig, we consider triples c =
(L,OL,LL), where L is a standard Levi subgroup of G, OL is a nilpotent orbit of
L, and LL is a local system on OL. A triple satisfying certain conditions is called
a cuspidal datum (see [1, Definition 8.5.1]), and Lusztig has classified all such
triples. The relative Weyl group corresponding to a cuspidal datum c is the
group W (L) := NG(L)/L. Although W (L) is defined even if c is not cuspidal, the
cuspidal hypothesis is required to ensure that W (L) is a Coxeter group. Details can
be found in [21] and [22]. An exposition in language closer to ours can be found
in [1, Section 8.5]. The generalized Springer correspondence is a bijection
between the set of simple perverse sheaves on the nilpotent cone and irreducible
representations of relative Weyl groups associated to cuspidal data.

Suppose P is a parabolic subgroup of G with Levi decomposition P = LUP ,
where L is part of a cuspidal datum c for G. The corresponding decomposition
of Lie algebras is p = l + uP . By means of the isomorphism l / p/uP , the Lie
algebra l acquires a P -action, where UP acts trivially. The projection q : l+uP → l

is P -equivariant, and takes NL + uP to NL. Note that UP acts trivially on NL

when NL is viewed as a subvariety of p/uP , but NL is not UP -invariant when NL

is viewed as a subvariety of NL + uP .

Let ÑP = G×P (NL+uP ) denote the variety considered by Borho and MacPher-
son in [7]; here NL is the nilpotent cone of L. We write [g, x]P for the equivalence

class of (g, x) in ÑP , where g ∈ G and x ∈ NL + uP . Borho and MacPherson call

the map µP : ÑP → N defined by µP ([g, x]P ) = g · x a partial resolution of Ñ ; it
is analogous to the Springer resolution. Note that using an isomorphism analogous

to the one defined in Remark 2.1, ÑP can be identified with the variety of pairs
(gP, x) ∈ G/P ×N such that g−1 · x ∈ NL + uP .

Let πP : ÑP → G×P NL be the map induced from q : l+ uP → l. We have the
following diagram:

N
µP

←−−− ÑP := G×P (NL + uP )
πP
−−−→ G×P NL.
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By the induction of complexes defined in [23] (see, in particular, [23, (1.9.3)] and
[6, 2.6.3]), each L-equivariant object in the derived category Db(NL) determines a
G-equivariant object in the derived category Db(G ×P NL). We denote the cor-

responding functor by IndGP . Consider the simple perverse sheaf IndG
P IC(OL,L

L)
on G×P NL, where OL and LL are from the cuspidal datum c = (L,OL,LL). We
define

(2.4) Ac
:= µP ∗πP

∗ IndGP IC(OL,L
L)[dim uP ]

to be the Lusztig sheaf associated to c. In [1, Section 8.5], Ac is denoted by

indGL⊂P IC(OL,LL).
The Lusztig sheaf Ac decomposes as a sum of simple perverse sheaves, each

of which corresponds to an irreducible representation of W (L). The general-
ized Springer correspondence is obtained by considering the Lusztig sheaves Ac

as c varies over all cuspidal data. When L = T , the only cuspidal datum is
c = (T,O{0},L

T
triv) where O{0} is the zero orbit. In this case, the relative Weyl

group is the full Weyl group W and the Lusztig sheaf is the Springer sheaf. We
therefore recover the Springer correspondence as a special case of the generalized
Springer correspondence.

Remark 2.3. Lusztig’s generalized Springer correspondence is proven for connected
reductive algebraic groups over any algebraically closed field (of possibly positive
characteristic p) and Q&-sheaves. Although the discussion in this paper focuses
on the characteristic zero setting and C-sheaves, most of the results generalize to
the positive characteristic setting. The only potential difficulty is our analysis of

varieties with a finite group action (e.g. the Z-action on M̃) in Section 3. However,
if X is a variety defined over an algebraically closed field of characteristic p and Z
is a finite abelian group acting on X, the results of Section 3 hold whenever p is
relatively prime to |Z|.

2.7. Cuspidal data and Lusztig sheaves for G = SLn(C). When G = SLn(C),
the Springer correspondence and its generalization have a more direct description.
In this setting, the only pairs (O,L) appearing on the right hand side of (2.3)
are those corresponding to the trivial local system Ltriv on each orbit O, thus
the Springer correspondence gives a bijection between irreducible representations
of Sn and nilpotent orbits. We adopt the conventions of [19], so the irreducible
Sn-representation Vλ indexed by the partition λ 1 n corresponds to the nilpotent
orbit Oλ of nilpotent matrices with Jordan type λ. Note that our conventions may
differ from some others appearing in the literature up to tensoring Vλ with the sign
representation.

Let ν ∈ Oλ. Each irreducible local system on the orbit Oλ corresponds to a
unique irreducible representation of the equivariant fundamental group Gν/Gν

0 , as
described in Section 2.1 above (in fact, this correspondence is an equivalence of cate-
gories). If λ = [λ1,λ2, . . . ,λk], we haveG

ν/Gν
0 / Zm wherem = gcd(λ1,λ2, . . . ,λk).

The center Z of G is isomorphic to the cyclic group Zn. Since Z is a subgroup of
Gν , we obtain a map Z → Gν/Gν

0 . This map is always surjective in the type A set-

ting, so we obtain an injective map Ĝν/Gν
0 → Ẑ of the character groups. Suppose

χ ∈ Ẑ is in the image of this map; note that the order of χ divides m. We denote
the corresponding G-equivariant local system on Oλ by Lχ; it depends on the orbit
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Oλ as well as on χ, but we omit λ from the notation. Recall that if λ = [n], then
Oλ = Opr is the principal orbit and Gν/Gν

0 / Z.
From [21] and [22], it follows that there is a character of Z associated to each

Lusztig sheaf Ac (see [21, Section 14.2]). In the type A setting, this association is

a bijection (see [22, Section 5.1]). See also [1, Theorem 8.5.8]. Given χ ∈ Ẑ, we
denote by cχ the unique cuspidal datum associated to χ, and Aχ the Lusztig sheaf
constructed from cχ. If χ has order d, then cχ = (L,Opr

L ,LL
χ), where the Levi

subgroup L is of the form S(GLd(C)× · · ·×GLd(C)) with n/d factors, Opr
L is the

principal orbit in NL, and LL
χ is a local system defined precisely in Section 5 below

(see also [22, §5]). The relative Weyl group in this case is isomorphic to Sn/d.
Given a character χ of order d, we obtain an induced local system Lχ on precisely

those orbits Oλ for which λ = [λ1, . . . ,λk] is a partition of n such that d divides λi

for all i. Let λ denote the partition of n/d obtained by dividing each part of λ by
d. The Lusztig sheaf Aχ corresponding to χ decomposes as:

(2.5) Aχ =
⊕

λ=[λ1,...,λk]&n
d|λ1,...,d|λk

IC(Oλ,Lχ)⊗ Vλ.

The generalized Springer correspondence can be stated explicitly in this type A
setting as the bijection between simple perverse sheaves on the nilpotent cone and
irreducible representations of the relative Weyl groups given by IC(Oλ,Lχ) (→ Vλ.
Example 2.4 computes the decomposition (2.5) for G = SL4(C).

Example 2.4. The group G = SL4(C) has center Z = {ωkI4}, where ω =

exp(πi/2) and I4 is the 4 × 4 identity matrix. Write Ẑ = {ι,χ1,χ2,χ3}, where
χk denotes the central character such that χk(ωI4) = ωk, and ι is the trivial char-
acter. The Lusztig sheaf corresponding to the trivial character is the Springer sheaf
µ∗CÑ . Equation (2.3) becomes

µ∗CÑ [dimN ] =
⊕

λ&4

IC(Oλ,Lι)⊗ Vλ.

The Lusztig sheaf corresponding to χ2 is

Aχ2
=

(
IC(O[4],Lχ2

)⊗ V[2]

)
⊕
(
IC(O[2,2],Lχ2

)⊗ V[1,1]

)
,

where the vector spaces Vλ for λ 1 2 are representations of W (L) / S2. Similarly,
the Lusztig sheaves corresponding to χ1 and χ3 are:

Aχ1
= IC(O[4],Lχ1

)⊗ V[1] and Aχ3
= IC(O[4],Lχ3

)⊗ V[1],

where V[1] corresponds to the only representation of the trivial group W (L) / S1

in both these cases. Since dim(V[1,1]) = dim(V[2]) = 1 and dim(V[1]) = 1, we see
that the only simple perverse sheaves with multiplicity more than one in this case
are those coming from the Springer sheaf.

In the next sections, we apply the decomposition theorem to the extended
Springer resolution when G = SLn(C). We will show that we recover all of the
Lusztig sheaves Aχ as summands of the pushforward of the constant sheaf. That
is, we recover all the simple perverse sheaves on the nilpotent cone. Moreover, each
occurs with multiplicity given by the dimension of the corresponding irreducible
representation of Sn/d.
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3. Pushing forward the constant sheaf to Ñ

The main results of the next few sections concern the pushforward of the constant
sheaf CM̃ via the composition

ψ : M̃
η̃
−→ Ñ

µ
−−→ N .

In this section, we study the pushforward under the first map η̃ : M̃ → Ñ . We
prove some of the needed results in a more general setting. The main general result
is Proposition 3.6.

3.1. Pushing forward along a finite quotient map. Throughout this subsec-
tion, X will denote an n-dimensional complex variety with a left action of a finite
abelian group Z. It will frequently be convenient to use the right Z-action on X
defined by the formula xz := z−1x; we write Y = X/Z for the quotient of X by Z
(with either action). We will assume that there is an open set Xreg ⊂ X such that
Z acts freely on Xreg, and let Yreg = Xreg/Z. We have the following commutative
diagram, where the horizontal maps are open embeddings, and the vertical maps
are quotient maps.

Xreg
i

!!

ρ

""

X

π

""

Yreg
j

!! Y

The maps π and ρ are finite, so they are trivially both small and semi-small. More-
over, the map ρ is étale. The fibers of π are exactly the orbits of Z on X.

Let χ : Z → C∗ denote a character of Z, and let Lχ denote the local system
defined, as in Section 2.1, by the sheaf of locally constant sections of the line bundle
Vχ = Xreg×

ZCχ overXreg/Z = Yreg. These local systems are studied in [3, Section
3.2]; Lemma 3.1 is essentially a special case of [3, Lemma 3.6].

Lemma 3.1. With notation as above, we have

ρ∗CXreg
=

⊕

χ∈Ẑ

Lχ.

For χ ∈ Ẑ, define

Xχ = {x ∈ X | Zx ⊆ ker(χ)}.

Since Z is abelian, the set Xχ is Z-stable; let Yχ = Xχ/Z = π(Xχ). Because Xχ

is Z-stable, if y ∈ Yχ, the entire preimage π−1(y) lies in Xχ. In fact, since Z is
abelian and π−1(y) is a single Z-orbit, the stabilizer groups Zx are the same for all
x ∈ π−1(y).

Given χ ∈ Ẑ, write Hχ = kerχ. If χ is understood, we write H = Hχ. We can
view χ either as a character of Z or of Z/H.

Lemma 3.2. The set Xχ is open in X. Hence Yχ is open in Y .

Proof. By definition, x ∈ X \ Xχ if and only if there exists g ∈ Z \ H such that
x ∈ Xg = {x ∈ X | gx = x}. Thus,

X \Xχ = ∪g∈Z\HXg.
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Since each Xg is closed and Z is finite, X \Xχ is closed and thus Xχ is open in X.
Finally, π : X → Y is proper, so π(X \Xχ) = Y \ Yχ is closed in Y . Thus, Yχ is
open in Y . !

Lemma 3.3. The group Z/H acts freely on Xχ/H.

Proof. Let z, x denote the images of x ∈ Z and x ∈ Xχ in Z/H and Xχ/H,
respectively. Suppose z ∈ Z and x ∈ Xχ such that zx = x. We must show that
z = e. By definition, zx = x implies zx = hx for some h ∈ H. Thus, zh−1x = x,
implying zh−1 ∈ Zx ⊂ H. Hence z ∈ H, so z = e, as desired. !

By definition, the open set Xχ contains Xreg and hence Yχ contains Yreg.

Lemma 3.4. We have

Vχ = Xreg/H ×Z/H Cχ.

Proof. By definition, Vχ = Xreg ×
Z Cχ equals (Xreg ×Cχ)/Z, where Z acts by the

mixing action z(u, c) = (uz−1, zc). We have

(3.1) (Xreg × Cχ)/Z =
(
(Xreg × Cχ)/H

)
/(Z/H).

Since H acts trivially on Cχ, the right hand side of (3.1) is equal to ((Xreg/H) ×

Cχ)/(Z/H), which by definition equals Xreg/H ×Z/H Cχ. !

Proposition 3.5. The local system Lχ on Yreg = Xreg/Z extends to a local system

(also denoted by Lχ) on Yχ.

Proof. It is equivalent to showing that there is a local system on Yχ whose restriction
to Yreg is Lχ. Since Z/H acts freely on Xχ/H, we have a local system associated

to the line bundle Xχ/H ×Z/H Cχ on (Xχ/H)/(Z/H) = Xχ/Z. By Lemma 3.4,
the restriction of this local system to Xreg/H is equal to Lχ. !

Recall that n = dimX = dimY . As noted above, given y ∈ Y , the stabi-
lizer group Zx is independent of the choice of x ∈ π−1(y); a choice of such x
gives an identification of π−1(y) with Z/Zx. Given a complex F of sheaves on
Y , the cohomology sheaf Hi(F) has stalk at y ∈ Y denoted by Hi

y(F). We have

dimHi
y(π∗CX) = dimHi(π−1(y)). Because π is a finite map, this dimension is 0 if

i > 0, and is equal to |π−1(y)| = |Z/Zx| if i = 0.
The next result describes the pushforward of the constant sheaf on X under the

quotient map π : X → Y . The strategy of the proof is to first use the decompo-
sition theorem and Lemma 3.1 to show that π∗CX [n] equals the expression in the
statement of Proposition 3.6 plus possible extra terms, and then to use dimension
arguments to show that these extra terms do not appear.

Proposition 3.6. Let π : X → Y be the quotient of an n-dimensional variety X
by the action of a finite abelian group Z, such that Z acts freely on an open subset

Xreg of X. Assume that X is rationally smooth. With notation as above, we have

(1) π∗CX [n] =
⊕

χ∈Ẑ IC(Y,Lχ), and

(2) dimH−n
y (IC(Y,Lχ)) is equal to 1 if y ∈ Yχ and is 0 otherwise.

(3) If y *∈ Yχ, then

(3.2) Hk
y(IC(Y,Lχ)) = 0 for all integers k.

Hence, if i : Y \ Yχ ↪→ Y is the inclusion, we have i∗IC(Y,Lχ) = 0 in

Db(Y \ Yχ).
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(4) If jχ : Yχ → Y is the inclusion, then IC(Y,Lχ) = (jχ)!Lχ[n].

Proof. Because X is rationally smooth, CX [n] is a perverse sheaf. Since π is a small
map, π∗CX [n] is perverse as well. By the Decomposition Theorem (Theorem 2.2
above),

(3.3) π∗CX [n] =
⊕

i

IC(Yi,Li),

where Yi is a closed subvariety of Y and Li is a local system on an open subvariety

of Yi. We claim that for each χ ∈ Ẑ, the sheaf IC(Y,Lχ) occurs in the sum, so the
sum takes the form

(3.4) π∗CX [n] =


⊕

χ∈Ẑ

IC(Y,Lχ)


⊕K,

where K is a sum of IC complexes for local systems on subvarieties of Y . To verify
the claim, recall that by Lemma 3.1,

ρ∗CXreg
[n] =

⊕

χ∈Ẑ

Lχ[n].

Each term in the decomposition of π∗CX [n] is of the form IC(Yi,Li), where Yi

is a closed subvariety of Y . Recall that j : Yreg ↪→ Y . By base change, j∗π∗ =
ρ∗i

∗. Hence, the restriction of the right side of (3.3) to Yreg equals
⊕

χ∈Ẑ Lχ[n].

Therefore, for each χ, there exists an i such that the restriction of IC(Yi,Li) to Yreg

is Lχ[n]. To finish proving the claim, it suffices to verify that the only intersection
cohomology complex on Y whose restriction to Yreg is Lχ[n] is IC(Y,Lχ). To see
this, suppose that the restriction of IC(Yi,Li) to Yreg equals Lχ[n]. Since the
support of IC(Yi,Li) is Yi, we must have Yi = Y , and then Li is a local system on
an open subset Vi of Y . This implies that the restrictions of Lχ and Li to Vi ∩Yreg

agree. But if two local systems on open sets agree on the intersection of those
open sets, then the corresponding IC-complexes are canonically isomorphic. We
conclude that IC(Yi,Li) = IC(Y,Lχ), as desired. This proves the claim.

Now let y ∈ Y and x ∈ π−1(y). By the remarks preceding the proposition,

(3.5) dimH−n
y (π∗CX [n]) = dimH0

y(π∗CX) = |π−1(y)| = |Z/Zx|,

and

(3.6) dimHk
y(π∗CX [n]) = 0 if k *= −n.

Combining (3.4), (3.5), and (3.6), we see that for any y ∈ Y ,

(3.7) |Z/Zx| = dimH−n
y (π∗CX [n]) =

∑

χ∈Ẑ

dimH−n
y (IC(Y,Lχ)) + dimH−n

y (K)

and

(3.8) dimHk
y(IC(Y,Lχ)) = dimHk

y(K) = 0 if k *= −n.

By Proposition 3.5, Lχ extends to a local system (again denoted by Lχ) on Yχ

so IC(Y,Lχ)|Yχ
= Lχ[n]. Therefore if y ∈ Yχ, then dimH−n

y (IC(Y,Lχ)) = 1. We

claim that the number of characters χ ∈ Ẑ such that y ∈ Yχ is |Z/Zx|. Indeed,
y ∈ Yχ if and only if Zx is contained in kerχ. This is equivalent to saying that χ
is pulled back from a character χ of Z/Zx by the quotient map Z → Z/Zx. Thus,
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the number of χ ∈ Ẑ such that y ∈ Yχ is equal to the number of distinct characters
of Z/Zx, which is equal to |Z/Zx| since Z/Zx is an abelian group. This proves the
claim.

The discussion in the previous paragraphs shows that the contribution to the
sum on the right hand side of (3.7) from the characters χ such that y ∈ Yχ is equal
to |Z/Zx|. Hence, for k = −n and all y ∈ Y , we have Hk

y(K) = 0. As this equality
is also true for k *= −n by (3.8), it holds for all integers k. Since K is a direct
sum of IC-sheaves, this is only possible if K = 0. Assertion (1) of the proposition
follows. Similarly, if y *∈ Yχ, we have dimH−n

y (IC(Y,Lχ)) = 0. Since we have

already proved that if y ∈ Yχ, then dimH−n
y (IC(Y,Lχ)) = 1, assertion (2) follows.

Since dimHk
y(IC(Y,Lχ)) = 0 for k *= −n by (3.8), assertion (3) follows as well.

Finally, assertion (4) is a consequence of (3) and the fact that the restriction of
IC(Y,Lχ) to Yχ is Lχ[n]. !

3.2. The subvarieties Vχ and Vad,χ. In this section, we consider the setup from
Section 3.1, in the case that X = V , Y = Vad, and Z is the center of G = SLn(C).
We write Vad,reg = (Vad)reg and Vad,χ = (Vad)χ. The goal of this section is to give

an explicit description of Vχ and Vad,χ for each χ ∈ Ẑ (see Proposition 3.14 and
Corollary 3.15).

In this setting Z = {ωkIn} ∼= Zn where ω = exp(2πi/n) and In is the n × n
identity matrix. We use the notation ωk = ωkIn. Let χk : Z → C∗ be the character
defined by χr(z) = zk for z ∈ Z.

Lemma 3.7.

(1) Let r = n/ gcd(n, c). Then kerχc = {1,ωr,ω2r, . . .}.

(2) Suppose χ ∈ Ẑ has order d. Then kerχ = kerχn/d = {1,ωd,ω2d, . . .}.

Proof. (1) kerχc is the cyclic group generated by the lowest power of ω in kerχc.
Since the smallest positive integer k such that n|ck is k = r, the lowest power of ω
in kerχc is ωr.

(2) By definition we have χk(ω) = χ(ωk), so χd = 1 implies {1,ωd,ω2d, . . .} ⊂

kerχ. Conversely, suppose ωk ∈ kerχ, but k is not a multiple of d. Then 1 ≤ m =
gcd(k, d) < d and ωm ∈ kerχ, so χm = 1. This contradicts the assumption that
the order of χ is d. !

Let α1, . . . , αn−1 be the simple roots associated to the Lie algebra g = sln(C),
and λ1, . . . , λn−1 denote the fundamental dominant weights (we follow the conven-
tions of [17, Section 13.1]). We let µk denote the unique weight in the same coset of

λi (modulo the root lattice) such that µk =
∑n−1

i=1 akiαi, where the aki ∈ Q satisfy
0 ≤ aki < 1 for all k. We say αc occurs in µk if akc *= 0.

Recall that λk is expressed as a linear combination of simple roots via the formula

(3.9) λk =
1

n

(
(n− k)α1 + 2(n− k)α2 + · · ·+ k(n− k)αk

+ k(n− k − 1)αk+1 + k(n− k − 2)αk+2 + · · ·+ kαn−1

)
.

We can use this formula to compute µk, as demonstrated in Example 3.8.

Example 3.8. Let n = 12. We can view the weights as elements of R12 whose
coordinates add up to 0, and each simple root is αi = εi − εi+1 for 1 ≤ i ≤ n − 1.
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Using equation (3.9) we compute the cosets of the fundamental dominant weights
modulo the root lattice. For example,

λ1 =
1

12
(11α1+10α2 + 9α3 + 8α4 + 7α5 + 6α6 + 5α7 + 4α8 + 3α9 + 2α10 + α11),

λ2 =
1

12
(10α1+20α2 + 18α3 + 16α4 + 14α5 + 12α6 + 10α7 + 8α8 + 6α9 + 4α10 + 2α11),

λ3 =
1

12
(9α1+18α2 + 27α3 + 24α5 + 21α5 + 18α6 + 15α7 + 12α8 + 9α9 + 6α10 + 3α11),

λ4 =
1

12
(8α1+16α2 + 24α3 + 32α4 + 28α5 + 24α6 + 20α7 + 16α8 + 12α9 + 8α10 + 4α11),

λ5 =
1

12
(7α1 + 14α2 + 21α3 + 28α4 + 35α5 + 30α6 + 25α7+20α8+15α9+10α10+5α11),

λ6 =
1

12
(6α1+12α2+18α3+24α4+30α5+36α6 + 30α7 + 24α8 + 18α9 + 12α10+6α11);

the fundamental weights λ7, . . . , λ11 are given by similar formulas. Each µi is
obtained from λi by taking the fractional portion of the coefficients aik:

µ1 = λ1,

µ2 =
1

6
(5α1 + 4α2 + 3α3 + 2α4 + α5 + 5α7 + 4α8 + 3α9 + 2α10 + α11),

µ3 =
1

4
(3α1 + 2α2 + α3 + 3α5 + 2α6 + α7 + 3α9 + 2α10 + α11),

µ4 =
1

3
(2α1 + α2 + 2α4 + α5 + 2α7 + α8 + 2α10 + α11),

µ5 =
1

12
(7α1 + 2α2 + 9α3 + 4α4 + 11α5 + 6α6 + α7 + 8α8 + 3α9 + 10α10 + 5α11),

µ6 =
1

2
(α1 + α3 + α5 + α7 + α9 + α11).

We can compute µi for 7 ≤ i ≤ 11 using the same methods. In this case we find:

• α1 and α11 occur in all µi

• α2 and α10 occur in all µi except µ6

• α3 and α9 occur in all µi except µ4, µ8

• α4 and α8 occur in all µi except µ3, µ6, µ9

• α5 and α7 occur in all µi,
• and α6 occurs in all µi for odd i.

Given a weight λ of T , we write eλ for the corresponding function on T . If λ
is in the root lattice, eλ can also be viewed as a function on Tad. Set xi = eαi

and vi = eµi for all 1 ≤ i ≤ n − 1. By definition, V = SpecA, where A =
C[v1, . . . , vn−1, x1, . . . , xn−1]/I for some ideal I, and Vad = SpecC[x1, . . . , xn−1] ∼=
Cn−1. The ideal I contains all elements of the form

va1

1 va2

2 · · · v
an−1

n−1 − xb1
1 xb2

2 · · ·x
bn−1

n−1

for all a1, a2, . . . , an−1, b1, b2, . . . , bn−1 ∈ Z such that

a1µ1 + a2µ2 + · · ·+ an−1µn−1 = b1α1 + b2α2 + · · ·+ bn−1αn−1.

We view v1, . . . , vn−1, x1, . . . , xn−1 as coordinates on C2n−2, and V as the sub-
scheme of C2n−2 defined by the ideal I.

Given a point x in V , we write vi(x) and xi(x) for the values of the coordinate
functions vi and xi at x. Similarly, if y ∈ Vad, xi(y) is the value of the coordinate
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xi at y. Recall that π : V → Vad is the quotient by Z. We have π(x) = y if and
only if xi(x) = xi(y) for all i. If z ∈ Z, we have π(zx) = π(x), so xi(zx) = xi(x)
for all i.

The center Z acts on x ∈ C2n−2 by

z(v1(x), v2(x), . . . , vn−1(x), x1(x), . . . , xn−1(x))

= (zv1(x), z
2v2(x), . . . , z

n−1vn−1(x), x1(x), . . . , xn−1(x)).

The action of Z on the coordinate functions vi and xi is given by z · vi = z−ivi and
z · xi = xi, respectively. The Z-action on C2n−2 preserves the subscheme V since
the ideal I is T -invariant.

Example 3.9. We continue Example 3.8 for n = 12. Rewriting µi for i = 1, 2, 4
as a function on T and expanding in terms of vi and xi, we find that

v121 = x11
1 x10

2 x9
3x

8
4x

7
5x

6
6x

5
7x

4
8x

3
9x

2
10x11,

v62 = x5
1x

4
2x

3
3x

2
4x5x

5
7x

4
8x

3
9x

2
10x11,

v34 = x2
1x2x

2
4x5x

2
7x8x

2
10x11.

Using similar methods, we obtain

v43 = x3
1x

2
2x3x

3
5x

2
6x7x

3
9x

2
10x11,

v125 = x7
1x

2
2x

9
3x

4
4x

11
5 x6

6x7x
8
8x

3
9x

10
10x

5
11,

v26 = x1x3x5x7x9x11.

Lemma 3.10 tells us when αc occurs in µk; the reader can verify this result when
n = 12 using the data provided in Example 3.8.

Lemma 3.10. Let c ∈ {1, . . . , n − 1} and let r = n/ gcd(n, c). Then αc occurs in

µk (for 1 ≤ k ≤ n− 1) if and only if k is not a multiple of r.

Proof. We prove the equivalent statement that αc does not occur in µk if and only
if r divides k. The root αc does not occur in µk if and only if the coefficient of αc in
µk is an integer. Equation (3.9) shows that if c ≤ k then this coefficient is equal to
c(n−k)/n; if c > k then this coefficient is equal to [k(n−k−(c−k))]/n = k(n−c)/n.
In either case, the coefficient is an integer if and only if n divides ck. Writing
s = gcd(n, c), we have n = rs and c = ms, where r and m are relatively prime.
Then n = rs divides ck = kms if and only if r divides km if and only if r divides
k. !

Note that if r = n/ gcd(n, c), the lemma implies that αc occurs in each µi. Our
first step toward computing Vχ is to compute the stabilizer groups Zx for x ∈ V .

Lemma 3.11. For x ∈ V, Zx = ∩ kerχk where the intersection is over all k ∈

{1, . . . , n− 1} such that vk(x) *= 0.

Proof. Given x, x′ ∈ V , we have x = x′ if and only if xk(x) = xk(x
′) and vk(x) =

vk(x
′) for all k. Hence, for z ∈ Z, we have z ∈ Zx if and only if xk(zx) = xk(x)

and vk(zx) = vk(x) for all k. The first equality always holds, by the discussion
above. We have vk(zx) = χk(z)vk(x), and this equals vk(x) if and only if χk(z) = 1
whenever vk(x) *= 0, which is equivalent to the assertion of the lemma. !

Motivated by Lemma 3.11, we now examine the condition vk(x) = 0.
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Lemma 3.12. Suppose x ∈ V. We have vk(x) = 0 if and only if xi(x) = 0 for

some i such that αi occurs in µk.

Proof. We have µk =
∑n−1

i=1 akiαi for aki ∈ Q such that 0 ≤ aki < 1. Choose a

positive integer d such that daki ∈ Z for all i. Then dµk =
∑n−1

i=1 dakiαi, so in the
ring A, we have

(3.10) vdk =
n−1∏

i=1

xdaki

i .

The root αi occurs in µk if and only if aki > 0. So evaluating both sides of (3.10)
at x, we see that if αi occurs in µk and xi(x) = 0, then vk(x)

d = 0, and hence
vk(x) = 0. On the other hand, if xi(x) *= 0 for all i such that αi occurs in µk, then
(vk(x))

d *= 0, so vk(x) *= 0. !

Proposition 3.13 describes the stabilizer groups Zx for x ∈ V .

Proposition 3.13. Let x ∈ V, and {c1, c2, . . . , c&} be the set of integers k such that

xk(x) = 0. Let ri = n/ gcd(n, ci) and r = lcm(r1, r2, . . . , r&). (Note that r divides

n.) Then Zx = kerχr.

Proof. By Lemma 3.12, vk(x) = 0 if and only if xi(x) = 0 for some i such that αi

occurs in µk. Equivalently, vk(x) = 0 if and only if αci occurs in µk for some i.
Finally, by Lemma 3.10 αci occurs in µk if and only if k is not a multiple of ri. We
therefore conclude that vk(x) *= 0 if and only if k is a multiple of r. The desired
statement now follows from Lemma 3.11. !

Let χ : Z → C∗ be a character of Z. Recall that Vχ = {x ∈ V | Zx ⊂ kerχ}. If
χ has order n then kerχ = {1}, so Vχ = Vreg. The main result of this section is
Proposition 3.14, which describes Vχ.

Proposition 3.14. Suppose χ ∈ Ẑ has order d and let x ∈ V. Then x ∈ Vχ if and

only if for each k in {1, . . . , n− 1}, xk(x) *= 0 if d does not divide k.

Proof. Let x ∈ V , and let c1, . . . , c& be the integers k with xk(x) = 0. The
proposition is equivalent to the assertion that x ∈ Vχ if and only if d divides ci for
all i.

Proposition 3.13 says that Zx = kerχr, where r = lcm(r1, r2, . . . , r&) for ri =
n/ gcd(n, ci). Applying this fact together with Lemma 3.7 we now have:

x ∈ Vχ ⇔ Zx ⊆ kerχ = kerχn/d ⇔ r divides
n

d
⇔ ri divides

n

d
for all i.

Finally, we have that ri divides
n
d for all i if and only if d divides gcd(n, ci) for all i.

The last condition is equivalent to requiring that d divide ci for all i, as desired. !

Corollary 3.15. Suppose x ∈ V. Then x ∈ Vreg if and only if xk(x) *= 0 for each

k ∈ {1, . . . , n− 1}.

Proof. By definition, x ∈ Vreg if and only if Zx = {1}. Since {1} = kerχ when χ

has order n, Proposition 3.14 implies that Vreg consists of the set of x ∈ V such
that xk(x) *= 0 for all k ∈ {1, . . . , n− 1}. !

Corollary 3.16. Suppose χ ∈ Ẑ has order d. Then y ∈ Vad,χ if and only if for

each k in {1, . . . , n − 1}, xk(y) *= 0 if d does not divide k. In particular, Vad,reg

consists of the set of y ∈ Vad such that xk(y) *= 0 for all k ∈ {1, . . . , n− 1}.
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Proof. By definition, y is in Vad,χ if y = π(x) for x ∈ Vχ. In this case, xk(y) = xk(x),
so the result follows from Proposition 3.14 and Corollary 3.15. !

3.3. The subvarieties M̃χ and Ñχ. Recall that we have η : ũ → u, defined by

η = π × 1 : ũ = V ×Vad
u → u = Vad ×Vad

u.

The Z-action on ũ comes from the action on the first factor, and we have ũ/Z = u.
As varieties, ũ = V × g≥4 and u = Vad × g≥4. Both ũ and u have B-actions and the
map η is B-equivariant. From this we obtain

η̃ : M̃ = G×B ũ → Ñ = G×B u.

The Z-action on M̃ is the restriction of the left G-action to the subgroup Z; note
that for z ∈ Z, g ∈ G, and x ∈ V , we have

z[g, x] = [zg, x] = [gz, x] = [g, zx],

where the second equality is because z is central, and the third holds since Z ⊂ B.

The equality ũ/Z = u implies that M̃/Z = Ñ (see [16]).

Proposition 3.17. Let χ ∈ Ẑ.

(1) We have ũχ = Vχ×Vad
u and uχ = Vad,χ×Vad

u. As varieties, ũχ = Vχ×g≥4

and uχ = Vad,χ × g≥4.

(2) We have M̃χ = G×B ũχ and Ñχ = G×B uχ.

Proof. (1) Suppose ũ = (x, u) ∈ ũ, where x ∈ V and u ∈ u. Then Z(x,u) = Zx, so
ũ ∈ ũχ if and only if x ∈ Vχ. This proves that ũχ = Vχ ×Vad

u. Since uχ is the
image of ũχ under the map η, it follows that uχ = Vad,χ ×Vad

u. The assertions
about the structure of ũχ and uχ as varieties follow from writing u = Vad × g≥4.

(2) If [g, ũ] ∈ M̃, then Z [g,ũ] = Zũ, so [g, ũ] ∈ M̃χ if and only if u ∈ ũχ. Hence

M̃χ = G×B ũχ. The assertion Ñχ = G×B uχ follows because Ñχ is the image of

M̃χ under η̃. !

Example 3.18. Let n = 6 and χ = χ3 ∈ Ẑ; note that χ is a character of order

d = 2. In this example, we consider the intersections Ñχ ∩ µ−1(ν) for various
nilpotent elements ν ∈ N . Here µ−1(ν) is the Springer fiber over ν; recall from

(2.1) that µ−1(ν) = {[g, g−1ν] | g−1 · ν ∈ u}. Proposition 3.17 shows that Ñχ is
determined by uχ: we have [g, g−1ν] ∈ Nχ if and only if g−1ν ∈ uχ. We have
uχ = p−1(Vad,χ), where p : u → Vad = u/[u, u] is the natural projection. Write

(3.11) p(g−1 · ν) = c1Eα1
+ c2Eα2

+ c3Eα3
+ c4Eα4

+ c5Eα5
.

We deduce from Proposition 3.14 that (g, g−1 · ν) ∈ Ñχ if and only if ck *= 0 for all
odd k.

It is well-known that the irreducible components of µ−1(ν) for ν ∈ Oλ are in-
dexed by standard tableaux of shape λ. Indeed, if we construct these components as
Steinberg does in [28, §2], each standard tableau S ∈ ST(λ) corresponds to an open
subset CS ⊂ µ−1(ν) of maximal dimension. The decomposition of µ−1(ν) into irre-
ducible components is µ−1(ν) = ∪S∈ST(λ)CS . In this example, it is straightforward
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to show that CS ⊂ Ñχ whenever S is one of the following standard tableaux.

(3.12)

1 2

3 4

5 6

1 2 3 4

5 6

1 2 5 6

3 4
1 2 3 4 5 6

This computation is discussed in greater detail for the first standard tableau above
in Example 5.4.

Corollary 3.16 implies that ureg consists of the elements of u such that the
coefficient of each root vector corresponding to a simple root is nonzero. This set

is exactly the set of principal nilpotent elements in u. Therefore, Ñreg is the set of
[g, ν] ∈ G×Bu where ν is principal nilpotent in u. The map µ : [g, ν] → g·ν identifies

Ñreg with the principal nilpotent orbit Opr in N . As discussed in Section 2.2, each

character χ of Z induces a local system Lχ on Opr and consequently on Ñreg.

We are now in the setting of Section 3.1, with X = M̃ and Y = Ñ . Applying

Proposition 3.6 to η̃ : M̃ → Ñ yields the following result.

Proposition 3.19. Let η̃ : M̃ → Ñ denote the map induced by η : ũ → u. Then

η̃∗CM̃[dimN ] =
⊕

χ∈Ẑ

IC(Ñ ,Lχ).

Moreover, if i is the inclusion of Ñ \ Ñχ into Ñ , then i∗IC(Ñ ,Lχ) = 0.

4. IC sheaves on Ñ and ÑP

In this section we continue our study of the IC-complexes IC(Ñ ,Lχ) for χ ∈ Ẑ.
The main result of the section is Theorem 4.6, which shows that the pushfor-

ward of this complex to the variety ÑP studied in [7] is equal to the IC-complex

IC(ÑP ,Lχ).
We continue to assume G = SLn(C). Throughout this section, we fix positive

integers d and r such that n = dr. Let Ld be the Levi subgroup of G containing T
whose simple roots are the αk ∈ ∆ such that k is not divisible by d. Then Ld is a
block diagonal matrix with d× d blocks; that is,

Ld
∼= S(GLd(C)×GLd(C)× · · ·×GLd(C)),

with r factors on the right hand side. We let Pd denote the standard parabolic
subgroup of G with Levi factor Ld and unipotent radical Ud. Since B is upper
triangular, Pd is block upper triangular.

Let Id denote the identity matrix in GLd(C). The center Z(Ld) of Ld consists
of the block diagonal matrices where the i-th block is aiId for ai ∈ C, subject
to the condition (a1a2 · · · ar)d = 1. For simplicity, we denote such a matrix by
zd(a1, . . . , ar). The identity component Z(Ld)0 is the subset of elements of Z(Ld)
satisfying a1a2 · · · ar = 1. Therefore, the component group Cd = Z(Ld)/Z(Ld)0 is

isomorphic to Zd. The character group Ĉd is generated by the character

φ : zd(a1, . . . , ar) (→ a1a2 · · · ar.

The inclusion map Z → Z(Ld) induces a surjection Z → Cd, with kernel

{1,ωd,ω2d, . . .}. Pullback via this surjection yields an injective map Ĉd → Ẑ.
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Lemma 4.1.

(1) The map Ĉd → Ẑ takes φ to χr.

(2) If χ ∈ Ẑ is a character of order d, then χ is the image of an element of Ĉd.

Proof. (1) holds by direct calculation. (2) follows since any element χ of Ẑ of order

d is a power of χr, which is the image of an element of Ĉd. !

Remark 4.2. By abuse of notation, we will frequently use the same letter χ for an

element of Ĉd and its image in Ẑ.

For the remainder of this section, since d is fixed, we simplify the notation by

writing P = LUP for Pd = LdUd. We write UL = U ∩ L. We let χ ∈ Ẑ denote a
character of order d. We may repeat these assumptions for emphasis.

Let νd be the matrix which has entries equal to 1 above the diagonal in each d×d
block, and zeroes elsewhere. In other words, νd is the sum of simple root vectors
corresponding to αk ∈ ∆ such that k is not divisible by d. Thus, νd is a principal
nilpotent element of l. The next proposition describes the stabilizer groups P νd

and Lνd and the corresponding component groups.

Lemma 4.3.

(1) Lνd = Z(L)Uνd

L .

(2) P νd = LνdUνd

P .

(3) The inclusions Z(L) ⊂ Lνd ⊂ P νd induce identifications of component

groups

Z(L)/Z(L)0 = Lνd/(Lνd)0 = P νd/(P νd)0.

Proof. Statement (1) follows from a straightforward computation of the stabilizer
of a principal nilpotent element in GLd(C), which we omit. We prove (2). Suppose
p = u. ∈ P νd with u ∈ UP and . ∈ L. For any x ∈ l, the image of u.x under the
projection p → l equals .x. Since u.νd = νd ∈ l, we see that .νd = νd, so . ∈ Lνd .
This implies that u ∈ Uνd

P , proving (2). Finally, the equalities in (3) follow from
the fact that the groups Uνd

P and Uνd

L are unipotent, and therefore connected. !

We have a Levi decomposition p = l⊕ uP . Let NL denote the nilpotent cone in
l. Recall from Section 2.6 that

ÑP = G×P (NL + uP );

we write [g, x]P for the element of ÑP corresponding to (g, x) for g ∈ G, x ∈

NL + uP . Borho and MacPherson defined a stratification of ÑP indexed by L-
orbits on the nilpotent cone NL; the stratum corresponding to the orbit OL ⊂ NL

is G ×P (OL + uP ) (see [7, Section 2.10]; note that OL + uP is P -stable). The

stratum corresponding to the principal nilpotent orbit Opr
L in NL is denoted ÑP

reg.

Lemma 4.4. Suppose χ ∈ Ẑ has order d, and let P = Pd, L = Ld. Then u ∩

(Opr
L + uP ) = uχ.

Proof. Write x ∈ u as a sum of root vectors:

x =

n−1∑

i=1

aαi
Xαi

+
∑

β∈Φ+−∆

aβXβ,
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where the αi are the simple roots and aγ ∈ C for all γ ∈ Φ
+. We have x ∈ Opr

L +uP
if and only if for each simple root αi of L, aαi

*= 0. The simple roots of L are the
αi where i is not divisible by d. By Propositions 3.14 and 3.17, x is in uχ if and
only if aαi

is nonzero when i is not divisible by d. Hence, x is in uχ if and only if
x is in u ∩ (Opr

L + uP ). !

There is a semismall map ρP : Ñ → ÑP [7, Lemma 2.10(e)], defined as follows.
Given g ∈ G and x ∈ u (resp. x ∈ NL+uP ), temporarily write [g, x]B (resp. [g, x]P )

for the equivalence class of (g, x) in Ñ = G×B u (resp. in ÑP = G×P (NL + uP )).
By definition, ρP ([g, x]B) = [g, x]P . We have µ = µP ◦ ρP , where as in Section 2.6,
µP ([g, x]P ) = g · x (see [7, Section 2.10]).

Proposition 4.5. Suppose χ ∈ Ẑ has order d, and let P = Pd. The map ρP : Ñ →

ÑP satisfies ρ−1
P (ÑP

reg) = Ñχ. Moreover, ρP takes Ñχ isomorphically onto ÑP
reg.

Proof. Since Opr
L + uP is B-invariant (as it is P -invariant), the intersection (Opr

L +
uP ) ∩ u is B-invariant. The definition of ρP implies that

ρ−1
P (ÑP

reg) = G×B ((Opr
L + uP ) ∩ u).

By Lemma 4.4, (Opr
L + uP ) ∩ u = uχ, so

ρ−1
P (ÑP

reg) = G×B uχ = Ñχ,

where the last equality is by Proposition 3.17. This proves the first assertion of the
proposition.

We now show that ρP takes Ñχ isomorphically onto ÑP
reg. Borho and MacPher-

son [7, Lemma 2.10(b)] show that the fiber of ρP over the stratum corresponding
to OL is isomorphic to the Springer fiber Bx

L; here BL is the flag variety for L, and
x is an element of OL. For the stratum corresponding to the principal orbit Opr

L ,
the Springer fiber Bx

L is a single point. Hence ρP induces a bijection

(4.1) Ñχ = ρ−1
P (ÑP

reg) → ÑP
reg.

Since ÑP
reg is smooth, Zariski’s Main Theorem implies that (4.1) is an isomorphism

of schemes, completing the proof. !

Observe that Opr can be viewed as an open dense subset of any of N , Ñ , or

ÑP . Indeed, the Springer resolution µ : Ñ → N is an isomorphism over Opr; the

map µ factors through ρP : Ñ → ÑP (see the remarks before Proposition 4.5),

and ρP takes the open set Ñχ (which contains Opr) isomorphically onto its image.
A character χ of Z corresponds to a local system Lχ on Opr, and we obtain IC

complexes IC(Ñ ,Lχ) and IC(ÑP ,Lχ).

Theorem 4.6. Suppose χ ∈ Ẑ has order d, and let P = Pd. Then (ρP )∗IC(Ñ ,Lχ)

= IC(ÑP ,Lχ).

Proof. By the Decomposition Theorem (see Theorem 2.2), (ρP )∗IC(Ñ ,Lχ) is a

direct sum of shifted IC complexes on ÑP . We claim that the shifts are all trivial.

To prove the claim, it suffices to show that (ρP )∗IC(Ñ ,Lχ) is perverse, since
no nontrivial shift of an intersection cohomology complex remains perverse (see

[7, p. 37]). Observe that the composition ρP ◦ η̃ : M̃ → ÑP is semismall, since ρP

is semismall and η̃ is finite. Moreover, M̃ is rationally smooth, since it is locally



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE GENERALIZED SPRINGER CORRESPONDENCE 3911

a quotient of a smooth variety by a finite group. Therefore, by [7, Section 1.7],
(ρP ◦ η̃)∗CM̃ is perverse. By Proposition 3.19,

(ρP ◦ η̃)∗CM̃ = (ρP )∗(⊕χ∈ẐIC(Ñ ,Lχ)).

Since the right hand side satisfies the support condition to be a perverse sheaf, each
summand also satisfies the same support condition and therefore each summand is
also perverse. The claim follows.

The proper base change theorem implies that the pushforward (ρP )∗ commutes

with the restriction to the open set Ñχ
∼= ÑP

reg. Since ρP is an isomorphism over
this open set, and the local system Lχ extends to this open set, the perverse sheaf

(ρP )∗IC(Ñ ,Lχ) restricts to Lχ[n] on ÑP
reg (where n = dimN ). Arguing as in the

proof of Proposition 3.6, we see that the only intersection cohomology complex on

ÑP whose restriction to ÑP
reg is Lχ[n] is IC(ÑP ,Lχ). Therefore, IC(ÑP ,Lχ) must

occur as a summand in (ρP )∗IC(Ñ ,Lχ). Hence we can write

(ρP )∗IC(Ñ ,Lχ) = IC(ÑP ,Lχ)⊕K,

where K is a direct sum of intersection cohomology complexes on subvarieties of

ÑP . To complete the proof, we must show that K = 0.
As a step toward this, we claim that if IC(Z,F) occurs in K, then Z must be

contained in ÑP \ ÑP
reg. Indeed, if not, then Z ∩ ÑP

reg would be open and dense in
Z, so it would contain a point z of the smooth open set where the local system F is

defined. Therefore H∗
z((ρP )∗IC(Ñ ,Lχ)) would be at least 2-dimensional, since it

would have contributions from IC(ÑP ,Lχ) and IC(Z,F). This contradicts the fact

that the restriction of (ρP )∗IC(Ñ ,Lχ) to ÑP
reg is Lχ[n]. Therefore Z ⊂ ÑP \ ÑP

reg,
proving the claim.

Consider the Cartesian diagram

Ñ \ Ñχ
i

−−−−→ Ñ
3ρ′

P

3ρP

ÑP \ ÑP
reg

j
−−−−→ ÑP

where ρ′P is the restriction of ρP . By the proper base change theorem,

j∗(ρP )∗IC(Ñ ,Lχ) = (ρ′P )∗i
∗IC(Ñ ,Lχ) = 0,

where the second equality holds since i∗IC(Ñ ,Lχ) = 0 by Proposition 3.19. Since

K is a direct summand in (ρP )∗IC(Ñ ,Lχ), we deduce that j∗K = 0.
We know that K, if nonzero, is a direct sum of terms of the form IC(Z,F),

where Z is a subvariety of ÑP \ ÑP
reg. Observe that for such a Z, following the

conventions of Section 2.5, we have j∗IC(Z,F) = IC(Z,F). Such a complex has
a nonzero stalk at any point z in the open set of Z where the local system F is
defined. Since j∗K = 0, we see that no term of the form IC(Z,F) can appear in
K, and therefore K = 0, as desired. !

5. The generalized Springer correspondence and Lusztig Sheaves

Recall that our goal is to prove that ψ∗CM̃ is a direct sum of Lusztig sheaves,
which were defined in Section 2.6 above. In order to proceed we need to realize
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each IC(ÑP ,Lχ) as an induced complex. After some preliminary discussion, we
prove our main theorem, which is Theorem 5.3 below.

We keep the notation of Section 4. Thus, G = SLn(C), χ ∈ Ẑ has order d, and
νd ∈ N , Pd = LdUd are as in Section 4. As in that section, we write P = LUP for
Pd = LdUd.

We recall some notation from Section 2.6. The projection q : p = l + uP → l is
P -equivariant, where the P -action on the target is the extension of the adjoint L-
action to P by requiring that UP acts trivially. We use the same notation q for the
induced maps NL + uP → NL and Opr

L + uP → Opr
L , which are also P -equivariant.

The map q induces a map πP : ÑP → G×P NL.
Note that if x ∈ l, even though q(x) ∈ l is the same element as x, the notation

indicates that the P -action is different. Indeed, if u ∈ UP , then u · x = x + y for
some y ∈ uP , but u · q(x) = q(x). Given x ∈ l, we will write x = q(x) for the same
element, but with trivial action of UP . Recall that ν denotes a principal nilpotent
element.

Lemma 5.1. P · ν is open in NL + uP .

Proof. Observe that P · ν has the same dimension as NL + uP . Indeed, P ν = Gν

has dimension n− 1, so dimP · ν = dimP − (n− 1); on the other hand, dimNL =
dimL− (n−1), so dimNL+dim uP = dimL+dimUP − (n−1) = dimP − (n−1).
This verifies the assertion about dimensions. Since NL + uP is irreducible, the
closure of P · ν must equal NL + uP . Since any orbit is open in its closure (see
[19, Section 2.1]), P · ν is open in NL + uP . !

Remark 5.2. An alternative proof of Lemma 5.1 is as follows. We know that Opr =

G · ν is open and dense in N . Since ÑP → N is an isomorphism over Opr, we

can identify G · ν with its inverse image in ÑP , and that inverse image is therefore

open and dense in ÑP . We write Opr
L for either the orbit L · νd or L · νd. The fiber

over eP of the projection ÑP → G/P is identified with Opr
L + uP . The intersection

of G · ν with this fiber is open and dense in the fiber, and is identified with P · ν,
completing the proof.

Lemma 4.1 implies that the character χ of Z is the pullback of a character of
Cd, which we again denote by χ (cf. Remark 4.2). By Lemma 4.3, the component
group Lν/Lν

0 of Lν is equal to Cd. Therefore, χ induces a local system LL
χ on the

orbit Opr
L . The Lusztig sheaf Aχ is defined by

Aχ = µP ∗π
∗
P IndGP IC(NL,L

L
χ)[dP ],

where dP = dim uP . Recall the map ψ : M̃ → N , which factors as

M̃
η̃

−−→ Ñ
ρP

−−−→ ÑP µP
−−−→ N .

Our main theorem is the following.

Theorem 5.3. Let ψ : M̃ → N be the extended Springer resolution. Then

ψ∗CM̃[dimN ] =
⊕

χ∈Ẑ

Aχ.

Proof. By Proposition 3.19 and Theorem 4.6, we have

(ρP ◦ η̃)∗CM̃[dimN ] =
⊕

χ∈Ẑ

IC(Ñ ,Lχ).
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Comparing with the definition of the Lusztig sheaf, we see that it suffices to prove

that as G-equivariant perverse sheaves on ÑP , we have

(5.1) π∗
P IndGP (IC(NL,L

L
χ))[dP ] = IC(ÑP ,Lχ).

From the map q : Opr
L + uP → Opr

L we obtain a local system q∗LL
χ on Opr

L + uP .
We have

π∗
P IndGP IC(NL,L

L
χ)[dP ] = IndGP (q

∗IC(NL,L
L
χ))[dP ]

= IndGP IC(NL + uP , q
∗LL

χ)[dP ]

= IC(ÑP , IndGP (q
∗LL

χ)).

Here the first equality is because πP = IndGP (q) and IndGP is a functor; the second
equality is because of the compatibility of IC complexes with smooth pullback
(see [19, Lemma 2.15]); and the third equality is because induction equivalence is
compatible with the construction of IC-complexes (see [6, §5.2]). To complete the

proof, it suffices to show that there is some G-stable open set of ÑP on which
the restrictions of the local systems IndGP (q

∗LL
χ) and Lχ are isomorphic. This is

equivalent to showing that there is some P -stable open set of Opr
L + uP on which

the restrictions of q∗LL
χ and Lχ are isomorphic. We will verify this for the open set

P · ν of Opr
L + uP .

The map q induces (by restriction) a map of orbits

(5.2) q : P · ν → P · ν;

here the notation ν is as discussed at the beginning of the section. We need to
check that

(5.3) q∗(LL
χ |P ·ν) ∼= Lχ|P ·ν .

The map (5.2) corresponds to the map of component groups

P ν/P ν
0 = Gν/Gν

0
∼= Z → P ν/P ν

0 = Lν/Lν
0 = Z(L)/Z(L)0.

By construction, under this map of component groups the character χ of Cd =
Z(L)/Z(L)0 pulls back to the character of Z which we have also denoted by χ.
This implies (5.3), and the result follows. !

Theorem 5.3 implies that we can use the geometry of M̃ to study the generalized
Springer correspondence. For example, Z must permute the irreducible components
of the “generalized Springer fibers” ψ−1(ν) for each ν ∈ N . This is referred to
as a monodromy representation. From the discussion in [7, §1.2], it follows that
the multiplicity of IC(Oλ,Lχ) in ψ∗CM̃[dimN ] is exactly the multiplicity of the
irreducible Z-representation with character χ in the monodromy representation on
the irreducible components of ψ−1(ν) for ν ∈ Oλ. Example 5.4 is a continuation of
Example 3.18, and computes this monodromy representation in a few cases.

Example 5.4. Let n = 6 and χ ∈ Z be the character of order d = 2. Consider the
following standard tableau of shape λ = [2, 2, 2].

S =

1 2

3 4

5 6
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Example 3.18 shows that CS ⊆ Ñχ where CS is the open subset of the Springer
fiber µ−1(ν2) of maximal dimension constructed as by Steinberg in [28, §2]. Let
g0B ∈ µ−1(ν2) denote a generic element. Then equation (3.11) becomes

p(g−1
0 · ν2) = Eα1

+ c2Eα2
+ Eα3

+ Eα5
,

and p(g−1
0 · ν2) corresponds to the coordinate values (1, c2, 1, 0, 1) ∈ Vad (we have

Vad = SpecC[x1, . . . , xn−1] ∼= Cn−1 as in Section 3.2). This confirms CS ⊂ Ñχ

since ck *= 0 for all odd k.
Recall from Section 3.2 that we identify V with a subscheme of

C2n−2 / SpecC[x1, . . . , xn−1; v1, . . . , vn−1].

Note that x ∈ V satisfies π(x) = p(g−1
0 · ν2) if and only if x has coordinates

(1, c2, 1, 0, 1; 0, 0, v3, 0, 0) where v23 = 1

since v23 = x1x3x5 and α4 occurs in µk for all k *= 3 (so vk(x) = 0 for all k *= 3).

In other words, there are exactly two points in M̃ over each point of CS ⊂ Ñ . It
is straightforward to show that η̃−1(CS) consists of precisely two irreducible com-
ponents (which are also irreducible components of ψ−1(ν2)), each corresponding to
the two possible values for v3, namely v3 ∈ {±1}. These irreducible components are
permuted by the Z-action (given by v3 (→ ω3v3 = −v3); yielding a Z-representation
with character ι + χ, where ι is the trivial character. The Z-action on all other
irreducible components of ψ−1(ν2) is trivial.

Continuing in this way, we can compute η̃−1(CS) for the other standard tableaux
appearing in (3.12). Our computations show that when S is either of

1 2 3 4

5 6

1 2 5 6

3 4

then η̃−1(CS) consists of precisely two irreducible components, permuted by the
Z-action as above. We also show that Z acts trivially on all other irreducible
components of ψ−1(ν) for ν ∈ O[4,2].

When S is the standard tableau with a single row, then the corresponding nilpo-

tent element ν of N is regular so µ−1(ν) is a single point. The fiber in M̃ over
µ−1(ν) consists of exactly 6 points and Z acts by the regular representation on
these components of ψ−1(ν).

These monodromy computations show that we expect the simple G-equivariant
sheaves corresponding to the local system Lχ to appear with a total multiplicity of

4, since χ only appears in the Z-action on η̃−1(CS) for S from (3.12). In particular:

• IC(O[2,2,2],Lχ) has multiplicity 1,

• IC(O[4,2],Lχ) has multiplicity 2, and

• IC(O[6],Lχ) has multiplicity 1.

The table in Table 1 gives the generalized Springer correspondence for SL6(C).
The reader may confirm the information of the table in Figure 1 by computing
the generalized Springer correspondence for SL6(C) as discussed in Section 2.7.
Column 6 of the table shows that the multiplicities computed above using the
monodromy action match those of the simple perverse sheaves appearing in the
generalized Springer correspondence since dim(V[1,1,1]) = 1, dim(V[2,1]) = 2, and
dim(V[3]) = 1.
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Table 1. The generalized Springer correspondence for SL6(C). Local systems on each orbit are identified by the
order of the corresponding central character. Each simple perverse sheaf has multiplicity given by dimension of an
irreducible Sn/d representation (where d denotes the order of the character).

Local Ld = T Ld
∼= S(GL3 ×GL3) Ld

∼= S(GL3 ×GL3) Ld
∼= S(GL2 ×GL2 ×GL2) Ld = G (Cuspidal)

Orbit System Sn/d = S6 Sn/d = S2 Sn/d = S2 Sn/d = S3 Sn/d trivial

[1, 1, 1, 1, 1, 1] Triv dimV = 1

[2, 1, 1, 1, 1] Triv dimV = 5

[2, 2, 1, 1] Triv dimV = 9

[2, 2, 2] Triv dimV = 5
Order 2 dimV = 1; [1, 1, 1]

[3, 1, 1, 1] Triv dimV = 10

[3, 2, 1] Triv dimV = 16

[3, 3] Triv dimV = 5
Order 3 dimV = 1; [1, 1]
Order 3 dimV = 1; [1, 1]

[4, 1, 1] Triv dimV = 10

[4, 2] Triv dimV = 9
Order 2 dimV = 2; [2, 1]

[5, 1] Triv dimV = 5

[6] Triv dimV = 1
Order 6 dimV = 1
Order 3 dimV = 1; [2]
Order 2 dimV = 1; [3]
Order 3 dimV = 1; [2]
Order 6 dimV = 1
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The reader may note that there is a combinatorial connection between the stan-
dard tableaux appearing in (3.12) and the partitions of 3 indexing irreducible rep-
resentations of the relative Weyl group S3 appearing in column 6 of Figure 1. This
pattern generalizes. In a forthcoming paper, the authors give an explicit descrip-
tion of the irreducible components of ψ−1(ν) as ν ∈ N varies and compute the
monodromy representation.

The discussion in Section 2.6 tells us that, in the type A case, only the sim-
ple perverse sheaves corresponding to Gad-equivariant local systems (that is, the
trivial local systems) appear in the Springer correspondence. In other types, there
are Gad-equivariant local systems which do not appear in the Springer correspon-
dence. For example, if the center Z is trivial, then G = Gad, so any G-equivariant
local system is Gad-equivariant, and therefore any local systems missing from the
Springer correspondence are Gad-equivariant. This phenomenon occurs in type G2,
where exactly one local system is missing from the Springer correspondence (see
[9, Section 13.3]). Since the center is trivial in type G2, the construction of this
paper does not yield all the simple perverse sheaves on the nilpotent cone. Even
if the center is nontrivial, there can be missing Gad-equivariant local systems. An
example in classical types occurs in type C6, for the orbit indexed by the partition
[6, 4, 2]. The relevant data can be found in [5]. In this example, the Gad-equivariant
fundamental group is Z2 × Z2, so there are four Gad-equivariant local systems on
this orbit, but only three of these occur in the Springer correspondence. Even
though the results of Theorem 5.3 may not hold in full generality, many of the
arguments above do hold in the general setting, and it is likely ψ∗CM̃[dimN ] is a
sum of Lusztig sheaves in this case also. The authors plan to study the geometric
constructions of this manuscript for arbitrary reductive algebraic groups in future
work.
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