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Abstract

As autonomous systems become more complicated, humans may have difficulty
deciphering autonomy-generated solutions and increasingly perceive autonomy as a
mysterious black box. The lack of transparency contributes to the lack of trust in
autonomy and suboptimal team performance. In response to this concern, researchers
have proposed various methods to enhance autonomy transparency and evaluated how
enhanced transparency could affect the people’s trust and the human-autonomy team
performance. However, the majority of prior studies measured trust at the end of the
experiment and averaged behavioral and performance measures across all trials in an
experiment, yet overlooked the temporal dynamics of those variables. We have little
understanding of how autonomy transparency affects trust, dependence, and
performance over time. The present study, therefore, aims to fill the gap and examine
such temporal dynamics. We develop a game Treasure Hunter wherein a human
uncovers a map for treasures with the help from an intelligent assistant. The intelligent
assistant recommends where the human should go next. The rationale behind each
recommendation could be conveyed in a display that explicitly lists the option space
(i.e., all the possible actions) and the reason why a particular action is the most
appropriate in a given context. Results from a human-in-the-loop experiment with 28
participants indicate that by conveying the intelligent assistant’s decision-making
rationale via the display, participants’ trust increases significantly and become more
calibrated over time. Using the display also leads to a higher acceptance of
recommendations from the intelligent agent.

Keyword: Transparent autonomy, Human-autonomy interaction,

Human-automation interaction, Design rationale, Trust calibration, Propositional logic.



1. INTRODUCTION

While the advances in artificial intelligence and machine learning empower a new
generation of autonomous systems for assisting human performance, one major concern
arises from the human factors perspective: Human agents have difficulty deciphering
autonomy-generated solutions and increasingly perceive autonomy as a mysterious black
box. The lack of transparency contributes to the lack of trust in autonomy and
suboptimal team performance (Chen & Barnes, 2014; de Visser, Pak, & Shaw, 2018; Du
et al., 2019; Endsley, 2017; Lyons & Havig, 2014; Lyons et al., 2016; Yang, Unhelkar,
Li, & Shah, 2017).

In response to this concern, researchers have investigated ways to enhance
autonomy transparency. Research has shown that conveying the system’s reliability,
confidence, performance, and reason for actions and errors, even in hand-crafted forms,
can facilitate the establishment of trust and improve human-autonomy team
performance (Dzindolet, Peterson, Pomranky, Pierce, & Beck, 2003; Koo et al., 2014;
Koo, Shin, Steinert, & Leifer, 2016; Mercado et al., 2016; Seong & Bisantz, 2008; Wang,
Jamieson, & Hollands, 2009; Yang et al., 2017).

These studies provide valuable insights in the design of transparent autonomy.
However, the majority of prior literature evaluated trust through questionnaires
administered at the end of an experiment, averaged behavioral and performance
measures over all trials, yet overlooked the temporal dynamics of these variables when
people interact with autonomy repeatedly (de Visser et al., 2020; Guo & Yang, 2021;
Yang, Schemanske, & Searle, 2021). Trust is a dynamic variable that change as a result
of moment-to-moment interaction with the autonomous system (Guo & Yang, 2021;
Yang et al., 2021), and so are people’s dependence behaviors and the human-autonomy
team performance (Bhat, Lyons, Shi, & Yang, To appear; Guo, Shi, & Yang, 2021).
This study, therefore, aims to examine how autonomy transparency affects people’s

trust and dependence behavior, and human-autonomy team performance over time.



2. RELATED WORK

In this section, we review prior literature examining the impact of various
methods aimed at enhancing autonomy transparency on trust, dependence behaviors,
and human-autonomy team performance. It is worth to note that in most existing
studies, human participants interacted with automated/autonomous systems over
multiple trials. However, trust was usually measured once at the end of the experiment
(i.e., the “snapshot of trust (Guo & Yang, 2021)”). Behavioral and performance
measures were usually averaged over all the trials.

There are multiple definitions of autonomy transparency, to name a few: “the
[degree of] shared intent and shared awareness between a human and a machine (Lyons
& Havig, 2014)”, “the extent to which an autonomous agent can convey its intent,
performance, future plans and reasoning process (Chen et al., 2014)”, “a mechanism to
expose the decision-making of a robot (Theodorou, Wortham, & Bryson, 2017)”, “the
understandability and predictability of their actions (Endsley, 2017)”, “the ability for
the automation to be inspectable or viewable in the sense that its mechanisms and
rationale can be readily known (Miller, 2018)”. Despite the lack of a universal
definition, a consistent pattern can be observed: a transparent autonomy should
communicate to the human agent the autonomy’s ability and performance, its
decision-making logic and rationale, and its intent and future plans.

Although autonomy transparency was only recently defined, research has been
conducted to convey certain aspects of autonomy-generated solutions. One body of
human factors research has concentrated on conveying likelihood information in the
form of automation reliability, (un)certainty, and confidence. Some studies revealed that
likelihood information significantly helped people calibrate their trust and enhance
human-automation team performance (McGuirl & Sarter, 2006; Walliser, de Visser, &
Shaw, 2016; Wang et al., 2009). McGuirl and Sarter (2006) examined whether providing
the updated system confidence information of an automated decision support system
(DSS) improves human-autonomy team performance. In their experiment, 15 instructor

pilots flew a series of 28 short flights. The DSS assisted pilots with detecting and



handling in-flight icing encounters. Results showed that pilots experienced significantly
fewer icing-related stalls with the updated confidence information. In the study of
Wang et al. (2009), participants performed a target detection task, identifying friends
from foes with the aid from an imperfect combat identification (CID) system. Results
showed that when the reliability of the CID system was disclosed to the participants,
they had better reliance behaviors, indicated by a more optimal response bias 5. In
contrast to the supportive evidence, other studies showed that presenting likelihood
information did not lead to more appropriate trust, nor better performance (Bagheri &
Jamieson, 2004; Fletcher, Bartlett, Cockshell, & McCarley, 2017). For example, Bagheri
and Jamieson (2004) examined the impact of providing operators with information
about automation reliability. In their experiment, participants performed three tasks
simultaneously, one of which was assisted by an automated decision aid. However,
sometimes the automated decision aid would fail (miss) to complete the task and the
human should intervene. Automation reliability, essentially the hit rate (“Slightly under
100%” or “Slightly above 50%”) was disclosed to the participants. Contrasting the
results from the study to their previous study where participants were unaware of the
hit rate suggested no benefits of disclosing hit rate on trust and task performance. To
explain the seemingly mixed results, Du, Huang, and Yang (2020) summarized three
different types of likelihood information that has been tested in prior literature: positive
and negative predictive values, overall success likelihood, and hit and correct rejection
rates and hypothesized that not all likelihood information is equal in aiding
human-autonomy team performance. They conducted a human-subject experiment with
60 participants using a simulated surveillance task. Each participant performed a
compensatory tracking task and a threat detection task with the help of an imperfect
automated threat detector. The three types of likelihood information were presented.
Results showed that presenting the predictive values or the overall likelihood value,
rather than the hit and correct rejection rates, leads to more appropriate reliance
behaviors and higher human-autonomy task performance.

Besides conveying likelihood information, the second body of research has



investigated the impact of providing hand-crafted explanations of autonomy’s behaviors.
For example, Dzindolet et al. (2003) conducted a study where participants detected the
presence or absence of a camouflaged soldier when viewing slides of Fort Sill terrain,
with the help of an imperfect contrast detector. Results of their study showed that after
observing an automation failure, participants’ trust decreased unless they were provided
with a hand-crafted explanations on why a decision aid might err (“The contrast
detector will indicate the soldier is present if it detects forms that humans often take.
Since non-humans (e.g., shading from a tree) sometimes take human-like forms,
mistakes can be made.”). In the context of autonomous driving, the studies of Koo et
al. (2014) and Koo et al. (2016) showed that informing the drivers of the hand-crafted
reasons for automated braking (e.g., road hazard ahead) decreased drivers’ anxiety and
increased their sense of control, preference, and acceptance. Similarly, Du et al. (2019)
found that speech output explaining why and how the automated vehicle is going to
take certain actions was rated higher on trust, preference, usability and acceptance.
More recently, research has formally defined autonomy transparency. Notably,
Mercado et al. (2016) and Chen et al. (2018) proposed the situation awareness-based
agent transparency (SAT) model to convey information supporting the human agent’s
perception, comprehension, and projection of an intelligent assistant’s
recommendations. SAT level 1 conveys the agent’s current status/action/plans; SAT
level 2 describes the agent’s reasoning process; SAT level 3 presents the agent’s
projections/predictions. In the study of Mercado et al. (2016), participants controlled a
group of heterogeneous unmanned vehicles (UxVs). An intelligent agent assisted the
participant and provided suggestions. Three transparency levels were introduced: Level
1 was the baseline condition showing basic plan information. Level 1+2 contained all
the information provided in Level 1 plus the agent’s reasoning and rationale behind
recommending the plans. Level 14243 contained all the information provided in Levels
1 and 2 plus projection of uncertainty information. Results showed that as the
transparency level increased, participants’ trust in and perceived usability of the

intelligent agent increased significantly, and so did the human-agent team performance.



The above-mentioned studies provide valuable insights on whether and how
transparent autonomy could enhance people’s trust and dependence, and the
human-autonomy team performance. However, the majority of prior studies measured
trust at a snapshot, usually at the end of the experiment. More recently, researchers
started to emphasize the importance of viewing trust as a dynamic variable and
examining the temporal dynamics when a human interacts with an autonomous system
over time (de Visser et al., 2020; Guo & Yang, 2021; Yang et al., 2021, 2017). Yet, we
have little understanding on how autonomy transparency affect trust, dependence, and
human-autonomy team performance over time. The present study, therefore, aims to fill

the gap and examine the temporal dynamics.

3. METHOD

This research complied with the American Psychological Association code of ethics

and was approved by the Institutional Review Board at the University of Michigan.

3.1 Participants

Thirty-four participants (Age: Mean = 21.17 years, SD = 1.66 years) took part in
the experiment. All participants had normal or corrected-to-normal sight and hearing.
Participants were compensated with $5 upon completion of the experiment. In addition,
there was a chance to obtain an additional bonus of 1 to 20 dollars based on their

performance.

3.2 Simulation testbed

We developed an experimental testbed — Treasure Hunter, adapted from the
Wumpus world game (Russell & Norvig, 2010). In the game, the participant acts as a
hunter to find the gold bar in the map with the help of an intelligent assistant
(Figures la & 1b). Each step, the hunter can move to an un-visited location that is
connected to the visited locations. Figure 1b shows that the hunter moves from A1l to
A2 and then to B1. On the way to the treasure, the hunter might fall into a pit (shown

in C1 in Figure la) or encounter a wumpus (shown in B3 in Figure 1a). The hunter



gathers information about his or her surroundings by a set of sensors. The sensors will
report a stench when the wumpus is in an adjacent location (shown as B2, A3, C3, B4
in Figure 1a) and a breeze when a pit is in an adjacent location (shown as B1, C2, D1
in Figure la). There is one and only one gold bar/wumpus on a map. However, there
might be one or multiple pits in a map. Each element - a pit, a wumpus, or a gold bar -

occupies a unique location on the map.

)

Figure 1. (a) An example map in Treasure Hunter. Each square is denoted by the row
number (from 1 to 4) and the column number (from A to D). (b) First two steps of a

hunter moving in the map.

Table 1 shows the scores and consequences for different events. If the hunter finds
the gold bar, s/he will receive 500 points, and the game will end. If the hunter
encounters the wumpus, s/he will lose 1000 points, and the game will end. If the hunter
falls into a pit, s/he will lose 100 points but can still continue the game. The hunter will
only fall into a pit at the first time s/he encounters it. The hunter will get a 10-point

penalty for uncovering every new location.



TABLE 1: Scores and consequences for different events

Event Score | Consequence

Find the gold bar +500 | Map ends

Discover one new location | -10 Continue

Fall into a pit -100 | Continue, no more points lost when revisit
Meet wumpus -1000 | Map ends

An intelligent assistant helps the participant by recommending where to go. The
intelligent assistant is a knowledge-based agent and reasons using propositional logic
(Russell & Norvig, 2010). Propositional logic is a mathematical model that reasons
about the truth or falsehood of logical statements. By using logical inference, the agent
will give the values of four logical statements for a given location (e.g. location D2): (1)
there is a pit at this location, denoted as Pp»; (2) there is no pit at this location,
denoted as = Pp; (3) there is a wumpus at this location, denoted as Wpo; (4) there is
no wumpus at this location, denoted as =Wp . Based on the value of these 4 logical
statements, we can categorize the location into one of the six different conditions shown
in Figure 2: Y represents there is a pit/wumpus at this location (value of the first/third
logical statements is true); N represents there is no pit/wumpus at this location (value
of the second/fourth logical statement is true); NA represents the agent is not sure
about the existence of pit/wumpus at this location (values of all the four statements are
false). The shaded squares in Figure 2 are the impossible cases because the pit and
wumpus cannot co-exist in one location. For each case in Figure 2, the agent will assign
probabilities of encountering a wumpus, falling into a pit, finding a gold bar or nothing
happens as well as the corresponding expected scores if the hunter moves to that
location as shown in Table 2. The agent will randomly select one of the potential next
locations with the highest expected score as the recommendation.

Every step during the experiment, the participant will first receive the suggestion
from the intelligent assistant, and then make a decision, i.e., select the target location

that s/he wants to go next. After the participant makes a decision, the hunter will move



ID | P(W, P, G, N) | Expected Score
1| (1,0,0,0) —1000
2 | (0,1,0,0) —100
2 3 | (0,0,0.5,0.5) 250
3 41 (0,100 133.33
=
= 50 (040 —166.67
6 (i7%7i7%) —150

Figure 2 & Table 2. Six potential cases with the corresponding probabilities/expected
scores based on the reasoning of pit and wumpus conditions from the intelligent
assistant. Y: there is a pit/wumpus. N: there is no pit/wumpus. NA: it is not sure to
have a pit/wumpus. Shaded squares are the impossible cases because the pit and
wumpus cannot co-exist in one location. W: encounter a wumpus; P: fall into a pit; G:

find a gold bar; N: nothing happens.

to the next location and the intelligent assistant will update its knowledge based on the
sensory feedback (breeze and stench at the new location). The intelligent agent is a
level 3/4 automation as defined by Sheridan and Verplank (1978) where the autonomy
narrows down the action selections and suggests one alternative to the human agent.

In this study, we propose the option-centric rationale display for enhancing
autonomy transparency. Inspired by the research on design rationale, the option-centric
rationale display explicitly displays the option space (i.e., all the possible
options/actions that an autonomy could take) and the rationale why a particular option
is the most appropriate at a given context. Design rationale is an area of design science
focusing on the “representation for explicitly documenting the reasoning and
argumentation that make sense of a specific artifact (MacLean, Young, Bellotti, &
Moran, 1991)”. Its primary goal is to support designers and other stakeholders by
recording the argumentation and reasoning behind the design process. The theoretical
underpinning for design rationale is that for designers what is important is not just the

specific artifact itself but its other possibilities — why an artifact is designed in a
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particular way compared to how it might otherwise be.

. . . .
Map Option-centric rationale display
py—— N
Current score: -30, Total score: -30, Trial: 1/2 Possible target Explanation Expected score
Encounter a wumpus: 00%
Fall in a pit: 007%
Al Find the gold: 500% 2800
Mothing happens: 50.0%
Encounter a wurrpus: 008
in a pit: .
2L Find Ihos:guh:l: 333% RS
Mathing happens: 333%
Enﬁo_unter_fa wumpus: loggi
4! Find the gold: 00% ey
Mothing Rappens: 0.0%

Start MNext Sugge!ﬁcn

Confirm

Figure 3. Testbed with the option-centric rationale display.

Figure 3 shows the option-centric rationale display proposed in this study. The
display details all the available next locations and the criteria for choosing a particular
location, and highlights the final recommendation using a red star. The criteria for
recommending a particular location depends on whether the human-autonomy team
will find the gold bar, fall into a pit, encounter a wumpus, or uncover a new location
(without finding a gold bar, falling into a pit or encountering a wumpus). The display
also shows the possibility of each criterion and the corresponding expected score. The
display will group the next locations based on the criteria, i.e., if two locations have the
same probabilities of each criterion, the display will list them in the same row. The
locations are sorted from the highest expected score to the lowest. The final
recommendation is one of the locations with the highest expected score. Note that the
available next locations, the possibility of each criterion and the expected scores are all

computed by the intelligent assistant.
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3.3 Experimental design

The experiment used a within-subjects design. The independent variables in the
experiment were the presence/absence of the option-centric rationale display and time
(i.e., trial number). The order of the presence/absence of the display was
counterbalanced to eliminate potential order effects. Participants played the game on 5
different maps each, with and without the display. When the display was absent, the
participant only saw a red star that indicated the recommendation by the intelligent

assistant.

3.4 Measures

We measured three types of dependent variables: subjective responses, behavioral
responses and performance. After completing each map, participants were asked to
report their trust in the intelligent assistant and their self-confidence to accomplish the
task without the intelligent assistant using two 9-point Likert scales: (1) How much do
you trust the intelligent assistant? (2) How confident are you in completing tasks
without the intelligent assistant?

We calculated the recommendation acceptance as the rate that the participant
followed the recommendations given by the intelligent assistant. Participants’ scores for

each map were recorded as well.

3.5 Map selection

In order to eliminate the inherent randomness of the task, we carefully selected
the maps used in the experiment (Figure 4). First, we randomly generated 100 maps
and ran the game only with the intelligent assistant 20 times for each map (i.e., always
accepted the recommendations from the intelligent assistant). We ranked the maps
based on the standard deviation of the scores for each map from the lowest to the
highest. Second, we selected 10 maps that satisfied three criteria: (1) Each map had a
low standard deviation of the scores; (2) In each map, the gold bar was not just next to

the start location; (3) The locations of the gold bar in the 10 maps should be balanced
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across the maps instead of concentrating in one part of the maps (e.g. upper right
corner of the map). For each participant, the order of the 10 maps in the experiment
are randomly determined. The second row in Table 3 shows the mean and standard
error of the intelligent assistant’s score of the 10 selected maps.

We also developed 5 maps for the training session. Out of the 5 training maps,
there are two maps with a pit next to the start location and three maps with low
standard deviation of scores. The 5 training maps were presented according to the
following order: The first was similar to the maps participants experience in the real
test. Participants practiced on this map without the help of the intelligent assistant.
The aim was to help participants get familiar with the game. From the second map
onward, participants played the game with the help of the intelligent assistant. The
second and fourth practice maps were similar to the maps participants experienced in
the real test. The third and the fifth maps contained a pit next to the start location.
The reason for selecting the two maps (i.e., the third and the fifth map) was to help
participants fully understand the stochasticity of the game. For example, in the fifth
training map (Figure 4), a breeze was detected by the sensor at the start location and

the two adjacent locations (i.e., B1 and A2) have the same probability of having a pit.

3.6 Procedure

All participants provided informed consent and filled in a demographics survey.
After that, participants received a practice session. Participants played the game first
without the intelligent assistant, and practiced on another four maps with the
intelligent assistant, and with or without the option-centric rationale display. In the
experiment, participants played the game with 5 maps in each condition. Participants
were told that the intelligent assistant in each condition was different and independent.
After each map, participants were asked to report their trust in the intelligent assistant
and their confidence in accomplishing the game without the help of the intelligent
assistant. Participants’ acceptance behaviors and task performance were recorded

automatically by the testbed.
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Figure /. Selected maps for training and testing. First row: fixed order training map.

Second and third row: testing map, order is randomly determined for each participant.

4. RESULTS

Data from 4 participants were discarded due to malfunction of the testbed. Data
from 2 participants were discarded as their task performance were considered as outliers
based on the two-sided Dixon’s Q test (Dixon, 1953). All analyses were conducted using
data from the remaining 28 participants (Mean age = 21.25 years, SD = 1.72 years).

To examine how trust, dependence and performance changes over time with or
without the option-centric rationale display, we conducted analyses using the mixed
linear model. The model is particularly useful with repeated measurements from the
same subject. The presence/absence of the display and trial number are modeled as

fixed effects and intercepts for subjects as random effects. Results are reported as
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significant for o < .05.

4.1 Trust over time with and without the option-centric rationale display

There was a significant interaction effect between the presence/absence of the
option-centric rational display and time, t(1,249) = 2.38,p = .018 (Figure 5).
Specifically, when participants were provided with the display, their trust in the
autonomous agent increased as they gained more experiences, t(1,111) = 6.59, p < .001.
When the display was absent, however, their trust did not change significantly,

£(1,111) = 0.73,p = 0.46.
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Figure 5. Trust in the intelligent agent over time with and without the option-centric

rationale display.
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4.1 Recommendation acceptance over time with and without the

option-centric rationale display

There was a significant effect of display on the participant’s acceptance rate,
t(1,250) = 2.59,p = .01 (Figure 6). When participants were provided with the display,
there was a higher acceptance rate of the recommendations. The effect of time was not

significant, t(1,250) = —0.30,p = .76.
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Figure 6. Acceptance of recommendations over time with and without the

option-centric rationale display.
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4.1 Performance over time with and without option-centric rationale display

Neither the display (#(1,250) = 2.59,p = .01) or time (¢(1,250) = 2.59,p = .01)

had a significant effect on the performance score.
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Figure 7. Human-autonomy team performance over time with and without the

option-centric rationale display.

5. DISCUSSION

In the present study, we examine how autonomy transparency affects people’s
trust, dependence behavior, and human-autonomy team performance over time.
Autonomy transparency is achieved through the option-centric rationale display that

explicitly explores the option space (i.e., all the possible options/actions that an

17



autonomy could take on) and presents the rationale why a particular option is the most
appropriate by detailing all the available next locations and the criteria for
recommending a particular location.

Concerning people’s trust in the intelligent agent, we find that people have higher
trust in the agent with enhanced transparency provided by the option-centric rationale
display, in line with prior literature (Chen & Barnes, 2014; Lyons & Havig, 2014). More
importantly, our results reveal that with the display, people’s trust in the intelligent
agent increases gradually; Without the display, trust nearly stays unchanged. The
result seems to contradict prior research showing that as people gained more experience
interacting with an automated aid, their trust in the aid increased regardless of the
absence/presence of more transparency information (Yang et al., 2017). In the study of
Yang et al. (2017), half of the participants were presented with the binary alerts from
an automated decision aid (i.e., aid recommends whether or not there is a threat) and
the other half the likelihood alerts (i.e., aid recommends whether or not there is a
threat and shows the confidence level of the recommendation). Trust increments were
observed in both the binary and likelihood conditions. This inconsistent result could
have been due to the different tasks employed in the studies. In the study of Yang et al.
(2017), the task was threat detection with the help of an imperfect automated threat
detector, which was pretty simple compared to the Treasure Hunter task where the
participant and the intelligent agent needed to perform cognitively demanding
inferences. In such a demanding task, without the enhanced transparency though the
display, participants may have increasing difficulty figuring out the strategy of the
intelligent agent, leading to stagnant trust over time.

It is worth emphasizing the difference between trust and trust calibration, which
are related but different constructs. Trust in autonomy is a person’s “attitude that an
(autonomous) agent will help achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability”, whereas trust-calibration refers to the
correspondence between a person’s trust and the autonomy’s actual capability (Lee &

See, 2004). High trust in an incapable autonomy is unjustified and will harm instead of
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TABLE 3: Mean and Standard Error (SE) values of the Intelligent Assistant’s Score

and the Optimal Score for Each Test Map

Test Map ID 1 2 3 4 5 6 7 8 9 10

Intelligent Assistant’s Score 450+ 0 381424 430.54+0.5 440+0 4154+1.1 421+0.7 363.5+3.5 386.5+34 4285+1.7 447.5+19

Optimal Score 470 460 460 460 450 450 450 440 460 470

Ratio (%) 95.7 82.8 93.6 95.7 92.2 93.6 80.8 87.8 93.2 95.2

benefit performance. In our present study, the intelligent agent was near-optimal.
Table 3 details the optimal score that an omniscient agent could obtain and the score
that the knowledge based intelligent assistant used in the present study obtained. The
optimal score was calculated assuming that the intelligent assistant was omniscient (i.e.,
the map was known to the intelligent assistant). The intelligent assistant’s score was
calculated by having the autonomous agent play the treasure hunter game by itself for
20 times. As shown in Table 3, the intelligent assistant’s performance was close to the
optimal score. The ratio between the intelligent assistant’s score and the optimal score
was on average 91.1%. As shown in Figure 5, the final trust score in the intelligent
agent was on average around 8 with the option-centric rationale display and around 6.8
without the display on a 9-point Likert scale. In this case, greater trust (but not yet
over-trusting) largely indicates better trust-calibration.

With respect to dependence behaviors, consistent with findings from previous
studies (Beller, Heesen, & Vollrath, 2013; Forster, Naujoks, Neukum, & Huestegge, 2017;
Koo et al., 2014, 2016), we find that enhanced transparency led to higher acceptance.
However, there was a non-significant effect of time. This lack of significance could have
been due to a ceiling effect. As Figure 6 shows, the acceptance of recommendations
made by the intelligent agent was near 100% throughout the five trials.

To our surprise, neither the option-centric rationale display nor time had an effect
on the performance score. The lack of significance could have been due to two reasons.
First, similar to the discussion on participants’ dependence behaviors, there could be a
ceiling effect. Second, as described in the Method section, the testbed is inherently
highly stochastic, meaning that keeping following the recommendations from the “on

average” competent agent could lead to unfavorable outcomes.
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Although we only tested the option-centric rationale display on a simulated game
with a small action space, the display can be applied to other decision-making agents
with a larger action space, for instance, an epsilon-greedy agent with finite (i.e.,
countable) action space. The epsilon-greedy agent balances exploration and exploitation
by choosing the optimal action some times and the exploratory action other times. The
exploratory action is not the optimal action at a particular step. However, by further
exploring the environment, the agent can obtain higher rewards in the subsequent steps
and higher accumulative rewards. The option-centric rationale display can list all
possible actions with the expected reward and the number of times the
optimal /exploratory action has been taken to indicate the necessity of exploring the
environment. For a large action space, the display can present a subspace of the action
space that contains the optimal and near-optimal actions by listing the actions with top
expected scores. The other (far from optimal) actions can be displayed if requested.

Further research is needed to determine the size of subspace to be displayed.

6. CONCLUSION

The advance in artificial intelligence and machine learning empowers a new
generation of autonomous systems. However, human agents increasingly have difficulty
deciphering autonomy-generated solutions. The lack of transparency contributes to the
lack of trust in autonomy and suboptimal human-autonomy team performance (Chen &
Barnes, 2014; de Visser et al., 2018; Endsley, 2017; Lyons & Havig, 2014; Lyons et al.,
2016; Yang et al., 2017). In this study, we proposed an option-centric rationale display
for enhancing autonomy transparency. The display details all the potential actions and
the criteria for choosing a particular action, and highlights the final recommendation.
The results indicate that the presence/absence of the display significantly affected
people’s trust evolution over time. With the display, their trust increased significantly
and became more calibrated over time.

The results should be reviewed in light of several limitations. First, the intelligent

assistant used in the present study was highly capable. However, in the real world, an
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intelligent assistant could be less capable in situations of high uncertainty and
ambiguity. Further research with less capable autonomous agents is needed to validate
the generalization of the display. Second, the action space in the simulated game was
limited. We discussed the application of the option-centric rationale display on domains
with larger action spac in the results section. Further research is needed to examine the
proposed solutions. Third, similar to a few previous studies (Manzey, Reichenbach, &
Onnasch, 2012; Yang et al., 2017), we used a one-item scale to measure trust. The
one-item scale could fail to capture all of the sub-dimensions of trust compared to
multi-dimension scales such as the 12-item trust scale in Jian, Bisantz, and Drury
(2000). Further research should investigate the possibility of developing a succinct

multi-item trust scale that can be used in querying trust repeatedly.
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