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Abstract

Carbon stable isotope breath tests offer new opportunities to better
understand gastrointestinal function in health and disease. However,
it is often not clear how to isolate information about a gastrointesti-
nal or metabolic process of interest from a breath test curve, and
it is generally unknown how well summary statistics from empirical
curve fitting correlate with underlying biological rates. We developed a
framework that can be used to make mechanistic inference about the
metabolic rates underlying a 13C breath test curve, and we applied it to
a pilot study of 13C-sucrose breath test in 20 healthy adults. Starting
from a standard conceptual model of sucrose metabolism, we deter-
mined the structural and practical identifiability of the model, using
algebra and profile likelihoods, respectively, and we used these results
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to develop a reduced, identifiable model as a function of a gamma-
distributed process; a slower, rate-limiting process; and a scaling term
related to the fraction of the substrate that is exhaled as opposed
to sequestered or excreted through urine. We demonstrated how the
identifiable model parameters impacted curve dynamics and how these
parameters correlated with commonly used breath test summary mea-
sures. Our work develops a better understanding of how the underlying
biological processes impact different aspect of 13C breath test curves,
enhancing the clinical and research potential of these 13C breath tests.

Keywords: carbon-13, stable isotope, breath test, sucrose, identifiability,
environmental enteric dysfunction
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Introduction

Carbon stable isotope breath tests offer new opportunities to better under-
stand gastrointestinal function in health and disease [1]. These tests provide a
dose of non-radioactive 13C-labeled substrate, which is digested, absorbed, and
metabolized, appearing on the breath as 13CO2. As the range of labeled sub-
strates that are commercially available grows, from whole-molecule labeling to
position-specific (atom-level) labeling, 13C breath tests can be developed to
target a wide range of specific gut processes, such as digestion, absorption, or
oxidation, with a correspondingly wide range of potential clinical applications.

Beyond one or two clinical tests with clear diagnostic criteria, the uses of
13C breath tests have remained primarily limited to research, in part because
standard methods to characterize 13C breath test curves often reflect a com-
plicated mix of both the underlying biological process of interest and other
aspects of metabolism. For this reason, the most successful 13C breath tests
have relatively simple dynamics—such as the 13C urea breath for detection of
Helicobacter pylori—or are carefully designed to ensure that the biological pro-
cess of interest is the rate-limiting process. For example, the 13C-octanoic acid
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breath test is based on the fact that medium-chain fatty acids are absorbed
immediately on entering the duodenum, which causes gastric emptying to be
the rate-limiting step [2]. In the 13C-galactose test of hepatic function, the
rate-limiting step is the hepatic clearance of galactose [3].

However, in other cases, it is not clear how to isolate information about
a gastrointestinal or metabolic process of interest from a breath test curve
(serial measurements of 13CO2 concentration in the breath over time). Breath
test curves can be characterized by empirical curve fitting and by summary
measures, often themselves derived from curve fitting results. However, these
metrics do not necessarily correspond directly to biological processes. Two
standard curve fitting models of the percent dose recovery rate (PDRr) as a
function of time t, here denoted y(t), include the following two empirical curves,
where a, b, c, m, k, and β are empirical constants estimated by optimization,
[4–6]

y(t) = atb exp(−ct), (1)

y(t) = mkβ exp(−kt) [1− exp(−kt)]
β−1

. (2)

These methods can be applied to 13C breath test curves, often with reason-
able fits. However, the success of an empirical model only indicates that it
is sufficiently flexible to capture features of the curve, not that it can offer
mechanistic insight. Moreover, while many breath test curve summary mea-
sures have been proposed, e.g., cumulative percent dosed recovered (cPDR) by
time t, peak PDRr, time to peak PDRr, and time to recover 50% of the dose
(cPDR-50), their connection to specific processes of interest is weak. Neverthe-
less, certain summary measures are typically preferable to others for certain
inferences, suggesting that there is some mechanistic connection between the
biological rates and the dynamics captured by the summary measures. For
instance, the time to peak PDRr has been shown to out-perform the time to
recovery of 50% of the dose for gastric emptying [7].

In this analysis, we return to pharmacokinetic modeling fundamentals to
develop a framework that can be used to make mechanistic inference about the
metabolic rates underlying a 13C breath test curve. We also demonstrate how
these mechanistic parameters isolate aspects of breath test curve dynamics and
how they correlate with standard curve summary measures. We illustrate this
framework using 13C sucrose breath test (13C-SBT) curves from 20 healthy vol-
unteers. The 13C-SBT has been proposed as a potential measure of intestinal
brush-border sucrase-isomaltase function to assess environmental enteric dys-
function (EED) [8]. EED is a syndrome characterized by villous atrophy (also
called villous blunting), inflammation, and increased permeability of the small
intestine [9, 10] and is thought to be ubiquitous among the 2 billion children
and adults who lack access to improved water or sanitation in low- and middle-
income countries [11]. Prior studies have suggested that sucrase-isomaltase,
which is excreted at villous tips, may be disrupted due to villous atrophy in
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EED [12], as well as in celiac disease (CD) and other gastrointestinal disor-
ders with functional similarities to EED [13–16]. Accordingly, understanding
how 13C-SBT curves reflect healthy or disrupted sucrase-isomaltase activity
may have important clinical and global public health applications, making
it an appropriate motivating example for this theoretical work. Our work,
which determines the identifiable mechanistic parameters underlying a 13C-
SBT curve is a first step toward developing a breath-test-based diagnostic and
will be broadly applicable to breath tests developed for other 13C substrates.

Methods

Data

Twenty healthy adults were recruited to participate in a proof-of-concept 13C-
SBT study. Participants were recruited by advertisement in the Glasgow area,
aged between 18–65 years with no history of gastrointestinal symptoms or
disease. The cohort mean (standard deviation) BMI was 22.0 (3.5) kg/m2,
mean age was 22.8 (4.6) years and male-to-female ratio was 10/10. Partici-
pants gave informed consent, and the study was approved by the University of
Glasgow College of Medical, Veterinary & Life Sciences Research Ethics Com-
mittee (Application Number: 200170060). Plants that photosynthesize using
a C4 pathway are significantly more enriched with 13C than those that use a
C3 pathway. Participants were instructed to follow a low 13C diet by exclud-
ing plants C4 plants and their derivatives [17] for three days prior to testing
and to fast for eight hours prior to testing. A 20 g dose (0.116 mmol excess
13C) of naturally enriched sucrose derived from sugar cane (0.01649 atom %
excess; Tate and Lyle Europe, London, United Kingdom) was dissolved in 100
mL of water. (The dose of excess 13C was calculated as the difference between
the 13C natural abundance of beet sucrose (a C3 plant) and cane sucrose (a
C4 plant) [17]. Because of the C4-free diet run-in period, participants’ base-
line breath 13CO2 concentrations reflect a C3 diet, so the dose of the tracer is
calculated in terms of how enriched the tracer is for 13C compared to the base-
line diet). The small-volume, liquid administration of the dose was designed to
minimize delay from gastric emptying. A baseline breath sample was collected
immediately before participant ingested the tracer. Breath samples were then
taken every 15 min for eight hours. Participants were provided a lunch four
hours into the test. Samples were collected in 12 mL Exetainer breath-sampling
vials (Labco, United Kingdom) and analyzed by isotope ratio mass spectrom-
etry (IRMS AP-2003, Manchester, United Kingdom). The analytical output
of the IRMS is δ13C, the relative difference in parts per thousand between
Rs=[13C]/[12C] in the sample and the internationally accepted calibration
standard ratio R=0.0112372 [18],

δ13C = 1000× Rs −R

R
. (3)
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The units of δ13C are per mil (�). A given δ13C is converted to isotope
abundance, expressed as ppm 13C, as follows,

ppm 13C =
[13C]

[12C] + [13C]
× 106

=
Rs

1 +Rs
× 106 =

1

1 + 1
Rs

× 106

=
106

1 + 1(
δ13C
1,000+1

)
·R

.

(4)

We account for individual variation in baseline δ13C by considering excess
ppm 13C over baseline, which was then converted to percent dose recovery rate
(PDRr),

PDRr(t) =
100 ·

(
ppm 13C at time t− ppm 13C at time 0

)
·VCO2

106 · dose of excess 13C (mmol)
, (5)

where VCO2
is a subject-specific estimate of CO2 production (mmol/hour)

based on the participant’s estimated body surface area and sex [19]. The data
have been included as supporting material.

Mathematical model

We use a standard conceptual model of carbon substrate (here, sucrose)
metabolism as a starting point for a compartmental, ordinary differential
equation model of the mass transfer of 13C in a 13C substrate breath test [20].
In this conceptual model (Figure 1a), the ingested tracer enters the stom-
ach and passes to the small intestine (gastric emptying). Sucrase-isomaltase,
which is secreted in the brush-border at the villous tips, cleaves sucrose into
glucose and fructose, facilitating active transport for glucose and fructose
moieties into the blood, where the substrate moves to the liver via the hep-
atic portal vein. The substrates are oxidized through a series of intermediary
metabolic processes and converted to bicarbonate. Bicarbonate kinetics are
typically modeled with a fast pool and a slow pool [21]. Transfer to the slow
pool, representing long-term processes such as lipid storage, is often consid-
ered to be irreversible on the time scale of a breath test. Plasma bicarbonate
has two excretion pathways, urinary and pulmonary. Through the 13C breath
test, pulmonary excretion of 13CO2 is observed.

Given the nature of the liquid sucrose tracer and the physiology of the
stomach, we model the residence time in the stomach as a time-delay (although
no time delay was needed for these participants) and all other processes as mass
action. The fraction of the 13C dose in each of the small intestine, liver, plasma
bicarbonate, fast bicarbonate pool, and slow bicarbonate pool are denoted by
x1 through x5, respectively. Let ρij be the transfer rate coefficient (1/time)
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a) b)

Fig. 1 a). A conceptual model of 13C mass transfer in a 13C breath test, accounting for
physical transport, tracer metabolism, bicarbonate kinetics, and excretion. b) A structurally
and practically identifiable model of 13C mass transfer in a 13C breath test. The parameters
next to each arrow describe rate constants (1/time).

for the fraction of the dose moving from compartment xi to xj . Let ρ30 be the
pulmonary excretion and ρ36 the urinary excretion rates of bicarbonate from
plasma. Then, the ordinary differential equations are as follows.

dx1

dt
= −ρ12x1,

dx2

dt
= ρ12x1 − ρ23x2,

dx3

dt
= ρ23x2 − (ρ30 + ρ34 + ρ35 + ρ36)x3 + ρ43x4,

dx4

dt
= ρ34x3 − ρ43x4,

dx5

dt
= ρ35x3.

(6)

The initial conditions of this model are x1(0) = 100 and all other xi̸=1(0) = 0.
Through the breath test, we have the following measurement equation for
PDRr at time t,

y(t) = ρ30x3(t) (7)

We denote the full parameter set as θ. When we want to emphasize the
dependence of the output on the parameters, we will write y(θ, t).

We note that this model implicitly assumes that all the tracer is absorbed
in the small intestine and not transported to the large intestine, where it might
be absorbed or metabolized by microbiota at a different rate. This assumption
is reasonable for healthy populations, and, in other work in adults in a region
where EED is highly prevalent, there was little evidence of gross malabsorp-
tion even with a much larger dose of sucrose [8]. However, preliminary evidence
from breath tests in which sucrase-isomaltase is experimentally inhibited sug-
gests that there is a distinct signal in the breath curve denoting entrance of
sucrose to the colon and metabolism by the microbiota, suggesting that the
phenomenon could possibly occur in severely disordered individuals. In prac-
tice, we recommend analysis of only the portion of the breath curve prior to
this signal.
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Identifiability and model reduction

In the context of determining the health of the small intestine and ultimately
diagnosing EED, the aim of the 13C-SBT is to infer the value of ρ12, the rate of
metabolism in the small intestine, given y(t). But, before estimating the value
of a model parameter from observed data, we first need to determine whether
that parameter is identifiable, that is, whether there is a unique value of the
parameter associated with the best fit of the proposed mechanistic model to
the available data. If a parameter is not identifiable, i.e., multiple values or a
range of values of the parameter can explain the data equally well, then we can
find a simpler, reduced model that similarly fits the data but whose parameters
are all identifiable. For example, if our model was y = (m1+m2)x+b for some
(x, y)-pair data, parameter b would be identifiable, but parameters m1 and m2

would not be. However, we could reduce our model by defining a new paramter
m := m1 +m2. Unfortunately, identifiability and model reduction are not so
straightforward for even modestly complex differential equation models.

We distinguish between structural identifiability, which asks whether a
parameter can be determined given perfect measurement of the model out-
put [22–24], and practical identifiability, which asks whether a parameter can
be measured given actual data [25]. A parameter may be structurally but
not practically identifiable because of excessive noise, insufficiently regular
measurement, or other reasons; external factors are those controlled by the
investigator (i.e., related to study design), while internal factors are intrinsic
to the model (e.g., arise from practical indistinguishability of trajectories for
a range of parameters) [26]. Structural identifiability analysis is often a use-
ful first step because it can determine identifiable parameter combinations,
whose values are identifiable even if the constituent parameters are not indi-
vidually identifiable and which may aid in model reduction. After structural
identifiability is determined, practical identifiability analysis determines the
real-world identifiability and uncertainty in parameter estimates given a level
of significance (e.g., 95% confidence). If practical identifiability determines sys-
tematic lack of identifiability (e.g., inability to observe certain characteristics
of an output trajectory due to the time scales [27]), further model reduction
is possible.

To determine the structural identifiability of our model parameters when
observing y(t), we first found an input–output equation of the model [28–30].
An input–output equation is a monic polynomial equation in terms of the
measured input and output variables and their derivatives. The coefficients
of an input–output equation represent the identifiable parameter combina-
tions of the model for the given measurement. We used Wolfram Mathematica
v11.3 (Wolfram Research; Champaign, Illinois) to determine an input–output
equation for the model and measurement in Eqs (6) and (7).

To determine practical identifiability, we used profile likelihoods to deter-
mine how dependent the model fit to the data was on the specific values of
the parameters. Profile likelihoods, which can be used to determine likelihood-
based confidence intervals, vary the fixed value of one parameter while
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determining the best fit (minimum negative log-likelihood) when fitting the
remaining parameters [25, 27, 31]. If the likelihood-based confidence interval
for a parameter has infinite width (for a given level of significance), then the
parameter is not practically identifiable. Here, we used a normal log-likelihood
as function of the parameters θ.

log(L(θ)) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

∑
i

(y(θ, ti)− zi)
2 (8)

where n is the number of data points and ti is the time at which measure-
ment zi was taken. The variance σ2 is estimated as 1

n−1

∑
i(y(θ, ti)− zi)

2 and

thus depends on θ. Denote the maximum-likelihood estimate as θ̂. Denote the
maximum likelihood when the ith parameter is fixed to value θi as L(θ̂j ̸=i, θi)
and call it the profile likelihood of θi. The likelihood based confidence interval
at level of significance α is {θi : log(L(θ̂))− log(L(θ̂j ̸=i, θi) < ∆α}, where ∆α

is χ2(α, df)/2 where χ2(α, df) is the chi-squared distribution with a number
of degrees of freedom equal to the number of parameters and α is the level
of significance [25]. In layman’s terms, the profile likelihood tracks how much
worse the “best” fit of the model to the data is as we constrain one parame-
ter away from its maximum-likelihood estimate, and the level of significance
determines the level of “how much worse of a fit” corresponds to the bounds
of our confidence interval for θi.

We made simplifying assumptions based on the profile likelihoods to arrive
at a series of reduced models. For parameters that are structurally identifiable
but not practically identifiable, the choices of simplifying assumptions may be
partially subjective, with multiple potential reductions. We explain our specific
assumptions and justifications in the Results.

After arriving at a reduced, practically identifiable model, we compared
fits of the original model and each of the reduced models to each of the 20
breath test curves. The models were only fit to five hours of data because the
naturally occurring 13C in the lunch given to participants at four hours began
to distort the curves after five hours. We analyzed our final, reduced model by
comparing the dynamics of the simulated breath curves as a function of each
of the reduced model parameters in turn. We also calculated the correlations
of the values of the reduced model parameters fit to each of the 20 breath
tests with each of four breath test curve summary measures (cPDR at 90
min, peak PDRr, time to peak PDRr, and time to 50% cPDR) to assess how
well these summary measures reflect the underlying mechanistic parameters.
Model simulations and optimization were performed in R v4.0 (R Foundation
for Statistical Computing; Vienna, Austria).
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Results

Structural identifiability

We algebraically solve for an input–output equation for the model in Eq. 6
and the measurement model in Eq. 7,

0 =
d4y

dt4
+ (ρ12 + ρ23 + ρ30 + ρ34 + ρ35 + ρ36 + ρ43)

d3y

dt3

+ (ρ12ρ23 + ρ12ρ30 + ρ12ρ34 + ρ12ρ35 + ρ12ρ36 + ρ12ρ43

+ ρ23ρ30 + ρ23ρ34 + ρ23ρ35 + ρ23ρ36 + ρ23ρ43 + ρ30ρ43 + ρ35ρ43 + ρ36ρ43)
d2y

dt2

+ (ρ12ρ23ρ30 + ρ12ρ23ρ34 + ρ12ρ23ρ35 + ρ12ρ23ρ36 + ρ12ρ23ρ43

+ ρ12ρ30ρ43 + ρ23ρ30ρ43 + ρ12ρ35ρ43 + ρ23ρ35ρ43 + ρ12ρ36ρ43 + ρ23ρ36ρ43)
dy

dt
+ (ρ12ρ23ρ30ρ43 + ρ12ρ23ρ35ρ43 + ρ12ρ23ρ36ρ43)y.

(9)

This equation has four coefficients, which are four identifiable parameter
combinations as a function of six parameters, meaning that the six parame-
ters cannot be individually, uniquely determined by observing y(t). Toward
the goal of understanding and simplifying these parameters combinations, we
introduce two reparameterized parameters, α = ρ30+ρ34+ρ35+ρ36+ρ43 and
β = ρ43(ρ35+ρ30+ρ36). These reparameterizations simplify the input–output
equation,

0 =
d4y

dt4
+ (ρ12 + ρ23 + α)

d3y

dt3

+ (β + ρ12ρ23 + α(ρ12 + ρ23))
d2y

dt2

+ (αρ12ρ23 + β(ρ12 + ρ23))
dy

dt
+ (βρ12ρ23)y.

(10)

The map from the four parameters {α, β, ρ12, ρ23} to the four coefficients of
this input–output equation is not one-to-one, but there are only finitely many
solutions. Hence, these parameter combinations are locally identifiable.

We also have information from the initial conditions of y(t) and its deriva-

tives. The initial conditions of y and dy
dt are 0, but the initial condition of d2y

dt2

is ρ12ρ23ρ30 and the initial condition of d3y
dt3 is −ρ12ρ23ρ30(α+ρ12+ρ23−ρ43).

Altogether, a minimal set of locally identifiable parameter combinations is then
{ρ12, ρ23, ρ30, ρ35+ρ36, ρ34, ρ43, }. Parameters ρ12, ρ23, ρ30, ρ34, and ρ43 retain
their original interpretations, but, because the parameters are only locally and
not globally identifiable, we do not necessarily know which rate value belongs
to which biological process. Parameter combination ρ3− := ρ35 + ρ36 is the
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rate of the tracer leaving the body through urine or being sequestered in a
bicarbonate pool. This last combination represents the fact that we cannot
distinguish between tracer that has been sequestered in the slow bicarbonate
pool and tracer that has been excreted in urine if we measure only pulmonary
excretion. A (locally) structurally identifiable version of (6) is thus as follows.

dx1

dt
= −ρ12x1,

dx2

dt
= ρ12x1 − ρ23x2,

dx3

dt
= ρ23x2 − (ρ34 + ρ30 + ρ3−)x3 + ρ43x4,

dx4

dt
= ρ34x3 − ρ43x4,

y(t) = ρ30x3(t).

(11)

The two take-aways from the structural identifiability analysis are that the
slow bicarbonate pool is indistinguishable from urinary excretion and that
even if we determine the values of the underlying biological rates, we cannot
determine their order (e.g., we will not know which of the biological processes
corresponds to the slowest, limiting rate).

Practical identifiability

Even if the above set of parameters and parameters combinations are struc-
turally identifiable, they may not be practically identifiable from real-world
breath test curves. To illustrate the practical identifiability of the model, we
use data from the 13C-SBT and determine the profile likelihoods of each of
the structurally identifiable parameters. Each set of data, along with the cor-
responding best fit by the full, structurally identifiable model (Eq (11)), are
shown in Fig. 2. This plot also includes fits from a series of reduced models
developed below.

In Fig. S1, we demonstrate that all parameters in the full structurally iden-
tifiable model are practically unidentifiable given real data, with the possible
exception of ρ12 and ρ23. Moreover, none of the relationships with the other
parameters along these profiles are indicative of practically identifiable param-
eter combinations, e.g., no two parameters vary together in a way that suggests
that their sum or product is constant. However, we do see that parameter ρ43
can be sent to 0 or ∞ with negligible loss of fit, suggesting that the dynamics
of the fast bicarbonate kinetics do not meaningfully impact the breath test
trajectory. For simplicity, we reduce our model by assuming ρ43 = ρ34 = 0.
Finally, we define κ := ρ30/(ρ30+ρ3−) to be the fraction of bicarbonate that is
exhaled on the breath; this parameterization is convenient because it demon-
strates that although ρ30 and ρ3− can take multiple values depending on ρ12
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Fig. 2 13C sucrose breath test trajectories for 20 adults, with fits from the full structurally
identifiable model (Eq (11)) and reduced models (Eq (12)). With only a few exceptions, the
reduced models are indistinguishable from the full model.

and ρ23, there is a fixed relationship between them.

dx1

dt
= −ρ12x1,

dx2

dt
= ρ12x1 − ρ23x2,

dx3

dt
= ρ23x2 − ρ30x3/κ,

y(t) = ρ30x3(t).

(12)
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The fit to each individual’s breath test trajectory are shown in Figure 2
(Reduced model 1). The fits from Reduced model 1 reproduce the Full model
fits in nearly all cases, confirming that the dynamics of the fast bicarbonate
pool can be neglected.

We next compute the profile likelihoods for the four parameters in the
model in Eq. (12) in Fig S2. Parameter κ is identifiable, which is sensible since
it describes the asymptote of the cPDR. However, we find that ρ12, ρ23, and
ρ30/κ, which we know are only locally identifiable, are indeed interchangeable,
so that they take 3 (possibly repeated) values between them. Only two local
minima are observed for the three parameters for many plots, indicating that
the likelihood wells for two of the rates have merged. Although for each indi-
vidual’s breath trajectory the likelihood profiles may prefer the two larger or
two smaller values to be repeated (share the same value), we find that it is suf-
ficient and more convenient to constrain the model so that the larger value is
repeated. Thus, in our final model reduction in Eq (13), without loss of gener-
ality, we assume that the first step is the slowest, i.e., we set ρ = ρ23 = ρ30/κ
and πρ = ρ12 where 0 < π ≤ 1 is the ratio of the slower rate to the faster rates.
It is important to note again that, because the parameters are only locally
identifiable, we cannot determine which rate corresponds to which biological
process. That is, we cannot determine which process has the limiting rate. In
this reduced model,

dx1

dt
= −πρx1,

dx2

dt
= πρx1 − ρx2,

dx3

dt
= ρx2 − ρx3,

y(t) = κρx3(t).

(13)

The fit to each individual’s breath test trajectory are shown in Figure 2
(Reduced model 2), and the confirmation that the parameters are globally
practically identifiable is given in Fig S3. The fits from Reduced model 2 repro-
duce the Full model fits in nearly all cases. This model also has a closed form
solution. When π < 1,

y(t) =
100κπρ

(π − 1)2
(exp(−πρt) + ((π − 1)ρt− 1) exp(−ρt)) (14)

The cumulative percent dose recovered is the integral of y(t), and it has a
horizontal asymptote of 100κ as t → ∞.

Practically, this reduced model indicates that a single breath test curve can
be summarized as resulting from a faster, gamma-distributed process and a
slower, exponential process (in some order, possibly with the slower, exponen-
tial process occurring in-between portions of the other process). The fraction of
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Fig. 3 (a–c) Breath test curve simulations setting ρ, πρ, and κ to their mean values and
then varying one parameter at a time, respectively. (d–f) Scaled versions of the simulations
in (a–c), see text.
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Fig. 4 Breath test curve simulations demonstrating that the dynamics of the early portion
of the curve do not constrain the later curve. Here ρ and κ are chosen for each value of πρ
in a way that preserves the dynamics up to 90 minutes.

the tracer that will be exhaled as opposed to sequestered or otherwise excreted
scales the overall PDR. This final, reduced model is summarized in Figure 1b.

Model dynamics

To understand how each of the 3 parameters ρ, πρ, and κ impact the dynamics
of the breath curve, we first take the mean values of each parameter across
the 20 trajectories (ρ̄= 1.97, π̄ρ= 0.32, κ̄=0.82). Then we vary one parameter
while keeping the other two constant. The range of dynamics is shown in
Fig 3a–c. In Fig 3d–f, we scale the curves in Fig 3a–c appropriately (by (π̄ρ(π−
1)2)/(πρ(π̄− 1)2) in (a), by π̄/π in (b), and by κ̄/κ in (c)). The scaled figures
highlight that ρ impacts the rate of increase, πρ controls the rate of decline,
and κ is a vertical scaling factor.

These curves further suggest that the early part of the curve may not be
informative for πρ. Indeed, in Figure 4, we see that we can choose values of ρ
and κ such that the early part of the curve (first 90 minutes) does not constrain
the later part of the curve. This result suggests that certain summary measures
may not be informative for certain underlying processes.
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Fig. 5 Correlations between mechanistic model parameters estimated from 20 breath test
curves and the corresponding summary measures of those curves.

Summary measures

Here, we compare the model parameters ρ, πρ, and κ estimated for each of
the 20 breath test curves to the estimated values of each of the four breath-
test curve summary measures: cumulative PDR at 90 min, peak PDRr, time
to peak PDRr, and time to recover 50% of the dose (50% cPDR). Best fit lines
and correlation coefficients are given in Fig 5. Note that only those 11 breath
curves that achieved 50% dose recovery within 5 hours were included in the
correlation analysis of the time to 50% cPDR measure. Parameter ρ, which
controls the early phase of the curve, was most strongly correlated with the
time to peak PDRr (R = −0.75) and was moderately correlated with cPDR
at 90 minutes (R = 0.56). No summary measure was strongly correlated with
πρ, the parameter that controls the late phase of the curve, and even the weak
correlations were drive by one or two points. Parameter κ, the fraction of the
dose that will be recovered, which acts as a vertical scaling parameter, was
strongly correlated (R = −0.78) with time to recovering 50% of the dose; other
correlations were weaker and driven by one or two points.

Discussion

Our work provides an alternative, mechanistic modeling approach to empirical
curve fitting and summary measures when analyzing 13C substrate breath
test curves. A three-parameter model—based on an underlying assumption
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of substrate passage through an exponential, rate-limiting process; a gamma-
distributed process; and a scaling factor representing the fraction of the tracer
that would be recovered—can be fit to 13C breath curve data such that each
parameter has a uniquely identifiable value. Although this work was illustrated
using a 13C sucrose tracer, it is broadly applicable to most 13C substrate breath
tests, since the metabolic pathways are broadly similar.

One important conclusion of our identifiability analysis is that a single
breath test curve alone cannot necessarily resolve all the underlying metabolic
processes that occur as part of substrate metabolism. Indeed, we found that a
3-parameter model with a simplifying assumption about the fast processes fit
nearly all 13C-SBT curves as well as the full 6-parameter model. This result
should be expected as the 3-parameter empirical models in Eq (2) are typi-
cally flexible enough to capture breath test curve dynamics. This limitation
of not being able to fully resolve the underlying transport and metabolism
is not a limitation of the mechanistic approach and is instead a limitation
inherent to the breath test itself: the breath test curve does not contain
enough information on its own to support inference about all aspects of the
metabolism, and, indeed, we should not expect it to. To further disaggre-
gate key metabolic processes, other data—such as serial measurements of
plasma 13C-bicarbonate or multiple breath tests repeated with different sub-
strates on the same individual—would be required. On the other hand, if the
goal is to translate characteristic curve dynamics into interpretable clinical
information about an individual’s underlying health or disease state, our mech-
anistic approach ensures that the amount of information that can meaningfully
extracted from the breath curve is maximized.

Our work, determining the identifiable parameters underlying the dynamics
of 13C-SBT curves in healthy adults, is only the first step in the develop-
ment of a 13C-SBT clinical diagnostic test. Analysis of 13C-SBT curves in
individuals with disordered or inhibited intestinal surcrase-isomaltase activity
is necessary to determine how breath test curves and our model parameters
can distinguish between healthy individuals and those with gut dysfunction.
Our next work will analyze 13C-SBT curves in individuals given Reducose, an
intestinal sucrase-isomaltase inhibitor, followed by analysis of 13C-SBT curves
in individuals suspected to have EED [8]; further methodological work may
be needed to understand the practical identifiability of model parameters esti-
mated from diseased individuals’ curves, particularly π and κ, when the tests
ends prior to reaching peak PDRr or if the tracer enters the colon. Although
a 13C-SBT diagnostic could be based on standard summary measures, our
model-based approach to evaluate breath curves likely has advantages over
conventional approaches, because model parameters, unlike conventional sum-
mary measures, have mechanistic interpretations. Notably, summary measures,
while attractive for their simplicity, appeared to be only somewhat correlated
with the actual mechanistic rates underlying the breath curve. Some metabolic
processes, including the rate-limiting step, appear to be poorly captured by all
of the summary measures investigated. The summary measures such cPDR at
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90 min, peak PDRr, and time to 50% cPDR, were all associated with the scal-
ing parameter κ, reflecting the fraction of the plasma bicarbonate excreted on
the breath (as opposed to excreted in urine or sequestered). However, in most
13C breath test applications, this scaling factor is not the metabolic process of
interest, meaning that natural variation in this parameter may reduce the dis-
criminatory power of these summary statistics. Indeed, we expect κ not only
to vary between individuals but within individual day-to-day, based physical
activity in the past few days [32, 33]. The rate ρ was inversely correlated with
time to peak PDRr, and so this summary measure may be useful if the fast
process is shown to be the process of interest. Even so, the model we presented
here can be used to estimate these parameters directly, making breath curves
more readily interpretable.

Our results also have implications for breath test administration. For
instance, it may also be necessary to adjust the length of test duration depend-
ing on which underlying rate is of interest, e.g., longer tests may be needed
to measure the limiting rate more accurately. By understanding the dynamics
as a function of underlying metabolic rates, we can better design our testing
procedures and our analysis plans.

Our work may need to be adjusted for other specific applications, which
is why we presented the model reduction approach in full, so that it can be
adapted for other applications as needed. One limitation of this analysis is
that we assumed instantaneous gastric emptying because of the application
of the small, liquid tracer. This work may need to be adapted to account for
gastric emptying in the case of other tracer formats, e.g., when administered
as part of a meal. In this work, we also used a naturally enriched sucrose
tracer, with 13C occurring in both the fructose and glucose moieties, which
means that some of the estimated rates reflect a combination of the individual
rates of transport and metabolism of these molecules. In future work, we will
explore the use of tracers in which only one sugar moiety is labeled in order
to understand the impact of intermediary metabolism on the digestion of 13C
sucrose isotopologues to 13CO2. Additionally, to enhance the interpretation
of breath test curves and develop a clinically meaningful diagnostic for the
health of an underlying process, it will also be important to determine which
aspects of the 13C metabolic pathway affect the mechanistic parameters we
have identified here as capturing the breath test dynamics. This determination
can be accomplished using multiple experiments designed to isolate different
aspects of the metabolism. There is also a need to understand which aspects of
the metabolism are folded into a single parameter and to characterize within-
person (i.e., day-to-day) and between-person variation in these rates. This
information would improve our ability to design breath tests to isolate specific
aspects of the metabolism and to develop clinically meaningful thresholds for
parameter values. Finally, we emphasize that sucrose may not ultimately be the
optimal tracer for the clinical detection of EED or other metabolic disorders.
For example, sucrase-isomaltase activity may not be sufficiently impacted by
the disorder of interest, or the dynamics of the breath curve may be dominated
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by other processes that are not relevant to the disease, such as tissue uptake,
energy generating processes, or bicarbonate kinetics. Indeed, tests using a vari-
ety of other substrates are under development. Fortunately, the mathematical
framework we developed here can serve as a starting point for analysis of 13C
breath test curves regardless of the specific substrate of interest.

Conclusion

We developed a new approach to making biological inferences from 13C breath
test curves and connected specific aspects of curve dynamics to underlying
biological rates. A better understanding of how underlying biological processes
impact different aspects of the breath curve enhances the clinical and research
potential of the 13C-SBT and other breath tests like it.
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The supporting information includes profile likelihoods for select participants for each stage of

model reduction.
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Figure S1: Profile likelihoods for each parameter in the model in Eq (11) for four representative

individuals. Parameters ρ12 and ρ23 are locally practically identifiable in some instances, but the

remaining parameters are all practically unidentifiable.
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Figure S2: Profile likelihoods for each parameter in the model in Eq (12) for four representative

individuals. Parameters ρ12, ρ23, and ρ = ρ30/κ are locally practically identifiable. Parameter κ is

globally practically identifiable.
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Figure S3: Profile likelihoods for each parameter in the model in Eq (13) for four representative

individuals. All three parameters are globally practically identifiable.
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