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Abstract

Randomized controlled trials (RCTs) evaluate hypotheses in specific contexts and are often
considered the gold standard of evidence for infectious disease interventions, but their
results cannot immediately generalize to other contexts (e.qg., different populations, interven-
tions, or disease burdens). Mechanistic models are one approach to generalizing findings
between contexts, but infectious disease transmission models (IDTMs) are notimmediately
suited for analyzing RCTs, since they often rely on time-series surveillance data. We devel-
oped an IDTM framework to explain relative risk outcomes of an infectious disease RCT
and applied it to a water, sanitation, and hygiene (WASH) RCT. This model can generalize
the RCT results to other contexts and conditions. We developed this compartmental IDTM
framework to account for key WASH RCT factors: i) transmission across multiple environ-
mental pathways, ii) multiple interventions applied individually and in combination, iii) adher-
ence to interventions or preexisting conditions, and iv) the impact of individuals not enrolled
in the study. We employed a hybrid sampling and estimation framework to obtain posterior
estimates of mechanistic parameter sets consistent with empirical outcomes. We illustrated
our model using WASH Benefits Bangladesh RCT data (n = 17,187). Our model reproduced
reported diarrheal prevalence in this RCT. The baseline estimate of the basic reproduction
number R, for the control arm (1.10, 95% Crl: 1.07, 1.16) corresponded to an endemic prev-
alence of 9.5% (95% Crl: 7.4, 13.7%) in the absence of interventions or preexisting WASH
conditions. No single pathway was likely able to sustain transmission: pathway-specific R,s
for water, fomites, and all other pathways were 0.42 (95% Crl: 0.03, 0.97), 0.20 (95% Crl:
0.02, 0.59), and 0.48 (95% Crl: 0.02, 0.94), respectively. An IDTM approach to evaluating
RCTs can complement RCT analysis by providing a rigorous framework for generating
data-driven hypotheses that explain trial findings, particularly unexpected null results, open-
ing up existing data to deeper epidemiological understanding.
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Author summary

A randomized controlled trial (RCT) testing an intervention to reduce infectious disease
transmission can provide high-quality scientific evidence about the impact of that inter-
vention in a specific context, but the results are often difficult to generalize to other pol-
icy-relevant contexts and conditions. Infectious disease transmission models can be used
to explore what might happen to disease dynamics under different conditions, but the
standard use of these models is to fit to longitudinal, surveillance data, which is rarely col-
lected by RCTs. We developed a framework to fit an infectious disease model to steady-
state diarrheal prevalence data in water, sanitation, and hygiene RCTs, explicitly account-
ing for completeness, coverage, compliance, and other factors. Although this framework
is developed with water, sanitation, and hygiene interventions for enteropathogens in
mind, it could be extended to other disease contexts. By leveraging existing large-scale
RCT data sets, it will be possible to better understand the underlying disease epidemiology
and investigate the likely outcomes of policy-relevant scenarios. Ultimately, this work can
be incorporated into decision making for public health policy and programs.

Introduction

Randomized controlled trials (RCTSs) are an important source of scientific evidence in the field
of epidemiology. They provide high-quality evidence on the causal impact of interventions.
However, they cannot tell us how the trial would have performed in another context (i.e., with
a different population), meaning that generalization of the trial results is not straightforward.
Accordingly, policy makers eager to capitalize on new information do not have a way to pre-
dict the impacts of a related policy for their populations. While systematic reviews and meta-
analysis are often employed to increase the collective power of a collection of related trials, it is
still difficult to account for all relevant factors directly. In the infectious disease context, an
intervention’s effectiveness will be impacted by variability in baseline exposures (conditions),
differences in background rates of infection or disease burden across study sites, heteroge-
neous interventions, or differences coverage and adherence of the intervention. Mechanistic
modeling approaches may be complementary to RCT's by offering a means to generalize an
RCT’s results by directly accounting for these factors.

Infectious disease transmission models are an important tool that allow us to make infer-
ences about disease spread and dynamics within a population. The standard use of transmis-
sion models for inference largely relies on time-series incidence data, usually in the form of
passive surveillance, where the dynamic signature of time-series data can provide valuable
information about an infectious disease transmission system [1]. However, longitudinal sur-
veillance is only one of many types of data that can provide insight into the epidemiology of
infectious diseases. RCT's are concerned with comparisons between individuals across inter-
vention arms in the form of relative risks [2-4] and are generally do not include the collection
of longitudinal surveillance data. If mathematical models could be fit directly to the data from
large-scale RCTs (rather presupposing generalizability by using RCT results as parameters), it
would open up a wealth of data that could be used to better understand epidemiological find-
ings. Mechanistic models can play a pivotal role in developing intervention strategies and esti-
mating what health benefits can be expected under various scenarios.

Decades of RCTs and observational studies have been conducted in the field of water, sani-
tation, and hygiene (WASH), constituting a wealth of data on the epidemiology of enteric dis-
ease [5]. WASH improvements have been responsible for major public health gains by greatly
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Fig 1. F-diagram. Simplified “F-diagram” illustrating different transmission pathways [7]. The blue bars show how
specific types of interventions may interrupt transmission along these pathways. The dotted line (not traditionally
included in the F-diagram), highlights that infected individuals continue to contribute to environmental
contamination.

https://doi.org/10.1371/journal.pchi.1010748.g001

reducing diarrheal disease burden caused by a variety of enteropathogens. Reducing the diar-
rheal burden can also result in improved nutrition and reduced stunting of child growth [6].
Transmission of the enteropathogens responsible for diarrheal disease can occur through mul-
tiple, interconnected pathways by which a susceptible person may come in contact with patho-
gens shed (in feces) by an infected individual. These pathways are often visualized as an “F-
diagram,” illustrating some of the potential transmission routes (e.g., feces, fingers, fomites,
fluids, and food) and potential points of intervention [7] (Fig 1). Recent large scale, well-pow-
ered intervention trials have not shown the expected health benefits of WASH interventions,
namely reduced diarrhea and improved growth [8-14]. Moreover, while WASH improve-
ments such as latrines have demonstrable efficacy at the household level, they have not yielded
the expected health improvements at the community level [15]. This failure of community-
level efficacy is likely due to a combination of factors, including that the interventions did not
sufficiently reduce transmission across the multiple pathways (completeness), the fraction of
the population given the intervention did not reach a sufficient level to induce herd protection
(coverage), the adherence to the interventions was not sufficiently great (compliance), the
intervention was not a substantial improvement over existing infrastructure (baseline WASH
conditions), the disease burden was too great or too small to see an impact (baseline disease
conditions), or the interventions did not reduce transmission (efficacy) [16, 17].

The goal of our study is to develop a framework that allows us to generalize the results of
WASH RCTs by mechanistically accounting for completeness, coverage, compliance, WASH
and disease conditions, and efficacy. Through this analysis, we aim to elucidate the mecha-
nisms underlying how specific interventions designs impact transmission and disease inci-
dence in different contexts, ultimately allowing us to inform the next generation of WASH
research and programming and, more broadly, allowing RCT results to be generalized to other
populations. To this end, we developed a compartmental infectious disease modeling frame-
work and parameter estimation approach to analyzing RCT data. This analytical framework
was designed to incorporate the data underlying relative risk estimates and other contextual
data collected by an RCT to calibrate a mechanistic model by determining sets of mechanistic
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parameters that are consistent with the RCT outcomes. We applied our framework and
approach using data from WASH Benefits Bangladesh [11, 18], a large, seven arm, cluster-ran-
domized controlled trial on the impact of WASH and nutrition on diarrhea and child growth
outcomes. Specifically, the model generated prevalence estimates from steady-state simula-
tions accounting for multiple environmental pathways, individual adherence to multiple
WASH interventions, preexisting WASH conditions, and the contribution of the subpopula-
tion that was not enrolled into the RCT study to transmission. We used sampling-importance
resampling to determine parameter sets consistent with the data and quantify the uncertainty
in key parameters of interest, such as intervention efficacy and the relative contribution of dif-
ferent environmental pathways. These results will be used in future work to examine counter-
factual questions (i.e., “what would have happened if . .. ?”) by simulating how the results of
the calibrated model change under different scenarios, thereby addressing knowledge gaps
and generating hypotheses about how best to improve disease outcomes in future.

Methods
Overview

The goal of this paper is to present a generalized approach to using infectious disease models
to analyze WASH RCTs. Accordingly, the methods development is one of the primary results.
Because this approach is intended to be generalized, we first open with a discussion of the type
of data that our approach is intended to leverage. Then, we develop the model for a single
intervention to build familiarity and intuition and discuss how the approach is generalized to
multi-arm RCTs. Next, we discuss a hybrid sampling and estimation approach that identifies
parameter sets consistent with the data, thereby reducing the dimension of the parameter
space and providing estimates of the posterior distribution of each parameter. Finally, we
introduce the WASH Benefits Bangladesh RCT, which we will use to illustrate the modeling
approach.

Randomized controlled trial design

While no two randomized controlled trials (RCTs) are exactly alike, they often have similar
characteristics. The objective of an infectious-disease-related RCT is to determine the effective-
ness of an intervention, and, if the interventions are effective, the RCT may estimate pathway-
specific attributable risks. RCT's are the one true experimental tool in epidemiology and are
often considered the gold standard of scientific evidence [2-4] because the intervention is ran-
domly assigned, thereby addressing confounding in the design phase of the study. Participants
are randomly assigned to one or more groups, or arms. An intervention is applied to one arm
(e.g., a water treatment device and health promotion visits from study staff), while the compar-
ison group, the control arm, receives either no intervention, a placebo, or an alternative inter-
vention (e.g., standard care, such as health promotion visits but no water treatment device).
Typically, specified measurements are taken at a baseline time point prior to intervention and
at one or more follow-up time points after the interventions are applied. More complicated
intervention designs are possible, including multiple interventions that are compared to the
control or each other. In the case of WASH RCTs, different interventions are used to target
different environmental pathways (Fig 1). Multiple interventions applied together are used to
evaluate the completeness of the interventions in blocking transmission, i.e., what fraction of
transmission is along pathways that the interventions act on.

RCT data are often analyzed using one of two strategies. An intention-to-treat (ITT)
approach analyzes data by grouping individuals by their intervention assignment. The ITT
approach results in a measure of intervention effectiveness, reflecting real-world usage.
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Effectiveness can differ from the true underlying potential efficacy of the intervention used
under ideal conditions because of imperfect intervention fidelity, i.e., delivery of the interven-
tion, or imperfect intervention compliance/adherence, i.e., the use of the intervention by the
recipient as intended. A per protocol approach to analysis of the RCT removes participants
who did not receive or did not adhere to their intervention assignment. This approach can
provide an estimate of intervention effectiveness that is closer to the true efficacy, but the bene-
fits of randomization are lost. The magnitude of risk reduction associated with an intervention
depends not only on the its efficacy at blocking transmission, but also on the endemic patho-
gen prevalence, the susceptibility of the target population, the quality of the preexisting WASH
conditions (e.g., an improved latrine may have greater benefits if it replaces open defecation
compared to if it replaces an unimproved latrine), and other factors.

Interventions in a WASH RCT are usually delivered in a way that would be practical for
subsequent programs to implement at a greater scale, which means that interventions are usu-
ally provided at the household, village, school, or district level, rather than the individual level.
Moreover, rather than randomizing individuals to treatment arms, RCTs may employ a clus-
ter-randomized design to randomize larger groups, or clusters, because WASH interventions
likely affect those beyond the intended target, i.e., they have both direct effects on the partici-
pant and indirect effects on the community through reduced infection pressure. The fraction
of the population in an area that receives the interventions is the community coverage of the
trial; in some trials, all individuals in a cluster are receive the intervention, and in other trials,
only a subset or only eligible individuals receive the intervention.

WASH randomized clinical trial data

For the purposes of developing a general analysis framework, we lay out our assumptions
about what is included in a WASH RCT data set reporting on diarrheal outcomes.

« Random allocation occurs at the cluster level, and we know which intervention arm and
cluster each individual is in.

« We know whether each enrolled individual has preexisting WASH conditions substantively
equivalent to the intervention. If not, we assume that the preexisting WASH conditions are
not equivalent to the intervention.

o The preexisting WASH conditions of people not enrolled the study are approximated by the
conditions of people in the control arm at that point in time.

« We know whether each individual received and adhered to their intervention (resulting in a
per-protocol-like approach). If not, we assume that all individuals received and adhered to
their intervention (resulting in an ITT-like approach).

We know the fraction of the population enrolled in the study (e.g., through a census). If not,
we will estimate it as a model parameter.

« The measured outcome for each enrolled individual is a self-report (or guardian report) of
whether they recently had (all-cause) diarrhea (e.g., in the past seven days). All diarrhea is
assumed to have an infectious etiology.

Mathematical modeling framework

Our framework is comprised of a transmission model representing WASH interventions
applied to a subset of a population and a parameter estimation approach designed to fit data
to steady-state modeling simulations. Our model structure incorporates several important
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structural design decisions. First, the model reflects a cluster RCT design where each cluster
includes both the fraction of the population enrolled in the study and the remainder that is
not. Second, the model explicitly accounts for adherence and fidelity (i.e., the extent to which
the intervention is implemented as intended), and therefore it uses a per-protocol-like
approach where only those who received and are adhering to the intervention are considered
in the protected group. Third, the model accounts for both the impacts of the interventions
and preexisting WASH conditions that block the same transmission pathway as the interven-
tion. For example, we would account for both preexisting improved latrines and ones provided
by the RCT. The efficacies of the intervention and corresponding preexisting condition may
be assumed the same or separately estimated. Finally, everyone within a given cluster is mod-
eled as sharing the same environment. These structural design decisions are specific to our
WASH RCT analysis and the WASH Benefits study design in particular. Other study designs
and infectious disease systems would necessitate an alternative model structure. Below, we
describe the model structure and the parameter estimation approach.

Developing the single-intervention SISE-RCT model. Here, we develop the general
SISE-RCT (susceptible, infectious, susceptible, environment model for randomized controlled
trials) framework for a single intervention. The basis of our modeling framework is the envi-
ronmental infectious disease transmission model, the SIRE (susceptible, infectious, recovered,
environment) model [19, 20]. This model tracks the fraction of individuals that are susceptible
(S), infectious (I), or recovered (R), as well as the concentration of pathogens in the environ-
ment (E). Pathogen transmission occurs when susceptible people contact the environment.
The contact rate, contact volume, and pathogen infectiousness are all combined into a single
transmission rate parameter  with units of per unit pathogen concentration per time [21].
Infectious individuals recover at rate y and shed pathogen into the environment at rate a.
Pathogens decay in the environment at rate £. The differential equations governing this model
are

dR dE
= — =l — EE 1
I v, I ol — EE. ( )

das dl

i —BSE, E_ﬁSE—yI,
The basic reproduction number of the SIRE model, which is a measure of the epidemic poten-
tial of the system, is R, = ﬁ—?

For the RCT framework, we modified the above model in several ways. First, because the
WASH RCT outcome measure is all-cause and not pathogen-specific diarrhea, we used an SIS
(susceptible-infectious—susceptible) framework. Individuals return to the susceptible com-
partment after their infectious period rather than progressing to a recovered compartment, as
they remain susceptible to other enteropathogens. An SIS model can have an endemic equilib-
rium, where the disease remains prevalent at some level in the population. For many SIS mod-
els, the value of this endemic equilibrium is 1 — 1/R,, so that the larger the R, the more
prevalent the disease at equilibrium.

Second, we explicitly modeled two populations that share a single environment, i.e., a single
cluster (Fig 2). The first population, denoted by the subscript +, received and is adhering to an
intervention or has a substantively equivalent preexisting WASH condition (e.g., already has
an improved latrine in a trial providing improved latrines). For brevity going forward, “preex-
isting WASH condition” will refer to a preexisting WASH condition that is substantively
equivalent to the corresponding intervention. Accordingly, this population has attenuated
exposure to or shedding into the environment. The second population, denoted by the sub-
script —, is not enrolled in the study, or has not received or is not adhering to the intervention
and has no preexisting WASH condition. This population has regular exposure and shedding,
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Fig 2. Environmental transmission in an intervention study. The shared environment has multiple environmental
pathways that correspond to transmission routes depicted on a traditional F-diagram. The first population (subscript
+) adheres to an intervention or has preexisting WASH conditions that provide the same protection as the
intervention; this population has attenuated exposure to and attenuated shedding into the environment (dashed lines).
The second population (subscript -) is not covered by the study or does not adhere to the intervention and has no
preexisting WASH conditions; this population has regular exposure and shedding (solid lines).

https://doi.org/10.1371/journal.pcbi.1010748.9002

although it may receive indirect benefits of the intervention through reduced environmental
contamination. We use this framework for clusters both in the intervention arm and in the
control arm. In the intervention arm, all study households receive the intervention, though
not all adhere to the intervention, while local, non-study households do not receive the inter-
vention but may have preexisting WASH conditions that are equivalent to the intervention. In
the control arm, no one receives the intervention, and both study households and non-study
households may or may not have preexisting WASH conditions.

Let p be the fraction of those in a cluster (i.e., with a shared environment) that are adhering
to the intervention or an equivalent preexisting WASH condition. Let p, be the fraction of
those not in the study that have a preexisting WASH condition equivalent to the intervention.
Let w be the fraction of the population in the study (community coverage). The fraction of the
population adhering to intervention or with a preexisting condition is wp + (1 — w)p,, and the
fraction of the population not adhering to the intervention or preexisting condition population
is (1 - p) + (1= @)(1 = po).

Third, we extend the model to account for multiple modes of environmental transmission,
E, E,, ..., E,. The modes represent different pathways on the F-diagram (Fig 1), such as fluids
and fomites. We always include an “other” pathway to account for transmission pathways not
intervened on. We define which part of the transmission process is impacted by each of the
modeled interventions. An intervention may reduce the transmission rate by reducing the
number of pathogens contacted or the susceptibility of the individual. We denote the relative
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transmission by ¢ , where subscript f; denotes an impact on transmission from environment
i, and thus the modifies the intervention efficacy by a factor of 1 — ¢; . For example, if an inter-
vention has 80% efficacy in reducing transmission, the magnitude of the remaining transmis-
sion is 20% of the original. The intervention may instead reduce the shedding of pathogen to
the shared environment, with efficacy 1 — ¢, , where ; denotes the impact on shedding into
environment i.

The SISE-RCT model of a single intervention has four equations representing the human
population and n equations representing the environmental pathways (Fig 2).

ds.
dt
dI,
E = ((bﬁlﬁlEl + ¢52ﬁ2E2 +oeee (b/;nﬁnEn)S+ - VI+»
ds.
dt
dl_

ar = (ﬂ1E1 + BBy + -+ ﬁnEn)S— -yl 2)

_(QZ)/;I,B]E] + ¢/52:B2E2 +eee ¢/;nﬂnEn)S+ + VI+7

= _(ﬁlEl + BBy + o + ﬁnEn)S— +yL,

dE
d_tl = 0‘1(¢a11+ +1)—¢E,
dE
d—t2 = 0,(,, 1, + 1) — &y,
dE

dtn = a2(¢an1+ + I*) - é-’ﬂE'n'

Identifiability and reparameterization. The initial goal of this work is to determine what
model parameter values are consistent with the observed RCT data. As we discuss in a later
section in more detail, we connect the model to the data through the modeled steady-state
diarrheal prevalence. To estimate the value of a parameter from the data, it must be identifiable
from steady-state prevalence, that is, the parameter must have a unique value associated with a
given steady state.

To solve for the steady-state values of the model, we first set each dE;/dt equation in the
SISE-RCT model (Eq (2)) to 0 (a quasi-steady-state assumption), solve for each E;, and substi-
tute those expressions into the remaining equations (Eq. (S3) in S1 Appendix). When these
resulting equations are at steady state, for each pathway i the model parameters f3;, o;, £;, and y;
only appear together in a certain parameter combination and thus are not separately identifi-
able from steady-state data. We define these identifiable combinations of those four parame-
ters as the pathway-specific reproduction numbers,

0L
R, =1
%

(3)
The magnitude of each R, ; relates to the strength of transmission along pathway i. Note, too,
that R, = Y /R, is the basic reproduction number of the system in Eq (2) in the absence of
any efficacious intervention, i.e., each ¢; = 1and ¢, = 1. For parameter estimation, it is con-

venient to express the strength of the transmission pathways as relative to the total R, that is
RU,i/ RO'
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The equations Eq. (S3) in S1 Appendix resulting from the quasi-steady-state assumption on
the environmental states and reparameterization (in terms of /& and y) still include dynam-
ics for the susceptible and infectious states, and there is not a closed-form solution for the
steady state values. However, we can use numerical simulation to calculate the steady state
solutions as a function of the R ; only and not their constituent parameters using the follow-
ing observation. If we divide the right hand side of each equation in Eq. (S3) in S1 Appendix
by 7, the equations are only parameterized by the R ;, and this set of equations has same steady
state values as the original equations (Eq (2)), which is our goal. (Note that the transient
dynamics of these equations are no longer biologically meaningful).

% = (8, Roa (0, L, + 1) + G5, Roo(S, 1 + 1)+ + & Ry, (6, 1, +1))S, + 1,
% = (65, Roa (0 Ly 1) + 8, Ro(d, 1, + 1)+ + 6y Ry, (6, 1, +1.))S, — L, "
% =Ry (I, + 1) +Ryy(p,, I, + L)+ + Ry (&, 1. +1))S +1,

% = (Ryy (¢, 1, + 1)+ Ryo(@, I, + 1)+ -+ Ry (¢, I, +1))S —1..

Adjusting for arm- and time-point-specific variation in force of infection. If an RCT
takes multiple measurements (even just a pre-intervention and post-intervention measure-
ment), it may be necessary to adjust the model for systematic differences in the force of infec-
tion across those time points. For example, external stressors, such as weather, may be vary
across time points, as may important demographic factors such as the age distribution.

While successful randomization should render the baseline disease prevalence across arms
to be essentially the same (therefore negating the need to adjust for covariates when estimating
relative risks), it may be beneficial to account for actual differences across arms in potential
confounders or external factors when fitting the data in mechanistic models to improve our
model fits.

We account for any systematic differences in R, across time points =1, .. ., T and between
the control (a = 1) and intervention arms (a = 2), by defining time- and arm- specific relative
reproduction number parameters 7, and 7, relative to the basic reproduction number baseline
and the control arm, respectively. Thus, we can represent the diarrheal disease pressure at time
tinarmaas R{" =1, -, - R,, where n,_; = 1 at baseline and 7,_, = 1 for the control arm.
Note that because we are constraining the systematic differences between R, in the control
arm at baseline and R at another time or in another arm as being the product of a time effect
and an arm effect (77, - 17,,), the effect of the interventions can still be discerned from the system-
atic differences in R. We are, for example, accounting for a higher baseline disease burden in
an intervention arm compared to the control at baseline when assessing the intervention
impact at endline. Note that the intervention effects would not be distinguishable from the sys-
tematic differences in R, if the systematic effects were allowed to vary jointly across time and
arm (7, ,); i.e., we would not be able to determine whether the intervention worked if the dis-
ease burden changed arbitrarily for each arm at each time point.

Summary of model parameters. We have now defined all parameters needed to specify
the SISE-RCT model, which will be used to calculate cluster- and intervention vs non-inter-
vention population-specific steady-state prevalence values. These parameters consist of i) the
overall basic reproduction number R ; ii) pathway-specific basic reproduction numbers rela-
tive to the total basic reproduction R,/ R, one for each environmental pathway i; iii) efficacy
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parameters indicating the effect of the intervention on transmission ¢4; and shedding ¢,,; for
each pathway i; iv) the arm- and time-specific relative basic reproduction numbers 7, and 7,
and v) the coverage w (if unknown). Collectively, we denote this set of model parameters

{Ro AR/ Ro}s by} {Dui}s AN} {n,} > @} as 6, where internal brackets denote a set of mul-
tiple parameters.

Expanding the model framework to an RCT with multiple intervention arms. This
single intervention framework can be expanded to account for multiple interventions within
a single RCT. In the context of WASH, an RCT may have water, sanitation, and hygiene
interventions arms, as well as arms evaluating some combination of these interventions. The
RCT may also include interventions indirectly associated with WASH, such as nutrition. For
an RCT with multiple interventions, the number of modeled populations is 2 raised to the
power of distinct interventions. For example, to model an RCT testing 3 interventions in
some number of combinations, we model each cluster as partitioned into 8 populations
denoted by whether individuals are independently adhering to each of the three interven-
tions (or preexisting conditions): Iy0, 100> Lo10> Loo1> 110> L1015 Lo11> I111, where a 1 in the
subscript represent that individuals in the group receive and adhere to the respective inter-
vention or preexisting WASH condition and a 0 represents that they do not. We refer to
these populations as adherence groups. Note that the number of adherence groups does not
depend on the number of arms in the RCT. The RCT may or may not be investigating any
given combination of interventions, but because individuals may or may not be adhering to
each intervention or the associated preexisting condition, all adherence groups are modeled
in all clusters in all arms. We replace the single intervention adherence fraction p by a vector
denoting the fraction of the population in each of adherence groups p. We denote the specific
distribution of adherence groups in cluster j as p;. In a cluster, the population not enrolled in
the study also has a distribution of adherence groups, denoted py, which only includes adher-
ence to preexisting conditions. Because we do not have a measure of p,, as detailed earlier,
we assume that it follows the mean baseline distribution of preexisting conditions and is the
same in all clusters.

The differential equation model defines a set of steady state prevalence values 77; among the
adherence groups in cluster j as a function of the model parameters 6 and the distribution of
adherence groups among people in the study p; and not in the study p,. We denote the steady
state prevalence values in this cluster 7;(8, p;, po) as a function of the model parameters. We
are interested in prevalence estimates for each observation k, i.e., for a given individual at a
given time point. Because p; is known from the data for any observation k in cluster j and as p,
is assumed to be equal to that of the control group, we can drop explicit dependence on these
quantities when we denote the modeled prevalence for observation k as a function of the
model parameters, 7(6). Note that all individuals in the same adherence group in the same
cluster at a given time will have the same associated modeled prevalence.

Parameter estimation

Statistical likelihood. We connect the model parameters to the data through a goodness-
of-fit function, the likelihood L. Because self-reported diarrhea is a binary outcome, we use a
Bernoulli likelihood. As defined above, let 8 be the vector of model parameters, 7, be the mod-
eled prevalence corresponding to observation k, and x; be the indicator of diarrhea for obser-
vation k. Then, the likelihood is given as

£(0) = 1, ((,(0))" (1 — m,(6) ™). (5)
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Sampling-importance resampling. We expect that in most RCT contexts, most of the
model parameters 6 will not be strongly determined by the available data, i.e., will have large
uncertainty around their values. For example, a 30% water intervention efficacy may explain
the data as well as a 70% efficacy, for certain values of the other parameters. In this situation,
the likelihood space may be flat or multi-modal. Accordingly, it may not be possible to deter-
mine maximum-likelihood estimates, and asymptotic confidence intervals may not be repre-
sentative of the true uncertainty. Instead, we take a sampling approach to understand the
distribution and uncertainty of the parameter values that explain the RCT data. The goal of
this approach is akin to parameter space dimension reduction—that is, identifying the low-
dimensional manifold in parameter space that corresponds to high goodness-of-fit to the data
—rather than individual parameter estimation. We do not expect to recover most, if any, of
the parameters with certainty. Instead, these parameter sets will collectively be used in future
work to simulate what trial outcomes would have been in counterfactual scenarios to explore
the full range of possible outcomes consistent with the RCT.

First, we sample a large number of parameter sets from a prior distribution (such as a uni-
form distribution, as we use here). Then, we evaluate the importance of these samples by calcu-
lating their likelihood (Eq 5). Finally, we resample the parameter sets, weighting the parameter
sets by their likelihoods, to generate posterior distributions of our parameters. This Bayesian
approach is known as sampling-importance resampling [22, 23].

Hybrid sampling-estimation approach. Instead of sampling all parameters in the sam-
pling step of the sampling-importance resampling procedure, we sample a subset of the
parameters, treat them as fixed, and estimate the remaining parameters. This approach creates
a hybrid sampled-estimated set of initial parameters that we subsequently calculate the likeli-
hoods for and resample from. The advantage of this approach is that it reduces the number of
parameter samples needed by preventing a parameter set that could otherwise fit the data well
from being discarded because an identifiable parameter was sampled poorly. This hybrid
approach requires that the parameters to be estimated be practically identifiable, given fixed
values of the sampled subset of parameters. Because R is closely tied to steady state preva-
lence, there will be a best-fit value of R for a given set of coverage, efficacy, and pathway-spe-
cific relative R, parameters. Thus, for each sample of the coverage, efficacy, and relative
pathway parameters, we find the maximum-likelihood value of R, and arm- and time-specific
relative basic reproduction numbers 7, and 7. This maximum likelihood is then associated
with the sampled parameter set. Once a likelihood is established for each sampled-estimated
parameter set, the posterior distribution can be estimated using sampling-importance resam-
pling. More formally, we take the following steps.

1. Define sets of parameters to be sampled 8,,,,, = {{R,,/ Ry Aol {6}, @} and
parameters to be estimated 8, = {R,, {n,}",, {,}_,}, taking advantage of any degenera-

cies (e.g., we do not need to estimate R/ R, if we know R, and {R,,/R,}/-}).

m
samp

2. Define parameter sample sets of values of 8 for m € M using a multivariate uniform dis-

tribution or a more efficient algorithm such as Latin hypercube sampling [24] or a Sobol

sequence [25].

3. For each 0, use an optimization algorithm to minimize the negative log-likelihood as a
function of bey, and set 8 = argmin, (—log £(0,;6,,,)).

4. Define unnormalized weights v, for each 8" = {6”. . 0" } as the corresponding likelihood

samp? ~ est

value divided by the probability of the sample in the originating (uniform) distribution
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v,, = L£(0")/(1/M). Define normalized weights v,, = v,./>" v .It may be preferable to
directly compute the normalized weights as

v, = exp (log £(6,) + )/ _(exp (log L(6,) + )

meM

(6)

where y = min,_,,(—log £(8,,)) is the minimum negative log-likelihood among the

parameter samples.

Sample N parameter sets, with replacement, from {6™} using the normalized weights v .

These N parameter sets approximate the posterior distribution of 8 and thus describe our

knowledge of about the uncertain parameter. Summarize these distributions using

histograms.

We summarize the hybrid sampling-estimation approach in Fig 3.

WASH Benefits Bangladesh

We demonstrate the modeling framework using data from the WASH Benefits Bangladesh
RCT [11, 18]. WASH Benefits Bangladesh measured diarrheal prevalence in children (as well
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Fig 3. Schematic. Schematic of the hybrid sampling-estimation approach to estimating model parameters from Water, Sanitation, and Hygiene

(WASH) randomized controlled trials (RCT) data.
https://doi.org/10.1371/journal.pcbi.1010748.9003
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as multiple child growth measures, although we do not consider those outcomes here) at each
of three time points (baseline, midline, endline). Households in the study area are typically
organized into compounds in which a patrilineal family shares a common space and resources,
such as a water source and latrine. A total of 5551 compounds were enrolled, contingent on
having a pregnant woman in their second trimester during the enrollment period. The study
followed one or more target children born after baseline in the index household, as well as any
siblings or children in other households of the compound who were under age 3 at baseline.
These compounds were grouped into 720 clusters. Each cluster was assigned to one of 7 arms
testing combinations of 4 interventions: water chlorination (W), a double-pit, pour flush
improved latrine (S), handwashing with soap and water (H), and supplementary nutrition
sachets (N). Of the 720 clusters, 180 were assigned to the control arm (C), while 90 were
assigned to each of the water (W), sanitation (S), handwashing (H), nutrition (N), combined
water, sanitation, and handwashing (WSH), and all interventions (WSH-N) arms. Specific
details on trial design, intervention specifics, and results may be found elsewhere [11, 18].
Because our analysis was a secondary analysis of deidentified data, it is not regulated as human
subjects research.

For the purposes of assigning individuals to intervention adherence groups for the model,
we classified individuals at each time point in each arm as using or not using each intervention
or preexisting WASH condition using the following indicators.

o W: Free chlorine was detected in stored water.

o S: Latrine was present and had a functional water seal.

« H: Primary handwashing location was present with available water and soap.

« N: Atleast 50% of expected nutrition sachets were reported as being consumed.

Each of these indicators denote WASH or nutrition conditions that impact susceptibility,
exposure, or shedding, as we describe in more detail below. These four indicators collectively
describe 2* = 16 adherence groups. In WASH Benefits Bangladesh, chlorine was only mea-
sured in arms with the water intervention, and we assumed that there was no use of chlorina-
tion in arms not receiving the intervention. Children not in nutrition intervention arms and
non-target children in nutrition intervention arms were assumed to have not received supple-
mental nutrition. Chlorination, handwashing, and latrine interventions were assessed at the
compound level, but the chlorination and handwashing interventions were targeted to the
index household. We were not able to determine whether non-target children were members
of the index household or a non-index household in the same compound. For this analysis, we
assumed that all non-target children were covered by the intervention if the target child was;
any misspecification may attenuate the estimates of water and hygiene intervention efficacy.
We removed individuals with negative reported ages (n = 2), missing reported diarrhea
(n = 2,745), or missing in any of the four use indicators (n = 2,660), which left 17,187 individ-
ual observations (76% of the original sample) over the three time points. For the remaining
data, we plot the arm-specific prevalence of each of the 4 indicators (Fig 4a-4d). Among target
children in arms receiving the nutrition intervention, 93% reported consumption of at least
50%, the vast majority of whom (83% of target children) reported 100% consumption.

We connect the data to the model by making assumptions about which transmission path-
ways the interventions/conditions effect. We model three transmission pathways, namely
water w, fomites and hands £, and other 0. We assume chlorination (W) reduces exposure
from the water pathway ¢, ., a latrine water seal (S) reduces shedding into the water pathway

®,, s> handwashing with soap and water (H) reduces exposure from the fomites and hands
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Fig 4. Prevalence of intervention and preexisting WASH conditions. Prevalence of (a) free chlorine, (b) latrine with water seal, (c) handwashing
station with soap and water, and (d) reported 50% nutrition sachet consumption (only provided to target children). The arms are denoted by
combinations of interventions, C: control, W: water, S: sanitation, H: hygiene, N: nutrition.

https://doi.org/10.1371/journal.pcbi.1010748.g004

pathway ¢ﬁ > and supplemental nutrition (N) reduces susceptibility from all pathways
bpn = Ppx = Ppn = bp,x (where the first subscript, e.g., 8, represents the pathway-specific

parameter attenuated by the intervention, and the second subscript, e.g., W, represents the
intervention.) We assume transmission and shedding in all other arms and pathways are not
attenuated, i.e., ¢gand ¢, are 1. The S and H interventions have comparable preexisting condi-
tions, but the intervention efficacy may be higher than the preexisting condition efficacy.
Accordingly, we estimated separate preexisting condition efficacy parameters, (E)WS and ¢ By

applied at baseline and in the arms without the corresponding intervention.

In total, we considered 18 model parameters, namely the overall R, 3 pathway-specific
relative R, parameters, 4 intervention efficacy parameters, 2 preexisting condition efficacy
parameters, a coverage parameter, 6 arm-specific relative R, parameters, and 2 time-point-
specific R, parameters: 8 = {R,, R/ Ry, ROJ/RO, (bﬂw,w’ Dy s (;5/3],}1, Byns ¢ams, ¢ﬁf7Hw,

N> Mss Mits M Mwsirs Mwses Manids Mend J - Full and steady-state model equations are given in

Eq. (S4) and (S5). We used the hybrid sampling-estimation approach (Fig 3) to estimate poste-
rior distributions of each of the 18 parameters. We began with prior set of M = 50,000 parame-
ter sets determined by a Sobol sequence to uniformly cover the parameter space, and we
present posterior distributions taking N = 50,000 samples (with replacement) from the prior
distribution weighted by the importance (likelihood) of the prior samples.

aWﬂ

Results

The hybrid sampling—estimation procedure applied model of the WASH Benefits Bangladesh
RCT trial resulted in a set of 50,000 parameter sets in which 3,692 unique samples with repeti-
tion dependent on goodness-of-fit. (A comparison of the distribution of model fits in the prior
and posterior samples is provided in Fig A in SI Appendix). These parameter sets reproduced
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the observed prevalence across the arms and time points (Fig 5a; the analogous figure with
midline and endline separately plotted is given in Fig B in S1 Appendix). The observed preva-
lence values are analogous and comparable to the results shown previously in Luby et al. [11],
although the prevalence estimates in Fig 5a are for the subset of the population with full inter-
vention adherence data. As previously reported [11], midline/endline prevalence in the W arm
was comparable to the control arm, and the prevalence in the remaining arms were lower than
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control and similar to each other. There were no statistically significant differences in the
observed baseline prevalence across the arms.

When comparing the relative risk of midline/endline to baseline across arms, arms with
combined interventions had lower point estimate prevalence ratios than arms with constituent
interventions, e.g., the point estimate for the WSH-N prevalence ratio was below than each of
the W, S, H, WSH, and N arms. Moreover, the midline/endline to baseline prevalence ratios
for all arms, including the control, were below 1. Together, these results support the inclusion
of both arm- and time-point-specific estimates of the variation in R, allowing us to maximize
the amount of information about the pathway and efficacy parameters.

The median estimate of the basic reproduction number R, corresponding to the control
arm at baseline was 1.10 (95% CrI: 1.08, 1.16) (Fig 6a), which corresponds to an endemic prev-
alence of 9.5% (95% Crl: 7.4, 13.7%) in the absence of any preexisting WASH conditions. Esti-
mates of timepoint- and arm-specific relative R s are given in the supporting information (Fig
Cin S1 Appendix). The posterior distributions of the pathway-specific reproduction numbers
were wide, indicating uncertainty in the estimates. The mean R, value for the water pathway
accounted for 42% of transmission (R, = 0.38, 95% Crl: 0.03, 0.97), while the fomite and
other pathways accounted for 22% (R, = 0.17, 95% Crl: 0.02, 0.59) and 35% (R, = 0.48,
95% Crl: 0.02, 0.94), respectively. However, there is substantial uncertainty around the specific
values. Nevertheless, the results indicate that no single pathway would be able to sustain diar-
rhea transmission alone but that elimination of any single pathway path may not be sufficient
to eliminate disease, either.

The observed prevalence values are consistent with a wide range of values for the efficacy of
a) water chlorination (¢; ,, = 0.40, 95% Crl: 0.04, 0.98), b) having a latrine with a water seal
(¢,,s = 0.15,95% Crl: 0.00, 0.86), and c) handwashing with soap and water (qbﬂf.H = 0.52,
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95% Crl: 0.04, 0.97), but are consistent with a comparably narrower range of efficacy of d) con-
sumption of nutrition sachets (¢5n = 0.12, 95% Crl: 0.01, 0.33) (Fig 7). The efficacy of the pre-
existing condition versions of having a latrine with a water seal and handwashing with soap

and water were skewed slightly lower ((ﬁyws = 0.08, 95% CrI: 0.00, 0.67) and ¢ﬁf,H = 0.34,95%

CrlI: 0.01, 0.88)) The median estimate of the community coverage w was 7.2% (95% CrI: 0.004,
18.6%) of the population was enrolled in the study (Fig D in S1 Appendix); this result is an
underestimate because the initial sampling range (up to 20%) did not capture the full tail of the
distribution.

Discussion

Mechanistic models are valuable hypothesis-generating tools, complementing epidemiological
analyses often used for hypothesis testing. As we showed here, they can be particularly useful
alongside randomized controlled trials (RCTs), which provide rigorous assessments of a spe-
cific hypothesis but do not generalize easily to other contexts. Here, we developed a steady-
state analytical framework and Bayesian parameter estimation approach that exploits both rel-
ative risk estimates and other contextual information collected in RCTs, taking advantage of
the rich individual-level data in the trial. In particular, sampling-importance resampling is an
ideal algorithm for developing inference from relative risk estimates or other non-epidemic
disease data [26-28]. Applying this framework to a WASH RCT, we found that while no single
pathway was likely sufficient to sustain transmission, reduction of one pathway alone may not
be sufficient to eliminate disease, suggesting the potential need for multiple interventions,
including some not included in traditional WASH RCTs.

One important feature of our approach is the focus on steady state analysis. Although there
is an extensive mathematical biology literature studying steady state properties of dynamics
transmission models that focus both on stability analysis and the estimation of R, [29], little
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work has been done to build an inferential framework around steady state solutions to take
advantage of epidemiological data collected in RCT's and observational studies. Instead, most
inferential frameworks built around analyzing infectious disease transmission models are
designed to incorporate time-series data often from passive surveillance. For instance, increas-
ingly, studies are using transmission models with epidemic data to estimate R, [30, 31]. The
framework that we developed here takes advantage of relative risk estimates comparing preva-
lence among different sub-populations that have different pathway-specific exposures [32].
RCTs provide the most rigorous data to exploit since the experimental design reduces con-
founding biases.

Pathogens that can exploit multiple environmental transmission pathways, like enteric
pathogens, require a modeling framework that explicitly and distinctly incorporates these
pathways [33]. Modeling multiple pathways allows us to ascertain the combination of inter-
ventions that optimally reduces diarrhea, subject to programmatic constraints. In our analysis
of the WASH Benefits data, we found that there was not a single dominant environmental
pathway that was likely to sustain transmission on its own, suggesting that multiple interven-
tions would be needed to eliminate transmission. The perspective that traditional WASH
interventions are not blocking all the important pathways causing infection is actively being
discussed in the literature [16, 34, 35]. Our finding that no single pathway was sufficient
provides empirical backing to this perspective. We also estimated that the fraction of the popu-
lation covered by the study was small, likely under 10%. Although the direct effects of interven-
tions can be estimated in RCT's with low community coverage, some WASH interventions,
particularly sanitation, act primarily through indirect effects. Previous work has shown that
indirect effects are unlikely to be apparent until greater intervention coverage is achieved [36,
37]. Our future work will explore the potential disease reduction outcomes if the WASH Bene-
fits interventions were implemented on a larger scale.

We also found that the reported diarrheal prevalence was consistent with a wide range of
values for many of the environmental pathway strength and efficacy parameters. The practical
unidentifiability of these parameters is due in part to trade-offs between the pathway strength
and efficacy parameters. For example, the prevalence data may be explained by a strong
water transmission pathway and weak efficacy of chlorination. Alternatively, the data may be
explained by a weak water transmission pathway, regardless of the efficacy of chlorination.
While these wide uncertainties may appear a limitation of our approach, they are in fact
expected and consistent with our goal of determining parameter sets consistent with the data
rather than individual parameter values. In future work, we will use these parameter sets to
assess counterfactual questions and generalize the trial results; capturing reasonable fits to the
data across the uncertainty in individual parameters is a strength of our approach when it
comes exploring the real range of potential outcomes in other scenarios.

Additional data may be able to reduce individual parameter uncertainty, allowing for more
detailed insight into the multiple, complicated factors underlying diarrheal disease transmis-
sion. New data could better constrain the outcomes of counterfactual and generalizing simula-
tions. Additional data could come in the form of more information about mechanistic
parameters, e.g., tests that confirm that the chlorination efficacy should be at least 75%, or a
community census indicating the study covered 5-10% of households. More broadly, our
approach could be extended to incorporate environmental data, as there are an increasing
number of studies collecting environmental samples from different media to inform path-
ways-specific exposure [38-41]. Environmental sampling may be able to add more specificity
to exposure variables, which have traditionally been based on the presence of infrastructure
(e.g., piped water or the presence of sanitation structures). They may also help to clarify impor-
tant transmission pathways that are not always covered by WASH interventions, e.g., food,
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animals, included here as the other transmission pathway. Multiplex molecular technology
now allows for more efficient testing of environmental samples for a wide array of pathogens.
Information about pathogen-specific disease burden could be incorporated into pathogen-spe-
cific models that, for instance, account for the fact that chlorination may be more effective at
reducing bacterial transmission than protozoal transmission [42]. Given new, more affordable
technologies, it is important to develop and standardize environmental sampling strategies for
different transmission pathways in a way that complements standard epidemiological data
sets. More work is needed, both theoretical and practical, to ensure that the environmental
sampling data can inform transmission pathways and, ultimately, case data. This new molecu-
lar technology can also affordably identify pathogens in stool samples, which can improve
parameter estimation by replacing self-reported diarrhea outcomes, which are highly variable
[43] and of uncertain etiology, with laboratory-confirmed infection. An enhanced understand-
ing of infection, and not just disease, would also more directly inform our disease transmission
modeling framework.

Our work is subject to several limitations. We assumed that individuals in a cluster all inter-
act in a shared environment distinct from other environments. A more detailed characteriza-
tion of the environment could allow for the relaxation of this assumption. We also assumed
that the impacts of interventions could be identified from a proxy indicators. Additionally, the
data assessed intervention adherence at the compound level, resulting in potential misspecifi-
cation of the water and hygiene interventions for non-target children not in index household;
the likely impact of this misspecification is an attenuation of the estimated efficacy of the water
and hygiene interventions. Also, we adjusted for differences in diarrheal prevalence in the dif-
ferent survey years, but did not account specifically for seasonality within the survey years.
Finally, we assumed a particular specification of transmission pathways and how the interven-
tions impact them. Although we chose this specification based on our best mechanistic under-
standing of the interventions and the environment, other specifications—and the sensitivity of
the results to the choice of specification—should be examined more closely in future work.

Conclusion

The strength of this work is in the integration of an advanced mathematical framework, a
computational approach leading to a robust understanding of uncertainty, and the large, well-
executed trial that supplied the data. Our work highlights the benefits of underutilized, inter-
disciplinary collaborations between mathematical epidemiologists and infectious disease trial-
ists. This framework lays the groundwork for further analysis to better explain WASH RCT
results, asking questions about completeness, i.e., the degree to which interventions block
most or all transmission pathways, and how the effectiveness of the interventions may increase
with increasing community coverage, compliance, conditions, and efficacy. This framework
can be used in future work to examine policy-relevant questions about how these factors col-
lectively impact intervention effectiveness, and it can be adapted to a variety of other infectious
disease RCTs, e.g., vectorborne disease interventions. The application of mathematical model-
ing to estimate the impact of WASH interventions across different contexts—community cov-
erage, adherence, background infection prevalence, intervention efficacy—could improve
external validity and deliver policy-relevant findings to better inform public infrastructure
investment.

Supporting information

S1 Appendix. Supporting information. The supporting information includes the generic
SISE-RCT model equations, the WASH Benefits Bangladesh SISE-RCT model equations, and
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supplemental results, including distributions of likelihoods, timepoint- and arm-specific rela-
tive basic reproduction numbers, and fraction of the population enrolled in the study. Fig A.
Distribution of negative log-likelihood fits to the data for parameter samples in the prior and
posterior sample sets. Fig B. Prevalence of self-reported diarrhea (7-day recall) in WASH
Benefits comparing the baseline (red) to the combined midline (orange) and endline (yellow)
surveys, as well as posterior distributions of simulated prevalence (violin plots). Fig C. Distri-
bution of timepoint- and arm-specific relative basic reproduction numbers (R,). The dotted
line corresponds to 1.00, or no difference from the control arm at baseline. The solid lines give
the mean values of the distributions. Fig D. Posterior (grey) and prior (white) distributions for
the estimated fraction of the population enrolled in the study.
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