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Unitary p-wave interactions between 
fermions in an optical lattice

Vijin Venu1,5, Peihang Xu1,5, Mikhail Mamaev2,3, Frank Corapi1, Thomas Bilitewski2,3,4, 
Jose P. D’Incao2, Cora J. Fujiwara1 ✉, Ana Maria Rey2,3 ✉ & Joseph H. Thywissen1 ✉

Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to 
unconventional superconductors and superfluids1–3. The realization of these states in 
controllable quantum systems, such as ultracold gases, could enable new types of 
quantum simulations4–8, topological quantum gates9–11 and exotic few-body states12–15. 
However, p-wave and other antisymmetric interactions are weak in naturally 
occurring systems16,17, and their enhancement via Feshbach resonances in ultracold 
systems has been limited by three-body loss18–24. Here we create isolated pairs of 
spin-polarized fermionic atoms in a multiorbital three-dimensional optical lattice.  
We spectroscopically measure elastic p-wave interaction energies of strongly 
interacting pairs of atoms near a magnetic Feshbach resonance. The interaction 
strengths are widely tunable by the magnetic field and confinement strength, and  
yet collapse onto a universal curve when rescaled by the harmonic energy and length 
scales of a single lattice site. The absence of three-body processes enables the 
observation of elastic unitary p-wave interactions, as well as coherent oscillations 
between free-atom and interacting-pair states. All observations are compared both to 
an exact solution using a p-wave pseudopotential and to numerical solutions using an 
ab initio interaction potential. The understanding and control of on-site p-wave 
interactions provides a necessary component for the assembly of multiorbital lattice 
models25,26 and a starting point for investigations of how to protect such systems from 
three-body recombination in the presence of tunnelling, for instance using Pauli 
blocking and lattice engineering27,28.

The emergent behaviour of a quantum many-body system is funda-
mentally tied to the quantum statistics of its constituents. For pairs of 
identical fermions, the wavefunction must be exchange antisymmetric, 
which is found only in odd-L pairwise collision channels, where L is 
orbital angular momentum. Despite a well-understood connection 
between odd-L interactions and topological properties2,4–6,8,9,11,29, liquid 
3He remains the only laboratory example of well-established p-wave 
(L = 1) interactions. The discovery of tunable p-wave interactions in 
ultracold atoms18,20 was promising, but experimental efforts have so 
far been severely limited by enhanced three-body recombination, a 
process whereby three atoms collide to form a diatomic molecule, 
releasing enough kinetic energy to make all products escape confine-
ment18–24. The essential challenge for L > 0 systems is that wavefunction 
amplitude at short internuclear separation, where recombination 
processes are strong, is enhanced by centrifugal kinetics. Progress has 
been made in understanding few-body correlations7,12–15 and develop-
ing proposals towards overcoming this obstacle via wavefunction 
engineering27, including low-dimensional confinement30,31. Still, p-wave 
interaction energies between free atoms are yet to be measured directly 
or compared to predictions of any theory. Even at the level of two 

particles, the description of p-wave interactions by a Feshbach-tuned, 
energy-dependent scattering volume Ev( )32,33 has yet to be tested 
experimentally.

In this article, we report the first direct measurement and coherent con-
trol of the elastic p-wave interaction between two identical fermions in a 
multiorbital lattice. Central to this advance is the use of strong three- 
dimensional confinement to modify the wavefunction and to suppress 
three-body processes. Interactions are tuned using the magnetic Feshbach 
coupling6 between free-atom pairs and a molecular dimer channel.  
Our spectral resolution and orbital control allow us to transfer pairs of 
weakly interacting 40K atoms into strongly interacting two-atom complexes 
whose energies and wavefunctions separate them into repulsive and attrac-
tive branches. Within the two lowest branches we are able to reach the 
unitary limit, where v( )E  diverges. We demonstrate the coherence of the 
conversion process between non-interacting and strongly interacting 
atomic pairs by measuring Rabi oscillations between them, and find an 
oscillation frequency consistent with theory. Finally, we demonstrate that 
losses in the upper branch are limited by the intrinsic lifetime of the  
40K molecular dimer, and we measure lifetimes that are 50 times larger  
than observed previously for weakly confined p-wave dimers of 40K34.
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Our optical lattice system realizes an array of isotropic harmonic 
traps, each occupied by a pair of atoms with spin and orbital degrees 
of freedom (Fig. 1a). The spin state of a pair is M, ⟩∣S S , where = {S, T}S  
indicates either singlet or triplet spin symmetry, SM = {↑↑, ↓↓, ↑↓} are 
projections on the magnetic field axis, and ↑ and ↓ are the lowest hyper-
fine states of 40K. Tunable enhancement of p-wave interactions is pro-
vided by a Feshbach resonance for spin-symmetric pairs ∣T, ↑↑⟩  
(Methods). The motional state of a pair is described by the relative  
and centre-of-mass mode numbers n = {0, 1, …}rel  and n = {0, 1, …}CM , 
respectively. The centre of mass decouples from the collisional inter-
actions and remains in its motional ground state, nCM = 0. The relative 
mode number is Nn L= 2 +rel , where N  is the conventional radial exci-
tation number for a spherical harmonic oscillator. As the overall pair 
state must have odd exchange symmetry and the interacting spin state 

T, ↑↑⟩∣  is even, the motional state must have odd L, which implies 
nrel = 1, 3, … for L = 1 (p-wave). This is in contrast to s-wave-interacting 
spin singlet states, which can interact when prepared in the least ener-
getic motional mode (nrel = nCM = 0)35,36.

The magnetic field-dependent eigenstates of a T, ↑↑⟩∣  pair can be 
understood as the coupling of the odd-nrel motional modes to a molec-
ular state. We sketch the spectrum of the interacting pair in Fig. 1d. For 
fields far below the Feshbach resonance, the spectrum is given by a 
ladder with harmonic spacing 2ħω (corresponding to nrel = 1, 3, …), 
where ω is the trap angular frequency, and a molecular dimer state 
whose energy depends linearly on magnetic field. As each motional 
mode becomes near resonant with this dimer, the Feshbach coupling 
imparts a p-wave interaction energy shift and mixes the harmonic 
states. We label the resulting eigenstates of the interacting pair as 
branches {BR(0), BR(1), BR(2) … } in order of increasing energy i( )E . In this 
work, we probe the lowest energy branches, BR(0) and BR(1). As they are 
both adiabatically connected to the nrel = 1 mode, we use it as a common 

reference to define the on-site interaction energies Up
i( ), that is, 

E U ħω= +p
(0) (0) 5

2  and U ħω= +p
(1) (1) 5

2E .
We assemble the desired pair states by orbital excitation of a 

low-entropy spin mixture. First, S, ↑↓⟩∣  pairs in the lowest motional 
mode (nrel = nCM = 0) are created by loading a spin-balanced degenerate 
Fermi gas into a three-dimensional optical lattice of moderate depth 
(Methods). The lattice depth is then rapidly increased, which isolates 
atom pairs and prevents undesired three-body processes. An orbital 
excitation  accompanied by a spin flip  is created by a π-pulse from 
optical Raman beams37, whose detuning from the electronic excited 
state is chosen to minimize photoassociative loss of pairs (Methods). 
The pulse transforms S, ↑↓⟩∣  pairs into the spin-symmetric state 
∣T, ↓↓⟩ with a relative orbital excitation nrel = 1 (Fig. 1b).

Having engineered the required spin symmetry and orbital excita-
tion, we can create and measure strong p-wave interactions via 
radio-frequency (RF) manipulation. The double-spin-flip resonance 
condition between T, ↑↑⟩∣  and T, ↓↓⟩∣  is f f U h2 = 2 + /p

i
RF ZS

( ) , where  
fRF is the centre frequency of the RF pulse, fZS is the Zeeman splitting 
of ↑ and ↓ spins, and h is Planck’s constant. At resonance, the pulse 
transfers ∣T, ↓↓⟩  pairs to T, ↑↑⟩∣  through a second-order process 
via the virtual state T, ↑↓⟩∣  (Fig. 1b). Spin flips induced by the RF 
pulse are detected as changes in the ensemble magnetization 
obtained via time-of-flight imaging (Methods). Figure 1c shows 
repeated measurements with variable fRF and features three distinct 
spin-resonance peaks. The central feature corresponds to flipping 
an isolated (and thus non-interacting) spin and is used to calibrate 
the magnetic field strength. The two side features indicate success-
ful transfers of T, ↓↓⟩∣  pairs to interacting ∣T, ↑↑⟩ pair states in BR(0) 
and BR(1) with interaction energies U < 0p

(0)  and U > 0p
(1) , respectively. 

The observed spectra, such as Fig. 1c, constitute the first direct meas-
urements of the elastic p-wave interaction energy in isolated pairs, 
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Fig. 1 | Spectroscopy of p-wave interactions between spin-polarized 
fermions. a, Atoms with ↑ or ↓ spin are loaded into a harmonic-trap array 
formed by a deep three-dimensional optical lattice. The double-struck parabola 
represents the two-atom nrel motional degree of freedom. Pairs of atoms are 
shown in the non-interacting ground (nrel = nCM = 0) or first excited (nrel = 1, nCM = 0) 
motional mode. An applied magnetic field ( zB ˆ0 ) creates the Feshbach coupling 
between ↑ atoms. b, Measurement protocol. An optical Raman π-pulse converts 
singlet S, ↑↓⟩∣  pairs in the ground motional state into T, ↓↓⟩∣  with a motional 
excitation nrel = 1. An RF sweep, centred at fRF, then transfers some pairs to the 
interacting ∣T, ↑↑⟩ state through a two-RF-photon process. The off-resonant 
intermediate state ∣T, ↑↓⟩  is shown in the dashed box. c, The measured 

magnetization (here, at magnetic field 200.00(1) G and trap angular frequency 
ω = 2π × 129(2) kHz) exhibits three distinct spectroscopic features for varying 
RF centre frequency. The leftmost and rightmost peaks correspond to transitions 
to interacting states in the BR(0) and BR(1) branches, with interaction energies  
U p

(0) and U p
(1), as labelled. The solid line is a best-fit spectral function. Error bars 

represent the standard deviation of repeated measurements. d, The spectrum 
of interacting |T, ↑↑  pairs after subtracting the energy associated with the 
free-atom magnetic moments. The spectrum reflects mixing of the odd-nrel 
harmonic states with a magnetic dimer state. Coloured squares indicate the 
spectral peak locations from c, and stars indicate points with unitary p-wave 
interactions. AU, arbitrary units.
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complementing prior measurements of molecular binding energies 
in bulk34,38.

We probe the eigenspectrum of interacting p-wave atoms through 
RF spectroscopic scans at various trap frequencies and magnetic fields. 
The measured energies test the validity of an analytical treatment  
that uses the p-wave pseudopotential32,33 (PsP) to calculate the interac-
tion energy as a function of the energy-dependent scattering volume, 
 Ev( ) (Methods). At unitarity, Ev( ) diverges, but the interaction energy 
remains finite with U ħω= −p

(0)  and U ħω= +p
(1) . This resonant behaviour, 

in which the energy is independent of the microscopic details of the 
atomic interaction, is universal to harmonically trapped systems33,39. 
As shown in Fig. 1d, different branches of the energy spectrum attain 
unitarity at distinct magnetic fields that differ from the free-space 
resonance due to the energy dependence of the scattering volume.  
In Fig. 2a–c we compare the measured interaction energy to the PsP 
prediction, including a leading-order anharmonic correction (Meth-
ods). In both branches, we observe agreement across a wide range of 
interaction strengths, including in the unitary limit with the measured 
interaction energies attaining ± ħω for various trap frequencies.  
Figure 2d collects all data as ħω/E  versus Ea v/ ( )ho

3 , where a ħ μω= /ho  
is the harmonic oscillator length, μ = m/2 is the reduced mass and m is 
the atomic mass. The data collapse demonstrates the exclusive 

dependence of p-wave interaction energies on a single parameter, 
which implies the universal applicability of this result to any p-wave 
interacting system in the tight-binding limit.

Further insight is provided by comparing the wavefunctions of 
the PsP theory to those obtained numerically from an ab initio (AbI) 
interaction potential specific to 40K (Fig. 2e–g). At short length scales 
r ≲ 0.1 aho, which correspond to the characteristic size of the Feshbach 
molecular state, the PsP diverges while the AbI does not. However, as 
described in the Supplementary Information, after regularization with 
a short-range cut-off (at the van der Waals length), the PsP wavefunction 
is normalizable and accurately predicts the long-range wavefunction. 
Far from resonance, both the PsP and AbI wavefunctions match the 
non-interacting oscillator states (nrel = 1 in Fig. 2g and nrel = 3 in Fig. 2e).

Next, we demonstrate coherent manipulation of p-wave interacting 
pairs, which also probes the interacting wavefunctions. As shown in 
Fig. 3a, application of RF radiation under the two-photon resonance 
condition for the BR(1) branch results in an oscillating ensemble mag-
netization with a two-tone frequency character. The faster oscillation 
evident at short times corresponds to (off-resonant) ↑-to-↓ Rabi oscil-
lations of single spins (Fig. 3b); the slower oscillation persisting for 
longer time corresponds to resonant Rabi oscillations of pairs between 
∣T, ↓↓⟩ and ∣T, ↑↑⟩  (Fig. 3c). The oscillation frequency of the pairs is 
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Fig. 2 | Characterization of unitary and elastic p-wave interactions.  
a–c, The measured interaction energies (points) are shown versus magnetic 
field at three different trap frequencies ω, as labelled. Vertical error bars are 
full-width at half-maximum (FWHM) values from the best-fit spectral function. 
Solid lines are the PsP predictions for orbital angular momentum projections 
ML = − 1, 0, 1, including anharmonic corrections (Methods). d, When scaled by 
the harmonic oscillator angular frequency, the measured energies collapse 
onto a single universal curve as a function of inverse scattering volume, in units  
of the oscillator length aho. The black solid line is the harmonic PsP energy, and 
the coloured solid lines include anharmonic corrections, which are weakly 

sensitive to lattice depth. e–g, Representative spatial wavefunctions of the 
interacting pairs calculated for weakly attractive (v( )−1E  = –200 aho

–3) (e), 
near-unitary ( Ev( )−1 = –5 aho

–3) (f) and weakly repulsive (v( )−1E  = 270 aho
–3) (g) 

conditions. The solid blue lines are obtained from the PsP, and the red  
dashed lines from an AbI calculation (see Methods). The short-range 
divergence of the PsP wavefunction requires a cut-off to be normalizable.  
As e and g are in the non-interacting limit with nrel = 3 and nrel = 1 motional 
quanta, respectively, the corresponding oscillator states are shown as black 
dotted lines. Panel f corresponds to the unitary limit of divergent v( )E .
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sensitive to the wavefunction overlap η between the interacting and 
non-interacting states (Methods). The two-atom RF Rabi frequency 
also has a 2  enhancement above the single-atom coupling Ω1 due to 
constructive interference among pure spin-triplet states. In Fig. 3d, 
we compare the observed pair Rabi frequency to theoretical predic-
tions for a range of inverse scattering volumes, and find excellent agree-
ment. This measurement allows us to extract η directly, as shown in 
Fig. 3e. The observed agreement between theory and experiment 
demonstrates coherent control of the system and success of both the 
AbI and regularized PsP to predict the interacting wavefunction.

A final experiment probes the lifetime τ of the p-wave interacting 
pairs. In the absence of three-body recombination, the lifetimes are 
limited for 40K by inelastic two-body collisions of pairs of atoms at  
short interatomic separation (Fig. 4a), with a characteristic lifetime  
τd ≈ 3.4 ms (refs. 40,41) (Methods). The pair lifetime is measured with a 
double-pulse sequence (inset of Fig. 4b) in which ∣T, ↑↑⟩  pairs are 
created, held for a variable hold time and transferred back to ∣T, ↓↓⟩. 
The survival lifetime is extracted from the exponential decay of the 
ensemble magnetization, as shown in Fig. 4b for two different magnetic 
fields. Even though the strong lattice confinement increases the on-site 

atomic density, we find lifetimes in excess of 50 ms, which is 50 times 
longer than previously observed for free-space dimers34. The relatively 
long lifetime of the 199.2 G condition can be understood by its reduced 
probability (χ) for having small internuclear separation r ≪ aho where 
relaxation processes are strongest (Fig. 4c,d). Both AbI and regularized 
PsP wavefunctions allow us to calculate χ; as shown in Fig. 4e, these 
show excellent agreement with measured lifetimes using the simple 
relation τ = τd/χ, with a τd independent of lattice confinement. The 
observed agreement across all interaction energies demonstrates the 
full suppression of three-body recombination, the absence of band 
relaxation, the validity of both the AbI and PsP wavefunctions, and the 
calculation of τd. Figure 4f plots χ versus Ea v/ ( )ho

3 , which emphasizes 
the applicability of the wavefunctions to any p-wave system, even those 
(such as 6Li20,21,23,38,42) without the dipolar relaxation channel present 
in 40K T, ↑↑⟩∣  pairs40.

The observation, control and comprehensive understanding of 
strong p-wave interactions demonstrated here illuminate a path 
towards the assembly of new many-body states of matter. In a full lattice 
model, the measured Up

i( ) calibrates the on-site interaction, while lattice 
depth controls tunnelling between sites. For sufficiently small 
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Fig. 3 | Coherent manipulation of p-wave interacting pairs. a, Temporal 
oscillations in the magnetization are observed when applying an RF drive 
resonant with the two-photon ∣T, ↓↓⟩  to T, ↑↑⟩∣  transition. Here, the trap 
angular frequency is ω = 2π × 129(2) kHz, and the magnetic field is 200.00(1) G. 
A boxcar average with a 50 μs window is applied to the data for times less than 
200 μs for visual clarity. Error bars are the standard deviation of repeated data 
points. A two-frequency fit finds Ω = 2π × 22.7(4) kHz1

͠  and Ω͠ = 2π × 2.15(4) kHz2 , 
which we identify as one- and two-atom processes, respectively. b, Rabi 
oscillations caused by off-resonant coupling of single spins should occur with 
generalized Rabi frequency Ω Ω U= + ( /(2 ))1

2
p1

2 (1) ℏ͠ . An independent calibration 
gives the single-particle Rabi frequency Ω1 = 2π × 8.83(2) kHz. c, Rabi oscillations 
caused by on-resonant two-photon coupling of T, ↓↓⟩∣  to T, ↑↑⟩∣  occur with 

frequency Ω͠2 (Methods). The coupling strength between T, ↓↓⟩∣  and ∣T, ↓↑⟩ is 
Ω2 1, and the coupling strength between T, ↓↑⟩∣  and T, ↑↑⟩∣  is η Ω2 1.  

d, The measured pair oscillation frequency Ω͠2 varies with inverse scattering 
volume. Error bars are the fit uncertainty of the oscillation frequency. The solid 
and dashed lines are the predictions based on the AbI and PsP calculations, 
respectively (Methods). e, The wavefunction overlap η as a function of inverse 
scattering volume, inferred from the measured two-photon Rabi frequency  
of d. Error bars are the estimated statistical uncertainty of all experimental 
parameters combined with the fit uncertainty of Ω2

͠ . The solid and dashed  
lines are the overlap calculated using AbI and PsP wavefunctions, respectively 
(Methods).



266  |  Nature  |  Vol 613  |  12 January 2023

Article

tunnelling strength, losses might continue to be suppressed either 
through the quantum Zeno effect27 or by the energetic gaps to triple 
on-site occupation28. In two dimensions, the U < 0p

(0)  interactions 
observed here in BR(0) in the orbital angular momentum projection 
∣ML∣ = 1 channel are the precursors of a topological superfluid4–8 that 
features gapless chiral edge modes or ‘Majorana zero modes’ in vortex 
cores11,29. These modes are non-Abelian anyons that are predicted to 
offer unique opportunities for topological quantum computation and 
robust quantum memories2,11,29. Even a metastable many-body state 
would allow for the study of topological states in a quenched p-wave 
superfluid43. The U > 0p

(1)  interactions observed here are the precursors 
of orbital magnetism known from transition metal oxides44, as well as 
orbitally ordered Mott insulators in a multiband Fermi–Hubbard 
model8,45,46. Strong orbital interactions demonstrated in this work can 
also be used to engineer low-entropy states in a multiband lattice sys-
tem47 and a full gate-based control of entangled many-body states48. 
Finally, the universal nature of the observed interaction energies indi-
cates that they would be reproduced in other ultracold p-wave systems 
such as 6Li20,21,38,42 and ultracold fermionic molecules49,50.
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Methods

Spin and motional wavefunctions
The single-atom spin states ↑ and ↓ used in the experiment are adi
abatically connected to the low-field mf = −9/2 and mf = −7/2 states  
of the ground hyperfine manifold of 40K with total spin f = 9/2. The  
pair spin wavefunctions are given by ∣ ∣ ∣S, ↑↓⟩ = ( ↓, ↑⟩ − ↑, ↓⟩)/ 2, 
∣ ∣T, ↑↑⟩ = ↑, ↑⟩, T, ↓↓⟩ = ↓, ↓⟩∣ ∣  and ∣ ∣ ∣T, ↑↓⟩ = ( ↓, ↑⟩ + ↑, ↓⟩)/ 2 .  
The motional states of the pair are defined in terms of spherical har-
monic oscillator eigenstates for the relative atomic separation  
r (see Supplementary Information),
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Here N ∈ {0, 1, 2, …} is the radial excitation number, L ∈ {0, 1, 2, … } 
is the relative angular momentum and ML ∈ {−L, …, L} is the angular 
momentum projection along the magnetic field axis. The total number 
of motional excitations can also be characterized by a single quantum 
number Nn L= 2 + = 1, 3, …rel , as L = 1 for p-wave interactions.

State preparation and read-out
The degenerate Fermi gas is a balanced spin mixture of 40K in its lowest 
two hyperfine spin states created via sympathetic optical evaporation 
with 87Rb in a crossed optical dipole trap51,52. After evaporation, the gas 
typically contains 2 × 105 atoms with temperature 0.1 TF, where TF is the 
Fermi temperature.

The optical lattice potential is formed by orthogonal retro-reflected 
laser beams of wavelengths λxy = 1,054 nm in the x–y plane and λz =  
1,064 nm along the z-axis with beam waists w w w( , , ) = (60, 60, 85)x y z  μm. 
The potential depth of the lattice is parameterized in terms of the recoil 
energy of the xy lattice beams, E ħ k m= /2LR

2 2 , where kL = 2π/λxy and m is 
the mass of a 40K atom. The harmonic trap angular frequency of a lattice 
site ω is given by ħω E V E= 4 /R L R, where VL is the lattice depth. The lat-
tice depths are regulated to be isotropic and are verified by comparing 
amplitude-modulation spectroscopy to band structure. We estimate 
the lattice anisotropy to be less than 2%.

Isolated pairs of atoms in the S, ↑↓⟩ 0⟩ rel∣ ∣  state are created by ramp-
ing the lattice depth to 10 ER in 150 ms, waiting for 50 ms and then sup-
pressing tunnelling with a fast ramp to 60 ER in 250 μs. In  situ 
fluorescence imaging with a quantum gas microscope verifies that 
approximately 10% of the sites are doubly occupied. The lattice depth 
is then ramped to 200 ER in 100 ms, and the magnetic field along the z 
lattice direction is ramped to 197 G in 150 ms. Atom pairs in the 
∣ ∣S, ↑↓⟩ 0⟩ rel state are transferred to the ∣ ∣T, ↓↓⟩ 1⟩ rel state by a 65 μs 
Raman π-pulse which is detuned from the Zeeman splitting by a 
motional quanta and the on-site s-wave interaction energy of the 
∣ ∣S, ↑↓⟩ 0⟩ rel state.

To perform state read-out, the magnetic field is first ramped (in 50 ms)  
to 195 G where the atom pairs are weakly interacting. The resultant 
absolute spin populations of the ↑ and ↓ states are measured via 
absorption imaging after band mapping and a 15 ms time of flight.  
A double shutter imaging technique enables measurement of both 
spin populations in a single experimental realization.

Raman excitation
The Raman coupling is generated by two linearly polarized beams in 
the x–y plane whose propagation directions are oriented at 30° and 
60°, respectively, with the x and y lattice directions. A small angular 
deviation from the x–y plane allows excitations along the z motional 
degree of freedom, and thus ML = 0 features are present in the spectra. 
The single-photon detuning of each Raman laser beam is stabilized 
to −50.1 GHz from the D2 transition and is chosen to avoid undesired 
photo-association of pairs of 40K atoms at a single site.

RF spectroscopy
After preparing the non-interacting T, ↓↓⟩ 1⟩ rel∣ ∣  pair state, the lattice 
depth and magnetic field are ramped sequentially in 50 ms to their 
operating values as indicated in the main text. The RF spectroscopy 
implements the hyperbolic secant pulse shape, which is defined by the 
following time-dependent detuning δ(t) about the central frequency 
fRF, and Rabi frequency Ω(t):

Ω t Ω βt T( ) = sech (2 / ) (2)0 p

δ t δ δ βt T( ) = + tanh (2 / ). (3)c m p

Here, Ω0 is the peak Rabi frequency at resonance, which is essentially 
the single-particle Rabi frequency Ω1. Note that in the Rabi oscillation 
measurements, the Rabi frequency is fixed as a constant of Ω(t) = Ω1. 
In the expression of the detuning above, δm is the maximum absolute 
detuning with respect to the central detuning of δc/(2π) = fRF − fZS, and 
Tp is the characteristic pulse time. The dimensionless tuning parameter 
β sets the relative sharpness of the sweep. Typical experimental param-
eters are δm = 2π × 2.5 kHz, Ω0 = 2π × 8.8 kHz, β = 0.05 and Tp = 2 ms.

Feshbach resonance
In free space, T, ↑↑⟩∣  pairs of atoms have a p-wave magnetic Feshbach 
resonance at 198.30 G for ML = ±1, and 198.80 G for ML = 0. In the effec-
tive range approximation, the energy-dependent scattering volume 
v( )E  for each collisional channel is given by
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where vbg is the background scattering volume, Δ is the resonance width, 
B0 is the resonant magnetic field in free space, B is the applied magnetic 
field, μ = m/2 is the reduced mass and R(B) is the field-dependent effec-
tive range given by the linear expression R(B) = R0[1 + (B − B0)/Δr]. The 
resonance parameters for ML = 0 are v a= −(108.0 )bg 0

3 , Δ = −19.89 G, 
R0 = 49.4 a0 and Δr = 21.1 G. The resonance parameters for ML = ± 1 are 
v a= −(107.35 )bg 0

3, Δ = −19.54 G, R0 = 48.9a0 and Δr = 21.7 G41.

Pseudopotential
The p-wave interaction between two identical atoms can be computed 
via a regularized PsP32,33,53 given by

ℏ E
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m
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r
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12π ( )
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∂
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2
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where r is the relative position of the atoms and r = ∣r∣ their separation, 
δ(3) is the three-dimensional Dirac delta function and r∇

←
, ∇

→
r  are left-/

right-acting gradients, respectively. In principle, the energy-depend-
ent scattering volume v( )E  is different for the ML = ± 1 and ML = 0 chan-
nels due to dipolar interactions. Thus, the PsP should be separated into 
terms with spatial derivatives acting in the x–y plane and z direction 
(as the magnetic field points along z) with different scattering volumes. 
However, this does not lead to coupling between the ML channels. 
Therefore, the energies of the different channels are simply given by 
the solution of the isotropic case with the appropriate scattering  
volume.

An isotropic scattering volume permits an analytic solution for the 
energy E, which is given implicitly by32,33
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where Γ(z) is the gamma function. The corresponding spatial wavefunc-
tion can be written as33

ψ r
r
a

e U
ħω

r
a

r r

r r

( ) =
−

2
+

5
4

,
5
2

, >

0 ≤

(7)

r
a

int ho

−
2

2

ho
2 cut

cut

2

ho
2A

E

















where A is a normalization constant, U(a, b, z) is the confluent hyper-
geometric function of the second kind and rcut = 50 a0 is a cut-off used 
to treat the divergence as r → 0, obtained by comparing directly to AbI 
wavefunction calculations (see Supplementary Information).

Anharmonic corrections
The anharmonic correction to the PsP energy is approximated using 
first-order perturbation theory. We compute the expectation value of 
fourth-order Taylor expansion terms of the lattice trapping potential 
about the centre of a lattice site (see Supplementary Information). The 
resulting correction is
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The perturbative treatment may break down if the relative motional 
branches are split by exactly an integer multiple of ħω, which allows a 
resonant anharmonicity-enabled coupling to the centre-of-mass motion. 
This resonant coupling then strongly mixes the motional degrees of free-
dom resulting in a further splitting of each branch54. We do not observe 
such structure experimentally, although we do not rule out its presence. 
However, the good agreement and scaling collapse for our data suggest 
that such effects are relatively small for the parameter ranges probed.

Pair Rabi oscillations
The Rabi oscillation spin dynamics of an interacting pair is captured 
by the following three-level model (see Supplementary Information),
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written in the basis of T T T ψ{ , ↓↓⟩ 1⟩ , , ↑↓⟩ 1⟩ , , ↑↑⟩ ⟩ }rel rel int rel∣ ∣ ∣ ∣ ∣ ∣ . Here 

Ω1 is the single-photon Rabi frequency of the RF drive, while η is a spa-
tial wavefunction overlap between the non-interacting and interacting 
states (see Supplementary Information),
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In the limit of ≫ℏU Ωp
(1)

1, dynamics under this Hamiltonian are char-
acterized by a single frequency:
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Experimental measurements extract η from the above equation, as 
all other parameters are independently measured.

Lifetime prediction
The lifetime τ of the interacting state is limited by inelastic decay due 
to dissociation of the pair into unbound atoms. Dipolar interactions 
couple the interacting state |T, ↑↑ |1 |0rel CM to a lossy dimer state at 
short interatomic separation, which undergoes dissociation with a 
characteristic lifetime τd. The dimer lifetime for ML = +1 and ML = −1 is 
τ+1 = 8.7 ms and τ−1 = 2.1 ms, respectively41. Our motional excitation  
is predominantly along a single Cartesian lattice direction in the x̂ ŷ 
plane, which corresponds to an equal superposition of ML = +1, −1; the 
characteristic lifetime is thus τ τ τ= ( + )/2d

−1
+1
−1

−1
−1 , such that τd = 3.4 ms. 

The actual lifetime further depends on the short-range wavefunction 
probability χ. We theoretically predict χ from the interacting wavefunc-
tions by computing the overall probability up to a characteristic thresh-
old (see Supplementary Information). At all probed magnetic fields, 
we see a clear distinction between short- and long-range components, 
such as in Fig. 4c. The threshold is chosen to capture the short-range 
portion of the wavefunction only.
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