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Abstract

The locations of minerals and mineral-forming environments, despite being of great scientific importance and economic interest, are
often difficult to predict due to the complex nature of natural systems. In this work, we embrace the complexity and inherent
“messiness” of our planet’s intertwined geological, chemical, and biological systems by employing machine learning to characterize
patterns embedded in the multidimensionality of mineral occurrence and associations. These patterns are a product of, and therefore
offer insight into, the Earth’'s dynamic evolutionary history. Mineral association analysis quantifies high-dimensional
multicorrelations in mineral localities across the globe, enabling the identification of previously unknown mineral occurrences, as
well as mineral assemblages and their associated paragenetic modes. In this study, we have predicted (i) the previously unknown
mineral inventory of the Mars analogue site, Tecopa Basin, (ii) new locations of uranium minerals, particularly those important to
understanding the oxidation-hydration history of uraninite, (iii) new deposits of critical minerals, specifically rare earth element
(REE)- and Li-bearing phases, and (iv) changes in mineralization and mineral associations through deep time, including a discussion of
possible biases in mineralogical data and sampling; furthermore, we have (v) tested and confirmed several of these mineral
occurrence predictions in nature, thereby providing ground truth of the predictive method. Mineral association analysis is a predictive
method that will enhance our understanding of mineralization and mineralizing environments on Earth, across our solar system, and
through deep time.
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Significance Statement

The search for mineral resources and the quest for the underlying principles of their origins and distributions have been major pre-
occupations of geology for centuries. In the past, most discoveries have resulted from accumulated experience in the field and labora-
tory, implemented by perseverance and luck. Large and growing mineral data resources, coupled with the multidimensional
analytical capabilities of machine learning, facilitate a new data-driven strategy for mineral discovery, by which known associations
of suites of mineral species in distinctive geological settings allow prediction of as-yet-unknown deposits. These predictive association
methods, furthermore, hold the promise of elucidating mineral origins in the contexts of their tectonic, environmental, and perhaps
microbiological settings—insights that highlight the coevolving geosphere and biosphere.

Introduction better understand large-scale geologic processes and transitions,

Minerals contribute essential raw materials for a technological so-
ciety, while also providing the oldest surviving records from the
formation and evolution of our solar system and, therefore, the
only lasting evidence for many geologic events and ancient envi-
ronments. As mineralogical data resources grow, so do opportun-
ities for integration with other scientific domains and for
exploration of outstanding scientific questions. Motivations to

such as the initiation of plate tectonics, the timing and rate of for-
mation of the granitic crust, the gradual oxidation of the Earth’s
atmosphere, the mechanisms and distribution of ore system for-
mation, and the coevolution of the geosphere and biosphere,
have inspired researchers to characterize the spatial and tem-
poral diversity and distribution of mineral species. Extensive
and expanding mineralogical data resources enable predictive
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analytical methods, such as network analysis, cluster analysis,
and the methods of mineral ecology (1-5).

Here, we develop and apply mineral association analysis to
identify locations of as-yet-unknown mineral occurrences, depos-
its, or geologic environments and to predict the mineral inventory
at any given locality on the Earth’s surface or, if suitable data are
available, other planetary bodies (6, 7). Furthermore, results gen-
erated by this method can be explored, interpreted, and curated
using interactive visualizations built as part of this work. As a con-
sequence, machine learning methods hold the promise to predict
as yet undiscovered locations of mineral species or mineral-
forming environments, such as analogue sites, geologic settings
featuring specific paragenetic modes, or astrobiologically relevant
localities. We demonstrate that machine learning is able to con-
solidate multidimensional field and laboratory experience and
data, while limiting potential human-imposed biases and increas-
ing the efficiency of discovery. In this study, we present four use
cases employing association analysis, which is a machine learning
method that performs association rule learning (8-13) to predict
previously unknown mineral occurrences based on association
rules, and test the results to ground truth this powerful predictive
method.

Association analysis is not based simply on querying a data-
base to find a locality match to a list of minerals. Rather, mineral
association analysis predicts previously unknown localities, as
well as their probabilities of success, based on the simultaneous
analysis of numerous system attributes that have been derived
from characteristics of known mineral assemblages.
Consequently, association analysis exploits the power of multidi-
mensional machine learning methods to make predictions related
to mineral diversity and distribution through space and time.

By employing association rule learning and its metrics, mineral
association analysis can be used to answer many questions of sci-
entific interest, including the following: (i) What is the mineral in-
ventory at a location of interest? (ii) What are the most likely
locations to find a new occurrence of a specific mineral species?
(iif) What are the most likely locations to find a mineral assem-
blage corresponding to a certain geologic setting, planetary envir-
onment, or deposit type? (iv) How do the diagnostic association
rules differ for minerals from different geological time intervals?
In particular, the flexibility of association analysis allows re-
searchers interested in locating planetary analogue sites, explor-
ing and assessing economic resources, or collecting specimens
of a desirable mineral species, to identify locations that are not
currently known to host the mineral or mineral assemblage of
interest.

Results

Mineral occurrence matrix generation and data
subset selection

The mineral occurrence matrix used in this study was generated
from the Mineral Evolution Database (MED) (14-16), which incor-
porates 295,583 mineral localities, 45,472 of which have an associ-
ated age, representing 5,478 mineral species (as of 2020 October).
Mineral species are as defined by the International Mineralogical
Association (IMA)—a full list of the approved mineral species is
available at RRUFF.info/IMA. This combination of mineral species
and localities results in 810,907 mineral-locality pairs, of which
210,037 are dated. The large dimensionality of this data set makes
it computationally intensive to consume and analyze. Therefore,
we have chosen to subset the data to explore smaller, constrained

mineral systems and provide proof of concept. These subsets
represent distinct aspects of the large data set and help to high-
light relationships among different mineral environments. For
this preliminary exploration, we chose the following three min-
eral occurrence subsets:

Geographical subset: the United States

In this study, we selected the United States due to its high min-
eralogical diversity, well-documented and extensive geographic
coverage, and broad range of geologic environments, making
this region an optimal choice for exploration of mineral relation-
ships. There are 2,622 mineral species, 93,419 localities, and
8,139,004 association rules in the US subset.

Geochemical subset: U minerals

In this work, we examine uranium (U)-bearing mineral phases by
analyzing all mineral species (i.e. not only U-bearing phases) atlo-
calities at which one or more minerals with U as an essential
element occur. U minerals are of particular interest in nuclear en-
ergy and nuclear forensics applications, as well as for understand-
ing the redox history of various geological deposit types, including
deposits formed directly or indirectly through biological proc-
esses. The U-mineral subset contains 5,439 mineral species,
11,729 localities, and 60,589,982 association rules.

Temporal subset: Archean, Proterozoic, and Phanerozoic Eons

Here, we selected three time slices, the Archean Eon (>2.5 Ga),
Proterozoic Eon (2.5-0.54 Ga), and/or Phanerozoic Eon (<0.54 Ga),
and all minerals and mineral localities dated to those time peri-
ods. At each locality, we included only the minerals from the se-
lected time period, excluding any younger or older phases. This
subset allows researchers to examine mineral associations
through deep time and to compare mineral relationships at differ-
ent stages of planetary evolution, thereby enabling exploration of
questions related to the effects of biological evolution on mineral-
forming environments through time, specifically the influence of
the Great Oxidation Event (GOE) on mineral formation or how
the rise of the terrestrial biosphere affected ore body formation.
There are 2,683 mineral species, 1,498 localities, and 30,916,618
association rules in the Archean subset; 3,527 mineral species,
3,100 localities, and 52,435,569 association rules in the
Proterozoic subset; and 2,882 mineral species, 4,644 localities,
and 45,727,343 association rules in the Phanerozoic subset.

Mineral association rule generation
Association analysisis a machine learning method thatreveals re-
lationships among various items (e.g. mineral species) within the
data. This method analyzes cooccurrence and identifies rules
based on associations, from high correlation (i.e. strong associ-
ation) to weak or no correlation/association, among these items.
The method was first introduced by Agrawal and Srikant (1994)
(17), who presented two algorithms, Apriori and AprioriTid, to cre-
ate association rules. The Apriori algorithm uses a bottom-up ap-
proach where frequently cooccurring itemsets (e.g. mineral
assemblages) are extracted as candidates for testing against the
overall data set. The pattern and frequency of occurrence of an
itemset are used to generate rules that quantify the likelihood of
occurrence. In mineral association analysis, these rules can be
queried to predict the occurrence likelihood of a mineral or min-
eral assemblage (i.e. itemset) of interest.

Consider a locality and the set of mineral species that occur
there—this is referred to as a transaction in association analysis.
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The term transaction is derived from the algorithm'’s original and
popular use as recommendation systems in sales for anticipating
customer behavior based on purchase habits (e.g. which items are
frequently purchased together and which items are rarely or
never purchased together) (9). The set of transactions in a system
(e.g. a set of all localities and their mineral occurrences on Earth)
is combined into a transaction table, T. With T as the input, the
Apriori algorithm generates and characterizes lists of frequently
occurring itemsets (e.g. mineral assemblages), referred to as large
itemsets, L,, with the frequency cutoff value specified by a user-
defined support threshold (see probability metrics below), € (18). The
support threshold is determined by a combination of domain ex-
pert decision-making and computational feasibility. The algo-
rithm generates these lists of frequently occurring itemsets by
the following steps (Fig. 1) (18):

Step 1. Generate Ly _ 4

Each L, (large itemset, i.e. list of frequently occurring itemsets)
contains itemsets of a specific length, with itemset length denoted
as k. Inorder to create the first large itemset (step 1), the algorithm
first extracts all itemsets of length k — 1, support (see metrics be-
low) is then calculated for each itemset in the extracted list, and
those with a support greater than the support threshold, ¢, are
compiled into the first large itemset, Ly, _ ;.

Step 2. Generate Cy

Next, the algorithm extracts from T all candidate itemsets of
length k that contain the itemsets in L, _; and places them in a
candidate set, Cy.

Step 3. Generate Ly

The algorithm calculates support for each itemset in Cy, ex-
tracts itemsets that fall above ¢, and places the extracted itemsets
into a new large itemset, Ly.

Step 4. Iterate to generate Ly _q ... Ly, While Ly, # @.

[terate over steps 2 and 3 until step 2, Ci, ,, results in an empty
set, thus resulting in a series of large itemsets, L, _1 ... Ly p.

Note that once an item or itemset is determined to be below ¢,
that item(set) will not be considered in any subsequent candidate
sets [e.g. if the mineral itemset (abelsonite, tinnunculite) was
found to be below €in L, no itemset in C5 (or any subsequent can-
didate sets) with itemset (abelsonite, tinnunculite) would be con-
sidered by the algorithm] because if an itemset occurs too
infrequently, so too will any supersets of that itemset.

The resulting association rules take the form of if then state-
ments with a left hand side (LHS) of a mineral or minerals known
to occur at a locality and a right hand side (RHS) of a mineral or
minerals predicted to occur at a locality [i.e. (mineral A, mineral
B, mineral C) > (mineral D)]. The provided example can be read
as “If minerals A, B, and C occur at a locality, it is likely mineral
D will also be found at that locality.”

We use the R package “arules” to run the Apriori algorithm (19).
Hahsler (2017) (20) created an extension to the arules package
called “arulesViz” that visualizes the rules generated by the asso-
ciation rule learning algorithm.

Association rule likelihood metrics

Association rules are first constrained during generation by ad-
justable measures of significance and interest—the user sets the
thresholds for each metric in order to generate the desired list of
rules. Later, these same significance and interest metrics are
used to evaluate the likelihood of the prediction as well as to char-
acterize the statistical nature of cooccurrence (see Table 1). The
metrics used by the Apriori algorithm in the mineral association
analysis experiment (9) are as follows:

Support

Support is a measure of how frequently an itemset (e.g. mineral or
mineral assemblage) is observed in the data. Support for the item-
set X and itemset Y, Support (XUY), is the ratio of the number of
times they cooccur at a locality in the data set, frequency (XuY),
to the total number of localities in the data set, N.

Suppo‘rt(X U Y) = w .

Support provides a relative measure of how common the co-
occurrence of a specified set of minerals is within our data set,
providing some insight into the likelihood of finding this set of
minerals atlocalities where they are not currently known to exist.

Confidence

Confidence is a measure of the accuracy of a rule, which indicates
the probability of the occurrence of itemset Y, when itemset X oc-
curs. Confidence for the itemset X and itemset Y, confidence (X —
Y), is the ratio of the number of times they cooccur at a locality
in the data set, frequency (XuUY), to the number of times itemset
X occurs in the data set, frequency (X).

) _ Jrequency (XU'Y)
Confidence(X — Y) = “Frequeney
Confidence demonstrates how frequently the selected mineral
group occurs together, rather than separately, providing a prob-
ability for how likely one is to find one mineral cooccurring with
another elsewhere.

Lift
Lift is a measure of the statistical dependence of the rule over the
entire data set, by relating the observed frequency of occurrence of a
mineral itemset to the expected frequency of occurrence of the
unique items in the itemset, if the items were mathematically in-
dependent (21, 22). The higher the lift, the more “interesting” the
rule because the frequency of cooccurrence is higher than ex-
pected relative to the frequency of occurrence of the individual
items in the itemset across the system. The observed frequency of
occurrence of a mineral itemset is the support of the items co-
occurring [support (XuY)]. The expected frequency is the product
of the support of each unique item [i.e. support (X) * support (Y)].
Lift of item Y occurring when item X occurs, Lift (X — Y), is meas-
ured as the ratio of the support of the cooccurring items X and Y,
support (X uY), to the expected (independent) frequency of occur-
rence of items X and Y, support (X) * support (Y).

support (X U Y)
support (X) = support (Y)

Lift provides a means to characterize the “interestingness” or
strength of association of the mineral cooccurrence behavior. If
a combination of minerals occurs together more frequently than
one would expect if mineral cooccurrence was independent, this

LiftX - Y) =
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Fig. 1. Example of the first step in mineral association analysis. All possible itemsets are generated from the set (mineral A, mineral B, mineral C, and
mineral D), with infrequent (support threshold < 2/6; see Metrics section) itemsets excluded (shown as transparent).

Table 1. Likelihood metrics for the most frequent (support
threshold > 2/6) mineral associations from the example in Fig. 1.

Mineral 8 Mineral B Mineral €
4 “ 3
Mineral B Mineral &
“ “

Mineral C Mineral €
£} 13)

Rule Support Confidence Lift
(Mineral A) - (mineral B) 3/6 3/5 0.9
(Mineral A) — (mineral C) 3/6 3/5 1.2
(Mineral B) - (mineral A) 3/6 3/4 0.9
(Mineral B) — (mineral C) 2/6 2/4 1.0
(Mineral B) - (mineral D) 2/6 2/4 15
(Mineral C) - (mineral A) 3/6 3/3 1.2
(Mineral C) — (mineral B) 2/6 2/3 1.0
(Mineral D) — (mineral B) 2/6 2/2 1.5
(Mineral A, mineral B) — (mineral C) 2/6 2/3 13
(Mineral A, mineral C) —» (mineral B) 2/6 2/3 1.0
(Mineral B, mineral C) — (mineral A) 2/6 2/2 1.2

indicates a stronger association than random. Mineralization, of
course, is not random and is the result of the complex interplay
of chemical, physical, and evolutionary processes and materials
through deep time, which has generated high-dimensional pat-
terns of correlation (and anticorrelation) related to their

formational environments and subsequent weathering and alter-
ation. This metric enables researchers to identify mineral as-
semblages that show very strong affinity and potentially
signifying unique or interesting mineral-forming environments
or geologic histories.

These metrics can be used not only in statistical evaluation of
the data but also in gaining insight to the mineralizing processes
that led to the observed occurrence and cooccurrence relation-
ships. Support provides insight into how common a mineral
assemblage is: do we want to identify and investigate mineralogic-
al relationships that are ubiquitous across a planet, or are we in-
terested in focusing on rare mineralogical occurrences that
symbolize very unique paragenetic modes? Confidence enables
understanding of how rare a mineral assemblage is relative to
the overall behavior of the individual mineral species: do these
minerals form in many different environments and through
many different mechanisms, or is this the expected mineralizing
mode and therefore the type of geologic setting where we should
generally expect to find these phases? Lastly, lift provides a meas-
ure of the strength of this mineral cooccurrence relationship and
how statistically unexpected or “interesting” it is across the min-
eralizing system: do these minerals form together as a conse-
quence of the overall geochemical composition and physical
conditions of our planet, or is there another driving force, such
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as geologic processes or biology, that is leading to this stronger as-
sociation of mineral species?

Predicting mineral occurrence via mineral
association rules

Predicting the occurrence of any mineral species, mineral assem-
blage, mineralizing environment, and/or mineral inventory of any
locality is performed by mining and querying the mineral associ-
ation rules generated in the above sections. In this study, we gen-
erated association rules for each data subset listed above,
specifically the geographical, geochemical, and temporal subsets.
Here, we explore these rules and make predictions of which loca-
tions to find previously unknown minerals and mineral
inventories.

In order to make these predictions, we use the generated asso-
ciation rules to query the mineral occurrence data. To predict
minerals occurring at a specific locality, we first extract all min-
eral occurrences at that locality and compare them with our min-
eral association rules. In our example below, we predict minerals
that can be found at the Tecopa Basin in California, United States
of America. Due to computational limitations (see section on over-
coming big data problems), we can generate association rules of
up to four minerals only. Therefore, the LHS of the rule has only
three minerals. Thus, we take every three-item permutation of
minerals occurring at Tecopa Basin and find rules that predict
the likelihood of occurrence of an unknown mineral at the
locality.

To predict localities for a given mineral, we examine associ-
ation rules for the mineral of interest. In the two case studies be-
low, we have selected U minerals of geologic importance and
several critical minerals related to high-tech advancement. To
predict new localities of these mineral phases, we select rules
with the mineral of interest occurring on the RHS of the rule.
Next, we query our mineral localities to identify those that contain
all the minerals on the LHS of each rule but do not contain the
mineral of interest (RHS). We perform this query for each rule of
interest, generating a list of localities likely to contain the mineral
of interest. Several of these predictions have been confirmed since
their assertion in 2022 October—providing ground truth of the
predictive capacity of mineral association analysis.

Lastly, we can compare association rules and how they have
changed through deep time. In order to make this comparison,
we explore summaries of the association rules generated over
Archean, Proterozoic, and Phanerozoic Eons. We can do this by

Table 2. Mineral species predicted to occur at Tecopa Basin,
California—a Mars analogue locality.

Mineral Mineral formula Confidence Lift
Hematite* Fe?*,05 0.76 8.8
Quartz* Si0, 0.94 2.5
Kaolinite* AlLSi,05(0H), 0.75 233
Pyrite* Fe?*(S,)*~ 0.88 3.7
Gypsum* CaS®*0,-2H,0 0.74 18.1
Albite NaAlSi;Og 0.71 18.3
Magnetite* Fe?"Fe* ,0, 0.74 8.3
Chalcopyrite* Cu'*Fe**S3~ 0.74 45
Sphalerite Zn?+s%- 071 5.1

The mineral species likely to occur at Mars analogue site, Tecopa Basin, Inyo
Co., California, United States of America, along with the associated confidence
and lift metrics for the association rules on which these predictions are based.
For minerals with multiple relevant association rules, denoted by *, the highest
confidence and lift values were reported.

creating summary visualizations of the association rules and their
metrics (see examples below). We are also currently developing
metrics to evaluate change in association rules and methods to
compare association rule bases (see future work for more details)
(23).

Select results are shown below, and the full set of association
rules is provided at https:/www.odr.io/med-MAA.

Science Driver: Can we gain a better understanding of the mineralogy
of a Mars analogue location on Earth?

Query type: Mineral inventory at selected locality

Data subset: Geographical (USA)

Locality: Tecopa Basin, Inyo Co., California, USA (35°48'25.5"N, 116°
11'24.9"W)

Mindat ID: 255486

Rules: See supplementary material for complete list

Hyperparameters: Minimum support = 0.0002, minimum confidence =
0.7, maximum rule length =4

The site selected is a Mars analog environment in the Mojave
Desert. This site has been the focus of extensive chemical, min-
eralogical, and geological study, including that of the NASA
Mars 2020 rover scientific payload testing and ground truthing
(24). The Tecopa Basin site, located near the China Ranch in
Inyo County, California, is a paleolake environment with volcanic
ash and travertine deposits (25) with basalticlava flows in the near
vicinity. This environment is relevant to the recent Mars 2020
Perseverance rover landing site, Jezero crater, which is also thought
to be a paleolake emplaced within the basaltic terrain of Mars (26,
27). Further defining the mineralogy of this locality can offer in-
sightinto the processes and characteristics of this type of environ-
ment on Earth and, possibly, on Mars.

The minerals currently known to be found in this area are sapon-
ite [(Ca,Na)o_g(Mg,Fez*)3(Si,A1)4Ow(OH)2-4HQO], analcime (NaAlSi,
Og-H,0), calcite (CaCOs3), cristobalite (SiO,), montmorillonite [(Na,
Ca)o.3(A1,Mg)»S14010(0OH)»-nH,0], muscovite [KAly(SisAl)O10(0OH),,
opal (SiO,-nH,0), searlesite [NaBSi,Os(OH),], and tridymite (SiO,).
Based on examination of these mineral occurrences in the rules gen-
erated by association analysis of the mineralogy of the United
States, the minerals shown in Table 2 are likely to be found in this
locality and possibly in similar paleolake environments on Mars.
Some of these phases may be of astrobiological interest, given that
they can form through biomediated processes, specifically hema-
tite, pyrite, gypsum, magnetite, and sphalerite (28). Finding and fur-
ther characterizing these phases may offer insight into the geologic
and biologic history of this area while also providing information
about the potential astrobiological implications of identifying these
minerals on the Martian surface.

Science Driver: Where can we find locations to study oxidation-hydra-
tion alteration of uraninite?

Query: List of localities where a selected minerals can be found

Data subset: Geochemical (U)

Minerals: Rutherfordine (UO,COs), andersonite [Na>Ca(UO,)(CO3)s:
6H,0], schrickingerite [NaCas(UO,)(CO3)3(SO4)F-10H,0], bayleyite
[Mg,(U®0,)(CO5)5-18H,0], and zippeite [K,[(U°0) 4(S5°*04),0,(0H).]
(H20)4]

Rules: {Saleeite, Schoepite, TorbernitejJ=>{Rutherfordine}; {Bayleyite,
Natrozippeite, Schrockingerite}=>{Andersonite}; {Andersonite, Bayleyite,
Natrozippeite]=>{Schrickingerite};  {Carnotite,  Natrozippeite,
Schrockingerite}=>{Bayleyite}; {Carnotite, Chalcocite, Schrockingerite}
=>{Bayleyite}; {Andersonite, Schrockingerite, Uraninite}=>{Zippeite}

Hyperparameters: Minimum support = 0.002, minimum confidence =
0.7, maximum rule length =4
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Uranyl carbonates and uranyl sulfates represent different
stages of uraninite oxidation-hydration alteration (29-31).
During the initial stages of uraninite alteration, as the primary
minerals of the system oxidize, the system pH is buffered by the
dissolution of carbonates and alkali-element-containing minerals
(29). The dissolution of carbonates and uraninite in neutral to al-
kaline pH ground water results in uranyl carbonate complexes
forming in solution that can crystallize into uranyl carbonates
when the water evaporates. Minerals representative of this stage
include rutherfordine, andersonite, and schréckingerite. As alter-
ation of the primary minerals continues, the carbonates in the
system are eventually depleted and the primary sulfides oxidize
with the primary U minerals. The sulfuric acid released begins
acid mine conditions, and the dissolved sulfate will complex
with the uranyl ion. The uranyl-sulfate complexes can travel
some distance and often form ephemeral crusts on the walls of
mine adits (29).

Below, we give examples of likely new, currently unknown lo-
calities of selected U mineral phases, specifically those associated
with uraninite alteration, rutherfordine, andersonite, and
schrockingerite, as well as the two phases with the highest lift in
our data set, bayleyite, and zippeite (Fig. 2). Table 3 provides pre-
dictions of previously unrecognized localities of a mineral of inter-
est, including whether or not the prediction of that mineral
occurrence has been ground truthed since its assertion in 2020
October. A mineral at a locality is considered “ground-truthed”
when it has been discovered, published in the scientific literature,
and reported on the Mindat website.

Science Driver: Where can we find new deposits of critical minerals in
the United States?

Query: List of localities where a selected minerals can be found

Data subset: Geographic (USA)

Minerals:  Monazite-(Ce)  (CePOy4), allanite—(Ce)
*(51,0;) (Si04) O(OH)], spodumene (LiAlSi,Og)

Rules: {Elbaite, Rutile, Sphalerite}=>{Monazite-(Ce)}; {Gadolinite-(Y),
Microcline, Muscovite}]=>{Allanite-(Ce)}; {Beryl, Mitridatite, Pyrite}
=>{Spodumene}

Hyperparameters: Minimum support = 0.0002, minimum confidence
=0.7, maximum rule length =4

[CaCeAl,Fe?

Critical minerals are those deemed important to strategic and
technological development that have the potential for significant
supply chain disruptions in the future (32). These strategic materials
include rare earth element (REE) minerals and lithium minerals,
which are essential components in many high-tech devices and in-
frastructure, including green technologies such as batteries and
magnets used in wind turbines and high-speed rail. Here, we dem-
onstrate the ability to find new deposits of critical minerals in the
United States, specifically focusing on selected REE minerals,
monazite—(Ce), and allanite—(Ce), and spodumene. Monazite-
(Ce) (CePQ,) is one of the major focuses of REE mining and extraction
and, like all other REE-bearing minerals, does not only contain its
namesake element, Ce, but also bears a large proportion of other
REEs. Due to advances in REE silicate processing and extraction,
allanite—(Ce) [CaCeAl,Fe®*(Si,0,)(Si0,)O(OH)] represents a poten-
tially important future resource of REEs (33, 34). The United States
currently produces 15% of the world’s REEs, while thought to con-
tain only 2% of global REE reserves (35). Spodumene (LiAlSi,Og) is
the primary hard rock source of lithium, with the other major source
of lithium being brine extraction. The United States currently ac-
counts for 1% of global Li production, with 3.5% of the world'’s Li re-
serves and less and 10% of the world’s known Li resources (35).

Below, we give examples of likely new, currently unknown
localities of selected critical minerals, REE-bearing phases,
monazite—(Ce) and allanite—(Ce), and the Li-bearing mineral,
spodumene (Fig. 3). Table 4 provides predictions of previously un-
recognized localities of these critical minerals, including whether
or not the prediction of that mineral occurrence has been ground
truthed since its assertion in 2020 October.

Science Driver: How has mineralization and mineral associations

changed through deep time?
Query type: Subset and explore all rules from selected time periods

Data subsets: Archean, Proterozoic, Phanerozoic Eons

Hyperparameters:

Archean: Minimum support=0.009, minimum Confidence=0.7,
maximum rule length =4

Proterozoic: Minimum support =0.008, minimum Confidence =0.7,
maximum rule length =4

Phanerozoic: Minimum support = 0.004, minimum Confidence =0.7,
maximum rule length =4

Mineralization, mineralizing environments, and mineral as-
sociations have changed through deep time (2, 28). In an effort
to further characterize the changes in mineral occurrence
throughout the Earth’s history, here, we examine the mineral
association rules of selected time periods, specifically the
Archean Eon (>2.5 Ga), Proterozoic Eon (2.5-0.54 Ga), and
Phanerozoic Eon (<0.54 Ga). The Archean Eon was host to the
Earth’s earliest continental crust (36), the onset of plate tecton-
ics (37), and the most ancient forms of life (38). The Proterozoic
Eon saw the rise of global free oxygen (39), which dramatically
altered the near-surface chemical landscape and made way
for aerobic microorganisms and eukaryotes (40). The
Phanerozoic Eon, representing the shortest of the three time pe-
riods, has seen a transformation in the Earth’s surface, begin-
ning with the Cambrian explosion (41), which resulted in the
rapid biodiversification of multicellular life, moving through
several mass extinction events (42), glaciation periods (42, 43),
and the assembly and breakup of the last of the superconti-
nents, Pangea (44), on into the modern day, which has seen the
rise of humans and the Anthropocene Epoch (45, 46).

Lift represents the strength of association between mineral
groups, which offers insight into mineralizing systems, specifical-
ly (1) the diversity of mineral species and their modes of mineral-
ization, (ii) the number of mineralizing environments and
processes, and (iii) the impact of sampling bias. There are clear
differences between the distribution of lift across the three eons
(Fig. 4A-C). The Archean Eon (Fig. 4A) shows the most significant
skew toward high lift values, whereas the Phanerozoic Eon
(Fig. 4C) shows a strong skew toward low lift values, with the
Proterozoic (Fig. 4B) showing a moderate trend between the two
extremes. This decrease in mineral association strength could
be due to several, possibly overlapping, factors. These factors in-
clude the following: (i) the increase in mineralizing environments
and diversity of mineral species, (ii) the increasing ubiquity of
common minerals in the Phanerozoic, and (iii) a bias in sampling
and/or preservation that results in underrepresentation of rare
minerals and mineral occurrences in rare environments from old-
er terrains, overrepresentation of robust minerals resistant to
weathering and alteration in ancient samples, and an overall
overrepresentation of minerals of scientific (e.g. age dating) and
economic (e.g. ore bodies) significance. This unexpected decrease
in the strength of mineral associations on Earth from the Archean
to the Phanerozoic Eon opens a venue for exploration into the
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Fig. 2. Map of predicted new localities of selected U mineral species, rutherfordine, andersonite, schréckingerite, bayleyite, and zippeite (see Table 2).
Locations ground-truthed as of October 2021 are marked by a Mindat logo, whereas unverified localities are signified with a marker. An interactive Google

Earth map (*kmz) can be found in supplementary material.

drivers behind this change, several of which are highlighted
above. Future work will involve exploring better ways to charac-
terize the changes in mineral association rules (23) and explore
the effects of formational environments on the strength of min-
eral associations.

Discussion

Mineral association analysis adds a powerful predictive tool to the
arsenal of mineralogists, petrologists, economic geologists, and
planetary scientists. Through centuries of empirical observations,
Earth materials researchers have developed numerous “rules of
thumb” for discovering new deposits based on such diverse factors
as colorful secondary phases, unusual detrital minerals, diagnostic
geochemical anomalies, patterns of vegetation, and other environ-
mental indicators. Recognition of such tracers requires years of ex-
perience, close observation, and intuitive leaps to connect one set of
variables to others. Association analysis of mineral systems builds
on that long tradition by probing simultaneously numerous attrib-
utes of many different geological occurrences to yield a multidimen-
sional framework of associations far more comprehensive and
quantitative than that possible by human intuition alone.

We suggest that useful and revealing patterns of association lie
hidden in the extensive, multidimensional information of mineral
data resources—patterns that reflect the phase equilibria and
geochemical evolution of complex multicomponent systems.
Immediate applications of association analysis, as shown above,
include the following: (i) the prediction of new localities for target
mineral species, (ii) the prediction of new locations of paragenetic
environments of interest, including ore-forming processes and
planetary analogues, based on suites of minerals that signal these
regimes, (iii) the prediction of mineral inventories at localities of
interest, and (iv) the comparison of mineralization and mineral
occurrence relationships across different ages, tectonic settings,
climate zones, and other contextual variables.

Ultimately, we anticipate a time when the collective data of
centuries of Earth materials investigations will allow mineralogy
to transition from its traditional role as a descriptive science to a
more predictive endeavor. Implementation of the analytical tech-
niques and visualization methods of data-driven discovery are
central to that ambition because of the intrinsic multivariate
character of rocks and minerals. Most natural deposits incorpor-
ate a dozen or more major elements, with scores of more trace
and minor elements. The minerals of natural systems have been
subjected to a succession of changes in pressure and temperature,
exposed to diagenetic fluids, altered by tectonic processes, and, in
many instances, transformed by biological influences. Such
higher-dimensional complexities are not easily grasped by the un-
aided human mind but are the essence of data-driven discovery.

Future directions

Data science challenges and opportunities

Overcoming the “Big Data” problem: association analysis has es-
tablished itself as a valuable algorithm in the fields of marketing,
sales, and customer relations (8, 9, 47). Entering the era of Big
Data, these algorithms faced scalability issues that limited their
use to smaller data sets (i.e. “market baskets”) (11, 12). This limita-
tion led to the development of techniques, modifications, and
methods to make Apriori-like algorithms scalable to large data
sets (10, 12, 48), but most of the work on scalability has been in
scaling the number of transactions in the market basket data,
which is equivalent to scaling up the number of mineral localities,
but not the number of minerals in the system. As a consequence,
association analysis is currently too computationally intensive to
run this algorithm on all known mineral occurrences on Earth or
to allow predictions of localities for the thousands of rarer mineral
species that are currently known from 5 or fewer localities.

Our data set contains a large number of minerals in some local-
ities (up to 433 in a single locality and 5,476 minerals overall, as of
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Table 3. Predictions of new localities of selected U mineral species.

Mineral Rule Predicted localities Mindat Ground
D truthed?
Rutherfordine (Saleeite, schoepite, White's Mine, Rum Jungle, Batchelor, Coomalie Shire, 257,518 No
torbernite) > (rutherfordine) Northern Territory, Australia
Support = 0.002 Arcu Su Linnarbu, Capoterra, Cagliari Metropolitan City, 2,123 No
Sardinia, Italy
Confidence =0.74 Giudicarie Valleys, Trento Province, Trentino-Alto Adige, 130,590 Preliminary
Italy
Lift=61.4 Laguna District, Cibola Co., New Mexico, United States of 21,688 No
America
Andersonite (Bayleyite, natrozippeite, Deer Flat, White Canyon, White Canyon District, San Juan 46,083 No
schrockingerite) > (andersonite) Co., Utah, United States of America
Support =0.002
Confidence =0.92
Lift=89.0
Schrockingerite (Andersonite, bayleyite, Slick Rock District, San Miguel Co., Colorado, United States 73,134 Yes
natrozippeite) > (schréckingerite) of America
Support=0.002
Confidence =1.00
Lift=41.6
Bayleyite (Carnotite, natrozippeite, Parco Mine Group, Yellow Cat Mesa, Thompsons District, 183,008 Not
schrockingerite) > (bayleyite) Grand Co., Utah, United States of America
Support =0.002
Confidence =0.88
Lift=107.0
(Carnotite, chalcocite, Shinarump Nos. 1-3 Mines, Seven Mile District, Grand Co., 21,766 Not
schrockingerite) > (bayleyite) Utah, United States of America
Support =0.002
Confidence=0.91
Lift=111.6
Zippeite (Andersonite, schrockingerite, Predbotice Deposit, Predbortice, Kutna Hora District, 771 Yes
uraninite) > (zippeite) Central Bohemian Region, Czech Republic
Support=0.003 Rozn& I Mine, RoZna Deposit, RoZn4, 7dar Nad Sazavou 135,187 Nof
District, Vysoc¢ina Region, Czech Republic
Confidence=0.72 Eureka Mine, Castell-estad, La Torre De Cabdella, La Vall 53,316 No
Fosca, El Pallars Jussa, Lleida, Catalonia, Spain
Lift=21.1 Geevor Mine, Pendeen, St Just, Cornwall, England, UK 1,296 Not
Section 22 Deposit, Ambrosia Lake Sub-district, Grants 47,967 Nof
District, McKinley Co., New Mexico, United States of
America
Jim Thorpe, Carbon Co., Pennsylvania, United States of 212,583 No
America
Little Eva Mine, Yellow Cat Mesa, Thompsons District, 182,338 Nof

Grand Co., Utah, United States of America

This summary table provides the mineral species of interest, the association rule on which the prediction is based and its associated likelihood metrics (lift and
confidence), the predicted localities, their associated Mindat IDs, and whether or not each mineral-locality prediction has been ground-truthed since its assertion in
2020 October. Localities with an occurrence of the selected mineral at the county (or equivalent) level are denoted with'.

2020 October), which presents an as-yet-unsolved scalability
problem. Therefore, future work will include the scaling of associ-
ation analysis algorithms to accept large numbers of items in its
transactions (i.e. large combinations of minerals in query) and
to continue work in finding a solution to the long tail problem
(11) as it applies to mineral data (i.e. that many rare minerals oc-
cur at few localities). Progress in these areas will allow predictions
on larger data sets, including all of Earth’s mineralogy simultan-
eously, while reducing the support further to include rare miner-
als in the recommendations.

Evaluating association rules: while we have been using mineral
association rules to predict unknown mineral occurrences for a
given locality and to predict localities to find a given mineral, as-
sociation analysis and more specifically the association rule min-
ing are inherently an unsupervised method used to generate
association rules based on cooccurrence data. Thus, most of the
metrics used to evaluate the results of association analysis

methods focus on either the ability of the model to ingest large
amounts of data (49), or using a metric-based comparison of vari-
ous algorithms used for association rule mining (50), or on evalu-
ating the rules mined to more efficiently generate association
rules (51). However, when patterns generated in an unsupervised
method are used to predict the occurrences of entities such as
minerals, there needs to be a way to evaluate the predictions
made by the model. Because there is very little work done in this
research area, we are currently developing a new method to
evaluate the results of association rules, specifically when these
rules are used in a predictive setting (23).

Characterizing mineral systems

The algorithms can further be expanded by including information
beyond mineral cooccurrence, such as tectonic settings, geologic
parameters, formation ages, and other attributes (e.g. climate
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Fig. 3. Map of predicted new localities of selected critical minerals, monazite—(Ce), allanite—(Ce), and spodumene (see Table 3). Locations ground-truthed
as of October 2021 are marked by a Mindat logo, whereas unverified localities are signified with a marker. An interactive Google Earth map (*.kmz) can be

found in supplementary material.

zones, vegetation patterns, microbial metagenomes, and ground-
water chemistry) to further aid predictions. These additional pa-
rameters and characteristics will further increase the precision
of the association rules and will result in more accurate and in-
formed predictions. Addition of these locality attributes will also
expand the type of predictions that can be made—currently, we
perform queries based on minerals and mineral assemblages,
but with the proposed advances, we will be able to query the
rule base on tectonic setting, geology, age, chemistry, and other
attributes, providing previously unknown information about
poorly characterized mineral occurrences.

Reaching the Solar System

Likewise, these data sets, algorithms, and predictions can be ex-
tended to other terrestrial worlds, particularly Mars, the Moon,
Vesta, and other bodies for which we have mineralogical informa-
tion (e.g. from meteorites, returned sample data, surface mission
analyses, and remote sensing observations). With the data cur-
rently incorporated in this method, we can identify planetary ana-
log environments on Earth, but with the inclusion of
mineralogical profiles of other planets, moons, and asteroids, we
will be able to predict the location of minerals of interest on those
bodies. In addition to furthering our understanding of the environ-
ments as well as the geological and astrobiological histories of
other planetary objects, these analyses will aid in landing site se-
lection during future mission planning as it will allow for the tar-
geting of specific locations of geological, geochemical, and
astrobiological relevance. In advancing these facets, mineral asso-
ciation analysis, specifically the inclusion of contextual data and
the extension to other celestial objects, has the potential to be-
come the most advanced mineralogical tool for exploring the

geology, geochemistry, and astrobiology of our planet and other
planetary bodies in our solar system.

Expanding beyond minerals

Additionally, the application of this method is not restricted
solely to mineral associations but can be applied to cooccurring
fossils, microbes, molecules, and other attributes of geological
environments. The extendibility and transferability of this asso-
ciation analysis method make it widely applicable and impact-
ful in many realms of data-driven discovery of evolving Earth
and planetary systems. Furthermore, a significantly more ambi-
tious exploration using this method would be the combining of
mineral and microbe occurrences, characterized by their phys-
ical, chemical, biological, and geological parameters. For ex-
ample, rules generated using this method could elucidate roles
that mineral occurrences play in microbial populations and
functions, as well as roles of microbial communities in modify-
ing mineral-forming environments, thus offering new insight
into the coevolution of the geosphere and biosphere in planetary
systems.

Materials and methods

Data resources

In recent years, efforts have been made to collect, curate, and
make publicly available mineralogical and geochemical data re-
sources existing in peer-reviewed literature, supplementary ta-
bles, and dark sources, such as undigitized journals and
spreadsheets on private hard drives. These data collection efforts,
such as the RRUFF Project (rruff.info), Mindat (mindat.org), and
EarthChem (earthchem.org), are driven by unanswered scientific
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Table 4. Predictions of new localities for selected critical minerals.

Mineral Rule Predicted localities MindatID Ground
truthed?
Monazite—(Ce) (Elbaite, rutile, Jensen Quarry, Jurupa Mts, Jurupa Valley, Riverside Co., California, United 3,525 Yes
sphalerite) > [monazite—(Ce)] States of America
Support = 0.0002 U. S. Route 7 Expressway, Brookfield, Fairfield Co., Connecticut, United 213,273 No
States of America
Confidence=0.76 Glastonbury, Hartford Co., Connecticut, United States of America 24,899 Yes
Lift=222.4 East Hampton, Middlesex Co., Connecticut, United States of America 23,094 Yes
Haddam, Middlesex Co., Connecticut, United States of America 4,574 Yes
Strickland Quarry, Strickland Pegmatite, Collins Hill, Portland, Middlesex 3,708 Yes
Co., Connecticut, United States of America
Mount Mica Quarry, Paris, Oxford Co., Maine, United States of America 3,784 Yes
Topsham, Sagadahoc Co., Maine, United States of America 3,792 Yes
Butte Mining District, Silver Bow Co., Montana, United States of America 3,873 No
Hiddenite, Alexander Co., North Carolina, United States of America 4,034 Yes
Ray Mica Mine, Hurricane Mountain, Burnsville, Spruce Pine District, 5,494 Yes
Yancey Co., North Carolina, United States of America
Cornwall Mines, Cornwall Borough, Lebanon Co., Pennsylvania, United 3,653 No
States of America
Custer District, Custer Co., South Dakota, United States of America 4,111 Preliminary
Etta Mine, Keystone, Keystone District, Pennington Co., South Dakota, 4,106 Yes
United States of America
Rotten Granite Quarries, Wausau Intrusive Complex, Marathon Co., 26,807  Preliminary
Wisconsin, United States of America
Allanite—(Ce) [Gadolinite—(Y), microcline, Little Rock, Pulaski Co., Arkansas, United States of America 24,253 Yes
muscovite] > [allanite-(Ce)]
Support = 0.0002 San Gabriel Mts, Los Angeles Co., California, United States of America 28,941 Yes
Confidence =0.83 Commercial Quarry, Sky Blue Hill, Crestmore Quarries, Crestmore, 6,801 Yes
Riverside Co., California, United States of America
Lift=249.4 Mountain Pass Mine, Mountain Pass District, Clark Mountain Range, San 11,616 Yes
Bernardino Co., California, United States of America
Jamestown District, Boulder Co., Colorado, United States of America 28,929 Yes
Eight Mile Park Pegmatite District, Fremont Co., Colorado, United Statesof =~ 14,217  Preliminary
America
Clear Creek Pegmatite Province, Jefferson Co., Colorado, United States of =~ 66,742 Yes
America
Haddam, Middlesex Co., Connecticut, United States of America 4,574 Yes
Eureka District, Lemhi Co., Idaho, United States of America 39,586 No
Lemhi Pass District, Lemhi Co., Idaho, United States of America 39,593 Nof
McDevitt District, Lemhi Co., Idaho, United States of America 39,596  Preliminary
Blueberry Mountain Quarry, Woburn, Middlesex Co., Massachusetts, 4,516 Yes
United States of America
Marquette Iron Range, Marquette Co., Michigan, United States of America 125,421 No
Fitting District, Mineral Co., Nevada, United States of America 14,359 No
Franklin Mine, Franklin, Franklin Mining District, Sussex Co., New Jersey, 8,541 Yes
United States of America
Petaca District, Rio Arriba Co., New Mexico, United States of America 21,886 No
Picuris District, Taos Co., New Mexico, United States of America 21,698 Yes
Harding Mine, Picuris District, Taos Co., New Mexico, United States of 13,724 Yes
America
De Kalb Township, St. Lawrence Co., New York, United States of America 23,672 Nof
Spodumene (Beryl, mitridatite, State Route 8 And State Route 118 Interchange, Harwinton, Litchfield Co., 253,331 No
pyrite) > (spodumene) Connecticut, United States of America
Support =0.0005 Anderson No. 1 Mica Mine, East Hampton, Middlesex Co., Connecticut, 6,782 No'
United States of America
Confidence =0.70 Estes Quarry, West Baldwin, Baldwin, Cumberland Co., Maine, United 6,164 Nof
States of America
Lift=169.6 Ryerson Hill Quarries, Paris, Oxford Co., Maine, United States of America 6,101 Yes
Lookout Quarry, Rumford, Oxford Co., Maine, United States of America 193,451 Nof
Lord Hill Quarry, Stoneham, Oxford Co., Maine, United States of America 3,782 Nof
Palermo No. 1 Mine, Groton, Grafton Co., New Hampshire, United Statesof 3,942 No
America
Palermo No. 16 Mine, Groton, Grafton Co., New Hampshire, United States 77,251 No
of America
Palermo No. 2 Mine, Groton, Grafton Co., New Hampshire, United States of 8,928 No
America
Bull Moose Mine, Custer, Custer District, Custer Co., South Dakota, United 4,107 Nof
States of America
Tip Top Mine, Fourmile, Custer District, Custer Co., South Dakota, United 4,122 Nof
States of America
Big Chief Mine, Glendale, Keystone District, Pennington Co., South Dakota, 4,105 Nof

United States of America

This summary table provides the mineral species of interest [monazite-(Ce), allanite—(Ce), and spodumene], the association rule on which the

prediction is based and its associated likelihood metrics (lift and confidence), the predicted localities, their associated Mindat33 IDs, and whether or

not each mineral-locality prediction has been ground-truthed since its assertion in 2020 October. Localities with an occurrence of the selected
mineral at the county (or equivalent) level are denoted with t.
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Fig.4 A) The distribution of mineral association lift in the Archean Eon, B)
the Proterozoic Eon, and C) the Phanerozoic Eon. Lift values are
normalized between 0 and 100 for comparison between time periods.
Frequency is the number of mineral association rules within a given range
of lift.

questions related to the formation and evolution of our planet and
other planetary bodies in our solar system. FAIR (findable, access-
ible, interoperable, and reusable) (52, 53) data resources are foun-
dational for successful data-driven scientific exploration. Below,
we describe the databases employed in this study.

The IMA list of mineral species

The IMA list of mineral species (RRUFF.info/IMA) is part of the
RRUFF Project (54)—a mineral library and series of databases with
the goal of providing robust, diverse mineralogical data, including
high-quality chemical, spectral, and diffraction data that is openly
available for scientific research. In addition to the IMA list of ap-
proved mineral species, the RRUFF Project also houses the
American Mineralogist Crystal Structure Database (AMCSD;
RRUFF.geo.arizona.edu/AMS/amcsd.php), the Evolutionary System
of Mineralogy Database (ESMD; odrio/ESMD), the Mineral
Properties Database (MPD; odr.io/MPD), mineral-locality age infor-
mation (see Mineral Evolution Database section below), and more.

The IMA list allows users to search the nearly 5,829 mineral species
(as of 2022 August) by name, chemical composition, unit cell param-
eters and crystallography, crystal structure group, paragenetic
mode, and the availability of associated data, including crystal
structure files in the AMCSD or direct RRUFF Project analyses.
This database also provides useful information about each min-
eral species, including composition, oldest known age, and num-
ber of documented localities on Earth, all of which can be
downloaded in a number of machine-readable file formats.
Lastly, this site offers an interface for querying a number of other
websites and databases, including the Handbook of Mineralogy,
Mindat, and the MED.

The Mineral Evolution Database

The MED (RRUFF.info/Evolution) (14-16, 55) was created to support
studies in mineral evolution and ecology, focusing on characterizing
and understanding the spatial and temporal mineral diversity and
distribution in relation to geologic, biologic, and planetary processes
(2, 3,56-62). The MED contains mineral locality and age information
extracted from primary literature and the mineral-locality database,
mindat.org. As of 2020 February 3, 16,553 unique ages for 6,483 dir-
ectly dated localities, documenting 810,907 mineral-locality pairs
and 210,037 mineral-locality-age triples, are available in the MED.
These data have been curated and documented to maximize the ac-
curacy and transparency of age associations, which include data on
specific mineral formations, mineralization events, element concen-
trations, and/or deposit formations. The MED interface allows down-
load in various file formats and many sorting and displaying options.

Mindat.org

Mindat.org is an interactive mineral occurrence database with
mineral localities from around the globe, as well as Apollo
Lunar samples and meteorites. Mindat contains nearly 400,000 lo-
calities and over 1.4 million mineral-locality pairs (2022 August).
The majority of mineral occurrence information on mindat.org
is from published literature, but a crowd-sourcing option also ex-
ists, by which users can add localities, mineral-locality pairs, pho-
tographs, and references. The MED directly interfaces with
Mindat, incorporating mineral-locality pair information and pro-
viding URL links to relevant Mindat locality pages.

Global Earth Mineral Inventory

The Global Earth Mineral Inventory (GEMI) is a faceted, searchable
knowledge graph that allows interactive access to the MED,
Mindat, and various other mineralogical data resources (55). GEMI
is a Deep Carbon Observatory (DCO) data legacy project designed
to integrate and provide access to the diverse data types collected
in conjunction with the DCO’s broad range of scientific driving ques-
tions (55). GEMI supports and facilitates scientific discovery by mer-
ging DCO data products, such as the MPD and MED, into a digestible,
accessible, and user-friendly format for exploration, statistical ana-
lysis, and visualization. The GEMI data service can be found at
https://doi.org/10.5281/zenodo.7897248.

Data processing

The data used in this paper were retrieved from the MED (14-16),
which contains information on mineral occurrences, their local-
ities with their geographical coordinates, and age information
for many mineral-locality occurrences. Cooccurrence matrices
were generated from subsets of these data using the “plyr” pack-
age (63).
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