Applied Computing and Geosciences 19 (2023) 100126

Contents lists available at ScienceDirect

Applied Computing and Geosciences

journal homepage: www.sciencedirect.com/journal/applied-computing-and-geosciences

ELSEVIER

Geoweaver_cwl: Transforming geoweaver Al workflows to common
workflow language to extend interoperability

Amruta Kale?, Ziheng Sun ¢, Chao Fan?, Xiaogang Ma ™"

@ Department of Computer Science, University of Idaho, Moscow, ID, 83844, USA

Y Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA, 22030, USA

¢ Department of Geography and Geoinformation Science, George Mason University, Fairfax, VA, 22030, USA
94 Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, 20015, USA

ARTICLE INFO ABSTRACT

Keywords: Recently, workflow management platforms are gaining more attention in the artificial intelligence (AI) com-
Al workflows munity. Traditionally, researchers self-managed their workflows in a manual and tedious way that heavily relies
Explainability on their memory. Due to the complexity and unpredictability of AI models, they often struggled to track and
g;i:ziz;ecn:y manage all the data, steps, and history of the workflow. AI workflows are time-consuming, redundant, and error-

prone, especially when big data is involved. A common strategy to make these workflows more manageable is to
use a workflow management system, and we recommend Geoweaver, an open-source workflow management
system that enables users to create, modify and reuse AI workflows all in one place. To make our work in
Geoweaver reusable by the other workflow management systems, we created an add-on functionality geo-
weaver_cwl, a Python package that automatically converts Geoweaver Al workflows into the Common Workflow
Language (CWL) format. It will allow researchers to easily share, exchange, modify, reuse, and build a new
workflow from existing ones in other CWL-compliant software. A user study was conducted with the existing
workflows created by Geoweaver to collect suggestions and fill in the gaps between our package and Geoweaver.
The evaluation confirms that geoweaver_cwl can lead to a well-versed Al process while disclosing opportunities
for further extensions. The geoweaver_cwl package is publicly released online at https://pypi.org/project/g
eoweaver-cwl/0.0.1/.

Common workflow language

Recent interests in explainable artificial intelligence (XAI) and
trustworthy artificial intelligence (TAI) have achieved great momentum

1. Introduction

We are witnessing a widespread adoption of artificial intelligence
(AD) and machine learning (ML) in our everyday life. The recent success
of deep learning (DL) has largely contributed to the huge success of Al/
ML models. DL algorithms are widely used in mission-critical applica-
tions like healthcare, autonomous robots and vehicles, image classifi-
cation, and detection. Despite the significant improvement in
performance and predictions, the black-box nature of DL algorithms can
raise social and ethical questions about their operations and results.
Even the programmer designing the complex AI/ML model finds it
difficult to gain insight into an internal system that is often opaque. This
issue has extended the research focus from improving accuracy to
explainable and interpretable ML models (Doshi-Velez et al., 2017;
Gilpin et al., 2018; Adadi and Berrada, 2018; Wing, 2020; Sun et al.,
2022).

in making AI/ML models more explainable, interpretable, and trans-
parent (Adadi and Berrada, 2018; Rudin, 2018, 2019; Wing, 2020). XAI
proposes a shift toward more transparent Al It aims to develop a set of
strategies to make ML models more explainable while maintaining their
high predictive accuracy (Ribeiro et al., 2016; Gunning and Aha, 2019).
As the field of XAI continues to expand, it is important to develop new
research strategies that include the provenance of upstream steps and
history model runs. The diverse nature of AI/ML models in the field of
XAI requires a multi-disciplinary approach, and in our previous papers,
we highlighted the importance of provenance documentation and its
benefit for AI/ML models (Kale et al., 2023; Kale and Ma, 2023). We
suggest that adopting approaches and methods from the field of prov-
enance will help to generate resourceful explanations and improve
reproducibility (Ma et al., 2017; Zeng et al., 2019; Kale et al., 2023).

* Corresponding author. Department of Computer Science, University of Idaho, Moscow, ID, 83844, USA.

E-mail address: max@uidaho.edu (X. Ma).

https://doi.org/10.1016/j.acags.2023.100126

Received 19 November 2022; Received in revised form 31 May 2023; Accepted 7 June 2023

Available online 14 June 2023

2590-1974/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://pypi.org/project/geoweaver-cwl/0.0.1/
https://pypi.org/project/geoweaver-cwl/0.0.1/
mailto:max@uidaho.edu
www.sciencedirect.com/science/journal/25901974
https://www.sciencedirect.com/journal/applied-computing-and-geosciences
https://doi.org/10.1016/j.acags.2023.100126
https://doi.org/10.1016/j.acags.2023.100126
https://doi.org/10.1016/j.acags.2023.100126
http://creativecommons.org/licenses/by/4.0/

A. Kale et al.

Provenance provides transparency into the data processing steps,
allowing researchers to understand how the data was created and pro-
cessed. This enables researchers to reproduce the results by repeating
the same steps, ensuring that the results are reliable and can be trusted.
Additionally, provenance can be utilized for quality control purposes by
allowing researchers to detect errors or inconsistencies in the data
processing steps. This helps ensure that the data is of superior quality
and that the outcomes are trustworthy and reproducible.

Scientific workflow management systems like Kepler (Altintas et al.,
2004), DataRobot (DataRobotCloud, 2012), Datatron (Datatron, 2016),
Metaclip (Bedia et al., 2019), Amazon SageMaker (Das et al., 2020), and
Geoweaver (Sun et al., 2020) are widely utilized for data analysis,
providing a means for informed decision-making, and promoting inno-
vation. These tools provide several ways to explore the provenance re-
pository by tracking model activity, recording changes in the data and
model, and outlining best practices for data processing. However, their
growing popularity has led to concerns regarding collaboration and the
possibility of hindering workflow reusability and portability. To address
this concern, we support a standardized approach to computational
workflows that fosters collaboration and mitigates these risks. This
paper highlights the significance of Common Workflow Language
(CWL), a practical set of standards that enables the description and
sharing of computational workflows among a diverse community of
users in various fields of science and engineering.

This paper provides an overview of the CWL standards and our new
Python package, geoweaver cwl that transform Geoweaver AI/ML
workflows into CWL scripts. We emphasize the importance of stan-
dardization in promoting collaboration and workflow portability and
highlight how CWL can provide a practical solution to these challenges.
By promoting the adoption of CWL standards and our geoweaver_ cwl
package, we aim to advance the field of computational workflows and
promote their effective use in scientific research and engineering. This
paper will describe how the tool is developed and implemented in our
use cases and is organized as follows. In section 2, we first describe an
overview of CWL, followed by the conceptual framework of Geoweaver,
and then describe the architecture of geoweaver_cwl. In section 3, we
demonstrate our Python package by applying a use case from the Geo-
weaver platform and assess the quality of the package and its influence
in Geoweaver. In section 4, we discuss the importance of adopting CWL
standards and highlight the future direction of our work. Finally, we
conclude with a few additional remarks.

2. Technical framework of the geoweaver cwl package
2.1. An overview of the common workflow language

CWL is a community standard to describe command-line-based
workflows (Amstutz et al., 2016). It offers a typical but simplified set
of generalizations that are commonly implemented in many popular-
workflow management systems. The language’s declarative format en-
ables users to describe the process of executing diverse software tools
and workflows through their command-line interface. Previously, to link
the command-line tools researchers need to write shell scripts. Although
these scripts offer an efficient approach to accessing the tools, writing,
and maintaining them requires specialized knowledge. As a result, re-
searchers spend more time maintaining the scripts than conducting their
research (Sun et al., 2022). However, with the increase in workflow
popularity, the number of workflow management tools has increased,
and each of them has its standards for specifying the tools and work-
flows. This has reduced the portability and interoperability of these
workflows. CWL aims to reduce the barrier to researchers using these
technologies by providing a standard to unify them. CWL standards
explicitly support the usage of container technologies like Docker, Sin-
gularity, Shifter. These container technologies allow encapsulation of
software dependencies and system configuration ensuring that the
workflow can be executed in a consistent and reproducible environment,

Applied Computing and Geosciences 19 (2023) 100126

regardless of the underlying system (Pahl et al., 2017). In addition to
providing a consistent execution environment, container technologies
also facilitate the sharing and reuse of workflows. By packaging the
workflow and its dependencies in a container image, it can be easily
shared and executed on other systems without the need to install addi-
tional software or configure the environment. Overall, container tech-
nologies play a critical role in ensuring the reproducibility and
portability of CWL workflows.

2.2. Conceptual framework of the geoweaver workflow management
system

Geoweaver is a unique platform designed for NASA’s Earth
Observing System Data and Information System (EOSDIS), which pro-
vides earth scientists with the ability to manage, share, replicate, and
reuse artificial intelligence/machine learning (AI/ML) workflows. The
platform is equipped with a user-friendly graphical interface that en-
ables individuals with limited programming experience to create and
execute workflows with ease. Geoweaver offers a comprehensive range
of Al workflows that include data preprocessing, training, testing of Al
algorithms, and post-processing of results into an ad hoc automated
workflow, which is particularly useful for Al practitioners (Sun et al.,
2020).

One of the unique features of Geoweaver is its integration with open-
source software tools that are commonly used in geospatial data anal-
ysis. This integration enables users to incorporate different software
packages into their workflows seamlessly without requiring extensive
knowledge of each tool individually. Furthermore, Geoweaver’s versa-
tility enables it to support various data formats and processing capa-
bilities, making it a valuable tool for individuals working in different
fields such as environmental science, agriculture, and urban planning.
Geoweaver’s scalability is another notable advantage. The platform is
built on a distributed computing architecture that can manage large
geospatial datasets and perform computationally intensive analyses.
Additionally, Geoweaver supports high-performance computing re-
sources such as multi-core CPUs, clusters, and cloud computing, which
enhance its computational power. Geoweaver is a unique and valuable
tool for managing geospatial data workflows. Its flexible workflow
composition, integration with open-source software tools, scalability,
and support for a wide range of data formats and processing capabilities
make it an ideal platform for Al practitioners and earth scientists.

The fundamental design of Geoweaver is organized into three mod-
ules (Host, Process, and Workflow), which enable Al practitioners to sort
and reuse their AI/ML experiments.

e Host: This module serves as the cornerstone for the framework,
differentiating it from other workflow management system. It en-
ables users to connect to several resources such as virtual machines,
Jupyter server instances, Secure shell (SSH), and third-party
computing platforms like Google Earth Engine, Jupyter Notebook
Server, and Google Colab. Additionally, the file transfer services (file
uploading from local computers to remote servers, and file down-
loading from remote servers to local computers) provided by the host
module allow users to transfer their workflow from one platform to
another.

Process: This module includes five submodules and one database. As
most of the current AI/ML experiments employ Python program-
ming, the process module supports Python, Jupyter Notebook, Shell
scripting (bash), and SSH for running system-level programs. All the
dependent libraries like Deep Learning, Keras, PyTorch, and Ten-
sorFlow are easily accessible in the process. The process editor/
creator interface allows users to create new processes and edit
existing ones. Whenever a new process is created, it gets stored in a
MySQL database. The process monitor is responsible for all the
execution events in the process module and reports the real-time
status. Once the execution is complete the input, output, and code

A. Kale et al.

that has been executed will be recorded and stored in a database. The
provenance manager is responsible for evaluating the recorded his-
tory of each process in order to assess data quality and recover from
failure.

Workflow: The term “Workflow” is a wide-ranging phrase that can be
interpreted in a variety of ways (Jablonski and Bussler, 1996; Van
der Aalst, 1998; Kiepuszewski et al., 2003). For instance, many
geoscientists often refer to Jupyter Notebook or bash script as a
workflow. In Geoweaver, workflow denotes a pipeline linking mul-
tiple processes together. The workflow module consists of two
functions (1) Building workflows from the existing process and (2)
Managing the query, edits, and execution of the workflows. Geo-
weaver supports not only DAG (Directed Acyclic Graph) workflow,
but also other types of workflows such as cyclic, linear, and
branching workflows. DAG workflows are commonly used in Geo-
weaver as they are well-suited for managing complex workflows
with many interdependent tasks. However, Geoweaver’s support for
different workflow types allows users to choose the most appropriate
workflow pattern for their specific needs. The workflow module
displays a color-coded real-time status of each process in the
execution mode. Different colors represent the status of each process:
blue means the process is waiting; yellow means the process is
running; green means the process is finished running; and red means
the process failed. A more detailed demonstration of Geoweaver is
described in a previous paper (Kale and Ma, 2023). Exporting and
importing the existing workflows in Geoweaver is simple and easy.
The downloaded workflow can be automatically loaded into the
workspace and ready for execution and reuse. Fig. 1 describes the
framework of Geoweaver with the three core modules.

2.3. Architecture of the geoweaver_cwl wrapper tool

There are several workflow management system and languages
which are used for expressing workflows into CWL. The Galaxy plat-
form, widely used for managing and analyzing genomic data is a popular
system that can translate existing workflows into CWL in order to share
and reproduce the existing workflows (Gu et al., 2021). Snakemake is
another popular workflow management system in the bioinformatics
community where workflows can be automatically exported to CWL

Applied Computing and Geosciences 19 (2023) 100126

(Koster and Rahmann, 2012). Nextflow is a workflow management
system designed for big data processing is also used for expressing
workflows into CWL (Di et al., 2017). In this paper we designed a
wrapper tool named geoweaver cwl, we regard “wrapper tool” as a
process of using CWL to describe command-line tools so that they can be
run as an application or a tool in part of a larger workflow. Using the
wrapper tool with CWL will make all the documents portable, sharable,
and executable. The preliminary step for creating a workflow in Geo-
weaver is through the workflow module. The workspace allows users to
compose a workflow using existing processes. Once the workflow is
created it can be downloaded with two options “workflow with process
code” or “workflow with process code and history”. The first will simply
download the workflow and source code. The latter will download all
the history of the prior workflow executions in addition to the source
code and workflow. The downloaded workflow comes with a Zip file
that includes a code folder, a history folder, and a workflow file. The
code folder contains the code files (processes) used to form the work-
flow, the history folder contains the historical details of each process like
the begin_time, end_time, input, and output. The workflow file contains
the information on the nodes and edges that link together to form the
workflow.

To further extend the portability and interoperability of workflows
built in the Geoweaver framework, we designed geoweaver_cwl, a Py-
thon package that captures inputs (source and target processes) from a
Geoweaver workflow file and transforms them into CWL scripts. A key
contribution to our work is an add-on functionality that dynamically
generates corresponding CWL code without the user having to know the
CWL syntax. The CWL file features text fields that comprehensively
describe workflow commands and parameters.

Fig. 2 illustrates a brief architecture of geoweaver_cwl. The package
contains two main functions “generate_cwl” and “generate_yml”. The
generate_cwl function takes workflow. json from Geoweaver as the
input, captures the nodes, and the edges from the workflow, and writes
the steps that form the data flow into CWL scripts. To capture the source
and target from the workflow file, we iteratively visit each node in the
workflow, and each visited node that has not been previously processed
becomes a source node. Then, for each source node, we compile the
child nodes, and each child node serves as a target for the source node.
Each source-target pair is processed by writing a CWL script that

Internet Protocols & Web Interfaces
3 B
‘ Workflow Designer ‘
i 2 8
Workflow Manager Base My
Workfl S jQuery
(& 8
> Caffe2
a ‘ Process creator/Editor }7@5;1 TensorFlow
o Repository
" @BASH e B pLaJ
gegwteaver Provenance Manager Process Monitor 2 /
et et g ‘ O PyTorch
Jupyter
Process ‘ Task Scheduler ‘ ‘ Process Runner ‘ SpQF&Z
‘ docker ;
SSH Command Line 0OS Environment Manager E
Console € & openstack
‘ File upload/download ‘ Jupyter Notebook Client ‘ Jav: '3 A
Host File Browser/Editor ool eI aws) e
Client
Internet Protocols & Web Interfaces

Fig. 1. Workflow management framework of Geoweaver and its core modules (Host, Process, and Workflow), adapted from (Sun et al., 2020).

A. Kale et al.

Applied Computing and Geosciences 19 (2023) 100126

JSON

Downloaded
input file

workflow from
geoweaver

input

geoweaver_cwl

generate_cwli

@ generate_yml|

workflow.cwl

g

elementary_cwil_files

input.yml

Fig. 2. Architecture of geoweaver_cwl package with key functions.

provides explicit inputs and outputs for each phase. Carrying out this
procedure eventually enables us to generate the CWL scripts for the
whole workflow. Equations (1) and (2) below describes the process of
translating the workflow file into CWL.

PL = p(workflow json) (@D)]
[workflow.cwl, elementarycwlfiles] =Vp : W(p, € (p)),p € PL 2)

where PL = process_list

p = Graph edge extraction function

W, € = file writing functions

Additionally, the function also generates a new subdirectory called
“elementary_cwl files” which stores new CWL files (the processes used in
the workflow) translated from the code folder. Below is the pseudo-code
of the generate_cwl and generate_yml functions.

Graph edge extraction function.

Read edges from workflow.json
Let process_list, target_list be empty list
For each edge in edges
Let source be edge.souce
Let target be edge.target
If source not in process_list
Append source to process_list
If source is in target_list
Remove source from target_list
If target not in target_list
Append target to target_list

Add elements from target_list to process_list

File writing function for workflow. cwl.

read process_list -> workflow.json
for process in process_list

write process_name

write run command

write input command

write output command

create an elementary_cwl_files

File writing function for elementary CWL files.

Create a new elementary_cwl_files
write baseCommand
write input
write output

The generate_yml function produces a Yet Another Markup Language
(YAML) file, which writes the input to run the workflow. cwl file. The
YAML file describes which input to run for the cwl files.

Class: Directory/file
Path: path of the file or directory

The geoweaver_cwl package is fully open access and the installation
is simple. The package can be downloaded from: https://pypi.org
/project/geoweaver-cwl/0.0.1/. Fig. 3 demonstrates the installation
steps for the geoweaver_cwl package along with the use of some func-
tions. To facilitate reuse and adaptation, we have made the source code,
a detailed user guide, and concrete self-contained examples file avail-
able on GitHub under an open-source license: https://github.
com/amrutakale08/geoweaver cwl and self-contained example on
https://github.com/amrutakale08/geoweaver_cwl-usecases.

Once the workflow files are described in CWL scripts, they can be

https://pypi.org/project/geoweaver-cwl/0.0.1/
https://pypi.org/project/geoweaver-cwl/0.0.1/
https://github.com/amrutakale08/geoweaver_cwl
https://github.com/amrutakale08/geoweaver_cwl
https://github.com/amrutakale08/geoweaver_cwl-usecases

A. Kale et al.

Applied Computing and Geosciences 19 (2023) 100126

In : pip install geoweaver_ cwl

: from geoweaver cwl import translator as tr

In : tr.generate_cwl('workflow.json')

Output file: workflow.cwl
Writing header...

Writing steps...

CWL file written to workflow.cwl

In [4]: tr.generate_yml('input.yml')

Writing YML file...
YML file created ...

Requirement already satisfied: geoweaver cwl in /Users/amrutakale/opt/anaconda3/lib/python3.8/site-packages (0.0.9)
Note: you may need to restart the kernel to use updated packages.

Fig. 3. Installation and usage of the geoweaver_cwl package.

executed using any other software that supports CWL, like cwltool,
Arvados, Toil, CWL-Airflow, and more. In this paper, we are going to use
the traditional cwltool. To run the newly generated CWL files from
Geoweaver, we will use the below command. We invoke cwl_runner
with workflow. cwl and input object input. yml on the command line.

cwl-runner workflow.cwl input.yml

The command will trigger all the functions inside the CWL and YAML
files in the same order as Geoweaver and is supposed to get the same
results. As mentioned above, the advantage of CWL is that it provides a
solution for describing portable and reusable workflows. The trans-
formation from Geoweaver to CWL through the geoweaver_cwl package
allows geoscientists to easily share, exchange, modify, and reuse
workflows. Additionally, CWL-compliant applications are highly
portable and can be run in a variety of environments, including local or
cloud infrastructures.

3. Use case implementation, result, and evaluation

Based on the geoweaver_cwl package, we tested a list of workflows
from simple to complicated ones. Here we use a Geoweaver workflow
available on GitHub (https://github.com/earth-artificial-intelligence
/kenya-crop-mask-geoweaver) to demonstrate and verify the usability
of our package. The scientific topic of that workflow is the annual and in-
season mapping of cropland in Kenya (Tseng et al., 2020). The GitHub
repository contains the code folder, history folder, and workflow. json
file.

We installed the geoweaver cwl package and followed the above-
mentioned procedures to describe the workflow in the CWL text docu-
ment. After using the functions generate_cwl and generate yml, we ob-
tained the files “input.yml”, “workflow.cwl”, and “elementary cwl files
folder”, which included the cwl files used in creating the workflow. The
workflow translation process was fast and easy, and we also noticed that
using cwltool speeds up workflow execution compared to the original
procedure in Geoweaver. Yet, we still need to run more use cases to see

#!/usr/bin/env cwl-runner |

cwlVersion: v1.0 {
class: Workflow Extracted workflow
label: "workflow keyna crop mask" == == == ==} from the JSON file
inputs:

reference:

type: Directory

doc: Geoweaver workflow Linking the step of the

workflow in CWL tool
description to run

o=

1
steps:

outputs: []

“scripts_export.cwl” -

scripts _export: l
|run: elementary cwl files/scripts export.cwl
ITT
reference_file: reference
out: []
src_exporters_geowiki:
run: elementary cwl_files/src_exporters_geowiki.ewl
in:
reference file: reference
out: []
scripts_process:
run: elementary cwl files/scripts process.cwl
in:
reference_file: reference
out: []

Translation of the first file
scripts_export.cwl into CWL
text-document stored in
elementary_cwl_files folder

#!/usr/bin/env cwl-runner

class: CommandLineTool

-

cwlVersion: v1.0

baseCommand: ["python", "/scripts_export.py"]

inputs:
reference_file:
type: Directory
inputBinding:
position: 1
prefix: --Output--
outputs:

[

Fig. 4. Exemplar scripts of workflow steps in the workflow. cwl from workflow. json file (left) and the CWL text document scripts_export.cwl describing compu-

tational steps present in the elementary_cwl files folder (right).

https://github.com/earth-artificial-intelligence/kenya-crop-mask-geoweaver
https://github.com/earth-artificial-intelligence/kenya-crop-mask-geoweaver

A. Kale et al.

whether CWL and cwltools always have shorter execution time
comparing with Geoweaver.

We successfully transformed the Geoweaver workflow of Kenya
cropland mapping into CWL format using the geoweaver_cwl package.
The left part of Fig. 4 shows the described workflow in CWL from the
workflow. json in Geoweaver. The CWL file contains a cwlVersion sec-
tion which indicates the version of the CWL document. The class section
with a value of Workflow indicates that this document describes the
workflow. The inputs and outputs sections describe the inputs and
outputs of the workflow, respectively. The steps section describes the
actual steps of the workflow. In this example, the first step is to run the
“scripts_exports.cwl” present in the folder elementary cwl files. The
code of “scripts_exports.cwl” is illustrated in the right part of Fig. 4. The
workflow steps in CWL do not always run in the written sequence.
Instead, the order is determined by the dependencies across steps. To
evaluate the result of the transformation we ran the CWL text document
using cwltool, and we observed that it executed smoothly and generated
the same result as in Geoweaver. The CWL result of this example is
accessible on GitHub: https://github.com/amrutakale08/geowea
ver_cwl-usecases. We are now transforming more Geoweaver Al work-
flows into CWL with this package and sharing the results on GitHub.
Interested readers can go to that GitHub repository through the above
link to test and adapt those use cases.

Geoweaver provides a unique combination of features, such as a
user-friendly interface, full-stack code, a history of previous versions,
and sharable AI/ML workflows. It is a user-friendly entry point to solve
Al-related workflow issues for a variety of disciplines in geosciences as
well as beyond. The geoweaver_cwl package developed in this work
further extends the portability and interoperability of workflows created
in Geoweaver. The package can quickly transform Geoweaver work-
flows into CWL format, and the result can be run on many CWL-
compliant software applications. Moreover, the CWL result can be also
executed on diverse computing platforms including local computers,
cloud environments, or high-performance clusters. The transformation
process is intuitive and new users will spend less time getting familiar
with the package.

4. Discussion

We encourage geoscientists as well as other Al practitioners to use
Geoweaver and the geoweaver cwl package to increase the reproduc-
ibility and interoperability of their work. The developed package helps
automatically transform Geoweaver Al/ML workflows to a community
standard CWL. As an extension to Geoweaver, the CWL result can be
executed on diverse computing platforms which gives users more op-
portunities to run the workflow without compromising provenance or
having to recreate the workflow if they want to use another workflow
management system. CWL can formally describe inputs, outputs, and
other execution details of the workflow in a text-based document. It
supports workflows that specify dependencies among tools and use one
device output as input to another. CWL documents are text-based so that
they can be created manually, without or with less computer program-
ming. However, ensuring that these documents adhere to the CWL
syntax specification may restrict some users from adopting it. The
developed geoweaver cwl addresses this gap. It can automatically
describe workflows into CWL to make it effortless for geoscientists to
share data analysis workflows in varied formats without learning the
technical details of the CWL syntax.

There are a wide variety of workflow management system software
tools available all over the research community, that are constantly
being developed, revised, and improved every day. While the avail-
ability of such tools benefits the community, it also presents a great
challenge: as more and more tools are created, a set of standards needs to
be adopted in order to ensure the portability and reproducibility of the
resulting workflows. CWL, as reflected in its name, aims to be such a
community standard to harmonize the workflow formats proposed by

Applied Computing and Geosciences 19 (2023) 100126

various workflow management system software tools. Reproducibility
enables researchers to track and debug potential errors and validate the
authenticity of the results, and as such it plays a vital role to make sci-
entific research accurate, efficient, and cost-effective. Because CWL
tracks code versions, inputs, outputs, and more, researchers can use it to
pinpoint where the analysis went wrong, or where in the analysis the
particular piece of data leads to new insights. Therefore, the trans-
formation from Geoweaver workflows to CWL format is a necessary
extension with regards to broad portability and reproducibility.

Portability is crucial when it comes to scientific research and anal-
ysis. When one workflow is designed for a type of computational envi-
ronment such as a personal computer it may not function in a similar
way as in the cloud. Therefore, researchers may spend more time and
effort in debugging the tool to make it work in the desired environment.
This could result in inconsistent outcomes or errors. In contrast, CWL
enables portability by being explicit about inputs, outputs, data location,
and execution models that can be executed on any of the CWL-compliant
environments. CWL-based documents can be downloaded, edited, and
executed on local infrastructure or uploaded and executed in the cloud.

The scientific provenance research community has evolved signifi-
cantly in recent years to provide several strategic capabilities, to make
Al/ML workflows more explainable and reproducible. The declarative
approach to describe workflow in CWL scripts facilitates and encourages
users to explicitly declare every single step, improving the white box
view of reviewing process and potential provenance. Such workflows
will eliminate the “black box” nature by offering insights into the entire
process used to build artifacts. This will support the research community
in carrying out thorough studies that will enable them to satisfy those
essential requirements for building a transparent and explainable AI/ML
application. Documenting provenance to support published research
should be considered a best practice rather than an afterthought. The
community should be encouraged to follow well-established and
consensus best practices for workflow design and software environment
deployment. The aim of Geoweaver and the geoweaver_cwl package is to
promote the efforts in that direction.

In order to improve the efficiency of the developed geoweaver_cwl
package, our plan is to continue using Geoweaver and the package with
more Al research projects. So far, we have only tested our package on
definite workflows created by Geoweaver, and we believe further ana-
lyses are necessary to validate the broad utility of the package. For
instance, with the small number of use cases of geoweaver_cwl appli-
cation we noticed that the CWL and cwltools have shorter execution
time comparing with Geoweaver. Nevertheless, the diverse datasets,
algorithms, and workflow may lead to varied performance, so we need
to do more tests to see if that shorter execution time is always true. For
our future work, we would like to collaborate with a diverse research
team from different domains and collect complex use cases from them.
Testing different use cases will confirm additional details and novel
functions and also ensure that our package satisfies the end-user
requirement. Geoweaver is developed and implemented using Java. A
plan under discussion among our team is to have a new version of
Geoweaver in Python, called “pygeoweaver”. In that way the Python-
based geoweaver_cwl package can be naturally included as part of the
new “pygeoweaver” platform, to address the needs from both Geo-
weaver and the CWL communities.

5. Conclusions

In this paper, we first introduced Geoweaver and presented a
wrapper tool, called geoweaver_cwl, that overcomes current challenges
of achieving repeatability, reproducibility, and reusability of workflows.
To assess the outcome, we tested geoweaver_cwl with multiple use cases
provided by Geoweaver and illustrated one of them in this paper. The
study demonstrates that the geoweaver cwl package can bring great
benefits to the geoscience community. The code is publicly available on
GitHub (https://github.com/amrutakale08/geoweaver cwl) and open

https://github.com/amrutakale08/geoweaver_cwl-usecases
https://github.com/amrutakale08/geoweaver_cwl-usecases
https://github.com/amrutakale08/geoweaver_cwl

A. Kale et al.

to anyone who wants to import Geoweaver AI/ML workflows into CWL-
compliant workflow management system software applications. We
encourage the research community to participate in the adoption of
Geoweaver by integrating the geoweaver_ cwl package into their pro-
jects. We would like to hear comments and suggestions from the com-
munity to facilitate the development of new functionality in future
versions.

Code availability

The geoweaver_cwl Python package is made open access at: https:
//pypi.org/project/geoweaver-cwl/0.0.1/. The source code of the
package is accessible at: https://github.com/amrutakale08/geow
eaver_ cwl and exemplar results are accessible at: https://github.com/a
mrutakale08/geoweaver_cwl-usecases. The source code of the Geo-
weaver platform is accessible at: https://github.com/ESIPFed/Geo
weaver.

CRediT authorship contribution statement

Amruta Kale: Writing — review & editing, Writing — original draft,
Software, Methodology, Conceptualization. Ziheng Sun: Writing — re-
view & editing, Resources, Methodology. Chao Fan: Writing — review &
editing, Resources, Methodology. Xiaogang Ma: Writing — review &
editing, Validation, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data and code are shared on GitHub and links were provided in the
manuscript.

Acknowledgment

The work was supported by the National Science Foundation under
Grants No. 2019609 and No. 2126315 and the National Aeronautics and
Space Administration under Grant No. 80NSSC21M0028. The authors
thank two anonymous reviewers for their reviews and comments on an
early version of the paper.

References

Adadi, A., Berrada, M., 2018. Peeking inside the black box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138-52160.

Altintas, 1., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S., 2004. Kepler: an
extensible system for design and execution of scientific workflows. June. In:
Proceedings of the 16th International Conference on Scientific and Statistical
Database Management. Santorini, Greece, pp. 423-424.

Amstutz, P., Crusoe, M.R., Tijani¢, N., Chapman, B., Chilton, J., Heuer, M., Kartashov, A.,
Leehr, D., Ménager, H., Nedeljkovich, M., Scales, M., 2016. Common Workflow
Language, v1.0. Figshare. https://doi.org/10.6084/m9.figshare.3115156.v2.

Bedia, J., San-Martin, D., Iturbide, M., Herrera, S., Manzanas, R., Gutiérrez, J.M., 2019.
The METACLIP semantic provenance framework for climate products. Environ.
Model. Software 119, 445-457.

Applied Computing and Geosciences 19 (2023) 100126

Das, P., Ivkin, N., Bansal, T., Rouesnel, L., Gautier, P., Karnin, Z., Dirac, L.,
Ramakrishnan, L., Perunicic, A., Shcherbatyi, I., Wu, W., 2020. Amazon SageMaker
Autopilot: a white box AutoML solution at scale. In: Proceedings of the Fourth
International Workshop on Data Management for End-To-End Machine Learning,
pp. 1-7. Portland, OR,USA.

DataRobot, Al Cloud, 2012. https://www.datarobot.com/. (Accessed 18 January 2022).

Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P., Palumbo, E., Notredame, C.,
2017. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35
(4), 316-319.

Doshi-Velez, F., Kortz, M., Budish, R., Bavitz, C., Gershman, S., O’Brien, D., Scott, K.,
Schieber, S., Waldo, J., Weinberger, D., Weller, A., 2017. Accountability of Al under
the law: the role of explanation. arXiv preprint arXiv:1711.01134.

Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L., 2018. Explaining
explanations: an overview of interpretability of machine learning. In: Proceedings of
the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics
(DSAA). Turin, Italy, pp. 80-89.

Gu, Q., Kumar, A, Bray, S., Creason, A., Khanteymoori, A., Jalili, V., Griining, B.,
Goecks, J., 2021. Galaxy-ML: an accessible, reproducible, and scalable machine
learning toolkit for biomedicine. PLoS Comput. Biol. 17 (6), e1009014.

Gunning, D., Aha, D., 2019. DARPA’s explainable artificial intelligence (XAI) program.
Al Mag. 40 (2), 44-58.

Jablonski, S., Bussler, C., 1996. Workflow Management: Modeling, Concepts,
Architecture and Implementation. Cengage Learning.

Kale, A., Ma, X., 2023. Provenance in earth Al In: Sun, Z., Cristea, N., Rivas, P. (Eds.),
Artificial Intelligence in Earth Science. Elsevier, pp. 357-378. Amsterdam.

Kale, A., Nguyen, T., Harris Jr., F., Li, C., Zhang, J., Ma, X., 2023. Provenance
documentation to enable explainable and trustworthy Al a literature review. Data
Intelligence 5 (1), 139-162. https://doi.org/10.1162/dint_ a 00119.

Kiepuszewski, B., Barros, A.P., Van Der Aalst, W., Ter Hofstede, A., 2003. Workflow
patterns. Distributed Parallel Databases 14 (1), 5-51.

Koster, J., Rahmann, S., 2012. Snakemake—a scalable bioinformatics workflow engine.
Bioinformatics 28 (19), 2520-2522.

Ma, X., Beaulieu, S.E., Fu, L., Fox, P., Di Stefano, M., West, P., 2017. Documenting
provenance for reproducible marine ecosystem assessment in open science. In:
Diviacco, P., Glaves, H.M., Leadbetter, A. (Eds.), Oceanographic and Marine Cross-
Domain Data Management for Sustainable Development. IGI Global, Hershey, PA,
USA, pp. 100-126.

Datatron MLOps, 2016. Machine learning operations. https://datatron.com/. (Accessed
18 January 2022).

Pahl, C., Brogi, A., Soldani, J., Jamshidi, P., 2017. Cloud container technologies: a state-
of-the-art review. IEEE Transactions on Cloud Computing 7 (3), 677-692.

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. Why should I trust you? Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA,
pp. 1135-1144.

Rudin, C., 2018. Please stop explaining black box models for high stakes decisions. In:
Proceedings of the 32nd Conference of Neural Information Processing Systems
(NIPS), Workshop on Critiquing and Correcting Trends Machine Learning. Montreal,
Canada, 20pp. Available: https://arxiv.org/abs/1811.10154.

Rudin, C., 2019. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1 (5), 206-215.

Sun, Z., Di, L., Burgess, A., Tullis, J.A., Magill, A.B., 2020. Geoweaver: advanced
cyberinfrastructure for managing hybrid geoscientific Al workflows. ISPRS Int. J.
Geo-Inf. 9 (2), 119. https://doi.org/10.3390/ijgi9020119.

Sun, Z., Sandoval, L., Crystal-Ornelas, R., Mousavi, S.M., Wang, J., Lin, C., Cristea, N.,
Tong, D., Carande, W.H., Ma, X., Rao, Y., Bednar, J.A,, Tan, A., Wang, J.,
Purushotham, S., Gill, T.E., Chastang, J., Howard, D., Holt, B., Gangodagamage, C.,
Zhao, P., Rivas, P., Chester, Z., Orduz, J., John, A., 2022. A review of earth artificial
intelligence. Comput. Geosci. 159, 105034 https://doi.org/10.1016/j.
cageo.2022.105034.

Tseng, G., Kerner, H., Nakalembe, C., Becker-Reshef, I., 2020. Annual and in-season
mapping of cropland at field scale with sparse labels. Tackling climate change with
machine learning workshop at NeurIPS ’20, virtual conference. https://www.clima
techange.ai/papers/neurips2020/29. (Accessed 17 November 2022).

Van der Aalst, W.M., 1998. The application of Petri nets to workflow management.

J. Circ. Syst. Comput. 8 (1), 21-66.

Wing, J.M., 2020. Ten research challenge areas in data science. Harvard Data Science
Review 2 (3). https://doi.org/10.1162/99608f92.c6577b1f.

Zeng, Y., Su, Z., Barmpadimos, 1., Perrels, A., Poli, P., Boersma, K.f.,, Frey, A., Ma, X., de
Bruin, K., Gossen, H., Timmermans, W., 2019. Towards a traceable climate service:
assessment of quality and usability of essential climate variables. Rem. Sens. 11 (10),
1186. https://doi.org/10.3390/rs11101186.

https://pypi.org/project/geoweaver-cwl/0.0.1/
https://pypi.org/project/geoweaver-cwl/0.0.1/
https://github.com/amrutakale08/geoweaver_cwl
https://github.com/amrutakale08/geoweaver_cwl
https://github.com/amrutakale08/geoweaver_cwl-usecases
https://github.com/amrutakale08/geoweaver_cwl-usecases
https://github.com/ESIPFed/Geoweaver
https://github.com/ESIPFed/Geoweaver
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref1
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref1
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref2
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref2
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref2
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref2
https://doi.org/10.6084/m9.figshare.3115156.v2
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref4
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref4
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref4
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref5
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref5
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref5
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref5
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref5
https://www.datarobot.com/
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref7
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref7
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref7
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref8
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref8
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref8
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref9
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref9
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref9
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref9
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref10
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref10
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref10
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref11
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref11
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref12
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref12
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref13
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref13
https://doi.org/10.1162/dint_a_00119
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref15
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref15
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref16
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref16
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref17
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref17
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref17
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref17
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref17
https://datatron.com/
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref19
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref19
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref20
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref20
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref20
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref20
https://arxiv.org/abs/1811.10154
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref22
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref22
https://doi.org/10.3390/ijgi9020119
https://doi.org/10.1016/j.cageo.2022.105034
https://doi.org/10.1016/j.cageo.2022.105034
https://www.climatechange.ai/papers/neurips2020/29
https://www.climatechange.ai/papers/neurips2020/29
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref26
http://refhub.elsevier.com/S2590-1974(23)00015-0/sref26
https://doi.org/10.1162/99608f92.c6577b1f
https://doi.org/10.3390/rs11101186

	Geoweaver_cwl: Transforming geoweaver AI workflows to common workflow language to extend interoperability
	1 Introduction
	2 Technical framework of the geoweaver_cwl package
	2.1 An overview of the common workflow language
	2.2 Conceptual framework of the geoweaver workflow management system
	2.3 Architecture of the geoweaver_cwl wrapper tool

	3 Use case implementation, result, and evaluation
	4 Discussion
	5 Conclusions
	Code availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

