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Millions of in situ ocean temperature profiles have been collected historically
using various instrument types with varying sensor accuracy and then
assembled into global databases. These are essential to our current
understanding of the changing state of the oceans, sea level, Earth’s climate,
marine ecosystems and fisheries, and for constraining model projections of
future change that underpin mitigation and adaptation solutions. Profiles
distributed shortly after collection are also widely used in operational
applications such as real-time monitoring and forecasting of the ocean state
and weather prediction. Before use in scientific or societal service applications,
quality control (QC) procedures need to be applied to flag and ultimately
remove erroncous data. Automatic QC (AQC) checks are vital to the timeliness
of operational applications and for reducing the volume of dubious data which
later require QC processing by a human for delayed mode applications. Despite
the large suite of evolving AQC checks developed by institutions worldwide,
the most effective set of AQC checks was not known. We have developed a
framework to assess the performance of AQC checks, under the auspices of
the International Quality Controlled Ocean Database (IQuOD) project. The
[IQuOD-AQC framework is an open-source collaborative software
infrastructure built in Python (available from https://github.com/IQuOD).
Sixty AQC checks have been implemented in this framework. Their
performance was benchmarked against three reference datasets which
contained a spectrum of instrument types and error modes flagged in their
profiles. One of these (a subset of the Quality-controlled Ocean Temperature
Archive (QuOTA) dataset that had been manually inspected for quality issues by
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its creators) was also used to identify optimal sets of AQC checks. Results
suggest that the AQC checks are effective for most historical data, but less so in
the case of data from Mechanical Bathythermographs (MBTs), and much less
effective for Argo data. The optimal AQC sets will be applied to generate quality
flags for the next release of the IQuOD dataset. This will further elevate the
quality and historical value of millions of temperature profile data which have

already been improved by IQuOD intelligent metadata and observational
uncertainty information (https://doi.org/10.7289/v51r6nst).
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ocean, temperature, observations, quality control, automatic

1 Introduction

Ocean temperature profile observations are essential for
many applications (Penny et al., 2019). These include those
that require data in near real time such as ocean monitoring and
forecasting (e.g. Chassignet et al, 2009; Blockley et al., 2014;
King et al., 2018; Lellouche et al., 2018; Schiller et al., 2020) and
numerical weather prediction from coupled atmosphere-ocean
models (e.g. Dong et al, 2017; King et al, 2020). Ocean
applications that require observations with less stringent
timeliness requirements but a higher level of quality control
include climate applications such as decadal forecasting (e.g.
Dunstone and Smith, 2010; Bellucci et al., 2013), ocean/coupled
atmosphere-ocean hindcast reanalyses (e.g. Balmaseda et al.,
2015; Zuo et al., 2017; Laloyaux et al., 2018; Storto et al., 2019),
ocean climate monitoring (e.g. Johnson et al, 2019; von
Schuckmann et al., 2019; Gulev et al., 2021) and generation of
climatologies (e.g. Gouretski and Koltermann, 2004; Schmidtko
et al., 2013; Gouretski, 2019; Locarnini et al., 2019). In all cases,
quality control (QC) of the data before use is required (Bushnell
et al., 2019) to exclude from further consideration or use profiles
and/or data points containing errors (e.g. sensor drifts, data
stream errors, etc.), which may negatively impact results. QC
may be performed using automatic methods or, ideally, through
manual examination of the profiles by an expert human
operator. In the case of near real time applications, the only
viable way to perform the QC while still meeting timeliness
requirements is by automatic checking. For delayed mode
applications, the number of profiles in the historical archive
makes expert manual examination of these profiles extremely
challenging and time consuming. For example, there are more
than 2.3 million eXpendable BathyThermograph (XBT) casts in
the World Ocean Database (WOD; Boyer et al., 2018), with
thousands of these being the largest source of temperature
profile data for the 1980s and until the operational
implementation of the Argo programme (Argo, 2021).
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Therefore, automatic QC (AQC) checking of historical data is
essential for two purposes: (i) to allow the use of data within an
acceptable time frame; and (ii) to identify profiles that are almost
certain to contain only good quality data, reducing the number
of profiles to be inspected by manual QC operators and making
their task tractable. An overview of types of AQC checks
considered in this study is presented below.

e Impossible date/time/depth - confirms that the date and
time are possible (e.g. year is not unrealistically far in the
past) and that depth is not negative;

e Ocean/sea location - checks that the profile location is
not over land based on bathymetric data or a land/sea
mask;

e Instrument track - compares the location of successive
profiles from a sensor to detect unrealistic speeds or
paths;

¢ Increasing depth/pressure - checks for instances whether
depths/pressures do not increase through the profile;

e Constant values - detects repeated temperature values in
the profile (e.g. due to sensor failure);

e Range - compares temperature values to a set of ranges,
which may be defined globally or regionally and may
change with depth;

e Gradient - checks for unrealistic temperature gradients
through the profile;

e Spike/step - detects sudden changes in temperature in
the profile, which may revert (spike) or continue further
down the profile (step);

e Stability - detects temperature instabilities along the
water column (i.e. density not increasing through the
profile) within some tolerance range;

¢ Climatology/background - similar to a range check but
the profile is compared to a climatological profile or a
‘background’ profile obtained through objective analysis,
model forecast or other means, and thresholds may be
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defined using knowledge of the climatological/
background and observation error variances;

e Fuzzy logic - instead of having a single test for a
particular error mode which gives either a pass or
reject result, fuzzy logic checks multiple features and
uses the results together to assign a QC result in a fuzzy
scale ranging from certainly pass to certainly reject;

e Machine learning - a broad category of data driven
algorithms such as neural networks and Anomaly
Detection which are able to classify the data quality
based on non-linear criteria;

e XBT specific - XBTs have specific error modes such as
sudden changes in the temperature profile when the wire
that connects the instrument to the recorder breaks, and
therefore specific QC tests have been set up for XBT
data;

e Miscellaneous - QC checks that do not fit into the
categories above such as comparison of profile depths
to the maximum expected depth that an instrument
might reach, or a check on the shape of the profile.

The gamut of AQC tests in use by the international
community was largely developed by independent research
groups and for their own varied applications and ocean
regions (e.g. Gronell and Wijffels, 2008; UNESCO-IOC, 2010;
Cabanes et al., 2013; Good et al., 2013; Garcia et al., 2018;
Gouretski, 2018; Wong et al., 2020a; Gourrion et al., 2020b).
There are a number of common types of QC procedure designed
to detect frequently occurring error modes, and some for unique
or uncommon errors. A non-exhaustive list of QC tests that fall
into these categories is given in Table 1 and a detailed review can
be found in Tan et al. (2022). Database managers and/or users
will typically choose to apply a set of AQC checks to the profile
data to detect a broad range of errors. To this date, however,
there is no quantitative assessment of which AQC checks are the
best performing.

In this study, a comprehensive benchmarking exercise was
carried out to evaluate the performance of sixty AQC checks
(Table 1) and to recommend an optimal set of checks. This
coordinated evaluation was performed as a strand of work of the
International Quality Controlled Ocean Database (IQuOD)
project (www.iquod.org) concerned with improving the QC
applied to ocean temperature profiles using AQC (including
machine learning). Other IQuOD work strands include cloud-
based expert QC, development and assessment of algorithms for
intelligently assigning metadata to profiles where they are
missing (Palmer et al., 2018; Haddad et al., 2022), assignment of
uncertainty estimates to each observation level of the profile
(Cowley et al, 2021), flagging and removal of exact or near
duplicates, and development of metrics to assess the impact of
IQuOD activities. Overall, IQuOD’s aim is to improve the
quality and consistency of historical ocean profile data and its
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value for scientific and societal services applications (Domingues
and Palmer, 2015).

The benchmarking of the AQC checks in this study required
two aspects for success: (i) a software infrastructure capable of
processing a large set of profiles through a significant number of
quality control checks; and (ii) reference data with known
quality that can be used to benchmark the quality control
checks and validate the results. Both (i) and (ii) are described in
Section 2. Section 3 provides the benchmarking results and
Section 4 their validation. Sections 5 and 6 respectively contain
the discussion and conclusions.

2 Materials and methods
2.1 Software and methods

2.1.1 Software infrastructure

The software infrastructure used in this study was developed
as a collaborative project using GitHub to host the code and
track issues (https://github.com/IQuOD/). Repositories within
the IQuOD GitHub project include wodpy (Mills et al., 2017),
for file reader software for WOD data, and AutoQC, which
contains the main code base for this project. The version of the
AutoQC code used in this study can be found at https://github.
com/IQuOD/AutoQC/releases/tag/publication-2022 (Good and
Mills, 2022).

All code was developed in Python. The quality control
checks listed in Table 1 were, in many cases, recoded from
their original language into Python and/or restructured to allow
them to all be run in a uniform way. We also made use of QC
code that was written for the CoTeDe Python package (Casteldo,
2020) by including ‘wrapper’ QC checks in AutoQC. These
‘wrapper’ checks run the CoTeDe software to obtain their QC
decisions, allowing them to be used within the AutoQC software.
QC checks have tests associated with them that run part or all of
the QC algorithms to ensure that they are giving the expected
answer and hence are working as intended.

The AutoQC processing chain has three main stages. The
first is to create an SQLite database (www.sqlite.org). This holds
the raw input data and has space for QC decisions from each
quality control check contained in the software library and a set
of reference QC flags. The second stage runs all the quality
control checks on each profile and stores the results in the
database. Finally, the third part of the processing is to run
routines to obtain benchmark statistics and find optimal sets of
quality control checks (‘1QuOD sets’).

The library of QC checks is designed to be easily expandable
and reusable. All the QC checks produce results for the entire
profile, and it is possible to run them in any order. If a new
quality control check becomes available, it is only necessary to
include it within the software library and the processing system
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TABLE 1 List of types of QC checks and the individual tests that have been included in this study.

Type of test Tests included in the AutoQC system

Impossible date/time/depth Ar impossible date IC level order Ar impossible location
Ocean/sea location Co location at sea EN background available
1Q loose location at sea 1Q bottom
Instrument track EN track
Increasing depth Ar pressure increasing EN increasing depth
Constant values AO constant CS constant bottom
EN constant value IC stuck value
Range AO gross Ar global range
Ar regional range Co GT global range
Co GT profile envelope EN range
IC crude range IC number of temperature extrema
1Q gross range Min/Max
‘WO range
Gradient AO gradient Ar gradient
Co gradient Co GT gradient
Co rate of change CS long gradient
CS short gradient IC gradient
WO gradient
Spike/step AO spike Ar spike
Co GT spike Co spike
Co Tukey53H Co Tukey53H norm
EN spike and step EN suspect spike/step
1IC spike
Stability Co Ar density inversion EN stability
Climatology AO climatology Co GT normbias
Co normbias EN background
EN standard level background and buddy IC local climatology (1)
IC local climatology (2)
Fuzzy logic Co fuzzy logic Co Mo fuzzy logic
Machine learning Co Anomaly Detection
XBT specific CS XBT surface temperature CS XBT wire break
CS surface spikes
Miscellaneous Co digit roll over IC max observed depth

In the majority of cases these are coded within the AutoQC project, but some are accessed by running the CoTeDe quality control software package. The names of the checks include their
origin in abbreviated form; the definition of these is included below.

AO, Atlantic Oceanographic and Meteorological Laboratory (AOML; https://www.aoml.noaa.gov/phod/goos/xbt network/); Ar, Argo project (Wong ct al., 2020a); Co, CoTeDe quality
control software (Casteldo, 2020) version 0.23.6, including Anomaly Detection (Castelao, 2021); CS, Commonwealth Scientific and Industrial Research Organisation (CSIRO; Gronell and
Wijffels, 2008); GT, Global Temperature and Salinity Profile Programme (GTSPP; UNESCO-10C, 2010); EN, Met Office EN dataset (Ingleby and Huddleston, 2007; Good et al., 2013); IC,
Integrated Climate Data Centre (ICDC) (Gouretski, 2018); 1Q, International Quality Controlled Database (IQuOD) project (described in this paper); Min/Max, Gourrion et al., 2020b;
Gourrion et al. 2020a); Mo, Morello et al. (2014); WO, World Ocean Database (WOD; Garcia et al., 2018).
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will detect it and use it. It is expected that the processing will be
repeated in the future when new reference data become available
(see Section 5).

All software is available under the MIT license (https://
github.com/IQuOD/AutoQC/blob/master/LICENSE) and
hence is free for use by others within their systems. For
example, Tan et al. (2022) successfully used the code to
compare four different sets of QC tests. In the future, it is
envisaged that the AutoQC code could be used in systems that
provide AQC of profiles as they are collected.

2.1.2 New or modified QC checks

In most cases the QC checks included in the AutoQC
repository are intended to be exact replicas of the original
code. In a few cases, minor modifications or new tests were
introduced to optimize functionality, as explained below.

2.1.2.1 Argo (Ar) impossible date

The Ar impossible date test was originally defined to check
that the date of the profile is after 1 January 1997 (Wong et al.,
2020a). While this is appropriate for Argo data, there are profiles
from other instrument types that occur much earlier in the
historical record. The date threshold was therefore set to 1700.

2.1.2.2 CSIRO (CS) XBT wire break

The CS XBT wire break test attempts to detect breaks in the
wire that connects XBT probes to the surface by examining the
change in temperature between adjacent levels in the profiles
(Gronell and Wijffels, 2008). XBT wire breaks are a common
error mode so it is important that these are detected. The CS
XBT wire break test is the only quality control algorithm in the
AutoQC system that is specifically designed for detecting this
type of error. As described in Section 3.1, if the whole profile is
rejected, the quality control flags from this test are reset to pass
all levels.

2.1.2.3 Met Office (EN) background and standard level
background and buddy

The EN processing system QCs profile data and then
generates monthly objective analyses from them. The previous
month’s analysis is used to create a ‘background’ which is used in
the EN background QC checks (Ingleby and Huddleston, 2007,
Good et al., 2013). In the absence of observations, the objective
analyses relax to climatology. It was not possible to replicate the
creation of monthly objective analyses in this study so instead
these checks always use the climatology from the EN processing
system as the background.

2.1.2.4 IQuOD (IQ) bottom

The aim of this study is to benchmark existing QC checks
rather than invent new variants. However, three exceptions to
this were made and are bespoke IQuOD (‘1Q’) tests. Two of these
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were aimed at comparing the positions of the observations to a
bathymetry dataset to determine if they were realistic. The first,
1Q bottom, uses the ETOPO05 dataset (ETOPO05, 1988) and
determines which profile depths are below the floor of the
ocean or on land and flags these.

2.1.2.51Q loose location at sea

This is the second of three bespoke QC tests created for this
study. It is intended to be a looser version of the CoTeDe (Co)
location at sea test (Castelao, 2020), and is also similar to 1Q
bottom. In those tests, the profile location is compared to the
ETOPOS dataset by interpolating the bathymetry. This could
potentially lead to incorrect rejections for profiles close to the
coast. In this version of the test, the four grid points surrounding
the profile are found. If any of these are in the ocean then the
whole profile is passed. If all are on land the entire profile
is rejected.

2.1.2.6 IQ temperature gross range

The final bespoke test is the IQ gross range check. Its purpose
is to remove any obviously incorrect data points from further
consideration to avoid results being biased by their presence.
Any data that are outside the range -4 to 100°C are rejected.

2.1.3 Pre-selected checks

Six of the quality control checks were pre-selected as either
being non-controversial (such as checking that latitude is in the
range 90°S to 90°N), essential with no alternatives (such as
detecting XBT wire breaks) or were designed for pre-screening
(the IQuOD gross range check, as described in Section 2.1.2.6).
The tests that fall into these categories are: Ar impossible date, Ar
impossible location, CS XBT surface temperature, CS XBT wire
break, IC level order and IQ gross range. These pre-selected
checks are used to filter out issues with profiles that could
otherwise dominate the benchmarking metrics described below.

2.1.4 Benchmarking metrics

An objective benchmarking metric needs to be defined and
implemented to understand the relative performance of QC
checks. This needs to quantitatively compare the results returned
by the QC checks to a reference set of flags and provide a
measure of their similarity. The usefulness of the benchmarking
metric relies on the accuracy with which the reference flags are
known. In this study, the datasets used were previously subject to
manual QC. Therefore, there is a high degree of confidence in
the QC decisions provided with the data, and these are used as
the reference flags.

Most QC tests provide a pass or reject decision for every level
within a profile. However, designing a benchmarking metric
based on all these individual decisions is problematic. First, some
QC checks flag many levels while others, such as a spike check,
would only flag a single level. Therefore, the impact of a spike
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check would appear small compared to the others as it would
only be flagging a small proportion of the suspect levels. Second,
there may be mismatches between choices about which levels to
flag. In the example of a spike in a profile, options include
rejecting only the spike, rejecting the spike and the levels
immediately above and below it, or only one of the
surrounding levels, or multiple levels around it. In all cases it
is agreed that there is a spike in the data but there are differences
in which levels are flagged. It is difficult to design a
benchmarking metric that is not confounded by these issues.

For this benchmarking exercise, the primary interest is in
how good the QC check is at detecting an error mode such as a
spike. Choosing which levels to reject can be tuned through
expert guidance. Therefore, the approach of Gronell and Wijffels
(2008) is adopted, which condenses the quality control flags for
an entire profile into a single pass or reject flag. The profile is
deemed as rejected if any level within it has a reject flag set. For
each profile, there is also a reference pass/reject flag from the QC
decisions provided with the dataset, which is assumed to be the
correct result. The decision from a quality control check is
classified as:

¢ True negative (TN) - the quality control check correctly
passes the profile;

e False positive (FP) - the quality control check incorrectly
rejects the profile;

e True positive (TP) - the quality control check correctly
rejects the profile; or

e False negative (FN) - the quality control check
incorrectly passes the profile.

From these, two metrics — true positive rate (TPR) and false
positive rate (FPR) — are defined that determine how well the
AQC checks match the reference flags, as shown in Equations 1
and 2.

NTP
TPR=100 —2F — Q)
NTP + NFN
N
FPR=100 — ' ®)
Npn + Ngp

In these equations, Ny denotes the number of profiles of type
x where x is TP, FP, FN or TN. The TPR reveals how often
profiles are correctly rejected as a percentage of the total number
of profiles that should have been rejected according to the
reference flags. The FPR is the rate of incorrect flagging as a
percentage of the number of profiles that should not be rejected
according to the reference information. These metrics are used
to compare the performance of individual QC tests and
combinations of checks.

Note that although the benchmarking metric is applied to
flags on the whole profile, it is envisaged that users would take
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the QC decisions for each level when using the data, not the per
profile flag.

2.1.5 Algorithms for finding optimal quality
control sets

The general aim when finding sets of quality control checks
is to maximize the TPR while minimizing the FPR. Different
applications may have differing requirements for the acceptable
levels of these. For example, some applications may be very
sensitive to bad data so the aim would be to achieve close to
100% TPR and accept that the FPR might also be high. Other
users might prefer to keep as much data as possible even though
this means that they might ingest bad data into their systems.
This is equivalent to attempting to keep the FPR as close to zero
as possible. For general users a compromise between the two is
appropriate. We therefore define three cases:

e High TPR (HTPR) - most bad data should be rejected;
however, FPR will also be higher than for the other cases.

e Low FPR (LFPR) - most good data should pass QC;
however, TPR will be lower than for the other cases.

e Compromise (Comp) - a compromise between the
HTPR and LFPR cases.

All three types of set have been obtained in this study. Two
algorithms were developed to do this, as described below.

2.1.5.1 LFPR and Comp cases

Quality control sets for the LFPR and Comp cases were
generated using an algorithm that first chooses one quality
control check from each of the common types of QC test (see
Section 1 and Table 1 for more information about these). This
ensures that the QC set contains a check that is designed to
detect the main error modes found in the profile data. The order
in which the QC test of each type was selected was:

1. Location;

2. Range (only including QC checks which define ranges
independent of each profile, i.e. excluding the IC
number of temperature extrema test, which defines
ranges relative to each profile);

. Climatology;

. Increasing depth;

. Constant values;

AN L B W

. Spike or step (excluding the EN spike and step suspect
check as this was originally designed to flag data as
suspect rather than rejecting them);

7. Gradient;

8. Density.

The motivation for defining an order is so that, in a real
application, checks that occur late in the order do not have to
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repeat QC on data that were already rejected by an earlier test
and which might impact the results of the later QC. Therefore,
the ordering starts with checks on the profile location, then
passes on to tests on individual temperature values before
progressing on to tests which look at changes through the
profile. If new types of test become available in the future or
the rationale for the ordering changes, it is straightforward to
update this in the software.

The choice of which QC test to select is based on a cost
function, in which the cost, C, depends on the TPR and FPR and
the parameters R; and R, as shown in Equations 3 - 7.

q; = arctan(R) 3)
q, = arctan(R;) “
C; = 8100 - TPRPcos (q;)+ FPRsin (q;) %)
C, = 8100 — TPRPcos (g,) + FPRsin (q,) (6)
100 — TPR TPR
= O, 4+
R TR T )

The parameters R; and R, can be defined to give the desired
balance between high TPR and low FPR. The use of the two
parameters gives the facility to tune the cost function to initially
select tests that yield a low FPR and afterwards add in less
efficient QC checks to catch difficult to detect errors. For the
LFPR case, R was set to 6 and R» to 3. For the Comp case, they
were set to 2 and 1 respectively. The justification of these choices
is given in Section 3.3. The values of the cost function for each
case are shown in Figure 1. For both cases the lowest cost
function value occurs at the best possible combination of FPR
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and TPR (FPR = 0% and TPR = 100%) and the highest value
occurs for the worst possible values of FPR and TPR (FPR =
100% and TPR = 0%). Between these two extremes, the contours
of the cost function are more vertical for the LFPR case than the
Comp case. As described below, this difference in the cost
functions results in a different set of QC checks being selected
for the LFPR and Comp cases.

The cost function is evaluated for each QC check from the
first group defined above (location checks). Tests that fail to flag
any profile or that flag all profiles are not considered. The test
with the lowest cost function value is selected. For the LFPR case,
the cost function value increases rapidly with FPR (Figure 1);
therefore, QC checks that have a very low FPR tend to be
selected. For the Comp case, the cost function contours are more
sloped so QC checks that deliver a high TPR but moderate FPR
might be selected over checks that have a very low FPR.

The cost function is then evaluated again, but for the
combination of each check in the next group and the one
already selected. The QC check which, when combined with
the already selected test, gives the lowest cost function value is
selected. As before, the cost functions will mean that QC checks
with low FPR will tend to be selected for the LFPR case, but QC
checks with strong improvements in TPR compared to the
increase in FPR may be selected for the Comp case. The
process is repeated until one from each group of QC checks is
included. The algorithm will then add in other tests to the set if
they meet two criteria. First, including the test must decrease the
cost value of the set. Second, the TPR of the set must be increased
by at least 1%. The second condition is used to avoid overfitting
to the training data by adding QC checks that cause marginal
decreases in the cost value but no significant improvement to
the TPR.

Comp case

100

80

60

40

20
0
0 20 40 60 80 100
FPR (%)
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Values of the cost function used to generate optimal sets of QC checks in the LFPR and Comp cases.
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2.1.5.2 HTPR case

The algorithm to find a set of quality control checks that
aims to find as much of the bad data as possible (the HTPR case)
is a two-phase process, beginning with a preprocessing step
intended to reduce the space of tests and profiles under
consideration. First, only QC tests with TPR/FPR > 2 were
considered. This simple heuristic eliminates QC tests that don't
perform substantially better than arbitrarily assigning QC
results. Also removed from consideration was any profile
containing bad data not flagged by any QC test. These were
set aside as objects of interest for potential future test
development. As a final preprocessing step, any QC check
which produced no false positives and at least one true
positive flag was immediately accepted as a test which
unambiguously flags undesirable features.

Once the preprocessing has reduced the tests and profiles
under consideration, the main part of the HTPR algorithm is
run on the set of remaining QC checks. This identifies tests
that have high FPR and that can be removed from the set
without reducing its overall TPR. By removing those tests
from the set, it is possible achieve the highest possible TPR
while remaining intolerant to false negatives. The procedure is
as follows:

1) For every pair of QC tests, form a combination test by
doing the logical AND of the QC results produced by the pair.
The combination will only flag profiles that were rejected by
both original tests, and therefore might be expected to produce a
reduced number of false positives. Note that the code supports
an arbitrary number of these combinations, for example
ANDing together a combination with another combination,
but in the interests of processing time the algorithm was run
with pairs of single tests only.

2) The list of profiles that contain bad data according to the
reference flags is examined to find any that were rejected by
only one QC test or combination. The QC tests or
combinations that flag those profiles are placed into a list of
selected tests and then dropped from further consideration by
the algorithm. In addition, all profiles that are flagged by those
selected tests or combinations are dropped from further
consideration. At this point in the algorithm, every profile
that contains bad data and is still under consideration has been
rejected by at least two QC tests. Therefore, it is possible to
discard the QC test with the highest false positive rate without
affecting the number of bad profiles that are being identified by
the remaining QC tests. For example, if some of the profiles are
all being rejected by two different checks on the gradients in the
profiles, then we can safely discard whichever gradient check
has the higher FPR since all the profiles are still being flagged
by the other one.

These two steps are repeated in a loop until the set of
accepted tests and combinations marks all profiles containing
bad data.
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2.1.6 QC flags

One of the QC sets could be applied to data by users to
achieve their desired level of quality control. However, many
users obtain their data from collections such as the IQuOD
dataset (The 1QuOD Team, 2018), which therefore needs to
serve the needs of multiple users with different requirements.
This is achieved here by assigning a QC flag of either 4, 3 or 2 to
every level of each profile if the observation is rejected by the
LFPR, Comp or HTPR QC set respectively. If more than one of
the QC sets rejects the same observation, the highest number is
used as the QC flag. If none of the sets reject the data, the QC flag
is set to 1.

With this QC flag scheme it is possible to tell users which
data have been rejected by each QC set. The QC flag value is also a
simple to use indication of the level of confidence in the
rejection of the data with 4 meaning the highest confidence and 2
the lowest confidence. A flag of 1 indicates that the data are
expected to be good quality. This is similar to conventions in use
internationally (Marine Environmental Monitoring and
Prediction 10C, 2013). Users will often use only data with
flags of 1 or 2 hence by default would reject data flagged by
either the Comp or LFPR sets. However, with this scheme, users
can choose to additionally use the HTPR flags if wished, or only
reject the LFPR flagged data.

2.2 Data

Datasets with accurate QC information were required for
this study. In addition, in order to successfully train and validate
the checks, it was important that the datasets contain a broad
spectrum of error modes and that the rejected data were retained
in the profiles rather than discarded. These criteria limit the
choice of datasets. The three datasets selected for use in this
study are described in Sections 2.2.1 to 2.2.3.

2.2.1 QuOTA

The main dataset used in this study is the Quality-controlled
Ocean Temperature Archive (QuOTA) (Gronell and Wijffels,
2008; Thresher et al.,, 2008, https://doi.org/10.25919/
5ec357563bd3e). It was generated using AQC checks to
identify suspect profiles, followed by manual quality control of
those identified. The dataset was converted to the WOD ASCII
format for the purpose of ingestion into the AutoQC software. A
third of the data in QuOTA (January, February, March and June
profiles) were entirely manually quality controlled when the
dataset was originally created and these are used in this study. To
avoid using profiles that had been added since the dataset was
originally created, any profile outside the latitude-longitude
range specified in Gronell and Wijffels (2008) was excluded.
This was 70°S to the equator and 90°E to 145°E. In addition,
profiles marked as duplicates were not used. This resulted in
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47022 profiles in this dataset. Of these, 25932 (55%) were XBTs,
8862 (19%) were bottle/rosette/net observations, 8007 (17%)
were mechanical bathythermographs (MBTs) and 3844 (8%)
were from conductivity, temperature and depth (CTD) sensors.
The remaining 1% consisted of 304 profiles from digital
bathythermographs (DBTs), 56 from expendable CTDs
(XCTDs), 4 from moored buoys and 13 unknown.

2.2.2 NOAA/AOML 100 profile set

This dataset, provided by the National Oceanic and
Atmospheric Administration (NOAA) Atlantic Oceanographic
and Meteorological Laboratory (AOML), consists of a manual
selection of 100 XBT profiles obtained during actual XBT
operations that are part of the Global XBT Network (Goni
et al., 2019). These profiles were selected from 12 different
geographical regions to include ocean features linked to
specific dynamics and water mass properties in each of the
following regions: North Atlantic, South Atlantic, Tropical
Atlantic, North Pacific, South Pacific, Tropical Pacific, South
Indian, Tropical Indian, Gulf of Mexico, Mediterranean Sea,
high latitudes in the northern hemisphere, and high latitudes in
the southern hemisphere. For each region, the NOAA/AOML
profile set contains two good profiles and four bad profiles or
profiles containing data points that should fail one or more tests,
for example the test for spikes, possible rate of change, and
climatology. Additionally, several good profiles were modified to
introduce errors in the data and/or metadata in order to
benchmark specific QC tests including impossible date,
impossible location, location and maximum depth based on
bathymetry, and maximum depth based on probe type. The data
can be obtained from ftp://ftp.aoml.noaa.gov/phod/pub/bringas/
XBT/AQC/AQC IQUOD_2018/.

This dataset can be used to manually inspect the outputs
produced by the quality control checks on profiles with known
quality, and provides a straightforward way to determine the
performance of different QC tests or methodologies. It was also
prepared in order to assess the performance of different QC tests
based on geographical region and the capacity of those tests to
accurately account for rates of change in temperature or other
profile structures associated with the ocean dynamics and
variability of these regions.

2.2.3 Argo delayed mode data

The Argo project (Roemmich and Owens, 2000) launches
autonomous profiling floats to primarily measure the
temperature and salinity of the global ocean to 2000 m depth.
Float variants include those that also make biogeochemical
measurements and those that sample deeper in the ocean.
Argo data are subjected to initial real time AQC and, later,
delayed mode manual inspection (Wong et al., 2020a). Argo
instruments collect profiles over a long time period and can be
affected by sensor drifts (Wong et al., 2020b). It should be noted
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that the QC checks considered in this study are not designed to
detect such drifts.

A year of Argo data (2010) was downloaded (data
downloaded 30 September 2021) (Argo, 2021) and the delayed
mode data run through the AutoQC system. The data are
provided divided into Atlantic (30204 profiles), Indian (24803)
and Pacific (56152) Ocean regions. This separation was retained
in order to determine if there are regional variations in results.

3 Results
3.1 Pre-selected tests

The AutoQC system was run on the QuOTA dataset to
generate quality control results for each profile. The results for
the pre-selected tests are discussed here first.

During testing, visual inspection of profiles suggested that
the CS wire break test may not function well for low resolution
profiles because the depth levels are sufficiently far apart that the
temperature change between levels is above the threshold set in
the test. As the focus of this study is to use ‘off-the-shelf quality
control algorithms as much as possible, tuning of the test to cope
with this situation was not attempted. Instead, a simple approach
was adopted where the QC decisions were ignored if all levels
had been rejected. Following this modification, the numbers of
profiles that contain rejects due to the pre-selected tests are listed
in Table 2.

The outputs from the pre-selected tests were extracted and
applied using the rule given in the table prior to running the
training algorithms to select the best QC sets. For those tests that
only flag part of a profile, two additional levels either side of a
reject were also removed from the training data. This avoids the
results from QC tests that use multiple levels in their algorithms
from being contaminated by the data that were already rejected.
Of the six selected, three reject zero or a very small number of
profiles. The Ar impossible date and Ar location tests simply
check that the date and location of the profile are sensible. For
example a latitude of 95°N would be rejected by these tests. The
ICDC (IC) level order check rejects levels with depths less than 0
m (i.e. above the surface of the water).

Of the three remaining pre-selected tests, the IQ gross range
check results in the lowest number of flags applied to the profiles
(3% of the total). The other two reject at least one level in a large
number of profiles: the CS XBT surface temperature test (55%) and
the CS XBT wire break test (24%). As the names imply, these two
tests are only applied to XBT data. The former applies a manual QC
procedure to reject XBT levels shallower than 3.6 m, because near-
surface XBT data are unreliable due to the time lag in the thermistor
response (Reseghetti et al., 2007). In QuOTA and XBT data quality
controlled within Australia, these surface temperature values were
replaced with 99.99 (Bailey et al., 1994; Gronell and Wijffels, 2008).
As described in Section 2.1.2.2, the CS XBT wire break test is unique
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TABLE 2 Pre-selected QC checks, the number of profiles that they flag out of the 47022 profiles from the QuOTA dataset used in this study, and

the rule applied to remove the affected data from the QUOTA dataset.

Test

Ar impossible date 36

Number of flagged profiles

Rule applied

Remove entire profile

Ar impossible location

Remove entire profile

CS XBT surface temperature

25871

Remove from start to last flagged level

CS XBT wire break

11331

Remove from first flagged level to end

IC level order

Remove from start to last flagged level

1Q gross range

1450

Remove flagged levels, or, if XBT

remove from first flagged level to end

in the QC checks included in this study in attempting to detect that
error mode specifically. However, as noted above, this test does not
appear to work effectively for low vertical resolution profiles. Since
the wire break manifests as an abrupt change in the recorded
temperature at the deepest part of the profile, other tests (for
example the spike or step checks) are also likely to be effective at
finding these errors and may not be so sensitive to the profile’s
vertical resolution.

From this point all statistics quoted refer to the data after
application of the pre-selected QC tests and their associated rules.

3.2 Performance of individual tests

The pre-selected tests and their associated rules were applied
to the QuOTA profiles and then the performance of the
individual tests was calculated on the remaining data. These
results are shown in Table 3 (non-bold text). The QC test that
has the highest TPR (64.0%) is the second IC local climatology
check, followed closely by the first version of this test (62.6%).
The second IC local climatology check also has a better FPR than
the first (12.7% versus 15.0%). The difference between these two
IC local climatology checks is that the second check does not
make an assumption on the statistical distribution of the data,
which can cause outliers to be incorrectly identified as errors
(Hubert and Vandervieren, 2008). Since this second check
performs better than the first according to these results, it
implies that asymmetrical thresholds can improve QC
performance. Studying a different dataset and region, Castelao
(2021) also suggested an asymmetry when comparing
observations with WOA climatology. This illustrates the utility
of benchmarking for demonstrating improvements in
QC checks.

The individual test with the third highest TPR is also a
climatology check (AOML (AO) climatology). It has a slightly
lower TPR (60.8%) and FPR (13.0%) than the IC versions,
suggesting that the AO test is marginally more conservative in
its rejection thresholds. Other background checks are
considerably more conservative. For example, the FPR can be
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reduced to below 1% by using the EN background check if a
lower TPR of 34.0% is accepted. Gradient, spike and range
checks and the machine learning approach encapsulated in the
CoTeDe (Co) Anomaly Detection test are also relatively
successful at identifying profiles with bad data.

Increasing depth and stability checks are relatively ineffective
types of tests according to these results. They reject
proportionally similar or a greater percentage of profiles
containing good data than those containing bad data. This is a
surprising result for the increasing depth checks as these are
simple algorithms to check that depths increase monotonically
through the profile. This type of test was not used when
generating QuOTA and this error mode was evidently not
always flagged in the dataset. Both the Ar pressure increasing
and EN increasing depth checks returned identical results. When
generating combinations of tests, the EN increasing depth check
was selected from the two since it employs a more sophisticated
method of deciding which levels to reject. Stability checks rely on
salinity information, which is not available for many profiles in
the historical record. This can explain the poor performance of
these checks, at least in part.

The EN track check failed to reject a significant number of
profiles. It is likely that the QuOTA dataset is not well suited to
benchmarking this test. In addition, the Ar regional range check
only defines temperature ranges for the Red Sea and the
Mediterranean Sea. This test therefore did not return any
rejections since the QuOTA dataset contains no profiles in
those seas.

3.3 Performance of combinations

The algorithms to find the best combination of checks were
applied to the QuOTA data. As described in Section 2.1.5.1, the
algorithm to find the Comp (to give a compromise between high
TPR and low FPR) and LFPR (to give a low overall FPR) sets of
checks employs a cost function to determine which QC checks
are included. It is possible to vary the parameters that define the
cost function (R; and R») to explore the range of possible results

frontiersin.org


https://doi.org/10.3389/fmars.2022.1075510
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Good et al.

10.3389/fmars.2022.1075510

TABLE 3 TPR and FPR for individual QC checks (plain text) and combinations of checks (bold text) after removal of levels/profiles according to

the pre-selected tests listed in Table 2.

TPR (%)

FPR (%)

TPR (%)

FPR (%)

Everything 100.0 61.1 Co GT profile envelope 10.5 0.1
HTPR 92.8 49.6 Co Tukey53H norm 10.4 1.1
Comp 81.1 18.1 Argo 9.8 3.8
ICDC 77.8 229 EN spike and step 5.8 0.1
AOML 77.5 24.8 Co digit roll over 54 0.5
IC local climatology (2) 64.0 12.7 Ar gradient 4.6 0.0
IC local climatology (1) 62.6 15.0 Co Ar density inversion 44 34
AO climatology 60.8 13.0 AO constant 42 0.7
LFPR 57.7 1.9 IC num. of temp. extr. 4.0 0.1
Met Office 53.9 4.0 Co gradient 34 0.0
GTSPP 53.7 20.1 Co Tukey53H 34 0.0
Co GT normbias 46.0 44 Co GT global range 33 0.1
AO gradient 45.0 33 Co GT gradient 3.1 0.0
CSIRO 40.0 3.1 Co spike 23 0.1
Co Anomaly Detection 39.7 3.6 Ar spike 23 0.0
AO spike 375 11.0 AO gross 22 3.1
Co Mo fuzzy logic 36.4 1.8 Min/Max 2.0 1.2
IC gradient 359 12 IC stuck value 2.0 0.0
Co fuzzy logic 35.1 1.6 IC spike 2.0 0.0
1Q bottom 34.6 122 Ar global range 1.6 0.0
EN background 34.0 0.1 EN constant value 1.0 0.0
CS short gradient 33.0 2.7 CS constant bottom 0.9 0.0
CS long gradient 31.0 0.4 Co location at sea 0.9 0.1
WOD 28.6 13 1Q loose loc. at sea 0.6 0.0

EN std. lev. backgr. & bud. 24.8 1.1 EN range 0.2 0.0
Co normbias 234 0.1 Ar pressure increasing 0.1 0.3
‘WO gradient check 19.8 1.3 EN increasing depth 0.1 0.3
‘WO range 18.7 0.0 EN stability 0.1 0.0
IC crude range 183 0.0 IC max observed depth 0.0 0.0
EN background available 14.9 22 CS surface spikes 0.0 0.0
Co rate of change 144 93 EN track 0.0 0.0
Co GT spike 13.6 16.6 Ar regional range* 0.0 0.0
EN suspect spike/step 12.9 0.3

*The Ar regional range check is included here for completeness but is expected to return zero rejects since its regions do not overlap with the area covered by the QuOTA dataset.
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that might be obtained and to choose values for R; and R» to use
for the LFPR and Comp cost functions. This was done, with both
R parameters varied between 1 and 10 in steps of 0.25. Results
are shown by small grey dots in Figure 2. A range of TPR and
FPR rates were achieved, forming a curve with initially a steep
increase in TPR as FPR increases to approximately 10%, then a
slower rate of increase. The LFPR cost function settings were
chosen as a point on the lower part of this curve where the FPR
was less than 2% (cyan circle). Similarly, the values of R} and R,
for the Comp case were selected by choosing a mid-point on the
curve (red circle). In addition, the algorithm to obtain the HTPR
(to give a high TPR) set of tests was run, resulting in the TPR and
FPR shown by the black circle on Figure 2. The benchmarking
results for the LFPR, Comp and HTPR sets are also given
in Table 3.

The QC checks included in the combinations are provided in
Table 4. Pre-selected tests are also included in these

10.3389/fmars.2022.1075510

combinations as these need to be run if applying the QC to
datasets other than the QuOTA subset used here, which already
had data rejected by those tests removed. The CS XBT wire break
test was only inserted in the HTPR set given that, as discussed in
Section 3.1, it may cause false positives when QCing low
resolution profiles and because other QC checks included in
the Comp and LFPR sets are expected to detect wire breaks. The
CS XBT surface temperature test is included in the Comp and
HTPR sets. This rejects all XBT data recorded at depths less than
3.6 m. The lack of inclusion in the LFPR set reflects that these
shallow data may not be poor quality in all cases. The remaining
pre-selected tests were inserted in all sets as there is high
confidence in the rejections they provide. The order of the QC
checks in the combinations follows the ordering of categories of
tests defined in Section 2.1.5.1 and is the order in which they are
recommended to be run. Within each QC set, where there was
more than one test of the same type, the order in which the
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FIGURE 2

The TPR and FPR for each of the sets of QC tests, calculated from the full QuOTA dataset.
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TABLE 4 1QuOD quality control sets.

LFPR set

Ar impossible date

Comp set

Ar impossible date

Ar impossible date

10.3389/fmars.2022.1075510

HTPR set

Ar impossible location

Ar impossible location

Ar impossible location

1Q bottom

EN background avail.

1Q loose location at sea

EN backgr. avail.

IC level order

CS XBT surf. temp.

IC level order

IC level order

CS XBT wire break

1Q gross range

1Q gross range

CS XBT surf. temp.

Ar global range

EN range

WO range

1Q gross range

IC local clim. (1)

IC local clim. (2)

IC crude range

WO range

Co GT normbias

AO climatology

EN background

AO climatology

EN std. lev. bgr. & bud.

EN constant value

EN std. lev. bgr. & bud.

Co GT normbias

CS constant bottom

AO constant

EN increasing depth

EN incr. depth

IC num. temp. extr.

Ar spike

ICDC stuck value

EN constant value

Co Tukey53H

IC spike

EN spike and step

EN spike and step

AO spike

EN spike & step susp.

CS long gradient

CS long gradient

CS long gradient

AO gradient

EN stability

IC gradient

IC gradient check

CS short gradient

EN stability

Co anomaly detection

The order in which the tests are written is the order in which they are recommended to be run (for clarity, the order for the HTPR set should be Ar impossible date, then Ar impossible

location, then IQ bottom etc.).

algorithms chose them is retained. The pre-selected tests and QC
checks that do not fall into one of the categories of tests for
which the ordering has been defined were ordered within the
lists of tests according to the author’s expert judgement.

Results for various other combinations of QC tests - for
example all those from the ICDC set of checks - are also listed in
Table 3 and shown in Figure 2. It should be noted that there are
only two WOD checks included in the AutoQC repository and
therefore these results are not necessarily representative of the
WOD quality control procedures. The results show that the
combination of tests run by different groups fall into two main
categories. The first group provides moderate TPR (< 60%) with
low FPR (<10%) and includes CSIRO, the Met Office and WOD.
The second group has a higher FPR (>20%) but generally
achieves better TPR than the first group. This group includes
AOML and ICDC. The results suggest that the combination
selection algorithms have worked effectively. The LFPR QC set
achieves a higher TPR than the other sets in the first group of
combinations, while the Comp set has a higher TPR and lower
FPR than the second group. However, this is perhaps an unfair
comparison since the algorithms were trained on the same data
that are being used to validate them. Validation of the algorithm
selection is described in Section 4.

By combining together all the QC checks included in the
AutoQC repository (the ‘Everything’ set in Table 3), it is possible
to flag every profile that contains bad data according to the
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reference flags; however, the FPR is 61.1%. This simple
combination includes QC tests that are ineffective and flag a
large number of profiles that should not contain rejects. The
HTPR algorithm removes redundant and ineffective QC tests
from the set of QC checks that are run, but still flags 92.8% of the
bad profiles with a reduced FPR of 49.6%.

Figure 3 shows an example profile from the QuOTA dataset
with the results from the different quality control sets shown
using the QC flagging scheme described in Section 2.1.6.

4 Validation
4.1 Validation by subsetting QuOTA data

The algorithms that determined the quality control sets used
the full QuOTA dataset. It is possible that the algorithms could
overfit to the data and choose quality control checks that
perform well on those data but less well on other sets. One
way to assess this is to split the data into groups and use part for
training and part for validation.

Two ways to subset the data have been tested: first, by
dividing the data by instrument type, and second, by
performing 10-fold cross-validation. The validation procedure
involved assigning each profile to one of the subsets - in the
former case the assignment was governed by the instrument type
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FIGURE 3

Example XBT profile from the QuOTA dataset. This was recorded on 23 March 1999 at 25.5167°S, 111.9167°E. For each set of QC results, the
reference (‘Ref’) flags are shown by open black circles. Measurements rejected (‘Rej’) by the QC set are shown as filled red circles, except for the

IQuOD QC sets derived in this study where the rejected measurements are assigned the number 2 (shown as a yellow filled circle), 3 (magenta)

or 4 (red), with a higher number denoting increased confidence in the rejection.

and in the latter case each profile was randomly assigned to one
of ten subsets. Then, the data from all but one of the subsets were
used to select QC sets and the results were validated on the
remaining subset. This was repeated until all of the subsets had
been used for validation. In addition, the QC sets derived from
the entire QuOTA dataset were validated using each of
the subsets.

Frontiers in Marine Science

4.1.1 Instrument type validation

As described in Section 2.2.1, over half of the QuUOTA data
used in this study are XBT profiles. Bottle/rosette/net, MBT and
CTD profiles also make up a significant proportion of the
dataset. The TPR and FPR of each individual QC check for
the data from each of these types of data are shown in
Figures 4A=D. In general, the QC checks perform best for
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XBT data - many have low FPR, with some of these having TPR
in excess of 40%. In addition, a small number of the checks have
TPR greater than 50% but with FPR still below 20% when
applied to XBT data. Similar results are achieved for the CTD
and bottle/rosette/net data, although there is more scatter in the
points on the plot than for the XBTs. Results for MBT data are,
however, much weaker, with only one QC check achieving
greater than 40% TPR.

The performance of the LFPR, Comp and HTPR QC sets
derived from the full QuOTA dataset on the data from each
type of instrument is shown in Figure 5, top row. Results are
shown as the difference to the TPR and FPR achieved for the
full dataset. Results for XBT data (circles) are generally
positive, with higher TPR and/or lower FPR than for the
dataset as a whole, as might be expected given the strong
results achieved by individual tests on the XBT data. For CTDs
and bottle/rosette/net data, the LFPR case’s TPR is slightly
lower than for the full dataset, the HTPR case’s FPR is slightly
higher and a mixture of both occurs for the Comp case. Results
for MBT data are poor, in particular for the LFPR and Comp
cases, which reflects the performance of the individual tests on
MBT data.

10.3389/fmars.2022.1075510

Figure 5, bottom row, shows the results from generating the
QC sets from all the data except those being used for the
validation. This illustrates what might happen if using the QC
sets obtained in this study on a data type that is not in QuOTA.
For XBT data, the TPRs and FPRs obtained are either similar or
both smaller than that from the full sets. Results for CTDs are
similar to those obtained for QC sets found using all data. For
the bottle/rosette/net data, the LFPR TPR is lower than when the
training dataset included these data, and in the Comp case the
FPR is larger. However, the HTPR results are similar. The TPR
results for MBT data were poor for the LFPR and Comp cases.

In summary, the individual QC tests perform best on XBT
data and poorly for MBT profiles. This poor performance for
MBT data was reflected in the results for the LFPR and Comp
QC sets, particularly when the MBT data were not included in
the training dataset. However, the HTPR case was relatively
robust to the type of data being QCed and whether the data type
was included in the training dataset.

4.1.2 10-fold cross-validation
Figure 6 shows the results from performing the 10-fold
cross-validation. As described above, this involved randomly
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(A) The performance of each individual QC check on QuOTA MBT data; (B-D) as (A) except for QuOTA XBTs, CTDs and bottles/rosettes/nets
respectively; (E) as (A) except for Argo profiles in 2010 for the Atlantic Ocean (Atl; blank circles), the Indian Ocean (Ind; red circles) and the Pacific
Ocean (Pac; cyan circles); (F) as (E) but with the last profile point of each Argo profile removed. Grey dashes: the lines of equal TPR and FPR.
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Top row: TPR and FPR calculated when applying the QC sets derived from the full QuOTA dataset to data from particular instrument types

minus the TPR and FPR calculated from all the data; bottom row: as top row except the QC sets were derived from all data except those the

TPR and FPR were calculated from.

assigning each profile to ten groups. Profiles from nine of the
ten groups were used to select QC sets and these were
validated on the data from the remaining group. This was
repeated until all ten groups had been used for validation.
Similar to Figure 5, the top row shows the TPR and FPR from
applying the LFPR, Comp and HTPR QC sets to each of the
ten subsets of the QUOTA data and the second row is the
same but for the LFPR, Comp and HTPR sets derived from all
the data except those in the subset being used to calculate the
TPR and FPR. In all cases, the results are shown as the
difference to the TPR and FPR obtained when applying the
LFPR, Comp and HTPR QC sets derived from all the QuOTA
data to the full dataset.

The largest variation in the TPRs occurs for the LFPR QC
set. The differences tend to be negative (i.e. the TPR is worse
than when applying the QC sets to all the QuOTA data),
particularly when the QC sets were derived from data that
excluded the subset used to calculate the TPR and FPR.
However, the variation is relatively small compared to that
found for different data types in Section 4.1.1.

Frontiers in Marine Science

In general, the results for the Comp and HTPR QC sets show
relatively little variation in TPR and FPR. The exception is for
three of the subsets for the Comp case, in the situation where the
QC sets were found from data not in those subsets. Examination
of the QC sets obtained for these three cases revealed that a
different selection of QC sets had occurred. For example, the AO
climatology check was not selected in those sets, but was in the
others. Table 5 details the frequency with which particular QC
tests were selected in a QC set. Bold numbers denote that a test
was also in the QC sets derived from the full QuOTA dataset.
The selection of tests was, in general, very stable, and many of
the tests included in the sets obtained from all the QuOTA data
were also selected with every instance of the subsetted data.

4.2 Validation using the NOAA/AOML
100 XBT profile dataset

The NOAA/AOML dataset of profiles and the results
obtained by applying the QC tests to them were examined to
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calculated from.

provide an overall qualitative assessment of the ability of the QC
sets to detect the errors in the profiles. It was found that, in
general, the QC sets derived in this study perform well. An
example of a profile from the NOAA/AOML dataset (Figure 7)
shows that the IQuOD QC sets derived in this study have
successfully rejected the poor quality data below approximately
550 m. Other QC sets have varying success in flagging these data
with some QC sets not detecting the spikes at all (Argo and EN
sets) and some partially detecting them (e.g. GTSPP and WOD).
The full NOAA/AOML dataset of profiles is shown in the
supplementary material.

4.3 Validation using Argo delayed
mode data

The benchmarking statistics calculated for the Argo data are
shown in Table 6. The results from the QuOTA dataset after the
pre-selected tests were applied are also included for comparison.
The Argo dataset contains a similar proportion of profiles
containing flagged data as QuOTA (13.6 - 17.2% compared to
14.0% for QuOTA). The performance of each individual QC test
is shown in Figure 4E. The majority of tests achieve TPR < 30%.
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Of those that achieve higher TPR, the results for the Atlantic
Ocean are better overall than those for the Indian and Pacific
Oceans. In the latter cases the results are close to the dashed grey
lines in the plots, which shows the line of equal TPR and FPR.
The TPR achieved by the QC sets (Table 6) is in all cases lower in
the Argo results than in the QuOTA results, particularly for the
Indian Ocean. FPR is similar in the LFPR case but higher in the
Comp and HTPR cases.

Inspection of Indian and Pacific Ocean profiles identified
that the deepest level of the profile is often flagged in the delayed
mode Argo quality control for these regions. Figure 8 shows an
example profile containing this feature. These rejections are
likely associated with the occurrence of ‘salinity hooks’ at the
base of Argo profiles caused by water from the surface or parking
level remaining in the conductivity sensor at the start of
measuring the profile (Wong et al., 2020a). Therefore, results
were also generated when disregarding this level. This made a
significant difference to the number of profiles rejected in the
reference QC flags for the Indian and Pacific Oceans (Table 6),
with the rejection rate for the Indian Ocean reduced from 17.2%
to 7.1% and for the Pacific Ocean from 13.6% to 8.9%. There was
also a noticeable improvement in the results for the individual
QC tests (Figure 4F). However, while the TPRs achieved by the
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TABLE 5 Percentage of times each test appears in the QC sets derived in the 10-fold cross-validation.

% of times in set

QC test name

QC test name % of times in set

Comp Comp

AO climatology 0 70 100 EN range 0 0 100
AO constant 0 0 90 EN spike and step 100 100 0
AO gradient 0 30 100 EN spike and step suspect 0 0 100
AO spike 0 0 100 EN stability 100 100 0
Ar global range 0 0 100 EN std. lev. backgr. & bud. 70 40 100
Ar spike test 0 0 100 IC crude range 100 0 0
CS constant bottom 0 0 100 1C stuck value 100 10 0
CS long gradient 100 70 100 IC num. of temp. extrema 0 0 100
CS short gradient 0 0 100 IC spike 0 0 100
Co GT normbias 0 100 100 IC gradient 0 70 100
Co Anomaly Det. 0 0 100 IC local climatology (1) 0 0 100
Co Tukey53H 0 0 100 IC local climatology (2) 0 0 100
EN backgr. avail. 0 100 100 1Q bottom 0 0 100
EN background 100 0 0 1Q loose location at sea 100 0 10
EN constant value 0 90 90 WO range 100 100 0
EN increasing depth 100 100 0

Bold numbers indicate that the test was in the QC set derived from the full dataset.

QC sets were also improved for the Indian and Pacific basins
(Table 6), it was not sufficient to bring the results into agreement
with those from the QuOTA data.

Figure 9 shows a comparison of the benchmarking results
for different quality control sets for the Atlantic Ocean, Pacific
Ocean and Indian Ocean data after removal of the deepest level.
A number of the QC sets including Argo (which would be
expected to work effectively on these data), the Met Office and
the LFPR set are successful at flagging a relatively small
proportion of profiles with Argo delayed mode rejections. The
Met Office and LFPR results are very similar. Inspection of the
results suggests this is due to both sets including the EN
background and EN increasing depth checks. Compared to the
Argo QC set, the Met Office and LFPR have a higher TPR but
also a non-zero FPR rate. The LFPR QC could therefore be a
useful alternative to the Argo real time QC if a higher TPR is
desirable and loss of some good data is acceptable. At the other
end of the scale, the HTPR set flags 76.4 - 84.8% of the rejected
profiles but also 59.2 - 69.0% of those without reference flags.
Applying all QC tests achieved a similar result to the HTPR set.
The Comp, AOML, GTSPP and ICDC sets lie between the two
other groups.

Underlying these results is that the individual QC tests have
significantly different TPRs and FPRs than assessed using
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QuOTA. For example the AO climatology test, which has a
TPR of 60.8% and FPR of 13.0% according to the QuOTA data,
has, for example, a TPR of 56.2% and FPR of 30.0% from the
Atlantic Ocean Argo data, 44.3% and 29.7% in the Pacific Ocean
and for the Indian Ocean they are 41.4% and 38.2%. The regions
covered by the QuOTA data and the Indian Ocean Argo data are
the most similar so it is perhaps surprising that the greatest
difference in TPR and FPR occurs there. The regional variability
could suggest that the test works better in some regions than
others, or that the Argo delayed mode QC may vary, or both
could be a factor.

A concern with the results shown in Figure 9 is that the
different quality control sets approximately lie on a line with
gradient of 1 (i.e. parallel to the dashed grey line shown in the
plots). This implies that there is little correlation between the
profiles that are being flagged and the Argo reference flags
because for every additional 1% of profiles with Argo flagged
data that are rejected by the QC sets, 1% of the profiles with no
Argo flagged data are also rejected. It is likely the case that there
are error modes that occur in the Argo data that the AQC checks
are not detecting. The QC checks may also not be optimized for
the high quality Argo data, and may be better suited to the types
and frequency of error modes that occur in instruments such as
XBTs. The individual Argo QC checks (including the Min/Max
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As Figure 3 except for an example profile from the NOAA/AOML dataset. This profile is from the South Atlantic Ocean at 43.500°S and 40.886°

W and has a time stamp of 1 September 2017. It shows many spikes between 550 m and 850 m.

test, which was derived using CTD datasets (Argo, ship-board
CTD, mammal-mounted CTD) (Gourrion et al.,, 2020b)), all
have very low FPR (Figure 9), which may therefore be a design
choice, but this may not be a good choice if quality controlling
data from instruments that are more prone to problems.

Figure 8 shows an Argo profile where one of the levels was
rejected by the QC checks but not in the delayed mode flags. It is

Frontiers in Marine Science 19

difficult to design tests that do not reject the types of features
shown while still finding genuine errors. It highlights that it
should not be taken for granted that quality control checks that
are effective for one type of data will work for another type. In
the future, this may mean designing or optimizing tests for each
type of data and it also highlights the need for human QC
operators in addition to automatic checks.
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TABLE 6 TPR and FPR for the QUOTA dataset and each of the Argo regional datasets.

Statistic

Atlantic Ocean

Argo

Indian Ocean Pacific Ocean

All No end All No end All No end
points points points points points points
Reference Number of profiles 39971 30204 30162 24803 24749 56152 56015
Number flagged 5612 5118 4756 4278 1757 7645 4972
Percentage flagged (%) 14.0 16.9 15.8 17.2 7.1 13.6 8.9
LFPR TPR (%) 57.7 27.5 26.0 11.2 18.0 31.2 36.9
FPR (%) 1.9 1.4 1.4 3.1 3.0 12 1.2
Comp TPR (%) 81.1 63.9 64.1 39.1 46.9 51.2 55.7
FPR (%) 18.1 327 31.8 41.0 393 32.8 30.7
HTPR TPR (%) 92.8 84.6 84.8 72.3 76.4 76.8 81.8
FPR (%) 49.6 60.2 59.2 65.1 64.8 70.4 69.0

QuOTA results were calculated from data after the pre-selected tests were applied. Two sets of Argo statistics are listed. The first are for the full profiles and the second for the profiles with

the deepest observation removed.

5 Discussion

In this study, various AQC checks for temperature profile
data used by the international scientific community have been
benchmarked using a subset of the QuOTA dataset that had
previously been subjected to manual QC. As well as showing
which checks perform best according to the benchmarks, QC
test sets have been identified that provide better FPR and/or TPR
than those being run by individual organizations and
qualitatively perform well on the NOAA/AOML curated set of
100 profiles with known characteristics. The QC checks included
in those sets were shown to be robust when deriving and
validating the sets using 10-fold cross-validation. Larger
differences occurred when validating by dividing the data by
instrument type, with the QC performing best on XBT data but
worst on MBT data. Performance was also lower than for
QuOTA when applying the QC sets that try to achieve a high
or moderate TPR to Argo delayed mode data, which may reflect
differences in the types of error modes that occur in Argo data
compared to other data types and the need for manual QC to
identify some of these. However, it was noted that Argo AQC
checks have very low FPR and the QC set that attempts to
minimize false positives was found to be comparatively effective
on Argo data, albeit while providing a lower TPR than achieved
on QuOTA.

The results highlight the need for training data
representative of the various errors that occur in the datasets
that the QC tests are being applied to. A crucial aspect of this is
knowing the reason why a manual QC operator has rejected
particular data. A simple example of this was found with the
Argo delayed mode data. It was found that in many cases the last
level of an Argo profile is rejected, despite no obvious
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discrepancies with the level above in the temperature profile.
This type of rejection is specific to Argo delayed mode data and
hence is not seen in the QuOTA profiles. Knowledge of this
might allow an AQC check to be implemented and, if there was
more than one implementation, to include some of these data in
the reference dataset and benchmark them.

In the future, the hope is to create a virtuous circle within the
1IQuOD project where manual QC is performed on a selection of
profiles. The operator will be able to mark the reason for a
rejection. This could then become an expanding dataset for
training AQC and machine learning techniques (which can
themselves be benchmarked in the AutoQC system), covering
all regions rather than the restricted latitude/longitude range of
QuOTA. Knowledge of which errors are not being identified by
the AQC could lead to new tests being developed or to
improvements in already-implemented tests. It will therefore
be possible to improve the overall quality of the full dataset faster
than would be possible if trying to manually QC all profiles.
Automatic techniques should also be useful in detecting which
profiles would benefit most from manual QC. Machine learning
(such as used for the Co Anomaly Detection test (Casteldo,
2021)) is expected to become increasingly valuable in the
future and the benchmarking provided by the AutoQC system
will be very useful to track progress in this work.

Refinements are also possible in the way the QC checks
included in AutoQC are implemented. For example, the checks
are currently set up as independent tests. All QC tests process the
full dataset and in the few cases where QC checks rely on
information from another (for example EN background uses
outputs from EN spike and step suspect), this is dealt with by
calling the other routines from within the code for that check or
using saved outputs within the SQLite dataset. In other systems,
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As Figure 3 except for an example Argo profile -
December 2010.

such as WOD (Garcia et al., 2018), QC checks are run in a
particular order and rejected data removed so that later checks
do not have to deal with problems that are already detected. This
can allow the later tests to be more sensitive to the errors they are
designed to find. A version of this approach has been
implemented in the IQuOD QC sets through use of expert
judgement. Improvement to the order in which QC tests are run
was one of the recommendations of Tan et al. (2022) and with a
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number 56019 in the data analyzed for the Pacific Ocean - at 57.344°S, 170.453°E on 29

controlled test dataset containing known errors it would be
possible to do focused studies to determine the benefits from a
defined processing order. Another refinement would be to apply
expert judgements to the way that levels within a profile are
rejected. The example of which levels around a spike should be
rejected was given earlier. A second example is for XBT data,
where the convention is that if a wire break is found all levels
deeper are also deemed suspect and should be given the same
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flag. Third, experts might recommend particular tests or
thresholds for different regions or instrument types.

The benchmarking framework that has been set up has, so
far, been used only for temperature profile data. However, there
are other essential ocean (climate) variables, such as salinity, for
which QC is also crucial. The same benchmarking techniques
can be applicable to those physical variables.

In summary, the benchmarking and QC sets discussed in
this paper are intended to be a first iteration. In the future, the
integration of AQC, machine learning QC and manual QC
under the IQuOD project will enable a framework where each
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aspect can improve the other, iteratively improving the quality of
the full temperature profile dataset in the future, and eventually
extending the techniques to other variables.

6 Conclusions

As part of the IQuOD project, open source software
infrastructure was developed to benchmark sixty AQC checks
for ocean temperature profile data and to determine the best set
of tests. The software was coded in Python and is publicly
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available under the MIT license. Algorithms were also developed
to determine the optimal sets of quality control checks. The
software was applied to profiles from the QuOTA dataset to
which manual QC had been applied by the dataset developers,
and therefore there was high confidence that the quality of the
data was known. Three set of checks were derived, which allowed
the identification of as much suspect data as possible at the cost
of rejecting potentially good data (the HTPR set), to only flag the
most suspect data with the cost of missing some data which
should have been rejected (the LFPR set), or a compromise
between the two (the Comp set).

The set selections have been validated by subselecting the
training data and using two independent datasets. Results from
the subselecting were relatively consistent with the original
results when 10-fold cross-validation was applied. They were
less consistent when the dataset was split by instrument type,
with the best results for XBT profiles and worst for MBT profiles.
The results of applying the tests to a curated set of 100 XBT
profiles developed by NOAA/AOML were qualitatively
satisfactory. When applying the QC to delayed mode Argo
data, the Comp and HTPR sets derived from the QuOTA
training data did not perform well. However, the LFPR set
performed satisfactorily when compared to the Argo real time
QC procedures but achieved a lower TPR than that calculated
for the QuOTA data. This result was not confined to the sets
determined in this study — the individual tests and groups of
quality control checks used by different data producers around
the world were similarly affected. This highlights that quality
control performance can vary according to the data being
processed. It is recommended that the underlying causes of
these differences are investigated in the future.

The QC sets found in this study will be used to QC historical
data that have not previously had extensive QC applied such as
XBTs and will be released by the IQuOD project from a NOAA
portal (current version is available at https://doi.org/10.7289/
v51rénsf) (The IQuOD Team, 2018). The three IQuOD sets of
QC checks will be applied separately to the dataset with a QC value
of 1 assigned to data that are not rejected by any of the sets, 2 to
data that are rejected by only the HTPR set of checks, 3 if the Comp
set rejects the data but not the LFPR set, and 4 if the LFPR set
returns a reject. For appropriate QC tests, it is also recommended
that XBT data deeper than a rejection flag are marked with the
same flag. Users can choose to (i) use only data with a flag value of 1,
which excludes all data identified by the QC sets as being suspect, (ii)
use data with QC flags of 1 or 2, which provides a balance
between finding as much bad data as possible without rejecting too
much good data, or (iii) use data with QC flags of 1, 2 of 3, which
will mean that the only data that are rejected are those where there
is high confidence that they are bad. If it is unclear to the user which
to use, the recommendation is to use data with flag values of 1 or 2
and reject data with flag values of 3 or 4.

Frontiers in Marine Science

23

10.3389/fmars.2022.1075510

It is expected that this dataset and the new understanding of
the performance of QC methods obtained in this study will serve
to improve forecasting, reanalysis and monitoring of the state of
the ocean. This study is seen as a first step. In the future, the
software infrastructure that has been set up will foster more
effective and timely advances in AQC evaluations (e.g. inclusion
of other checks, either existing or newly developed), through
coordination of international expertise and resources into a best
practice community effort. The aim is to facilitate evolving AQC
activities and data refinements (along with full documentation)
in support of the highest quality and most consistent global
temperature profile database. In addition, the overall AQC
framework can serve as a template for enhancing the quality
of other essential climate variables (ECVs), such as ocean
salinity, and their value to scientific and societal applications.
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