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Millions of in situ ocean temperature profiles have been collected historically

using various instrument types with varying sensor accuracy and then
assembled into global databases. These are essential t o our current
understanding of the changing state of the oceans, sea level, Earth’s climate,

marine ecosystems and fisheries, and for constraining model projections of

future change that underpin mitigation and adaptation solutions. Profiles

distributed shortly after col lect ion are also widely used in operational
applications such as real-time monitoring and forecasting of the ocean state
and weather prediction. Before use in scientific or societal service applications,

quality control (QC) procedures need to be applied to flag and ultimately

remove erroneous data. Automatic QC (AQC) checks are vital to the timeliness
of operational applications and for reducing the volume of dubious data which
later require QC processing by a human for delayed mode applications. Despite
the large suite of evolving AQC checks developed by institutions worldwide,
the most effective set of AQC checks was not known. We have developed a
framework to assess the performance of AQC checks, under the auspices of
the International Quality Controlled Ocean Database (IQuOD) project. The
IQuOD-AQC framework is an open -s our c e col laborat ive sof tware
infrastructure built in Python (available from https://github.com/IQuOD).
Sixty AQC checks have been implemented in this framework. Their
performance was benchmarked against three reference datasets which
contained a spectrum of instrument types and error modes flagged in their

profiles. One of these (a subset of the Quality-controlled Ocean Temperature

Archive (QuOTA) dataset that had been manually inspected for quality issues by
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its creators) was also used to identify optimal sets of AQC checks. Results
suggest that the AQC checks are effective for most historical data, but less so in
the case of data from Mechanical Bathythermographs (MBTs), and much less
effective for Argo data. The optimal AQC sets will be applied to generate quality
flags for the next release of the IQuOD dataset. This will further elevate the

quality and historical value of millions of temperature profile data which have

already been improved by IQuOD intelligent metadata and observational
uncertainty information (https://doi.org/10.7289/v51r6nsf).

KEYWORDS

ocean, temperature, observations, quality control, automatic

1 Introduction

Ocean temperature profile observations are essential for

many applications (Penny et al., 2019). These include those
that require data in near real time such as ocean monitoring and
forecasting (e.g. Chassignet et al., 2009; Blockley et al., 2014;
King et al., 2018; Lellouche et al., 2018; Schiller et al., 2020) and
numerical weather prediction from coupled atmosphere-ocean

Therefore, automatic QC (AQC) checking of historical data is
essential for two purposes: (i) to allow the use of data within an
acceptable time frame; and (ii) to identify profiles that are almost

certain to contain only good quality data, reducing the number
of profiles to be inspected by manual QC operators and making

their task tractable. An overview of types of AQC checks

considered in this study is presented below.

models (e.g. Dong et al., 2017; King et al., 2020). Ocean
applications that require observations with less stringent
timeliness requirements but a higher level of quality control
include climate applications such as decadal forecasting (e.g.
Dunstone and Smith, 2010; Bellucci et al., 2013), ocean/coupled
atmosphere-ocean hindcast reanalyses (e.g. Balmaseda et al.,
2015; Zuo et al., 2017; Laloyaux et al., 2018; Storto et al., 2019),
ocean climate monitoring (e.g. Johnson et al., 2019; von
Schuckmann et al., 2019; Gulev et al., 2021) and generation of
climatologies (e.g. Gouretski and Koltermann, 2004; Schmidtko
et al., 2013; Gouretski, 2019; Locarnini et al., 2019). In all cases,
quality control (QC) of the data before use is required (Bushnell

et al., 2019) to exclude from further consideration or use profiles

and/or data points containing errors (e.g. sensor drifts, data
stream errors, etc.), which may negatively impact results. QC
may be performed using automatic methods or, ideally, through

manual examination of the profiles by an expert human

operator. In the case of near real time applications, the only
viable way to perform the QC while still meeting timeliness
requirements is by automatic checking. For delayed mode

applications, the number of profiles in the historical archive

makes expert manual examination of these profiles extremely

challenging and time consuming. For example, there are more
than 2.3 million eXpendable BathyThermograph (XBT) casts in
the World Ocean Database (WOD; Boyer et al., 2018), with
thousands of these being the largest source of temperature

profile data for the 1980s and until the operational

implementation of the Argo programme (Argo, 2021).

•     Impossible date/time/depth - confirms that the date and

time are possible (e.g. year is not unrealistically far in the
past) and that depth is not negative;

•     Ocean/sea location - checks that the profile location is

not over land based on bathymetric data or a land/sea
mask;

•     Instrument track - compares the location of successive

profiles from a sensor to detect unrealistic speeds or
paths;

•     Increasing depth/pressure - checks for instances whether

depths/pressures do not increase through the profile;

•     Constant values - detects repeated temperature values in

the profile (e.g. due to sensor failure);

•     Range - compares temperature values to a set of ranges,

which may be defined globally or regionally and may
change with depth;

•     Gradient - checks for unrealistic temperature gradients
through the profile;

•     Spike/step - detects sudden changes in temperature in

the profile, which may revert (spike) or continue further

down the profile (step);

•     Stability - detects temperature instabilities along the

water column (i.e. density not increasing through the
profile) within some tolerance range;

•     Climatology/background - similar to a range check but

the profile is compared to a climatological profile or a

‘background’ profile obtained through objective analysis,
model forecast or other means, and thresholds may be
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defined using knowledge of the climatological/

background and observation error variances;

10.3389/fmars.2022.1075510

value for scientific and societal services applications (Domingues

and Palmer, 2015).

•     Fuzzy logic - instead of having a single test for a

particular error mode which gives either a pass or
reject result, fuzzy logic checks multiple features and
uses the results together to assign a QC result in a fuzzy
scale ranging from certainly pass to certainly reject;

•     Machine learning - a broad category of data driven

algorithms such as neural networks and Anomaly
Detection which are able to classify the data quality
based on non-linear criteria;

•     XBT specific - XBTs have specific error modes such as

sudden changes in the temperature profile when the wire

that connects the instrument to the recorder breaks, and
therefore specific QC tests have been set up for XBT

data;

•     Miscellaneous - QC checks that do not fit into the

categories above such as comparison of profile depths
to the maximum expected depth that an instrument

might reach, or a check on the shape of the profile.

The benchmarking of the AQC checks in this study required
two aspects for success: (i) a software infrastructure capable of

processing a large set of profiles through a significant number of

quality control checks; and (ii) reference data with known
quality that can be used to benchmark the quality control
checks and validate the results. Both (i) and (ii) are described in
Section 2. Section 3 provides the benchmarking results and
Section 4 their validation. Sections 5 and 6 respectively contain
the discussion and conclusions.

2 Materials and methods

2.1 Software and methods

2.1.1 Software infrastructure
The software infrastructure used in this study was developed

as a collaborative project using GitHub to host the code and

track issues (https://github.com/IQuOD/). Repositories within

The gamut of AQC tests in use by the international
community was largely developed by independent research
groups and for their own varied applications and ocean
regions (e.g. Gronell and Wijffels, 2008; UNESCO-IOC, 2010;
Cabanes et al., 2013; Good et al., 2013; Garcia et al., 2018;
Gouretski, 2018; Wong et al., 2020a; Gourrion et al., 2020b).
There are a number of common types of QC procedure designed
to detect frequently occurring error modes, and some for unique
or uncommon errors. A non-exhaustive list of QC tests that fall
into these categories is given in Table 1 and a detailed review can
be found in Tan et al. (2022). Database managers and/or users

will typically choose to apply a set of AQC checks to the profile

data to detect a broad range of errors. To this date, however,
there is no quantitative assessment of which AQC checks are the
best performing.

In this study, a comprehensive benchmarking exercise was
carried out to evaluate the performance of sixty AQC checks
(Table 1) and to recommend an optimal set of checks. This
coordinated evaluation was performed as a strand of work of the
International Quality Controlled Ocean Database (IQuOD)
project (www.iquod.org) concerned with improving the QC
applied to ocean temperature profiles using AQC (including

machine learning). Other IQuOD work strands include cloud-
based expert QC, development and assessment of algorithms for
intelligently assigning metadata to profiles where they are

missing (Palmer et al., 2018; Haddad et al., 2022), assignment of
uncertainty estimates to each observation level of the profile

(Cowley et al., 2021), flagging and removal of exact or near

duplicates, and development of metrics to assess the impact of
IQuOD activities. Overall, IQuOD’s aim is to improve the

quality and consistency of historical ocean profile data and its

the IQuOD GitHub project include wodpy (Mills et al., 2017),

for file reader software for WOD data, and AutoQC, which

contains the main code base for this project. The version of the
AutoQC code used in this study can be found at https://github.
com/IQuOD/AutoQC/releases/tag/publication-2022 (Good and
Mills, 2022).

All code was developed in Python. The quality control
checks listed in Table 1 were, in many cases, recoded from
their original language into Python and/or restructured to allow
them to all be run in a uniform way. We also made use of QC
code that was written for the CoTeDe Python package (Castelão,

2020) by including ‘wrapper’ QC checks in AutoQC. These

‘wrapper’ checks run the CoTeDe software to obtain their QC

decisions, allowing them to be used within the AutoQC software.
QC checks have tests associated with them that run part or all of
the QC algorithms to ensure that they are giving the expected
answer and hence are working as intended.

The AutoQC processing chain has three main stages. The
first is to create an SQLite database (www.sqlite.org). This holds

the raw input data and has space for QC decisions from each
quality control check contained in the software library and a set
of reference QC flags. The second stage runs all the quality

control checks on each profile and stores the results in the

database. Finally, the third part of the processing is to run
routines to obtain benchmark statistics and find optimal sets of

quality control checks (‘IQuOD sets’).

The library of QC checks is designed to be easily expandable
and reusable. All the QC checks produce results for the entire
profile, and it is possible to run them in any order. If a new

quality control check becomes available, it is only necessary to
include it within the software library and the processing system
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TABLE 1 List of types of Q C  checks and the individual tests that have been included in this study.

Type of test Tests included in the AutoQC system

Impossible date/time/depth

Ocean/sea location

Instrument track

Increasing depth

Constant values

Range

Gradient

Spike/step

Stability

Climatology

Fuzzy logic

Machine learning

XBT specific

Miscellaneous

Ar impossible date IC level order

Co location at sea

IQ loose location at sea

EN track

Ar pressure increasing

AO constant

EN constant value

AO gross

Ar regional range

Co GT profile envelope

IC crude range

IQ gross range

WO range

AO gradient

Co gradient

Co rate of change

CS short gradient

WO gradient

AO spike

Co GT spike

Co Tukey53H

EN spike and step

IC spike

Co Ar density inversion

AO climatology

Co normbias

EN standard level background and buddy

IC local climatology (2)

Co fuzzy logic

Co Anomaly Detection

CS XBT surface temperature

CS surface spikes

Co digit roll over

Ar impossible location

EN background available

IQ bottom

EN increasing depth

CS constant bottom

IC stuck value

Ar global range

Co GT global range

EN range

IC number of temperature extrema

Min/Max

Ar gradient

Co GT gradient

CS long gradient

IC gradient

Ar spike

Co spike

Co Tukey53H norm

EN suspect spike/step

EN stability

Co GT normbias

EN background

IC local climatology (1)

Co Mo fuzzy logic

CS XBT wire break

IC max observed depth

In the majority of cases these are coded within the AutoQC project, but some are accessed by running the CoTeDe quality control software package. The names of the checks include their
origin in abbreviated form; the definition of these is included below.
AO, Atlantic Oceanographic and Meteorological Laboratory (AOML; https://www.aoml.noaa.gov/phod/goos/xbt_network/); Ar, Argo project (Wong et al., 2020a); Co, CoTeDe quality
control software (Castelão, 2020) version 0.23.6, including Anomaly Detection (Castelão, 2021); CS, Commonwealth Scientific and Industrial Research Organisation (CSIRO; Gronell and
Wijffels, 2008); GT, Global Temperature and Salinity Profile Programme (GTSPP; UNESCO-IOC, 2010); EN, Met Office EN dataset (Ingleby and Huddleston, 2007; Good et al., 2013); IC,
Integrated Climate Data Centre (ICDC) (Gouretski, 2018); IQ, International Quality Controlled Database (IQuOD) project (described in this paper); Min/Max, Gourrion et al., 2020b;
Gourrion et al. 2020a); Mo, Morello et al. (2014); WO, World Ocean Database (WOD; Garcia et al., 2018).
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will detect it and use it. It is expected that the processing will be

repeated in the future when new reference data become available

(see Section 5).

All software is available under the MIT license (https://
github.com/IQuOD/AutoQC/blob/master/LICENSE) and
hence is free for use by others within their systems. For
example, Tan et al. (2022) successfully used the code to
compare four different sets of QC tests. In the future, it is
envisaged that the AutoQC code could be used in systems that

provide AQC of profiles as they are collected.

2.1.2 New or modified QC checks
In most cases the QC checks included in the AutoQC

repository are intended to be exact replicas of the original
code. In a few cases, minor modifications or new tests were

introduced to optimize functionality, as explained below.

2.1.2.1 Argo (Ar) impossible date

The Ar impossible date test was originally defined to check

that the date of the profile is after 1 January 1997 (Wong et al.,

2020a). While this is appropriate for Argo data, there are profiles

from other instrument types that occur much earlier in the
historical record. The date threshold was therefore set to 1700.

2.1.2.2 CSIRO (CS) XBT wire break

The CS XBT wire break test attempts to detect breaks in the
wire that connects XBT probes to the surface by examining the
change in temperature between adjacent levels in the profiles

(Gronell and Wijffels, 2008). XBT wire breaks are a common
error mode so it is important that these are detected. The CS
XBT wire break test is the only quality control algorithm in the
AutoQC system that is specifically designed for detecting this

type of error. As described in Section 3.1, if the whole profile is

rejected, the quality control flags from this test are reset to pass

all levels.

2.1.2.3 Met Office (EN) background and standard level
background and buddy

The EN processing system QCs profile data and then

generates monthly objective analyses from them. The previous

month’s analysis is used to create a ‘background’ which is used in

the EN background QC checks (Ingleby and Huddleston, 2007;
Good et al., 2013). In the absence of observations, the objective
analyses relax to climatology. It was not possible to replicate the
creation of monthly objective analyses in this study so instead
these checks always use the climatology from the EN processing
system as the background.

2.1.2.4 IQuOD (IQ) bottom

The aim of this study is to benchmark existing QC checks

rather than invent new variants. However, three exceptions to

this were made and are bespoke IQuOD (‘IQ’) tests. Two of these

10.3389/fmars.2022.1075510

were aimed at comparing the positions of the observations to a
bathymetry dataset to determine if they were realistic. The first,

IQ bottom, uses the ETOP05 dataset (ETOP05, 1988) and
determines which profile depths are below the floor of the

ocean or on land and flags these.

2.1.2.5 IQ loose location at sea

This is the second of three bespoke QC tests created for this
study. It is intended to be a looser version of the CoTeDe (Co)
location at sea test (Castelão, 2020), and is also similar to IQ
bottom. In those tests, the profile location is compared to the

ETOP05 dataset by interpolating the bathymetry. This could
potentially lead to incorrect rejections for profiles close to the

coast. In this version of the test, the four grid points surrounding
the profile are found. If any of these are in the ocean then the

whole profile is passed. If all are on land the entire profile

is rejected.

2.1.2.6 IQ temperature gross range

The final bespoke test is the IQ gross range check. Its purpose

is to remove any obviously incorrect data points from further
consideration to avoid results being biased by their presence.
Any data that are outside the range -4 to 100°C are rejected.

2.1.3 Pre-selected checks
Six of the quality control checks were pre-selected as either

being non-controversial (such as checking that latitude is in the
range 90°S to 90°N), essential with no alternatives (such as
detecting XBT wire breaks) or were designed for pre-screening
(the IQuOD gross range check, as described in Section 2.1.2.6).
The tests that fall into these categories are: Ar impossible date, Ar
impossible location, CS XBT surface temperature, CS XBT wire
break, IC level order and IQ gross range. These pre-selected

checks are used to filter out issues with profiles that could

otherwise dominate the benchmarking metrics described below.

2.1.4 Benchmarking metrics
An objective benchmarking metric needs to be defined and

implemented to understand the relative performance of QC
checks. This needs to quantitatively compare the results returned
by the QC checks to a reference set of flags and provide a

measure of their similarity. The usefulness of the benchmarking
metric relies on the accuracy with which the reference flags are

known. In this study, the datasets used were previously subject to
manual QC. Therefore, there is a high degree of confidence in

the QC decisions provided with the data, and these are used as
the reference flags.

Most QC tests provide a pass or reject decision for every level
within a profile. However, designing a benchmarking metric

based on all these individual decisions is problematic. First, some
QC checks flag many levels while others, such as a spike check,

would only flag a single level. Therefore, the impact of a spike
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check would appear small compared to the others as it would
only be flagging a small proportion of the suspect levels. Second,

there may be mismatches between choices about which levels to
flag. In the example of a spike in a profile, options include

rejecting only the spike, rejecting the spike and the levels
immediately above and below it, or only one of the
surrounding levels, or multiple levels around it. In all cases it
is agreed that there is a spike in the data but there are differences
in which levels are flagged. It is difficult to design a

benchmarking metric that is not confounded by these issues.
For this benchmarking exercise, the primary interest is in

how good the QC check is at detecting an error mode such as a
spike. Choosing which levels to reject can be tuned through
expert guidance. Therefore, the approach of Gronell and Wijffels
(2008) is adopted, which condenses the quality control flags for

an entire profile into a single pass or reject flag. The profile is

deemed as rejected if any level within it has a reject flag set. For

10.3389/fmars.2022.1075510

the QC decisions for each level when using the data, not the per

profile flag.

2.1.5 Algorithms for finding optimal quality
control sets

The general aim when finding sets of quality control checks

is to maximize the TPR while minimizing the FPR. Different
applications may have differing requirements for the acceptable
levels of these. For example, some applications may be very
sensitive to bad data so the aim would be to achieve close to
100% TPR and accept that the FPR might also be high. Other
users might prefer to keep as much data as possible even though
this means that they might ingest bad data into their systems.
This is equivalent to attempting to keep the FPR as close to zero
as possible. For general users a compromise between the two is

appropriate. We therefore define three cases:

each profile, there is also a reference pass/reject flag from the QC

decisions provided with the dataset, which is assumed to be the
correct result. The decision from a quality control check is

classified as:

•     High TPR (HTPR) - most bad data should be rejected;

however, FPR will also be higher than for the other cases.

•     Low FPR (LFPR) - most good data should pass QC;

however, TPR will be lower than for the other cases.
•     Compromise (Comp) - a compromise between the

•     True negative (TN) - the quality control check correctly
passes the profile;

•     False positive (FP) - the quality control check incorrectly
rejects the profile;

•     True positive (TP) - the quality control check correctly
rejects the profile; or

•     False negative (FN) - the quality control check
incorrectly passes the profile.

HTPR and LFPR cases.

All three types of set have been obtained in this study. Two

algorithms were developed to do this, as described below.

2.1.5.1 LFPR and Comp cases

Quality control sets for the LFPR and Comp cases were
generated using an algorithm that first chooses one quality

control check from each of the common types of QC test (see

From these, two metrics – true positive rate (TPR) and false

positive rate (FPR) – are defined that determine how well the

AQC checks match the reference flags, as shown in Equations 1

and 2.

Section 1 and Table 1 for more information about these). This
ensures that the QC set contains a check that is designed to

detect the main error modes found in the profile data. The order

in which the QC test of each type was selected was:

TPR = 100 
NTP

TP FN

FPR = 100 
NFP

TN FP

(1) 1. Location;
2. Range (only including QC checks which define ranges

independent of each profile, i.e. excluding the IC

(2)  number of temperature extrema test, which defines
ranges relative to each profile);

In these equations, Nx denotes the number of profiles of type

x where x is TP, FP, FN or TN. The TPR reveals how often
profiles are correctly rejected as a percentage of the total number

of profiles that should have been rejected according to the

reference flags. The FPR is the rate of incorrect flagging as a

percentage of the number of profiles that should not be rejected

according to the reference information. These metrics are used
to compare the performance of individual QC tests and
combinations of checks.

Note that although the benchmarking metric is applied to

flags on the whole profile, it is envisaged that users would take

3. Climatology;

4. Increasing depth;

5. Constant values;

6. Spike or step (excluding the EN spike and step suspect
check as this was originally designed to flag data as

suspect rather than rejecting them);

7. Gradient;

8. Density.

The motivation for defining an order is so that, in a real

application, checks that occur late in the order do not have to

Frontiers in Marine Science                                                                                      06 frontiersin.org

https://doi.org/10.3389/fmars.2022.1075510
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


C = +C C

Good et  al.

repeat QC on data that were already rejected by an earlier test
and which might impact the results of the later QC. Therefore,
the ordering starts with checks on the profile location, then

passes on to tests on individual temperature values before
progressing on to tests which look at changes through the
profile. If new types of test become available in the future or

the rationale for the ordering changes, it is straightforward to
update this in the software.

The choice of which QC test to select is based on a cost

function, in which the cost, C , depends on the TPR and FPR and

the parameters R1 and R2 as shown in Equations 3 - 7.

10.3389/fmars.2022.1075510

and TPR (FPR = 0% and TPR = 100%) and the highest value

occurs for the worst possible values of FPR and TPR (FPR =

100% and TPR = 0%). Between these two extremes, the contours

of the cost function are more vertical for the LFPR case than the

Comp case. As described below, this difference in the cost

functions results in a different set of QC checks being selected

for the LFPR and Comp cases.

The cost function is evaluated for each QC check from the
first group defined above (location checks). Tests that fail to flag

any profile or that flag all profiles are not considered. The test

with the lowest cost function value is selected. For the LFPR case,

q1 = arctan(R1)

q2 = arctan(R2)

C1 = ð100 − TPRÞ cos (q1) + FPR sin (q1)

C2 = ð100 − TPRÞ cos (q2) + FPR sin (q2)

100 − TPR TPR
100         1        100 2

(3)

(4)

(5)

(6)

(7)

the cost function value increases rapidly with FPR (Figure 1);

therefore, QC checks that have a very low FPR tend to be

selected. For the Comp case, the cost function contours are more

sloped so QC checks that deliver a high TPR but moderate FPR

might be selected over checks that have a very low FPR.

The cost function is then evaluated again, but for the

combination of each check in the next group and the one

already selected. The QC check which, when combined with

the already selected test, gives the lowest cost function value is

selected. As before, the cost functions will mean that QC checks

with low FPR will tend to be selected for the LFPR case, but QC

The parameters R1 and R2 can be defined to give the desired

balance between high TPR and low FPR. The use of the two
parameters gives the facility to tune the cost function to initially
select tests that yield a low FPR and afterwards add in less
efficient QC checks to catch difficult to detect errors. For the

LFPR case, R1 was set to 6 and R2 to 3. For the Comp case, they

were set to 2 and 1 respectively. The justification of these choices

is given in Section 3.3. The values of the cost function for each
case are shown in Figure 1. For both cases the lowest cost

function value occurs at the best possible combination of FPR

checks with strong improvements in TPR compared to the
increase in FPR may be selected for the Comp case. The
process is repeated until one from each group of QC checks is
included. The algorithm will then add in other tests to the set if
they meet two criteria. First, including the test must decrease the
cost value of the set. Second, the TPR of the set must be increased

by at least 1%. The second condition is used to avoid overfitting

to the training data by adding QC checks that cause marginal

decreases in the cost value but no significant improvement to

the TPR.

FIGURE 1

Values of the cost function used to generate optimal sets of QC checks in the LFPR and Comp cases.
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2.1.5.2 HTPR case

The algorithm to find a set of quality control checks that

aims to find as much of the bad data as possible (the HTPR case)

is a two-phase process, beginning with a preprocessing step
intended to reduce the space of tests and profiles under

consideration. First, only QC tests with TPR/FPR > 2 were
considered. This simple heuristic eliminates QC tests that don’t
perform substantially better than arbitrarily assigning QC
results. Also removed from consideration was any profile

containing bad data not flagged by any QC test. These were

set aside as objects of interest for potential future test
development. As a final preprocessing step, any QC check

which produced no false positives and at least one true
positive flag was immediately accepted as a test which

unambiguously flags undesirable features.

Once the preprocessing has reduced the tests and profiles

under consideration, the main part of the HTPR algorithm is

run on the set of remaining QC checks. This identifies tests

that have high FPR and that can be removed from the set
without reducing its overall TPR. By removing those tests
from the set, it is possible achieve the highest possible TPR
while remaining intolerant to false negatives. The procedure is
as follows:

1) For every pair of QC tests, form a combination test by
doing the logical AND of the QC results produced by the pair.

The combination will only flag profiles that were rejected by

both original tests, and therefore might be expected to produce a
reduced number of false positives. Note that the code supports
an arbitrary number of these combinations, for example
ANDing together a combination with another combination,
but in the interests of processing time the algorithm was run
with pairs of single tests only.

2) The list of profiles that contain bad data according to the

reference flags is examined to find any that were rejected by

only one QC test or combination. The QC tests or
combinations that flag those profiles are placed into a list of

selected tests and then dropped from further consideration by
the algorithm. In addition, all profiles that are flagged by those

selected tests or combinations are dropped from further
consideration. At this point in the algorithm, every profile

that contains bad data and is still under consideration has been
rejected by at least two QC tests. Therefore, it is possible to
discard the QC test with the highest false positive rate without
affecting the number of bad profiles that are being identified by

the remaining QC tests. For example, if some of the profiles are

all being rejected by two different checks on the gradients in the
profiles, then we can safely discard whichever gradient check

has the higher FPR since all the profiles are still being flagged

by the other one.
These two steps are repeated in a loop until the set of

accepted tests and combinations marks all profiles containing

bad data.

10.3389/fmars.2022.1075510

2.1.6 QC flags
One of the QC sets could be applied to data by users to

achieve their desired level of quality control. However, many
users obtain their data from collections such as the IQuOD
dataset (The IQuOD Team, 2018), which therefore needs to
serve the needs of multiple users with different requirements.
This is achieved here by assigning a QC flag of either 4, 3 or 2 to

every level of each profile if the observation is rejected by the

LFPR, Comp or HTPR QC set respectively. If more than one of
the QC sets rejects the same observation, the highest number is
used as the QC flag. If none of the sets reject the data, the QC flag

is set to 1.

With this QC flag scheme it is possible to tell users which

data have been rejected by each QC set. The QC flag value is also a

simple to use indication of the level of confidence in the

rejection of the data with 4 meaning the highest confidence and 2

the lowest confidence. A flag of 1 indicates that the data are

expected to be good quality. This is similar to conventions in use
internationally (Marine Environmental Monitoring and
Prediction IOC, 2013). Users will often use only data with
flags of 1 or 2 hence by default would reject data flagged by

either the Comp or LFPR sets. However, with this scheme, users
can choose to additionally use the HTPR flags if wished, or only

reject the LFPR flagged data.

2.2 Data

Datasets with accurate QC information were required for
this study. In addition, in order to successfully train and validate
the checks, it was important that the datasets contain a broad
spectrum of error modes and that the rejected data were retained

in the profiles rather than discarded. These criteria limit the

choice of datasets. The three datasets selected for use in this
study are described in Sections 2.2.1 to 2.2.3.

2.2.1 QuOTA
The main dataset used in this study is the Quality-controlled

Ocean Temperature Archive (QuOTA) (Gronell and Wijffels,
2008; Thresher et al., 2008, https://doi.org/10.25919/
5ec357563bd3e). It was generated using AQC checks to
identify suspect profiles, followed by manual quality control of

those identified. The dataset was converted to the WOD ASCII

format for the purpose of ingestion into the AutoQC software. A
third of the data in QuOTA (January, February, March and June
profiles) were entirely manually quality controlled when the

dataset was originally created and these are used in this study. To
avoid using profiles that had been added since the dataset was

originally created, any profile outside the latitude-longitude

range specified in Gronell and Wijffels (2008) was excluded.

This was 70°S to the equator and 90°E to 145°E. In addition,
profiles marked as duplicates were not used. This resulted in
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47022 profiles in this dataset. Of these, 25932 (55%) were XBTs,

8862 (19%) were bottle/rosette/net observations, 8007 (17%)
were mechanical bathythermographs (MBTs) and 3844 (8%)
were from conductivity, temperature and depth (CTD) sensors.
The remaining 1% consisted of 304 profiles from digital

bathythermographs (DBTs), 56 from expendable CTDs
(XCTDs), 4 from moored buoys and 13 unknown.

2.2.2 NOAA/AOML 100 profile set
This dataset, provided by the National Oceanic and

Atmospheric Administration (NOAA) Atlantic Oceanographic
and Meteorological Laboratory (AOML), consists of a manual
selection of 100 XBT profiles obtained during actual XBT

operations that are part of the Global XBT Network (Goni
et al., 2019). These profiles were selected from 12 different

geographical regions to include ocean features linked to
specific dynamics and water mass properties in each of the

following regions: North Atlantic, South Atlantic, Tropical
Atlantic, North Pacific, South Pacific, Tropical Pacific, South

Indian, Tropical Indian, Gulf of Mexico, Mediterranean Sea,
high latitudes in the northern hemisphere, and high latitudes in
the southern hemisphere. For each region, the NOAA/AOML
profile set contains two good profiles and four bad profiles or

profiles containing data points that should fail one or more tests,

for example the test for spikes, possible rate of change, and
climatology. Additionally, several good profiles were modified to

introduce errors in the data and/or metadata in order to
benchmark specific QC tests including impossible date,

impossible location, location and maximum depth based on
bathymetry, and maximum depth based on probe type. The data
can be obtained from ftp://ftp.aoml.noaa.gov/phod/pub/bringas/
XBT/AQC/AQC_IQUOD_2018/.

This dataset can be used to manually inspect the outputs

produced by the quality control checks on profiles with known

quality, and provides a straightforward way to determine the
performance of different QC tests or methodologies. It was also
prepared in order to assess the performance of different QC tests
based on geographical region and the capacity of those tests to
accurately account for rates of change in temperature or other

profile structures associated with the ocean dynamics and

variability of these regions.

2.2.3 Argo delayed mode data
The Argo project (Roemmich and Owens, 2000) launches

autonomous profiling floats to primarily measure the

temperature and salinity of the global ocean to 2000 m depth.
Float variants include those that also make biogeochemical
measurements and those that sample deeper in the ocean.
Argo data are subjected to initial real time AQC and, later,
delayed mode manual inspection (Wong et al., 2020a). Argo

instruments collect profiles over a long time period and can be

affected by sensor drifts (Wong et al., 2020b). It should be noted

10.3389/fmars.2022.1075510

that the QC checks considered in this study are not designed to

detect such drifts.

A year of Argo data (2010) was downloaded (data
downloaded 30 September 2021) (Argo, 2021) and the delayed
mode data run through the AutoQC system. The data are
provided divided into Atlantic (30204 profiles), Indian (24803)

and Pacific (56152) Ocean regions. This separation was retained

in order to determine if there are regional variations in results.

3 Results

3.1 Pre-selected tests

The AutoQC system was run on the QuOTA dataset to
generate quality control results for each profile. The results for

the pre-selected tests are discussed here first.

During testing, visual inspection of profiles suggested that

the CS wire break test may not function well for low resolution
profiles because the depth levels are sufficiently far apart that the

temperature change between levels is above the threshold set in
the test. As the focus of this study is to use ‘off-the-shelf’ quality

control algorithms as much as possible, tuning of the test to cope
with this situation was not attempted. Instead, a simple approach
was adopted where the QC decisions were ignored if all levels
had been rejected. Following this modification, the numbers of

profiles that contain rejects due to the pre-selected tests are listed

in Table 2.
The outputs from the pre-selected tests were extracted and

applied using the rule given in the table prior to running the
training algorithms to select the best QC sets. For those tests that

only flag part of a profile, two additional levels either side of a

reject were also removed from the training data. This avoids the
results from QC tests that use multiple levels in their algorithms
from being contaminated by the data that were already rejected.
Of the six selected, three reject zero or a very small number of

profiles. The Ar impossible date and Ar location tests simply

check that the date and location of the profile are sensible. For

example a latitude of 95°N would be rejected by these tests. The
ICDC (IC) level order check rejects levels with depths less than 0
m (i.e. above the surface of the water).

Of the three remaining pre-selected tests, the IQ gross range

check results in the lowest number of flags applied to the profiles

(3% of the total). The other two reject at least one level in a large

number of profiles: the CS XBT surface temperature test (55%) and

the CS XBT wire break test (24%). As the names imply, these two
tests are only applied to XBT data. The former applies a manual QC
procedure to reject XBT levels shallower than 3.6 m, because near-
surface XBT data are unreliable due to the time lag in the thermistor
response (Reseghetti et al., 2007). In QuOTA and XBT data quality
controlled within Australia, these surface temperature values were
replaced with 99.99 (Bailey et al., 1994; Gronell and Wijffels, 2008).

As described in Section 2.1.2.2, the CS XBT wire break test is unique
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TABLE 2 Pre-selected Q C  checks, the number of profiles that they flag out of the 47022 profiles from the QuOTA dataset used in this study, and
the rule applied to remove the affected data from the QuOTA dataset.

Test

Ar impossible date

Ar impossible location

CS XBT surface temperature

CS XBT wire break

IC level order

IQ gross range

Number of flagged profiles

36

0

25871

11331

0

1450

Rule applied

Remove entire profile

Remove entire profile

Remove from start to last flagged level

Remove from first flagged level to end

Remove from start to last flagged level

Remove flagged levels, or, if XBT
remove from first flagged level to end

in the QC checks included in this study in attempting to detect that
error mode specifically. However, as noted above, this test does not

appear to work effectively for low vertical resolution profiles. Since

the wire break manifests as an abrupt change in the recorded
temperature at the deepest part of the profile, other tests (for

example the spike or step checks) are also likely to be effective at
finding these errors and may not be so sensitive to the profile’s
vertical resolution.

From this point all statistics quoted refer to the data after

application of the pre-selected QC tests and their associated rules.

3.2 Performance of individual tests

The pre-selected tests and their associated rules were applied
to the QuOTA profiles and then the performance of the

individual tests was calculated on the remaining data. These
results are shown in Table 3 (non-bold text). The QC test that
has the highest TPR (64.0%) is the second IC local climatology
check, followed closely by the first version of this test (62.6%).

The second IC local climatology check also has a better FPR than
the first (12.7% versus 15.0%). The difference between these two

IC local climatology checks is that the second check does not
make an assumption on the statistical distribution of the data,
which can cause outliers to be incorrectly identified as errors

(Hubert and Vandervieren, 2008). Since this second check
performs better than the first according to these results, it

implies that asymmetrical thresholds can improve QC
performance. Studying a different dataset and region, Castelão
(2021) also suggested an asymmetry when comparing
observations with WOA climatology. This illustrates the utility
of benchmarking for demonstrating improvements in
QC checks.

The individual test with the third highest TPR is also a

climatology check (AOML (AO) climatology). It has a slightly

lower TPR (60.8%) and FPR (13.0%) than the IC versions,

suggesting that the AO test is marginally more conservative in

its rejection thresholds. Other background checks are

considerably more conservative. For example, the FPR can be

reduced to below 1% by using the EN background check if a
lower TPR of 34.0% is accepted. Gradient, spike and range
checks and the machine learning approach encapsulated in the
CoTeDe (Co) Anomaly Detection test are also relatively

successful at identifying profiles with bad data.

Increasing depth and stability checks are relatively ineffective
types of tests according to these results. They reject

proportionally similar or a greater percentage of profiles

containing good data than those containing bad data. This is a
surprising result for the increasing depth checks as these are
simple algorithms to check that depths increase monotonically

through the profile. This type of test was not used when

generating QuOTA and this error mode was evidently not

always flagged in the dataset. Both the Ar pressure increasing

and EN increasing depth checks returned identical results. When
generating combinations of tests, the EN increasing depth check
was selected from the two since it employs a more sophisticated
method of deciding which levels to reject. Stability checks rely on

salinity information, which is not available for many profiles in

the historical record. This can explain the poor performance of
these checks, at least in part.

The EN track check failed to reject a significant number of

profiles. It is likely that the QuOTA dataset is not well suited to

benchmarking this test. In addition, the Ar regional range check
only defines temperature ranges for the Red Sea and the

Mediterranean Sea. This test therefore did not return any
rejections since the QuOTA dataset contains no profiles in

those seas.

3.3 Performance of combinations

The algorithms to find the best combination of checks were

applied to the QuOTA data. As described in Section 2.1.5.1, the
algorithm to find the Comp (to give a compromise between high

TPR and low FPR) and LFPR (to give a low overall FPR) sets of
checks employs a cost function to determine which QC checks
are included. It is possible to vary the parameters that define the

cost function (R1 and R2) to explore the range of possible results
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TABLE 3 TPR and FPR for individual Q C  checks (plain text) and combinations of checks (bold text) after removal of levels/profiles according to
the pre-selected tests listed in Table 2.

Name TPR (%) FPR (%)

Everything 100.0 61.1

HTPR 92.8 49.6

Comp 81.1 18.1

I C D C 77.8 22.9

AOML 77.5 24.8

IC local climatology (2) 64.0 12.7

IC local climatology (1) 62.6 15.0

AO climatology 60.8 13.0

LFPR 57.7 1.9

Met Office 53.9 4.0

GTSPP 53.7 20.1

Co GT normbias 46.0 4.4

AO gradient 45.0 3.3

CSIRO 40.0 3.1

Co Anomaly Detection 39.7 3.6

AO spike 37.5 11.0

Co Mo fuzzy logic 36.4 1.8

IC gradient 35.9 1.2

Co fuzzy logic 35.1 1.6

IQ bottom 34.6 12.2

EN background 34.0 0.1

CS short gradient 33.0 2.7

CS long gradient 31.0 0.4

WOD 28.6 1.3

EN std. lev. backgr. & bud. 24.8 1.1

Co normbias 23.4 0.1

WO gradient check 19.8 1.3

WO range 18.7 0.0

IC crude range 18.3 0.0

EN background available 14.9 2.2

Co rate of change 14.4 9.3

Co GT spike 13.6 16.6

EN suspect spike/step 12.9 0.3

Name

Co GT profile envelope

Co Tukey53H norm

Argo

EN spike and step

Co digit roll over

Ar gradient

Co Ar density inversion

AO constant

IC num. of temp. extr.

Co gradient

Co Tukey53H

Co GT global range

Co GT gradient

Co spike

Ar spike

AO gross

Min/Max

IC stuck value

IC spike

Ar global range

EN constant value

CS constant bottom

Co location at sea

IQ loose loc. at sea

EN range

Ar pressure increasing

EN increasing depth

EN stability

IC max observed depth

CS surface spikes

EN track

Ar regional range*

TPR (%) FPR (%)

10.5 0.1

10.4 1.1

9.8 3.8

5.8 0.1

5.4 0.5

4.6 0.0

4.4 3.4

4.2 0.7

4.0 0.1

3.4 0.0

3.4 0.0

3.3 0.1

3.1 0.0

2.3 0.1

2.3 0.0

2.2 3.1

2.0 1.2

2.0 0.0

2.0 0.0

1.6 0.0

1.0 0.0

0.9 0.0

0.9 0.1

0.6 0.0

0.2 0.0

0.1 0.3

0.1 0.3

0.1 0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0 0.0

*The Ar regional range check is included here for completeness but is expected to return zero rejects since its regions do not overlap with the area covered by the QuOTA dataset.
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that might be obtained and to choose values for R1 and R2 to use

for the LFPR and Comp cost functions. This was done, with both

R parameters varied between 1 and 10 in steps of 0.25. Results

are shown by small grey dots in Figure 2. A range of TPR and

FPR rates were achieved, forming a curve with initially a steep

increase in TPR as FPR increases to approximately 10%, then a

slower rate of increase. The LFPR cost function settings were

chosen as a point on the lower part of this curve where the FPR

was less than 2% (cyan circle). Similarly, the values of R1 and R2

for the Comp case were selected by choosing a mid-point on the

curve (red circle). In addition, the algorithm to obtain the HTPR

(to give a high TPR) set of tests was run, resulting in the TPR and

FPR shown by the black circle on Figure 2. The benchmarking

results for the LFPR, Comp and HTPR sets are also given

in Table 3.

The QC checks included in the combinations are provided in

Table 4. Pre-selected tests are also included in these

10.3389/fmars.2022.1075510

combinations as these need to be run if applying the QC to
datasets other than the QuOTA subset used here, which already
had data rejected by those tests removed. The CS XBT wire break
test was only inserted in the HTPR set given that, as discussed in
Section 3.1, it may cause false positives when QCing low

resolution profiles and because other QC checks included in

the Comp and LFPR sets are expected to detect wire breaks. The
CS XBT surface temperature test is included in the Comp and
HTPR sets. This rejects all XBT data recorded at depths less than

3.6 m. The lack of inclusion in the LFPR set reflects that these

shallow data may not be poor quality in all cases. The remaining
pre-selected tests were inserted in all sets as there is high

confidence in the rejections they provide. The order of the QC

checks in the combinations follows the ordering of categories of

tests defined in Section 2.1.5.1 and is the order in which they are

recommended to be run. Within each QC set, where there was

more than one test of the same type, the order in which the

FIGURE 2

The TPR and FPR for each of the sets of QC tests, calculated from the full QuOTA dataset.
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TABLE 4  IQuOD quality control sets.

LFPR set

Ar impossible date

Ar impossible location

IQ loose location at sea

IC level order

IQ gross range

WO range

IC crude range

Comp set

Ar impossible date

Ar impossible location

EN backgr. avail.

IC level order

CS XBT surf. temp.

IQ gross range

WO range

HTPR set

Ar impossible date

IQ bottom

IC level order

CS XBT wire break

Ar global range

IC local clim. (1)

Co GT normbias

Ar impossible location

EN background avail.

CS XBT surf. temp.

IQ gross range

EN range

IC local clim. (2)

AO climatology

EN background

EN std. lev. bgr. & bud.

EN increasing depth

ICDC stuck value

EN spike and step

CS long gradient

EN stability

AO climatology

Co GT normbias

EN incr. depth

EN constant value

EN spike and step

CS long gradient

IC gradient

EN stability

EN std. lev. bgr. & bud.

CS constant bottom

IC num. temp. extr.

Co Tukey53H

AO spike

CS long gradient

IC gradient check

Co anomaly detection

EN constant value

AO constant

Ar spike

IC spike

EN spike & step susp.

AO gradient

CS short gradient

The order in which the tests are written is the order in which they are recommended to be run (for clarity, the order for the HTPR set should be Ar impossible date, then Ar impossible
location, then IQ bottom etc.).

algorithms chose them is retained. The pre-selected tests and QC
checks that do not fall into one of the categories of tests for
which the ordering has been defined were ordered within the

lists of tests according to the author’s expert judgement.

Results for various other combinations of QC tests - for
example all those from the ICDC set of checks - are also listed in
Table 3 and shown in Figure 2. It should be noted that there are
only two WOD checks included in the AutoQC repository and
therefore these results are not necessarily representative of the
WOD quality control procedures. The results show that the
combination of tests run by different groups fall into two main
categories. The first group provides moderate TPR (< 60%) with

low FPR (<10%) and includes CSIRO, the Met Office and WOD.

The second group has a higher FPR (>20%) but generally
achieves better TPR than the first group. This group includes

AOML and ICDC. The results suggest that the combination
selection algorithms have worked effectively. The LFPR QC set
achieves a higher TPR than the other sets in the first group of

combinations, while the Comp set has a higher TPR and lower
FPR than the second group. However, this is perhaps an unfair
comparison since the algorithms were trained on the same data
that are being used to validate them. Validation of the algorithm
selection is described in Section 4.

By combining together all the QC checks included in the
AutoQC repository (the ‘Everything’ set in Table 3), it is possible

to flag every profile that contains bad data according to the

reference flags; however, the FPR is 61.1%. This simple

combination includes QC tests that are ineffective and flag a

large number of profiles that should not contain rejects. The
HTPR algorithm removes redundant and ineffective QC tests
from the set of QC checks that are run, but still flags 92.8% of the

bad profiles with a reduced FPR of 49.6%.

Figure 3 shows an example profile from the QuOTA dataset

with the results from the different quality control sets shown
using the QC flagging scheme described in Section 2.1.6.

4  Validation

4.1 Validation by subsetting QuOTA data

The algorithms that determined the quality control sets used
the full QuOTA dataset. It is possible that the algorithms could

overfit to the data and choose quality control checks that

perform well on those data but less well on other sets. One
way to assess this is to split the data into groups and use part for
training and part for validation.

Two ways to subset the data have been tested: first, by

dividing the data by instrument type, and second, by
performing 10-fold cross-validation. The validation procedure
involved assigning each profile to one of the subsets - in the

former case the assignment was governed by the instrument type
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FIGURE 3

Example XBT profile from the QuOTA dataset. This was recorded on 23 March 1999 at 25.5167°S, 111.9167°E. For each set of QC results, the
reference (‘Ref’) flags are shown by open black circles. Measurements rejected (‘Rej’) by the QC set are shown as filled red circles, except for the
IQuOD QC sets derived in this study where the rejected measurements are assigned the number 2 (shown as a yellow filled circle), 3 (magenta)
or 4 (red), with a higher number denoting increased confidence in the rejection.

and in the latter case each profile was randomly assigned to one

of ten subsets. Then, the data from all but one of the subsets were
used to select QC sets and the results were validated on the
remaining subset. This was repeated until all of the subsets had
been used for validation. In addition, the QC sets derived from
the entire QuOTA dataset were validated using each of
the subsets.

4.1.1 Instrument type validation
As described in Section 2.2.1, over half of the QuOTA data

used in this study are XBT profiles. Bottle/rosette/net, MBT and

CTD profiles also make up a significant proportion of the

dataset. The TPR and FPR of each individual QC check for
the data from each of these types of data are shown in

Figures 4A–D. In general, the QC checks perform best for
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XBT data - many have low FPR, with some of these having TPR

in excess of 40%. In addition, a small number of the checks have

TPR greater than 50% but with FPR still below 20% when

applied to XBT data. Similar results are achieved for the CTD

and bottle/rosette/net data, although there is more scatter in the

points on the plot than for the XBTs. Results for MBT data are,

however, much weaker, with only one QC check achieving

greater than 40% TPR.

The performance of the LFPR, Comp and HTPR QC sets
derived from the full QuOTA dataset on the data from each
type of instrument is shown in Figure 5, top row. Results are
shown as the difference to the TPR and FPR achieved for the
full dataset. Results for XBT data (circles) are generally
positive, with higher TPR and/or lower FPR than for the
dataset as a whole, as might be expected given the strong
results achieved by individual tests on the XBT data. For CTDs

and bottle/rosette/net data, the LFPR case’s TPR is slightly

lower than for the full dataset, the HTPR case’s FPR is slightly

higher and a mixture of both occurs for the Comp case. Results
for MBT data are poor, in particular for the LFPR and Comp

cases, which reflects the performance of the individual tests on

MBT data.

10.3389/fmars.2022.1075510

Figure 5, bottom row, shows the results from generating the
QC sets from all the data except those being used for the
validation. This illustrates what might happen if using the QC
sets obtained in this study on a data type that is not in QuOTA.
For XBT data, the TPRs and FPRs obtained are either similar or
both smaller than that from the full sets. Results for CTDs are
similar to those obtained for QC sets found using all data. For
the bottle/rosette/net data, the LFPR TPR is lower than when the
training dataset included these data, and in the Comp case the
FPR is larger. However, the HTPR results are similar. The TPR
results for MBT data were poor for the LFPR and Comp cases.

In summary, the individual QC tests perform best on XBT

data and poorly for MBT profiles. This poor performance for

MBT data was reflected in the results for the LFPR and Comp

QC sets, particularly when the MBT data were not included in
the training dataset. However, the HTPR case was relatively
robust to the type of data being QCed and whether the data type

was included in the training dataset.

4.1.2 10-fold cross-validation
Figure 6 shows the results from performing the 10-fold

cross-validation. As described above, this involved randomly

A B C

D E F

FIGURE 4

(A) The performance of each individual QC check on QuOTA MBT data; (B–D) as (A) except for QuOTA XBTs, CTDs and bottles/rosettes/nets
respectively; (E) as (A) except for Argo profiles in 2010 for the Atlantic Ocean (Atl; blank circles), the Indian Ocean (Ind; red circles) and the Pacific
Ocean (Pac; cyan circles); (F) as (E) but with the last profile point of each Argo profile removed. Grey dashes: the lines of equal TPR and FPR.
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FIGURE 5

Top row: TPR and FPR calculated when applying the QC sets derived from the full QuOTA dataset to data from particular instrument types
minus the TPR and FPR calculated from all the data; bottom row: as top row except the QC sets were derived from all data except those the
TPR and FPR were calculated from.

assigning each profile to ten groups. Profiles from nine of the

ten groups were used to select QC sets and these were
validated on the data from the remaining group. This was
repeated until all ten groups had been used for validation.
Similar to Figure 5, the top row shows the TPR and FPR from
applying the LFPR, Comp and HTPR QC sets to each of the
ten subsets of the QuOTA data and the second row is the
same but for the LFPR, Comp and HTPR sets derived from all
the data except those in the subset being used to calculate the
TPR and FPR. In all cases, the results are shown as the
difference to the TPR and FPR obtained when applying the
LFPR, Comp and HTPR QC sets derived from all the QuOTA
data to the full dataset.

The largest variation in the TPRs occurs for the LFPR QC

set. The differences tend to be negative (i.e. the TPR is worse

than when applying the QC sets to all the QuOTA data),

particularly when the QC sets were derived from data that

excluded the subset used to calculate the TPR and FPR.

However, the variation is relatively small compared to that

found for different data types in Section 4.1.1.

In general, the results for the Comp and HTPR QC sets show

relatively little variation in TPR and FPR. The exception is for

three of the subsets for the Comp case, in the situation where the

QC sets were found from data not in those subsets. Examination

of the QC sets obtained for these three cases revealed that a

different selection of QC sets had occurred. For example, the AO

climatology check was not selected in those sets, but was in the

others. Table 5 details the frequency with which particular QC

tests were selected in a QC set. Bold numbers denote that a test

was also in the QC sets derived from the full QuOTA dataset.

The selection of tests was, in general, very stable, and many of

the tests included in the sets obtained from all the QuOTA data

were also selected with every instance of the subsetted data.

4.2 Validation using the NOAA/AOML
100 XBT profile dataset

The NOAA/AOML dataset of profiles and the results

obtained by applying the QC tests to them were examined to
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FIGURE 6

Top row: TPR and FPR calculated when applying the QC sets derived from the full QuOTA dataset to data from each subset minus the TPR and
FPR calculated from all the data; bottom row: as top row except the QC sets were derived from all data except those the TPR and FPR were
calculated from.

provide an overall qualitative assessment of the ability of the QC
sets to detect the errors in the profiles. It was found that, in

general, the QC sets derived in this study perform well. An
example of a profile from the NOAA/AOML dataset (Figure 7)

shows that the IQuOD QC sets derived in this study have
successfully rejected the poor quality data below approximately
550 m. Other QC sets have varying success in flagging these data

with some QC sets not detecting the spikes at all (Argo and EN
sets) and some partially detecting them (e.g. GTSPP and WOD).
The full NOAA/AOML dataset of profiles is shown in the

supplementary material.

4.3 Validation using Argo delayed
mode data

The benchmarking statistics calculated for the Argo data are
shown in Table 6. The results from the QuOTA dataset after the
pre-selected tests were applied are also included for comparison.
The Argo dataset contains a similar proportion of profiles

containing flagged data as QuOTA (13.6 - 17.2% compared to

14.0% for QuOTA). The performance of each individual QC test

is shown in Figure 4E. The majority of tests achieve TPR < 30%.

Of those that achieve higher TPR, the results for the Atlantic

Ocean are better overall than those for the Indian and Pacific

Oceans. In the latter cases the results are close to the dashed grey
lines in the plots, which shows the line of equal TPR and FPR.
The TPR achieved by the QC sets (Table 6) is in all cases lower in
the Argo results than in the QuOTA results, particularly for the
Indian Ocean. FPR is similar in the LFPR case but higher in the
Comp and HTPR cases.

Inspection of Indian and Pacific Ocean profiles identified

that the deepest level of the profile is often flagged in the delayed

mode Argo quality control for these regions. Figure 8 shows an
example profile containing this feature. These rejections are

likely associated with the occurrence of ‘salinity hooks’ at the

base of Argo profiles caused by water from the surface or parking

level remaining in the conductivity sensor at the start of
measuring the profile (Wong et al., 2020a). Therefore, results

were also generated when disregarding this level. This made a
significant difference to the number of profiles rejected in the

reference QC flags for the Indian and Pacific Oceans (Table 6),

with the rejection rate for the Indian Ocean reduced from 17.2%
to 7.1% and for the Pacific Ocean from 13.6% to 8.9%. There was

also a noticeable improvement in the results for the individual
QC tests (Figure 4F). However, while the TPRs achieved by the
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TABLE 5 Percentage of times each test appears in the Q C  sets derived in the 10-fold cross-validation.

QC test name % of times in set QC test name % of times in set

AO climatology

AO constant

AO gradient

AO spike

Ar global range

Ar spike test

CS constant bottom

CS long gradient

CS short gradient

Co GT normbias

Co Anomaly Det.

Co Tukey53H

EN backgr. avail.

EN background

EN constant value

EN increasing depth

LFPR Comp HTPR

0 70 100

0 0 90

0 30 100

0 0 100

0 0 100

0 0 100

0 0 100

100 70 100

0 0 100

0 100 100

0 0 100

0 0 100

0 100 100

100 0 0

0 90 90

100 100 0

LFPR Comp HTPR

EN range 0 0 100

EN spike and step 100 100 0

EN spike and step suspect 0 0 100

EN stability 100 100 0

EN std. lev. backgr. & bud. 70 40 100

IC crude range 100 0 0

IC stuck value 100 10 0

IC num. of temp. extrema 0 0 100

IC spike 0 0 100

IC gradient 0 70 100

IC local climatology (1) 0 0 100

IC local climatology (2) 0 0 100

IQ bottom 0 0 100

IQ loose location at sea 100 0 10

WO range 100 100 0

Bold numbers indicate that the test was in the QC set derived from the full dataset.

QC sets were also improved for the Indian and Pacific basins

(Table 6), it was not sufficient to bring the results into agreement
with those from the QuOTA data.

Figure 9 shows a comparison of the benchmarking results
for different quality control sets for the Atlantic Ocean, Pacific

Ocean and Indian Ocean data after removal of the deepest level.
A number of the QC sets including Argo (which would be
expected to work effectively on these data), the Met Office and

the LFPR set are successful at flagging a relatively small

proportion of profiles with Argo delayed mode rejections. The

Met Office and LFPR results are very similar. Inspection of the

results suggests this is due to both sets including the EN
background and EN increasing depth checks. Compared to the
Argo QC set, the Met Office and LFPR have a higher TPR but

also a non-zero FPR rate. The LFPR QC could therefore be a
useful alternative to the Argo real time QC if a higher TPR is
desirable and loss of some good data is acceptable. At the other
end of the scale, the HTPR set flags 76.4 - 84.8% of the rejected

profiles but also 59.2 - 69.0% of those without reference flags.

Applying all QC tests achieved a similar result to the HTPR set.
The Comp, AOML, GTSPP and ICDC sets lie between the two
other groups.

Underlying these results is that the individual QC tests have

significantly different TPRs and FPRs than assessed using

QuOTA. For example the AO climatology test, which has a
TPR of 60.8% and FPR of 13.0% according to the QuOTA data,
has, for example, a TPR of 56.2% and FPR of 30.0% from the

Atlantic Ocean Argo data, 44.3% and 29.7% in the Pacific Ocean

and for the Indian Ocean they are 41.4% and 38.2%. The regions
covered by the QuOTA data and the Indian Ocean Argo data are
the most similar so it is perhaps surprising that the greatest
difference in TPR and FPR occurs there. The regional variability
could suggest that the test works better in some regions than
others, or that the Argo delayed mode QC may vary, or both
could be a factor.

A concern with the results shown in Figure 9 is that the
different quality control sets approximately lie on a line with
gradient of 1 (i.e. parallel to the dashed grey line shown in the
plots). This implies that there is little correlation between the
profiles that are being flagged and the Argo reference flags

because for every additional 1% of profiles with Argo flagged

data that are rejected by the QC sets, 1% of the profiles with no

Argo flagged data are also rejected. It is likely the case that there

are error modes that occur in the Argo data that the AQC checks
are not detecting. The QC checks may also not be optimized for
the high quality Argo data, and may be better suited to the types
and frequency of error modes that occur in instruments such as

XBTs. The individual Argo QC checks (including the Min/Max
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FIGURE 7

As Figure 3 except for an example profile from the NOAA/AOML dataset. This profile is from the South Atlantic Ocean at 43.500°S and 40.886°
W and has a time stamp of 1 September 2017. It shows many spikes between 550 m and 850 m.

test, which was derived using CTD datasets (Argo, ship-board

CTD, mammal-mounted CTD) (Gourrion et al., 2020b)), all

have very low FPR (Figure 9), which may therefore be a design

choice, but this may not be a good choice if quality controlling

data from instruments that are more prone to problems.

Figure 8 shows an Argo profile where one of the levels was
rejected by the QC checks but not in the delayed mode flags. It is

difficult to design tests that do not reject the types of features

shown while still finding genuine errors. It highlights that it

should not be taken for granted that quality control checks that
are effective for one type of data will work for another type. In
the future, this may mean designing or optimizing tests for each
type of data and it also highlights the need for human QC

operators in addition to automatic checks.
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TABLE 6 TPR and FPR for the QuOTA dataset and each of the Argo regional datasets.

Set Statistic QuOTA

Atlantic Ocean

Argo

Indian Ocean Pacific Ocean

Reference

LFPR

Comp

HTPR

Number of profiles

Number flagged

Percentage flagged (%)

TPR (%)

FPR (%)

TPR (%)

FPR (%)

TPR (%)

FPR (%)

All
points

39971 30204

5612 5118

14.0 16.9

57.7 27.5

1.9 1.4

81.1 63.9

18.1 32.7

92.8 84.6

49.6 60.2

No end All No end
points              points              points

30162 24803 24749

4756 4278 1757

15.8 17.2 7.1

26.0 11.2 18.0

1.4 3.1 3.0

64.1 39.1 46.9

31.8 41.0 39.3

84.8 72.3 76.4

59.2 65.1 64.8

All No end
points          points

56152 56015

7645 4972

13.6 8.9

31.2 36.9

1.2 1.2

51.2 55.7

32.8 30.7

76.8 81.8

70.4 69.0

QuOTA results were calculated from data after the pre-selected tests were applied. Two sets of Argo statistics are listed. The first are for the full profiles and the second for the profiles with
the deepest observation removed.

5 Discussion

In this study, various AQC checks for temperature profile

data used by the international scientific community have been

benchmarked using a subset of the QuOTA dataset that had
previously been subjected to manual QC. As well as showing
which checks perform best according to the benchmarks, QC

test sets have been identified that provide better FPR and/or TPR

than those being run by individual organizations and
qualitatively perform well on the NOAA/AOML curated set of

100 profiles with known characteristics. The QC checks included

in those sets were shown to be robust when deriving and
validating the sets using 10-fold cross-validation. Larger
differences occurred when validating by dividing the data by
instrument type, with the QC performing best on XBT data but
worst on MBT data. Performance was also lower than for
QuOTA when applying the QC sets that try to achieve a high

or moderate TPR to Argo delayed mode data, which may reflect

differences in the types of error modes that occur in Argo data
compared to other data types and the need for manual QC to
identify some of these. However, it was noted that Argo AQC
checks have very low FPR and the QC set that attempts to
minimize false positives was found to be comparatively effective
on Argo data, albeit while providing a lower TPR than achieved
on QuOTA.

The results highlight the need for training data

representative of the various errors that occur in the datasets

that the QC tests are being applied to. A crucial aspect of this is

knowing the reason why a manual QC operator has rejected

particular data. A simple example of this was found with the

Argo delayed mode data. It was found that in many cases the last

level of an Argo profile is rejected, despite no obvious

discrepancies with the level above in the temperature profile.

This type of rejection is specific to Argo delayed mode data and

hence is not seen in the QuOTA profiles. Knowledge of this

might allow an AQC check to be implemented and, if there was
more than one implementation, to include some of these data in
the reference dataset and benchmark them.

In the future, the hope is to create a virtuous circle within the
IQuOD project where manual QC is performed on a selection of

profiles. The operator will be able to mark the reason for a

rejection. This could then become an expanding dataset for
training AQC and machine learning techniques (which can
themselves be benchmarked in the AutoQC system), covering
all regions rather than the restricted latitude/longitude range of

QuOTA. Knowledge of which errors are not being identified by

the AQC could lead to new tests being developed or to
improvements in already-implemented tests. It will therefore
be possible to improve the overall quality of the full dataset faster

than would be possible if trying to manually QC all profiles.

Automatic techniques should also be useful in detecting which

profiles would benefit most from manual QC. Machine learning

(such as used for the Co Anomaly Detection test (Castelão,
2021)) is expected to become increasingly valuable in the
future and the benchmarking provided by the AutoQC system
will be very useful to track progress in this work.

Refinements are also possible in the way the QC checks

included in AutoQC are implemented. For example, the checks
are currently set up as independent tests. All QC tests process the
full dataset and in the few cases where QC checks rely on
information from another (for example EN background uses
outputs from EN spike and step suspect), this is dealt with by
calling the other routines from within the code for that check or
using saved outputs within the SQLite dataset. In other systems,
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FIGURE 8

As Figure 3 except for an example Argo profile -  number 56019 in the data analyzed for the Pacific Ocean -  at 57.344°S, 170.453°E on 29
December 2010.

such as WOD (Garcia et al., 2018), QC checks are run in a
particular order and rejected data removed so that later checks
do not have to deal with problems that are already detected. This
can allow the later tests to be more sensitive to the errors they are

designed to find. A version of this approach has been

implemented in the IQuOD QC sets through use of expert
judgement. Improvement to the order in which QC tests are run
was one of the recommendations of Tan et al. (2022) and with a

controlled test dataset containing known errors it would be
possible to do focused studies to determine the benefits from a

defined processing order. Another refinement would be to apply

expert judgements to the way that levels within a profile are

rejected. The example of which levels around a spike should be
rejected was given earlier. A second example is for XBT data,
where the convention is that if a wire break is found all levels
deeper are also deemed suspect and should be given the same
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FIGURE 9

TPRs and FPRs for different QC sets calculated from delayed mode Argo data in the Atlantic, Indian and Pacific ocean regions. End points of
profiles were removed before generating the results. The results for individual Argo QC tests are also shown including the Min/Max test as this
was designed for application to Argo data. A line showing equal TPR and FPR is drawn to aid comparison of results.

flag. Third, experts might recommend particular tests or

thresholds for different regions or instrument types.

The benchmarking framework that has been set up has, so
far, been used only for temperature profile data. However, there

are other essential ocean (climate) variables, such as salinity, for
which QC is also crucial. The same benchmarking techniques
can be applicable to those physical variables.

In summary, the benchmarking and QC sets discussed in
this paper are intended to be a first iteration. In the future, the

integration of AQC, machine learning QC and manual QC

under the IQuOD project will enable a framework where each

aspect can improve the other, iteratively improving the quality of
the full temperature profile dataset in the future, and eventually

extending the techniques to other variables.

6 Conclusions

As part of the IQuOD project, open source software
infrastructure was developed to benchmark sixty AQC checks

for ocean temperature profile data and to determine the best set

of tests. The software was coded in Python and is publicly
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available under the MIT license. Algorithms were also developed
to determine the optimal sets of quality control checks. The
software was applied to profiles from the QuOTA dataset to

which manual QC had been applied by the dataset developers,
and therefore there was high confidence that the quality of the

data was known. Three set of checks were derived, which allowed
the identification of as much suspect data as possible at the cost

of rejecting potentially good data (the HTPR set), to only flag the

most suspect data with the cost of missing some data which
should have been rejected (the LFPR set), or a compromise
between the two (the Comp set).

The set selections have been validated by subselecting the
training data and using two independent datasets. Results from
the subselecting were relatively consistent with the original
results when 10-fold cross-validation was applied. They were
less consistent when the dataset was split by instrument type,

with the best results for XBT profiles and worst for MBT profiles.

The results of applying the tests to a curated set of 100 XBT

profiles developed by NOAA/AOML were qualitatively

satisfactory. When applying the QC to delayed mode Argo
data, the Comp and HTPR sets derived from the QuOTA
training data did not perform well. However, the LFPR set
performed satisfactorily when compared to the Argo real time
QC procedures but achieved a lower TPR than that calculated

for the QuOTA data. This result was not confined to the sets

determined in this study – the individual tests and groups of

quality control checks used by different data producers around
the world were similarly affected. This highlights that quality
control performance can vary according to the data being
processed. It is recommended that the underlying causes of
these differences are investigated in the future.

The QC sets found in this study will be used to QC historical
data that have not previously had extensive QC applied such as
XBTs and will be released by the IQuOD project from a NOAA
portal (current version is available at https://doi.org/10.7289/
v51r6nsf) (The IQuOD Team, 2018). The three IQuOD sets of
QC checks will be applied separately to the dataset with a QC value
of 1 assigned to data that are not rejected by any of the sets, 2 to
data that are rejected by only the HTPR set of checks, 3 if the Comp
set rejects the data but not the LFPR set, and 4 if the LFPR set
returns a reject. For appropriate QC tests, it is also recommended
that XBT data deeper than a rejection flag are marked with the

same flag. Users can choose to (i) use only data with a flag value of 1,

which excludes all data identified by the QC sets as being suspect, (ii)

use data with QC flags of 1 or 2, which provides a balance

between finding as much bad data as possible without rejecting too

much good data, or (iii) use data with QC flags of 1, 2 of 3, which

will mean that the only data that are rejected are those where there
is high confidence that they are bad. If it is unclear to the user which

to use, the recommendation is to use data with flag values of 1 or 2

and reject data with flag values of 3 or 4.

10.3389/fmars.2022.1075510

It is expected that this dataset and the new understanding of
the performance of QC methods obtained in this study will serve
to improve forecasting, reanalysis and monitoring of the state of

the ocean. This study is seen as a first step. In the future, the

software infrastructure that has been set up will foster more
effective and timely advances in AQC evaluations (e.g. inclusion
of other checks, either existing or newly developed), through
coordination of international expertise and resources into a best
practice community effort. The aim is to facilitate evolving AQC

activities and data refinements (along with full documentation)

in support of the highest quality and most consistent global

temperature profile database. In addition, the overall AQC

framework can serve as a template for enhancing the quality
of other essential climate variables (ECVs), such as ocean

salinity, and their value to scientific and societal applications.
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