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A B S T R A C T

Integrated computational materials engineering (ICME) combines the utility and efficiency of simulations with
experimentation to drive forward materials design and discovery. These physics-based and data-driven frame-
works have enabled material advancement by querying the complex process–structure–property–performance
relationships to inform and guide experiments for the cost-effective design of alloy systems. In this study,
a proven computational framework is presented and applied towards the tailored design of additively
manufactured (AM) high-temperature NiTiHf shape-memory alloy (SMA) parts. Specifically, the effort deploys
a design tool to attain specific transformation temperatures by composition control through differential
evaporation, which in turn depends on processing conditions. This framework consists of a fast-acting discrete
source model to simulate thermal history, a multi-layer model to account for composition evolution across
melt pools, and a differential evaporation model to evaluate Nickel loss throughout the fabrication process.
Besides the development of this multi-model chain, proper quantification of model uncertainties is critical to
an ICME approach for materials design. Addressing these concerns, the parameter calibration and uncertainty
quantification (UQ) of hierarchical model components is conducted through a Markov Chain Monte Carlo
(MCMC) Bayesian approach over either the model itself or a representative Gaussian process-based surrogate
model. These uncertainties are propagated across the models to the final response, i.e., martensitic start
temperature. Subsequently, the hierarchical model framework is validated by comparing the experimental
results with the most plausible values and uncertainty bounds obtained for the multi-model predictions at
different processing conditions. From this calibrated and validated framework, process maps to streamline
and illustrate the tailored design of AM high-temperature NiTiHf SMAs are developed, which demonstrates a
promising path towards efficient design under uncertainty in additive manufacturing processes.
1. Introduction

Beyond the original and well-proven capabilities of Additive Man-
ufacturing (AM) processes, such as geometric freedom and mass cus-
tomization, a fast emerging avenue of development involves AM of
functional materials such as NiTi-based alloys, with variations of the
ternary component including Pt, Pd, Au, Zr, and Hf [1,2]. These shape
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memory alloys (SMAs) exhibit a functional response based on tem-
perature, where the ternary alloying element affects material proper-
ties such as hardness, superelasticity, and transformation temperature.
NiTi, prominently known for its biocompatibility, and functional and
mechanical properties, exhibits a martensitic start transformation tem-
perature, 𝑀𝑠, spanning 100 ◦C for a composition range of (50–51) Ni
at% [3]. However, NiTi SMA is limited in its use for high-temperature
(HT) applications due to a low ceiling for𝑀𝑠, approximately 70 ◦C. For
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Nomenclature

𝛼 Shape parameter
𝛼𝑖,𝑁𝑖 Activity (species 𝑖, Nickel)
𝑝̄ Equilibrium vapor pressure
𝝓 System hyperparameters, 𝝓 = {𝑆,𝝍 , 𝜎2𝜖 }
𝝍 Kernel hyperparameters
𝜽 Vectors of calibration parameters
𝜒𝑁𝑖 Nickel content
𝛥𝑡 Source discretization time scale
𝛿 Model discrepancy term
𝑚̇𝑖𝑛,𝑜𝑢𝑡,𝑒𝑣𝑎𝑝 Mass flow relative to the melt pool (in, out,

evaporation)
𝓁 Scale hyperparameter in kernel function
𝜂 Efficiency
𝜂𝑠 Surrogate function
𝑠̂ Volumetric energy source
𝜅 Thermal conductivity
𝜷 Linear coefficient
Σ Variance matrix of 𝐝
𝐃 Observed data
𝐝 Full data vector, 𝐝 = (𝐲⊺, 𝐳⊺)⊺

𝐇 Weight matrix
𝐡 Weight vector
𝐈 Prior information
𝐭 Variance matrix
𝐭𝜃 Calibration inputs
𝐖 Weighted variance matrix
𝐱 Control inputs vector
𝐱0 New control inputs vector
 Parameter space of control inputs
𝜈 Matérn smoothness parameter
𝜔 Weight fraction
𝜌 Density
𝜌𝑀𝑠

Pearson correlation coefficient of predicted
and measured 𝑀𝑠

𝜌𝑋𝑌 Pearson correlation coefficient of parameter
X and Y

𝜎 Standard deviation
𝜎2 Variance term
𝜎𝑏 Beam size
𝜎2𝜖 Variance of observation error
𝜏𝑖 Time of source activation
𝛩 Parameter space of calibration parameters
𝛩𝐻 Heaviside step function
𝜐 Velocity
𝑟 Vector of spatial coordinates (𝑥𝑠, 𝑦𝑠, 𝑧𝑠)
𝐴𝐴, 𝐵𝐴, 𝐶𝐴 Antoine coefficients
𝐴𝑥−𝑠 Cross-sectional area
𝐶 Correction factor
𝑐 Covariance function
𝐶𝑝 Specific heat capacity
𝑐𝑜𝑣𝑋𝑌 Covariance of parameter X and Y
𝑑 Depth of melt pool

this purpose, tertiary SMA NiTiHf enables the cost-effective application
of functional materials in high-temperature environments, exhibiting
transformation temperatures dependent on both Ni and Hf content and

◦

2

an𝑀𝑠 ceiling exceeding 500 C [4,5]. Umale et al. [6] demonstrate this
𝐷1 Inputs of simulation data 𝐲⊺

𝐷2(𝜽) Inputs of 𝐷2 with vectors of calibration
parameters

𝐷2 Inputs of experimental data 𝐳⊺

𝑑𝑘 Keyhole depth
𝐷𝑡 Thermal diffusivity
𝑒 Observation error
ℎ𝑠 Hatch spacing
𝑗 Evaporation flux
𝐿 Length
𝐿𝑡 Layer thickness
𝑀 Molecular weight
𝑚 Mean function
𝑀𝑠 Martensite start transformation temperature
𝑃 Laser power
𝑝 Probability density function
𝑝◦𝑖 Standard vapor pressure
𝑅 Distance between spatial position and heat

source
𝑅2 Coefficient of determination
𝑟𝑘ℎ Keyhole radius
𝑆 Scaling parameter
𝑆𝑖𝑠𝑜 Surface area of isotherm
𝑇0,𝑏,𝑎𝑏𝑠,𝑖𝑠𝑜 Temperature (initial, boil, absolute,

isotherm)
𝑡𝑝,𝑠𝑜𝑙𝑖𝑑,𝑚𝑒𝑙𝑡 Time (process, solidification, melt)
𝑤 Width of melt pool
𝑦 Simulation output
𝑧 Experimental observation
AM Additive manufacturing
CI Credible interval
DEM Differential evaporation model
DSC Differential scanning calorimeter
DSM Discrete source model
EDM Electrical discharge machining
GP Gaussian process
HT High temperature
ICME Integrated computational materials engi-

neering
ICP-AES Inductively coupled plasma atomic emission

spectroscopy
KOH Kennedy and O’Hagan framework
LED Linear energy density
LPBF Laser powder bed fusion
MAP Maximum a posterior probability
MAPE Mean absolute percentage error
MCMC Markov Chain Monte Carlo
MH Metropolis–Hastings
MLM Multi-layer model
OM Optical microscopy
PDF Posterior density function
PSPP Process–structure–property–performance
RMSE Root mean squared error
SHT Solution heat-treated
SMA Shape memory alloy
UP Uncertainty propagation

NiTiHf composition-property relationship by varying Ni and Hf content
between (49.8–51.3) at% and (0–30) at% respectively, resulting in an
𝑀 range of nearly 700 ◦C, from −163 to 519 ◦C.
𝑠
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UQ Uncertainty quantification
VED Volumetric energy density
WDS Wavelength dispersive spectroscopy

Of crucial importance for the tailored design of AM-fabricated Ni-
iHf HT-SMA across this window of transformation temperatures is the
nowledge of underlying physics and mechanisms to control process–
tructure–property–performance (PSPP) relationships. During the laser
owder bed fusion AM (LPBF), a material undergoes multiple bouts of
apid solidification and cooling. The magnitude and duration of these
vents at a specific location depend on a combination of process param-
ters, including laser power, laser velocity, hatch spacing, etc. These
arameters directly relate to melt pool geometry and the loss of alloying
lements due to differential evaporation, resulting in location-specific
omposition throughout an AM part [7,8]. For NiTi alloys, a significant
ifference in volatility between alloying elements is conducive to sig-
ificant changes in composition and properties through Ni loss and a
ensitive Ni-𝑀𝑠 correlation [3]. Additively manufactured NiTiHf SMA
shares this difference in volatility between alloying elements, allowing
for quantifiable composition change due to differential evaporation [6,
8]. Informed modulation of AM process parameters then enables con-
trolled modification of melt pool structure and composition change due
to evaporation, corresponding to tailored changes in properties and
fit-for-purpose components. However, this is not easily achieved and
requires effective leveraging of simulations and experiments along the
PSPP chain of integrated computational materials engineering (ICME)
shown in Fig. 1.

Generally, the development of models and simulations is a vital
task in the ICME framework to direct experiments in materials and
product design along the PSPP chain. However, design is not viable
without the calibration and uncertainty quantification (UQ) of these
computational tools. These needs arise from our lack of knowledge
about the physical systems, applied assumptions and simplifications,
and incomplete parameterization [9]. In other words, UQ is necessary
in order to provide a notion of confidence in computational-guided
design. This necessity is especially prominent in AM process design
due to the many complex physical phenomena and hard-to-measure
variables involved, which correspond to multiple assumptions, missing
physics, and lack of parameter knowledge in the relevant models and
simulations. In the recent decade, Markov Chain Monte Carlo (MCMC)
approaches in the context of the Bayesian inference have been com-
monly used to perform model calibration and UQ in different materials
science and engineering problems [7,10–22]. The popularity of these
UQ approaches is driven by their simple implementation, powerful and
rigorous analysis, consideration of prior knowledge, and capability of
updating analysis results upon acquiring new data [9]. However, the
high computational cost of these methods restricts their application
in the UQ of expensive models and simulations. In these cases, a
surrogate-based MCMC technique, such as Kennedy and O’Hagan’s
Gaussian process (GP)-based approach [23] can be applied to quantify
uncertainties [24,25].

In this work, a fast-acting ICME framework [7], consisting of a
thermal model, multi-layer model, and differential evaporation model,
is developed to achieve designable and controllable location-specific
actuation in additively manufactured NiTiHf SMA components. For the
purpose of accelerated materials design and discovery, the capabilities
and speed alotted by this fast-acting framework serve as a swift tool
ideal for screening PSPP trends. This is in contrast to high-fidelity
models, e.g., finite element models, that require a high computational
cost not suitable for expedited material development in the large and
complex design space provided by AM. Additionally, the difficulties and
costs associated with the calibration of high-fidelity models further hin-
der their application in the ICME materials design. However, to fill the
3

accuracy gap resulting from the reduction of considered physics in low-
fidelity models, probabilistic calibration approaches are applied over
the fast-acting low-fidelity models in this framework to identify the
uncertainty bounds of the final model outcomes, i.e., location-specific
properties of additively manufactured parts, sufficient to provide a
notion of robustness in materials design.

The current work seeks to develop a framework for the robust design
of additively manufactured NiTiHf. By quantifying the overall uncer-
tainty, obtained from the contribution of individual model parameters,
the framework can then be leveraged for design. In this regard, the
calibration process and uncertainty quantification are performed using
an MCMC Bayesian approach directly over the thermal model compo-
nent and indirectly over the differential evaporation model through a
representative Gaussian process-based surrogate model. Following this,
quantified uncertainties are propagated across the modeling frame-
work to the final model response, martensitic start temperature. Subse-
quently, the hierarchical model framework is validated through com-
paring the experimental results with the most plausible values and
uncertainty bounds obtained for the multi-model predictions at dif-
ferent processing conditions. Exploiting this calibrated and validated
computational framework, process maps are developed for the sake
of tailored design of additively manufactured high-temperature Ni-
TiHf SMAs, providing a promising path towards efficient design under
uncertainty in AM processes.

2. Material response during the thermal process

2.1. Thermal model

A discrete source model (DSM) proposed by Schwalbach et al. [26]
is applied in this work to predict the thermal history and melt pool
characteristics in a fast-acting manner during the thermal process of
an AM part. While high-fidelity numerical simulations, such as finite
difference, volume, or element, are required to precisely capture the
physics in the AM thermal processes, their high computational cost
makes them impractical for process design in the context of the ICME
paradigm, particularly the processes involving forward-feeding and
in-line feedback control. Therefore, the development of low-fidelity
fast-acting analytical models with comparable precision is essential to
a successful approach in tackling AM design problems.

2.1.1. Assumptions
The DSM enables fast-acting temperature predictions of AM parts

by simulating thermal history while accounting for a series of key
assumptions. These assumptions offer a balance between computational
cost and accuracy. In this regard, the main considerations fall into the
categories of thermophysical properties and heat transfer.

For the purpose of predicting AM melt pool characteristics, Schwal-
bach et al. [26] has quantified small differences resulting from material
property temperature dependence. From this, temperature-independent
thermophysical properties are thus assumed by the DSM in this work.
Additionally, experiments are utilized in a probabilistic calibration of
the model to provide effective thermophysical property values along-
side the property’s associated distributions. Uncertainties stemming
from the temperature-independence assumptions are accounted for
through the calibration procedure.

Heat transfer within the material system is directly governed by
thermal conduction. Additionally, material absorption and thermal
transport mechanisms including convection and radiation, as well as
evaporation, are accounted for through a calibrated efficiency param-
eter. Considering the dependence of melt pool shape on convection,
a shape factor variable to adjust the volumetric energy source and
consequent melt pool geometry for a given set of process conditions can
be tuned and calibrated [26]. However, a calibrated shape factor is not
transferable to multiple process parameters within the same material
system and will result in extensive computational cost when screening
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Fig. 1. Schematic of an integrated computational materials engineering modeling approach for LPBF AM. This is established through a process–structure–property-performance
(PSPP) relationships.
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for trends. For this reason, the shape factor is assumed to have a value
equal to 1, but a generalized physics-based depth correction factor is
considered [27] and calibrated with experiments for cases when the
AM process is characterized by keyholing mode through a criterion
derived from NiTiHf printability maps [8]. This presents significant
disparities in melt pool width to depth ratios for the keyholing con-
ditions due to substantial evaporation of material and corresponding
recoil pressure [28].

In the context of heat transfer and temperature distribution of the
melt pool, latent heat due to liquid–solid and solid-state phase change,
as well as sensible heat, are also considered, subsumed by a calibrated
effective heat capacity parameter. The calibration approach and results
for the thermophysical properties, efficiency, and depth correction are
discussed in Sections 2.3 and 2.4, respectively.

2.1.2. Thermal profile
The DSM predicts temperature, 𝑇 , at any given spatial location

along the 𝑥𝑠, 𝑦𝑠, and 𝑧𝑠 coordinates, 𝑟𝑗 , over the AM process. These
predictions at any given process time, 𝑡𝑝, provide isotherm contours
that are used to determine the melt pool dimensions based on the ma-
terial melting temperature. In this model, the temperature prediction
is performed by solving the heat conduction equation in the presence
of a series of volumetric discrete heat sources, {𝑠̂𝑖}𝑁𝑖=1, at designated
locations, {𝑟𝑖}𝑁𝑖=1, which sequentially activate at different process times,
{𝜏𝑖}𝑁𝑖=1, depending on the laser beam velocity, 𝜐. This equation is
expressed as:

𝜕𝑇
𝜕𝑡𝑝

= 𝐷𝑡∇2𝑇 +
𝑁
∑

𝑖=1

𝑠𝑖(𝑟𝑗 , 𝑡𝑝)
𝜌𝐶𝑝

(1)

here 𝐷𝑡, 𝜌, and 𝐶𝑝 are the thermal diffusivity, mass density, and
ass specific heat capacity of the given material, respectively. As men-
ioned in Section 2.1.1, these parameters are considered temperature-
independent and represented by their effective quantities. It should also
be noted that the thermal diffusivity can be related to the thermal
conductivity, 𝜅, as 𝐷𝑡 =

𝜅
𝜌𝐶𝑝

. Assuming normally-distributed volumetric
eat sources centered at 𝑟𝑖 with standard deviation, 𝜎𝑏 representing the
beam size, the following solution based on Green’s function technique
can be derived from Eq. (1) for an infinite uniform medium assigned
at initial temperature 𝑇0:

𝑇 (𝑟𝑗 , 𝑡𝑝) = 𝑇0 +
𝑁
∑

𝑖=1

{

𝜂𝑖𝑃𝑖𝛥𝑡

𝜌𝐶𝑝

√

2𝜋1.5
𝛩𝐻 (𝑡𝑝 − 𝜏𝑖)

(

𝜎2𝑏 + 2𝐷(𝑡𝑝 − 𝜏𝑖)
)−1.5

exp
(

−
𝑅2
𝑖𝑗

2
(

𝜎2𝑏 + 2𝐷𝑡(𝑡𝑝 − 𝜏𝑖)
)

) }

(2)
4

where 𝜂𝑖 is an adjusting factor called efficiency, indicating the energy
received by the material from the heat source 𝑠̂𝑖. In other words, this
actor accounts primarily for energy loss due to limited absorptivity,
nd secondarily for the energy loss due to convection, radiation, and
vaporation phenomena in the final solution. While 𝑃𝑖 is the power
f heat source 𝑖, 𝜂𝑖𝑃𝑖 is known as its effective power. 𝜂𝑖 and 𝑃𝑖 are
considered fixed in this work and denoted by 𝜂 and 𝑃 . 𝛥𝑡 is the source
discretization timescale. 𝑅𝑖𝑗 = |𝑟𝑗 − 𝑟𝑖| corresponds to the distance
between the given spatial position and the position of the heat source
̂𝑖. 𝛩𝐻 is the Heaviside step function accounting for the contribution of
heat sources activated at process time 𝑡𝑝. For further information about
DSM, the readers are referred to [26].

2.1.3. Melt pool geometry
LPBF AM process parameters and material properties directly affect

melt pool geometry and structure. For a given material, modulating
laser power, laser speed, and hatch spacing translates to different
energy inputs into the system and variations in melt pool geometry.
Even within a single layer there is variation in location-specific energy,
resulting in unique melting and solidification events throughout the AM
process. Proper evaluation of these events at specific points in time then
enables the approximation of corresponding melt pool geometries. By
leveraging the DSM to simulate a desired print, melt pool geometries
for any point in time and at any spatial location can be generated.

Resolving melt pool dimensions follows a short sequence begin-
ning with the generation of an AM layer based on desired process
parameters. Next, a specific point of interest on the simulated layer
is chosen and the thermal history is generated. For the identification
of a specific thermal event within the thermal history, an approximate
range of times corresponding to the melting and solidification event
should also be specified. The material’s melt temperature is then used
as a criterion to determine the start and end, respectively the melting
and solidification time, of the thermal event. The melt pool width and
depth are then determined by querying points for the solidification
temperature in a radial vector search pattern originating from the
location of interest, bounded by the timing of the thermal event. This
results in a cross-section of queried points, where the thermal history
of each point should be resolved to determine a respective duration
of the thermal event, defined by the melting and solidification time.
Under the steady-state assumption, the length for each point in the
cross-section can then be calculated as a summation of its length before,
𝐿𝐵 , and length after, 𝐿𝐹 , the cross-section, as shown in Fig. 2. These
lengths are based on the distance traveled by the laser relative to the
solidification time of the cross-section boundary points, where length
is zero, and both the solidification time and melting time of individual
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Fig. 2. Sample melt pool with queried points in the YZ cross-section. The melt pool
length corresponding to any point in the cross-section is comprised of components for
both the length before, 𝐿𝐵 , and the length in front, 𝐿𝐹 , of the cross-section.

points within the cross-section. The total length 𝐿(𝑦𝑠 ,𝑧𝑠) corresponding
o a specific point in the cross-section can be solved as:

(𝑦𝑠 ,𝑧𝑠) = [𝐿𝐵+𝐿𝐹 ]𝜐 =
[

(𝑡𝑠𝑜𝑙𝑖𝑑,(𝑦𝑠 ,𝑧𝑠)−𝑡𝑠𝑜𝑙𝑖𝑑,𝑚𝑖𝑛)+(𝑡𝑠𝑜𝑙𝑖𝑑,𝑚𝑖𝑛−𝑡𝑚𝑒𝑙𝑡,(𝑦𝑠 ,𝑧𝑠))
]

𝜐 (3)

where 𝑡𝑠𝑜𝑙𝑖𝑑,(𝑦𝑠 ,𝑧𝑠) and 𝑡𝑚𝑒𝑙𝑡,(𝑦𝑠 ,𝑧𝑠) are the solidification and melting time
of a point in the cross-section, respectively, 𝑡𝑠𝑜𝑙𝑖𝑑,𝑚𝑖𝑛 is the earliest
solidification time from all points in the cross-section, and 𝜐 is the laser
velocity. By generating lengths for each point in the cross-section, an
approximation of the 3D melt pool is resolved and a melt pool volume
is determined. This is a critical component to calculating composition
evolution through an AM part, discussed in Section 3.

.1.4. Prediction correction for the keyhole depth
Keyholing is a common defect in the AM processes which occurs

n high input energy processes resulting from specific combinations of
igh laser power and low laser velocity. In these conditions, materials’
ncapability of dissipating sufficient heat from the melt pool underneath
he laser beam leads to a local increase in temperature above the
aterials boiling point, inducing massive elemental evaporation from
he melt pool. Therefore, an evaporation-induced force, also known as
he recoil pressure, is produced in an opposite direction perpendicular
o the melt pool surface [7,10]. When the recoil pressure is larger than
ts opposing counterpart resulting from surface tension, it forms a vapor
avity by pushing out its inner molten material. This cavity promotes
eat absorption and enables the laser beam to penetrate deeper than
on-keyhole conditions [29].
Analytical thermal models, such as the model described in Sec-

ion 2.1, typically ignore the physics involved in keyholing mode,
esulting in melt pool depth underestimation at these conditions. For
his reason, the same depth correction as our previous studies [7,10] is
pplied here for cases undergoing the keyholing phenomenon. This cor-
ection is taken into account using the simplified analytical model for
he keyhole depth, 𝑑𝑘, suggested by Gladush and Smurov [27], which
s derived by solving the heat conduction equation for a cylindrical-
ssumed keyhole of radius 𝑟𝑘ℎ under the laser beam with a semi-infinite
oundary condition. The final general solution is expressed in terms of
he processing conditions, i.e., laser power, velocity, and beam size, as
ell as some materials properties, as follows:

𝑘 =
𝜂𝑃

2𝜋𝜅𝑇𝑏
ln

(

𝑟𝑘ℎ +
𝐷
𝜐

𝑟𝑘ℎ

)

(4)

where 𝑇𝑏 is the material boiling temperature alongside other previously
defined properties.

Assuming the depth prediction in Eq. (4) can perfectly represent
he experimental data for keyhole depths, the discrepancy between the
SM prediction and experimental data is considered a constant fraction
f this depth under the keyholing conditions. This constant fraction is
5

called the correction factor, 𝐶, in our studies in order to account for
keyholing missing physics in the DSM and calibrated probabilistically
besides other uncertain model parameters against available experimen-
tal data for melt pool dimensions. The correction factor should change
between 0 and 1 based on the high-precision assumption for Eq. (4).
owever, our previous studies [7,10] showed that it can be higher than
since the keyhole depth can still be underestimated by Eq. (4).
For the sake of parameter calibration, an experimentally-derived

riterion is used to identify the processing conditions in the given data
orresponding to the keyholing occurrence, at which the DSM depth
redictions are required to be corrected. This criterion is expressed
s an inequality between melt pool width, 𝑤𝑒𝑥𝑝, and depth, 𝑑𝑒𝑥𝑝, as
𝑤𝑒𝑥𝑝∕1.5) ≤ 𝑑𝑒𝑥𝑝 for Ni-based SMAs, which corresponds to a classified
− 𝜐 region in the printability maps for these alloys [30]. Therefore,
he depth correction can also be performed based on a criterion for the
ombinatory values of 𝑃 and 𝜐 input into the thermal model.

.2. Experimental procedure

Ni50.3Ti29.7Hf20 (at.%) ingots were acquired from Ingpuls GmbH
nd then gas atomized by Nanoval GmbH & Co. KG. The atomized
owder possessed a D80 (80th percentile of particle size distribution) of
1 μm and was utilized for single track and solid specimen fabrication
hroughout this study. Thin disks of the NiTiHf were cut by wire
lectrical discharge machining (wire-EDM) for printing NiTiHf single
racks. Fifty four single tracks with length of 10 mm and spacing
f 1 mm were fabricated using DMP ProX 200 LPBF system by 3D
ystems with different combinations of laser power and scanning speed
nder argon atmosphere. These print conditions, their linear energy
ensity (LED), and their corresponding average values of melt pool
idth and depth are listed in Table 1. Additionally, these prints are
plit into training and test sets to calibrate and validate the thermal
odel parameters. It should be noted that melt pool width and depth
re the only measurable quantities in this experimental setup, while
elt pool length and thermal profiles must be predicted through the
alibrated thermal model. Furthermore, the data is identical to that of
hang et al. [8], which can be referenced for additional information on
he experimental details.
After the single track experiments, top-view optical microscopy

OM) images were taken at the middle of each single track using a
eyence VH-X digital microscope, and the widths were measured and
veraged at five different locations from the OM images. For each
ingle track, three cross-sectional samples were cut using wire-EDM at
qual-spaced distance. The cross-sectional samples were mechanically
olished up to 1200 grit, followed by a final polishing with colloidal
ilica solution. In order to reveal the melt pool shapes, the polished
amples were etched with the etchant (3 parts HNO3, 1 part HF, 10
arts distilled water). OM was carried out on each etched cross-section
o measure the melt pool depths, and the average of three cross-
ectional samples was calculated for each single track. Fig. 3 contains
ross-section images of these single-track prints for several processing
onditions, characterizing differences in melt pool geometry for lack of
usion, good quality, balling, and keyholing print modes.

.3. Probabilistic calibration approach

Computer models are always imperfect due to the incomplete pa-
ameterization and physical knowledge incorporated in these mod-
ls [9]. Therefore, model calibration is required and should utilize
probabilistic approach in order to assess validity [31]. Bayesian

nference is a simple and straightforward approach that applies the
ayes’ theorem to identify the probability of the parameter quantities
epresented by a parameter posterior density function (PDF), given the
bserved data, 𝐃, and parameter prior information, 𝐈. Parameter pos-
erior probability, 𝑝(𝜽|𝐃, 𝐈), is proportional to the product of parameter
rior probability, 𝑝(𝜽|𝐈), and likelihood, 𝑝(𝐃|𝜽, 𝐈) in this context [32].
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Fig. 3. Cross-section images for LPBF Ni50.3Ti29.7Hf20 single-track prints obtained through optical microscopy. Based on print conditions, different print modes are experienced:
(a) lack of fusion (b) good quality (c) balling (d) keyholing.
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However, this inference typically involves solving multi-dimensional
intractable integrals to determine the posterior statistical characteris-
tics. These integrations are difficult or often impossible to compute
through the analytical and conventional numerical methods [9,33].
arkov Chain Monte Carlo sampling techniques are mostly used in or-
er to tackle these integration problems in a robust and straightforward
anner [34–36].
In this work, an MCMC toolbox in Matlab [37] based on the adap-

ive Metropolis–Hastings (MH) algorithm is employed to infer the
osterior distribution of the model parameters. For this purpose, param-
ter vectors are sampled from this multivariate posterior distribution,
teratively, after defining the parameters’ initial guess, bounds, and
rior distribution. In each iteration of this process denoted by index 𝑖, a
andidate, 𝜽𝑐𝑎𝑛𝑑 , is sampled from a proposal posterior distribution, 𝐪. In
he beginning, the proposal distribution is considered as a multivariate
aussian proposal distribution centered at the parameters’ initial guess
ith an arbitrary variance–covariance matrix. Then, it is adapted to a
ultivariate Gaussian distribution centered at the previous parameter
ector, 𝜽(𝑖−1), in the MCMC chain with a variance–covariance matrix
alculated as a function of the variance–covariance matrix of all the
revious parameter vectors in the chain, based on Haario et al.’s
orks [38,39]. The acceptance/rejection of the sampled candidate is
erformed based on the MH ratio that is:

𝐻 =
𝑝(𝜽𝑐𝑎𝑛𝑑 |𝐈)𝑝(𝐃|𝜽𝑐𝑎𝑛𝑑 , 𝐈)
𝑝(𝜽𝑖−1|𝐈)𝑝(𝐃|𝜽𝑖−1, 𝐈)

𝑞(𝜽𝑖−1|𝜽𝑐𝑎𝑛𝑑 )
𝑞(𝜽𝑐𝑎𝑛𝑑 |𝜽𝑖−1)

, 𝑖 = {1,… , 𝑛} (5)

where the first ratio is the Metropolis ratio expressed as the product
of the prior probability of 𝜽𝑐𝑎𝑛𝑑 and the likelihood of obtaining the
observed data given this sample over its counterpart given 𝜽(𝑖−1). In
ther words, the posterior probabilities of 𝜽𝑐𝑎𝑛𝑑 and 𝜽(𝑖−1) are com-
ared through this ratio. It should be noted that the parameter prior
6

e

istribution is defined based on prior knowledge about the parameters.
owever, a non-informative distribution, e.g., uniform, is considered
hen no previous information is available. Moreover, likelihood is a
ultivariate Gaussian distribution in the applied MCMC toolbox, which
ompares a vector of the observed data at different input conditions
ith its corresponding vector of model outputs at any given theta.
his multivariate Gaussian distribution is centered at the observed data
ector with a diagonal variance–covariance matrix of data variances.
The second ratio in Eq. (5) is the Hastings ratio that compares the

robability of moving forward from 𝜽(𝑖−1) to 𝜽𝑐𝑎𝑛𝑑 with its counterpart
or the reverse move. The parameter vector candidate is accepted if
he 𝑀𝐻 ratio is higher than a random value between 0 and 1. This is
quivalent to an acceptance probability of min{𝑀𝐻, 1} for the candi-
ate. 𝜽𝑖 equals 𝜽𝑐𝑎𝑛𝑑 in the case 𝜽𝑐𝑎𝑛𝑑 is accepted; otherwise, 𝜽𝑖 is the
ame as 𝜽(𝑖−1). The iterative sampling of parameter vectors continues
ntil the proposal distribution becomes almost stationary, which is
enerally equivalent to parameter convergence in the MCMC process.
hen, the parameter samples generated after the convergence can
epresent the parameter posterior PDF and its statistical properties for
he sake of parameter calibration and uncertainty quantification. The
odel outputs at these parameter samples are used to find uncertainties
ropagated from the parameters to the model outputs. Moreover, 2.5%
f the model output samples can be discarded from their upper and
ower bounds to predict 95% credible intervals (CIs).

.4. Calibration results

The DSM, similar to all models with any range of fidelity or preci-
ion, is incapable of emulating reality perfectly due to its assumptions,
implifications, and incomplete physics. Therefore, the quantification of

xisting errors is required in order to have a notion of confidence for the
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Table 1
Average measured melt pool width and depth for single-track prints at
different LPBF process conditions over Ni50.3Ti29.7Hf20 (at.%) powder.
Experimental data selected for the calibration and validation of the
thermal model are separated.
P [W] 𝜐 [mm/s] LED [J/m] w̄ [μm] d̄ [μm]

Training data for thermal model calibration

40 80 500.0 126.9 21.4
80 80 1000.0 244.9 64.9
120 80 1500.0 385.6 235.3
160 80 2000.0 462.7 400.9
240 80 3000.0 551.2 721.8
40 330 121.2 83.1 9.4
80 330 242.4 116.4 42.3
120 330 363.6 173.6 129.7
160 330 484.8 206.6 222.5
200 330 606.1 227.7 247.3
80 580 137.9 97.2 32.4
120 580 206.9 125.0 63.4
200 580 344.8 165.9 100.8
240 580 413.8 173.6 112.3
80 830 96.4 78.7 11.6
120 830 144.6 113.2 42.3
160 830 192.8 137.8 71.3
200 830 241.0 142.9 72.8
240 830 289.2 157.0 144.1
80 1080 74.1 73.9 11.6
160 1080 148.1 113.5 57.0
240 1080 222.2 138.4 94.8
80 1330 60.2 74.6 6.8
120 1330 90.2 80.6 17.8
160 1330 120.3 83.8 40.8
240 1330 180.5 109.4 78.3
160 1580 101.3 74.8 32.7
200 1580 126.6 79.0 49.3
120 1830 65.6 72.3 10.8
160 1830 87.4 66.8 27.4
240 1830 131.1 69.1 53.5
120 2080 57.7 68.5 7.6
160 2080 76.9 59.8 23.2
200 2080 96.2 59.5 34.2
240 2080 115.4 67.8 39.1
120 2330 51.5 69.8 8.7
160 2330 68.7 58.5 20.2
240 2330 103.0 68.7 43.8
60 205 292.7 101.0 16.8
100 205 487.8 181.9 51.8
140 205 682.9 248.4 183.5
100 455 219.8 109.0 35.4
140 455 307.7 162.4 71.5

Test data for thermal model validation

200 80 2500.0 522.5 557.0
240 330 727.3 240.4 320.3
160 580 275.9 158.3 74.0
120 1080 111.1 84.4 28.1
200 1080 185.2 123.1 71.5
200 1330 150.4 94.0 55.5
120 1580 75.9 76.8 10.4
240 1580 151.9 75.5 63.4
200 1830 109.3 73.9 38.4
200 2330 85.8 63.9 26.9
60 455 131.7 77.8 9.5

model predictions, enabling the application of such a model in design
methodologies. For this purpose, the Bayesian MCMC inference method
described in Section 2.3 is applied to perform the probabilistic calibra-
tion of the model parameters against the closest information source to
reality, i.e., experimental data. Then, the parameter uncertainties are
propagated to the model outputs in order to have predictions within
uncertainty bounds at any given processing condition.

Out of 54 available experimental data points for melt pool width
and depth presented in Table 1 at different processing conditions of
printing Ni50.3Ti29.7Hf20.0 SMA single-tracks, 43 data points (80%) are
considered as training data for the probabilistic calibration and the
7

Table 2
The most plausible (mean) values and standard deviation of the DSM
parameters after the MCMC calibration against the experimental data
for Ni50.3Ti29.7Hf20.0 SMA single-track melt pool dimensions.
𝜂 𝜅 [W/m K] Cp [J/kg K] C

0.64 ± 0.08 13.22 ± 1.87 652.53 ± 76.38 0.81 ± 0.03

rest (20%) are used as test data for the validation of the calibrated
model. It should be noted that the Bayesian inference provides the best
plausible results based on the current experimental information and is
not impeded by the number of data points. However, this statistical
inference can be updated when more data is available.

Using all the training experimental data points from both con-
duction and keyholing modes at the same time, the uncertain model
parameters, i.e., 𝜂, 𝑘𝑒𝑓𝑓 , 𝐶p-eff, and 𝐶, are probabilistically calibrated
hrough the MCMC sampling approach in a multi-objective optimiza-
ion scheme. This process starts by considering appropriate ranges
or parameters based on the physical constraints and expert intuition
longside a uniform prior distribution due to the lack of knowledge
bout the parameters’ distribution form. Subsequently, 20,000 param-
ter vector samples are generated using the MH criterion discussed
n Section 2.3. After discarding the burn-in period from the sample
hain, the parameter vector samples represent a multivariate joint
osterior probability density function (PDF) for the parameters that
s illustrated through the marginal (individual) and bivariate (pair)
oint parameter PDFs in Figs. 4 and 5, respectively. The statistical
roperties of the marginal PDFs that include the mean and standard
eviation of samples for the individual parameters are reported in
able 2 as their calibrated values and uncertainties. Also, the pair joint
DFs that show the probability densities in the parameter pair spaces
n different colors, increasing from blue to red, imply the extent of
inear correlation between each parameter pair in a qualitative manner
hrough the linearity of color features.
The Pearson correlation coefficient, 𝜌𝑋𝑌 = 𝑐𝑜𝑣(𝑋, 𝑌 )∕𝜎𝑋𝜎𝑌 , pro-

ides a quantitative measure enabling the comparison of the linear
orrelations, where 𝜎𝑋 , 𝜎𝑌 , and 𝑐𝑜𝑣(𝑋, 𝑌 ) are the standard deviation of
arameter 𝑋, the standard deviation of parameter 𝑌 , and the covari-
nce of these two parameters, respectively. This quantitative parameter
lters from −1 to 1. The upper and lower bounds correspond to a
ull linear correlation between the given parameter pair, contrarily
implies no linear correlation. Also, the negative and positive signs

ndicate the correlation direction, meaning whether the value of one of
he pairs decreases or increases as the value of the other pair increases.
s shown in the bottom right corner of plots in Fig. 5, there is almost a
ull linear correlation between 𝜂 and 𝐶p-eff and fairly high correlations
etween 𝜂 and 𝑘𝑒𝑓𝑓 as well as 𝑘𝑒𝑓𝑓 and 𝐶p-eff. These correlations can
lso be observed in the marginal PDFs in Fig. 4. Part (c) of this figure
hows that the 𝐶p-eff distribution peak falls beyond the lower bound
f this parameter since the probability density increases as the 𝐶p-eff
alue approaches the lower bound. However, having a parameter value
nder its lower bound is physically unreasonable, which can result from
ssumptions and missing physics in the DSM or errors in the experi-
ental results. As a result of a very high linear correlation between 𝜂
nd 𝐶p-eff (𝑟 = 0.99), Fig. 4-(a) also shows a very similar marginal PDF
or 𝜂. However, as shown in Fig. 4-(b), the marginal PDF in the case of
𝑒𝑓𝑓 is less similar to the one for 𝐶p-eff and mostly shows a double peak
istribution as the linear correlation drops to 0.81. Fig. 5 also exhibits
ow linear correlations between 𝐶 and the other three parameters,
ndicating 𝐶 has an independent contribution to predictions and cannot
e replaced by the mentioned model parameters. This independent
ehavior results in a clear peak in the marginal PDF of parameter 𝐶
n Fig. 4-(d).
The most plausible values and uncertainties of the DSM parameters

isted in Table 2 are propagated to the model outputs, i.e., melt pool
idth and depth, through the model forward analysis of the parameter
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mean vector and the MCMC parameter vector samples after discarding
the burn-in period. In this uncertainty propagation (UP) scheme, 2.5%
of the output samples for melt pool width or depth are discarded from
the upper and lower bounds of the sorted output samples in order to
obtain 95% CIs at each experimental print condition. These probabilis-
tic predictions versus their corresponding experimental data are plotted
in Fig. 6 for both training (part (a) and (b)) and test (part (c) and
(d)) experimental conditions. Colors in this figure represent the 𝐿𝐸𝐷
values at different print conditions. As observed in Fig. 6-(a) and (b),
the predictions of the calibrated DSM model are in excellent agreement
with their corresponding training data with R2 and RMSE values of
0.94 and 32 μm for melt pool width and 0.93 and 43 μm for melt pool
depth. Comparable R2 and RMSE values of 0.95 and 35 μm for melt pool
width and 0.97 and 31 μm for melt pool depth for test-experimental
conditions in Fig. 6-(c) and (d) also validate the calibration results
ith no over-fitting. Therefore, the calibrated DSM model is applied in
ur multi-model framework in Section 3 and Section 4 to predict melt
ool overlap, evaporation flux, final composition, and transformation
emperatures for different print conditions of cuboid specimen.

. Composition evolution across melt pools

.1. Multi-layer model

A multi-layer model (MLM) proposed by Ranaiefar et al. [7] is
pplied in this work to assess melt pool overlaps resulting from the AM
rocess and to account for composition evolution across a part. The
LM is important for appropriately defining the PSPP chain of an AM
art because it assists in accounting for the multiple thermal events and
he associated evaporation of alloying elements which occur during the
M fabrication process. By simulating multiple layers within an AM
art and the corresponding melt pool overlap and differential evapora-
8

ion, the model framework takes an additional step towards becoming b
fast-acting 3D model, analog to a digital twin, ideal for screening
SPP trends. Additionally, the MLM receives melt pool geometry input
irectly from the calibrated DSM and does not require direct calibration
s there are no uncertain parameters in this model. However, model
ncertainty may be propagated from the DSM through the MLM and to
he remainder of the model framework by utilizing the MCMC samples
enerated in Section 2.4 as input parameters, as demonstrated later in
ection 5.1.

.1.1. Assumptions
Simulating each of the hundreds to thousands of layers fabricated

uring the AM process is computationally expensive and impractical
n the context of utilizing the model framework to screen for PSPP
rends and accelerated development in design. For this reason, the MLM
mplements a series of assumptions to reduce computational cost for the
imulation of multiple layers. In this regard, the main considerations
all into the categories of preheat effects and melt pool overlap.
During the AM process, there are both intralayer and interlayer

reheating effects which impact melt pool dimensions. Intralayer pre-
eating describes the diffusion and build-up of heat across a single
ayer. The influence of intralayer preheating on melt pool dimensions
s highly dependent on the scan strategy and the part shape, where
mall hatch spacing and quick turn-arounds result in larger preheat
emperatures in adjacent tracks relative to increased hatch spacing
nd delayed turn-around times. When a region with raised preheat
emperature is processed, the thermal field at a point in time, defined
y the melting temperature, would be larger than at a point with no
r less thermal build-up. This intralayer preheating effect is inherently
ccounted for through the DSM and translates to larger melt pool
olumes and variations in melt pool overlap.
In the current work, a conventional snaking scan strategy is utilized
y the DSM, where an initial thermal build-up is experienced through
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Fig. 5. Bivariate joint posterior PDFs of the DSM parameters obtained after the MCMC calibration against the experimental data for Ni50.3Ti29.7Hf20.0 SMA single-track melt pool
imensions.
e
s
t
t
g
s
g
i
m
c
f
s
t

a
a
w
r

he first several tracks until an approximately steady-state preheat is
xperienced by the remaining tracks. These thermal build-up events
orrespond to an increase in melt pool dimensions for each track until
he steady-state intralayer preheating is reached, resulting in approx-
mately equivalent melt pool widths and depths for the remaining
racks. The start of this steady-state region varies between process
arameters, but can be leveraged to reduce computational cost by
etting a melt pool dimension-based criterion. For this reason, it is
ssumed that if a point on the current track and a parallel point on
he prior track entertain a desired tolerance of 10−16 μm in width and
epth, then the steady-state region has been reached and all remaining
racks have the same dimensions.
Interlayer preheating refers to the effect of residual heat on the pro-

essing of an AM layer resulting from the processing of the prior layer.
gain, the influence of interlayer preheating on melt pool dimensions
s highly dependent on the AM process parameters and scan strategy.
ue to the intrinsic time–temperature process of AM, as a single layer
s printed it experiences thermal diffusion and, given enough time,
9

ventually cools to room temperature. This layer may now act as a
ubstrate and allow the next layer to be printed in conditions similar
o the first layer. This results in melt pool dimensions that are constant
hrough each progressive layer. In the case where insufficient time is
iven between printed layers, the residual heat build-up could result in
lightly larger melt pools and variation in melt pool geometry for pro-
ressive layers. Therefore, assuming enough time is given to diminish
nterlayer preheating effects allows the use of a single predicted layer to
odel all layers of the AM build and reduce the overall computational
ost. This directly correlates to the improved efficiency of the model
ramework for quickly simulating AM components to screen location-
pecific properties and guide experiments. For this reason, it is assumed
hat interlayer preheating is negligible.
Similar to preheating effects, the degree of melt pool overlap with

djacent solidified melt pools also varies based on process parameters
nd scan strategy. In some cases, the degree of melt pool overlap
ith solidified tracks from the same or previous layer is marginal,
esulting in minor interaction and minimal composition evolution.
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Fig. 6. Calibrated DSM predictions with 95% CIs vs. experimental training and test data for the melt pool width and depth at different given Ni50.3Ti29.7Hf20.0 SMA single-track
rint conditions.
Fig. 7. Conventional snaking scan strategy and melt pool cross-section schematic depicting a sample case for melt pool overlap, where the 𝑍-axis represents the build-direction.
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owever, the increased computational cost for calculating these small
elt pool overlaps remains. For this reason, it is assumed that overlaps
omprised of less than 1% of the melt pool cross-sectional area are
onsidered negligible. The implementation and consideration of melt
ool overlaps within the model framework are discussed in greater
etail in Section 3.1.2.

.1.2. Melt pool overlap
Melt pool overlap refers to the multiple melting and solidification

vents occurring on both adjacent tracks and adjacent layers during the
M process, resulting in repeated processing and interaction of melt
ool regions. Then by accurately modeling and capturing these melt
ool overlaps, the processed composition within each melt pool can be
ropagated across successive melt pools, resulting in the identification
10

f location-specific composition across the AM part.
The degree of melt pool overlap within an AM build varies based
n material properties and process parameters, where process param-
ters are user-defined. By manipulating process parameters such as
atch spacing, the melt pool overlap and printability of an AM part
an be directly controlled, as well as its properties [8]. Scenarios
f AM processing with small hatch spacing may produce melt pools
hich experience overlap with multiple adjacent tracks, while a large
nough hatch spacing could result in lack of fusion defects and no
verlap. Another aspect to consider with smaller hatch spacing is the
orresponding increased volumetric energy density and an increased
ignificance for the evaporation of alloying elements from the melt
ool, further influencing location-specific composition and properties.
he MLM works in concert with a differential evaporation model
iscussed in Section 4 to account for the loss of alloying elements due to
evaporation. Melt pool overlap is also affected to a varying degree by
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Fig. 8. Mass balance analysis of a melt pool control volume in a reference frame
oving with the laser. Republished with permission from [7].

ntralayer preheating, which itself is dependent on scan strategy and
art geometry. In the current work, the DSM utilizes a conventional
naking pattern along a square geometry with tracks running parallel to
he 𝑋-axis, as illustrated in Fig. 7. The thermal history within the layer
ould then be defined by transient regions where thermal events are in
reater flux, located near the start and end of each track, and a larger
teady-state region where thermal history is constant, located about
he center of each track [40]. The melt pool dimensions for a point
long a single-track in the steady-state region could then be repeated
or remaining points within the steady-state region of the track. Due
o the assumption of negligible interlayer preheating and negligible
omposition effect (across small changes in composition) on melt pool
imensions, this single melt pool can also represent the melt pool
imensions in the proceeding layer. By extension, a slice of resolved
elt pool dimensions in the XY-plane, for a single layer, effectively
aptures and simulates the complete 3D steady-state region of the AM
art.
After the AM layers have been simulated, the process of evaluating
elt pool overlaps and composition evolution begins with the first melt
ool. The melt pool cross-section along the XY-plane is compared with
rior melt pool cross-sections along the same plane, as well as the
ubstrate. If no overlap is found, then a lack of fusion defect is likely
resent and subsequent analysis unnecessary. In the case of multiple
verlaps, a precedent is set based on print-time hierarchy. In the case
f the first melt pool, the only overlap should be with the substrate.
he entirety of the overlap can then be used to determine overlap
olume and an average composition calculated based on both powder
nd substrate volume and composition. This average composition will
hen be utilized by the differential evaporation model to determine the
inal solidified melt pool composition after evaporation.
Next, the second melt pool should overlap with the prior melt pool

s well as the substrate. Referring to the print-time hierarchy, the
verlap with the most recent solidified melt pool should be considered
irst. From Fig. 7, the referenced overlap could refer to the green region
ithin the melt pool cross-section schematic. This region partially
xtends into the former substrate region, as it was processed within
he first melt pool and corresponds to the first melt pool’s calculated
omposition. The substrate cross-section overlap is then represented by
he blue region and substrate composition. Similar to the first melt pool,
hese overlaps and compositions are then used to determine the second
elt pool’s average composition. Through this process, the propagation
f composition through the first two melt pools has been considered.
imilarly, this process can be repeated for remaining melt pools within
ayer and for proceeding layers, effectively capturing location-specific
omposition and composition evolution throughout the AM part.
11
It can be noted that because of constant process parameters and
egligible interlayer preheating, a symmetric pattern in melt pool over-
ap can be drawn from the simulated layers. The number of overlaps
ill vary based on process parameters, but generally melt pools will
nly overlap with prior tracks within the same layer and several tracks
ithin the prior layer. Due to consistent depths in the simulated melt
ool geometries, melt pools do not extend 2 layers prior and melt
ool overlap search criteria can account for this to further reduce
omputational cost. This is beneficial when an AM part can consist of
undreds of tracks and layers, requiring thousands of melt pools to be
ccounted for. In the case that variable process parameters modulate
ithin a single build, the search criteria should be re-evaluated to
apture appropriate melt pool overlaps and composition evolution.

. Evaporation induced chemical analysis

.1. Differential evaporation model

A differential evaporation model (DEM) proposed by [7] is adapted
or this work to evaluate melt pool evaporation throughout the AM
abrication process, providing location-specific final composition and
ransformation temperature properties for the ternary NiTiHf system.
he DEM is important in the ICME framework to accurately correlate
SPP relationships by accounting for changes in melt pool composition
esulting from the extensive thermal processing and the corresponding
vaporation loss of alloying elements experienced by AM components.
n this regard, the melt pool post-evaporation predicted composition
an be correlated to location-specific properties, such as martensitic
tart transformation temperature in SMAs. Through the combined DSM-
LM-DEM chain, melt pools and corresponding properties representa-
ive of a full-scale AM build can be simulated and used to inform future
xperiments in the context of AM product design.

.1.1. Assumptions
The fabrication of an AM part involves the complex interaction

f physics between a material and energy source, where accurately
apturing the entirety of these interactions is infeasible with current
omputational methods. In this work, the DEM seeks to leverage the
ast-acting DSM and account for missing physics which serve as a loss
echanism within the AM process, important for NiTi-based alloys
ue to Ni volatility and its evaporation during fabrication. Applying
everal assumptions, this workflow maintains a reduced computational
ost ideal for screening PSPP trends within AM while accounting for
aterial evaporation which prominently affects the composition and
roperties of AM NiTiHf alloys. These assumptions can then be catego-
ized as the ones related to the prediction of evaporation flux and those
orresponding to the calculation of final composition.
When evaluating the thermal processing which occurs during AM

abrication, it is assumed that the flow of molecules during evaporation
vents abides by The Kinetic Theory of Gases [41]. A formulation for
he evaporation flux of a species 𝑖, 𝑗𝑖 [g/cm2s], is then derived as:

𝑖 = 44.331𝑝̄𝑖

[

𝑀𝑖
𝑇𝑎𝑏𝑠

]
1
2

(6)

where 𝑝̄𝑖 [atm] and𝑀𝑖 [g] represent the equilibrium vapor pressure and
molecular weight of species 𝑖, respectively, and 𝑇𝑎𝑏𝑠 [K] represents the
absolute temperature. Additionally, the value 44.331 has the associated
units [ s K1∕2 mol1∕2

cm g1∕2
]. The calculation of evaporation flux within the DEM

is further explained in Section 4.1.2.
When evaluating the effect of evaporation, it is also assumed that

evaporation below the boiling temperature is negligible. This stems
from the exponential increase in the vapor pressure and activity, 𝛼,
of alloying elements with increasing temperature, resulting in the
most significant evaporation at the boiling temperature [42]. For this
purpose, it is assumed the melt pool surface can be described through

the summation of multiple discretized isotherms where the surface
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area corresponding to each isotherm domain is defined by a uni-
form temperature. Additionally, for the case of NiTiHf, Ni experiences
the majority of evaporation within the system due to the substantial
volatility and large at% of Ni within the NiTiHf system relative to the
alloying elements [42]. This change in Ni content should result in an
increase in the at% of Hf and Ti. However, also noting insufficient
experimental data for M𝑠 across a range of Hf at% in NiTiHf𝑋 and a
reduced M𝑠-Hf sensitivity in the (20 ± 1) at% range relative to M𝑠-
Ni in the 49.8 at.% - 50.8 at.% range [6], Hf at% is assumed to be a
constant 20 at.% for model predictions in this work. This assumption
is further expanded upon in Section 4.1.3. As a result, an increase in
Ti at% accounts for the corresponding loss in Ni content. Furthermore,
through these assumptions, a reduction in the number of calculations
and the total computational cost is achieved for the sake of the efficient
establishment of PSPP relationships towards AM product design.

After quantifying evaporation loss from the melt pool, the associated
change in composition of the melt pool must also be accounted for.
For this purpose, it is assumed that the melt pool can be defined as a
mass balance problem of a control volume. This is accompanied by a
formulation for the mass flow in, 𝑚̇𝑖𝑛, the mass flow out, 𝑚̇𝑜𝑢𝑡, and the
ass loss due to evaporation from the system, 𝑚̇𝑒𝑣𝑎𝑝:

̇ 𝑜𝑢𝑡 = 𝑚̇𝑖𝑛 − 𝑚̇𝑒𝑣𝑎𝑝 (7)

The mass balance and composition change is discussed further
n Section 4.1.2. However, to make these calculations tractable, a
econdary assumption is made. Here it is assumed that the flow of
aterial within the melt pool allows for the complete mixing of the
ontained elements. Through this assumption, an average composition
an be determined for a given melt pool and utilized within the model
ramework for the calculation of location-specific final composition as
ell as composition evolution throughout the component.

.1.2. Composition change
In order to calculate the composition change within a melt pool,

he mass balance described by Eq. (7) must be resolved. Illustrated by
Fig. 8, this control volume analysis of the melt pool is in a reference
frame moving with the laser [7].

Here, both the mass flow into and out of the control volume may be
deconstructed as a function of density, 𝜌 [kg∕m3], and flow velocity, 𝜐
[m/s], over the cross-sectional area, 𝐴𝑥−𝑠 [m2], of the control volume:

̇ = ∫ (𝜌𝜔𝑣)𝑑𝐴𝑥−𝑠 (8)

Solving for 𝑚̇𝑖𝑛 and 𝑚̇𝑜𝑢𝑡, while accounting for the weight fraction,
𝜔, of the alloying species i, yields:

̇ 𝑖𝑛𝑖 = 𝜌𝑖𝑛𝜔𝑖𝑛
𝑖 𝜐𝐴

𝑖𝑛
𝑥−𝑠 (9)

̇ 𝑜𝑢𝑡𝑖 = 𝜌𝑜𝑢𝑡𝜔𝑜𝑢𝑡
𝑖 𝜐𝐴𝑜𝑢𝑡

𝑥−𝑠 (10)

The mass flow out of the melt pool due to evaporation for each
alloying species 𝑖, 𝑚𝑒𝑣𝑎𝑝

𝑖 , can then be similarly deconstructed as:

̇ 𝑒𝑣𝑎𝑝𝑖 =
𝑛
∑

𝑖𝑠𝑜=1
𝑗𝑖
(

𝜒𝐴, 𝜒𝐵 ,… , 𝑇𝑖𝑠𝑜
)

𝑆𝑖𝑠𝑜 (11)

where the evaporation rate for a species i, 𝑗𝑖, is dependent on both
the composition of the alloying elements and an isotherm temperature,
(𝜒𝐴, 𝜒𝐵 ,…) and 𝑇𝑖𝑠𝑜, respectively. This evaporation rate is multiplied
with the corresponding surface area of the isotherm, 𝑆𝑖𝑠𝑜. The meltpool
surface can be discretized into multiple temperature isotherm bins, 𝑛,
and summed to determine the total mass loss of the alloying species
due to evaporation. However, due to the simplifying assumption of
negligible evaporation below the boiling temperature, this equation is
reduced to:
𝑒𝑣𝑎𝑝 ( )
12

̇ 𝑖 = 𝑗𝑖 𝜒𝐴, 𝜒𝐵 ,… , 𝑇𝑏𝑜𝑖𝑙 𝐴𝑏𝑜𝑖𝑙 (12)
Table 3
Antoine coefficients for Ni, Ti, and Hf.
Element A𝐴 B𝐴 [◦C] C𝐴 [◦C]

Ni 8.75 17882.38 134.99
Ti 8.90 20948.99 190.76
Hf 9.06 30232.91 285.82

The reader is referred to Ranaiefar et al. [7] for additional details
on the mass balance in a control volume derivation. However, from
Eqs. (7)–(12), a first-order solution to the problem, describing the mass
flow due to each alloying species 𝑖 through the melt pool, can be
rewritten as:

̇ 𝑜𝑢𝑡𝑖 = 𝜌𝑖𝑛𝜔𝑖𝑛
𝑖 𝜐𝐴

𝑖𝑛
𝑥−𝑠 − 𝑗𝑖

(

𝜒𝐴, 𝜒𝐵 ,… , 𝑇𝑏𝑜𝑖𝑙
)

𝐴𝑏𝑜𝑖𝑙 (13)

As part of this solution, further decomposition of variable compo-
nents for evaporation flux, Eq. (6), is required. The equilibrium vapor
pressure for an alloying species 𝑖 can be calculated through the product
of standard vapor pressure and activity for the species 𝑖, 𝑝◦𝑖 [atm] and
𝛼𝑖, respectively, as [43]:

𝑝̄𝑖 = 𝑝◦𝑖 𝛼𝑖 (14)

It should be noted that activity values were generated through the
Thermocalc 2020b TCHEA4 database and are not easily measured.
For this reason, Ni activity, corresponding to the most volatile and
prominent constituent of the NiTiHf system is subject to calibration
in Section 4.4. Furthermore, the standard vapor pressure of a species
𝑖 is determined through an empirical expression, derived from the
Clausius–Clapeyron relation, dependent on temperature, 𝑇 [◦C], and a
set of species dependent Antoine coefficients, 𝐴𝐴,𝑖, 𝐵𝐴,𝑖 [◦C], and 𝐶𝐴,𝑖
[◦C]:

𝑝◦𝑖 = 10

(

𝐴𝐴,𝑖−
𝐵𝐴,𝑖

𝐶𝐴,𝑖+𝑇

)

760−1 (15)

Here, the coefficient 1
760 has associated units [

𝑎𝑡𝑚
𝑚𝑚𝐻𝑔 ]. With Antoine

coefficients corresponding to each alloying element of the NiTiHf sys-
tem [42], defined in Table 3, a solution to mass loss and composition
change in a melt pool due to evaporation can be determined. Based on
the low vapor pressure of Hf within the system, it should be noted that
the evaporation flux of Hf is set to zero.

4.1.3. Nickel-martensitic transformation temperature (m𝑠) relationship
The binary NiTi SMA has been widely studied in literature, where

current challenges include a lack of technologically advanced tools,
with sufficient precision, for the chemical analysis and exact measure-
ment of Ni content in these alloys [3,44,45]. Due to the addition of
ternary Hf, measurement of Ni-content within the NiTiHf system is
made further difficult [6,46,47]. Additionally, mapping the 𝑀𝑠-Ni rela-
tionship becomes more difficult in this case, as𝑀𝑠 is highly sensitive to
both Ni and Hf content. However, as mentioned in Section 4.1.1, these
SMAs can be treated the same as binary NiTi SMAs since it is assumed
that only their Ni content changes during the fabrication process, due to
the significantly greater volatility of this element. Due to Hf’s negligible
evaporation and noting insufficient experimental data for 𝑀𝑠 at other
NiTiHf compositions, Hf content remains at a constant 20 at.% for
model predictions in this work, where any associated error is covered
by the estimation of the overall model uncertainty. Fig. 9 illustrates the
𝑀𝑠-Ni relationship for the NiTiHf system with a constant Hf content,
𝜒𝐻𝑓 , of 20 at.%.

It is shown that at Ni-rich content, a decrease in just 0.2 Ni at%
can result in a 𝛥𝑀𝑠 of 100 ◦C. This strong negative trend of increasing
𝑀𝑠 with decreasing Ni content eventually weakens as 𝑀𝑠 reaches an
approximate peak of 306 ◦C at 49.8 Ni at%. Overall, this trend lends
to reinforcing the extreme sensitivity of 𝑀𝑠 with Ni content along
with the importance and potential for utilizing this relationship to
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Fig. 9. Relationship between Ni content, 𝜒𝑁𝑖 [at%], and martensitic start
transformation temperature, 𝑀𝑠 [◦C].

tailor location-specific properties of NiTiHf SMA components manufac-
tured by LPBF. From DSC measured Ni𝜒Ti𝑌Hf20 data [6], an empirical
relation describing the 𝑀𝑠-Ni relationship can be developed:

𝑀𝑠(𝜒𝑁𝑖) = −225.834𝜒2
𝑁𝑖 + 22513.431𝜒𝑁𝑖 − 560785.997 (16)

This formulation is then used in the current study to link predicted
location-specific Ni content to the martensite start transformation tem-
perature property.

It should also be noted that although the as-received NiTiHf ingots
used in this work had a reported Ni content of 50.3 at.%, discussed
in Section 2.2, the solutionized powder 𝑀𝑠 value was measured as
101.9 ◦C through differential scanning calorimeter characterization.
Based on Fig. 9 and Eq. (16), this𝑀𝑠 value is best characterized by a Ni
ontent of 50.8 at.%. Therefore, for the current work, model predictions
or the NiTiHf system will utilize Ni50.8Ti29.2Hf20 as the initial powder
omposition.

.2. Experimental procedure

The 26 cuboid NiTiHf samples with size of 10 mm × 10 mm ×
mm (building direction) were fabricated on NiTi substrates using
MP ProX 200 LPBF system under argon atmosphere. The oxygen level
as kept below 100 ppm during the fabrication process to mitigate
otential oxidation and associated performance degradation. Cell scan-
ing strategy with cell size of 3 mm, overlap of 0.3 mm, and rotation
f 67◦ between sequential layers was applied to reduce residual stress
uild-up. Within each cell, the normal back-and-forth laser paths were
pplied orthogonal to cell edges.
After printing, the cuboid NiTiHf samples were wire-EDM cut from

he substrates for further characterization. A TA Instruments Q2000
ifferential scanning calorimeter (DSC) was used to measure the trans-
ormation temperatures of the fabricated samples. For each cuboid
ample, the DSC specimen with 1 mm thickness and 3 mm diameter
as cut from the middle of the cuboid sample and solution heat treated
t 900 ◦C for 1 h followed by water quenching before DSC character-
zation. Two thermal cycles from 25 to 400 ◦C were performed at the
eating/cooling rate of 10 ◦C/min. The transformation temperatures
ere then obtained from the plots of the second cycles using the
angent method according to ASTM F2004-17. Table 4 contains the
olution heat-treated (SHT) 𝑀𝑠 data corresponding to laser power, 𝑃 ,
aser speed, 𝜐, hatch spacing, ℎ𝑠, linear energy density (LED), and
olumetric energy density (VED) of 26 experiments with a constant
ayer thickness, 𝐿𝑡, of 41 μm. Furthermore, the data is identical to that
f Zhang et al. [8], which can be referenced for additional information
n the experimental details.
13
Table 4
Process parameters and transformation temperatures after solution heat treatment of
26 LPBF fabricated Ni50.3Ti29.7Hf20 cuboid specimens.
P [W] 𝜐 [mm/s] hs [μm] LED [J/m] VED [J/mm3] SHT Ms [◦C]

80 330 40 242.4 147.8 305.8
100 455 40 219.8 134.0 297.8
100 600 75 166.7 54.2 201.8
100 600 40 166.7 101.6 215.2
100 600 30 166.7 135.5 300.9
100 600 26 166.7 156.3 325.5
100 600 20 166.7 203.3 309.9
100 800 87 125.0 35.0 191.2
100 800 60 125.0 50.8 198.0
100 800 40 125.0 76.2 256.2
100 800 30 125.0 101.6 262.7
100 800 25 125.0 122.0 316.1
100 800 20 125.0 152.4 305.3
100 800 15 125.0 203.3 308.9
100 800 12 125.0 254.1 313.6
120 830 35 144.6 100.8 212.4
120 830 25 144.6 141.1 274.6
120 830 18 144.6 196.0 304.9
120 1080 77 111.1 35.2 187.7
120 1080 50 111.1 54.2 194.4
120 1080 36 111.1 75.3 236.8
120 1080 27 111.1 100.4 286.0
120 1080 20 111.1 135.5 313.7
120 1080 13 111.1 208.5 314.9
120 1080 10 111.1 271.0 329.6
140 1080 25 129.7 126.5 251.1

4.3. Calibration approach

Although the DSM can directly utilize MCMC sampling for Bayesian
calibration due its low computational cost, the combined DSM-MLM-
DEM chain has an added computational expense where the utilization
of a surrogate model could reduce the complexity of the coupled
models and hence offset the overall cost to run tens of thousands of
simulations across the full model framework. Such an advantage is es-
pecially important for the implementation of MCMC based uncertainty
quantification and the Bayesian calibration method. In this section, a
computationally cheap surrogate for the DSM-MLM-DEM chain is de-
veloped. However, the prediction performance of the surrogate model
is influenced by various uncertainties. One major uncertainty source is
from the simulation data used for surrogate training, which stems from
model assumptions and simplifications in the DSM, MLM and DEM.
Another key contribution to uncertainty is from the assumption that the
surrogate is a Gaussian process model. Additionally, the unknown Ni
activity parameter also brings uncertainty into the system. To quantify
the prediction error of the surrogate model, the Ni activity parameter
is sampled 10,000 times from Uniform (0.15, 0.4). We predict𝑀𝑠 at 26
sets of process parameters, each with 95% confidence bands. As shown
in Fig. 10, the surrogate model has great uncertainty in prediction and
probabilistic calibration is required.

To further calibrate the Ni activity parameter and correct the bias
of the surrogate model, the statistical model proposed by [23], deemed
the Kennedy and O’Hagan (KOH) framework, is applied:

𝑧𝑖 = 𝑆 𝜂𝑠
(

𝐱𝑖,𝜽
)

+ 𝛿(𝐱𝑖) + 𝑒𝑖 (17)

where 𝑆 is a scaling parameter, 𝐱 is control inputs, 𝜽 is calibration
parameters, 𝜂𝑠(⋅, ⋅) is the surrogate model output, 𝛿(⋅) is the model
discrepancy term, 𝑧𝑖 is the 𝑖th experimental observation and 𝑒𝑖 is the
𝑖th observation error. 𝜂𝑠(⋅, ⋅), 𝛿(⋅), and 𝑧𝑖 are assumed to be mutually
independent.

Specifically, 𝑒𝑖 is an independently distributed Gaussian noise with
zero mean and a constant variance 𝜎2𝜖 , i.e., 𝑒𝑖 ∼ N(0, 𝜎2𝜖 ). 𝜂𝑠(⋅, ⋅) and
𝛿(⋅) follow Gaussian process distributions with different mean function

and covariance function, i.e., 𝜂𝑠(⋅, ⋅) ∼ GP(𝑚1(⋅, ⋅), 𝑐1(⋅, ⋅)) and 𝛿(⋅) ∼
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Fig. 10. Prediction performance of the DSM-MLM-DEM surrogate with 95% confidence
ands.

P(𝑚2(⋅), 𝑐2(⋅, ⋅)). We adopt a linear form for the mean function, there-
ore 𝑚1(𝐱, 𝐭𝜃) = 𝐡1(𝐱, 𝐭𝜃)⊺𝜷1 and 𝑚2(𝐱) = 𝐡2(𝐱)⊺𝜷2. It is well known
hat selecting a well-fit covariance function (also called kernel) and
hoosing proper kernel hyperparameters (denoted as 𝝍) are nontrivial
obs in GP modeling. The goal of calibration is to use simulation
ata 𝐲⊺ and experimental observations 𝐳⊺ to estimate linear estimates
𝜷 = (𝜷⊺1, 𝜷

⊺
2)

⊺, system hyperparameters 𝝓 = {𝑆,𝝍 , 𝜎2𝜖 }, and calibration
parameters 𝜽. These parameters should be independent of each other,
so the prior distributions is:

𝑝(𝜷,𝜽,𝝓) = 𝑝(𝜷)𝑝(𝜽)𝑝(𝝓) (18)

For data 𝐝 = (𝐲⊺, 𝐳⊺)⊺, its likelihood function is 𝑝(𝐝|𝜽,𝝓, 𝜷). Using the
ayes’ rule, we are able to obtain the posterior distribution:

(𝜷,𝜽,𝝓|𝐝) ∝ 𝑝(𝐝|𝜷,𝜽,𝝓)𝑝(𝜷)𝑝(𝜽)𝑝(𝝓) (19)

In order to efficiently conduct calibration, we use the two-step
trategy by [23] to estimate hyperparameters 𝝓. The first step is to
une the surrogate model using simulation data, namely to estimate
he hyperparameters 𝝍1 of 𝑐1(⋅, ⋅); next, fix 𝝍1 and use data 𝐝 to
stimate {𝑆,𝝍2, 𝜎2𝜖 }. Based on the distribution of MCMC samples, we
ake the posterior estimates in the form of the maximum a posterior
robability (MAP) estimates or posterior means. Conditional on the
stimated parameters, the calibrated model 𝐳(𝐱0) with input 𝐱0 is a
aussian process, its mean and covariance functions are expressed as
ollows:

E[𝐳(𝐱0)|𝐝,𝜽,𝝓] = 𝐡(𝐱0,𝜽)⊺𝜷̂(𝜽) + 𝐭(𝐱0,𝜽)⊺Σ(𝜽)−1(𝐝 −𝐇(𝜽)𝜷̂(𝜽)) (20)

OV[𝐳(𝐱0)|𝐝,𝜽,𝝓] = 𝑆2 𝑐1((𝐱0,𝜽), (𝐱0,𝜽)) + 𝑐2(𝐱0, 𝐱0) − 𝐭(𝐱0,𝜽)⊺Σ(𝜽)−1𝐭(𝐱0,𝜽) (21)
+ (𝐡(𝐱0,𝜽) −𝐇(𝜽)⊺Σ(𝜽)−1𝐭(𝐱0,𝜽))⊺𝐖(𝜽)(𝐡(𝐱0,𝜽)

−𝐇(𝜽)⊺Σ(𝜽)−1𝐭(𝐱0,𝜽))

where

𝐡(𝐱0,𝜽) = [𝑆 𝐡1(𝐱0,𝜽) 𝐡2(𝐱0)]⊺

𝐭(𝐱0,𝜽) = [𝑆 𝑐1((𝐱0,𝜽), 𝐷1) 𝑆2 𝑐1((𝐱0,𝜽), 𝐷2(𝜽)) + 𝑐2(𝐱0, 𝐷2)]⊺

𝐇(𝜽) =
[

𝐇1(𝐷1) 𝟎
𝑆 𝐇1(𝐷2(𝜽)) 𝐇2(𝐷2)

]

Σ =
[

𝑐1(𝐷1, 𝐷1) 𝑆 𝑐1(𝐷1, 𝐷2(𝜽))
𝑆 𝑐1(𝐷2(𝜽), 𝐷1) 𝜎2𝜖 𝐈 + 𝑆2 𝑐1(𝐷2(𝜽), 𝐷2(𝜽)) + 𝑐2(𝐷2, 𝐷2)

]

𝐖 = (𝐇(𝜽)⊺Σ(𝜽)−1𝐇(𝜽))−1
14
𝐷1 is the inputs of simulation data 𝐲⊺, containing control inputs and cal-
ibration inputs; 𝐷2 is the control inputs of experimental measurements
𝐳⊺; 𝐷2(𝜽) combines 𝐷2 with the estimates of calibration parameters.
𝐇𝑖(𝐷𝑗 ) is the matrix form of 𝐡⊺𝑖 on 𝐷𝑗 , for example, the 𝑖th row of
𝐇2(𝐷2) takes the form of 𝐡2(𝐱𝑖)⊺.

4.4. Calibration results

The proposed differential evaporation model takes power 𝑃 , veloc-
ity, 𝜐, and hatch spacing, ℎ𝑠, as control inputs, i.e., 𝐱 = {𝑃 , 𝜐, ℎ𝑠} and Ni
activity as the calibration parameter, i.e., 𝜽 = {𝛼𝑁𝑖}. The prediction of
the model is the martensite start transformation temperature, denoted
as 𝑀𝑠. For surrogate model development, 556 data points were gener-
ated uniformly over the parameter space ×𝛩, bounded by experiment
conditions, using Latin Hypercube Sampling.

Before modeling, the mean and covariance functions of the GP
models should be specified. We take 𝐡1(𝐱, 𝐭𝜃) = 𝐡2(𝐱) = (1); for surrogate
model we adopt the Matérn kernel (𝜈=3/2), with hyperparameters
𝝍1 = {𝜎2𝑠 ,𝓁𝑠}; for discrepancy model we define its covariance function
with hyperparameters 𝝍2 = {𝜎2𝛿1 , 𝜎

2
𝛿2
, 𝜎2𝛿3 ,𝓁1,𝓁2,𝓁3}:

𝑐2(𝐱, 𝐱′) = 𝜎2𝛿1

3
∏

𝑖=1
exp

(

−
(𝐱𝑖 − 𝐱′𝑖 )

2

2𝓁2
𝑖

)

+ 𝜎2𝛿2𝐱𝐱
′⊺ + 𝜎2𝛿3 (22)

As explained in Section 4.3, the first step is training the surro-
ate model. With 90% 10-fold cross validation accuracy, a zero-mean
namely 𝛽1 = 0), Matérn (𝜈 = 3/2) kernel GP model was selected and
rained on 556 simulation data using the 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑃 𝑟𝑜𝑐𝑒𝑠𝑠𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟
unction through the Python scikit-learn package by [48], outputting
yperparameters 𝝍1 = {0.655, 0.328}.
For remaining hyperparameters {𝑆,𝝍2, 𝜎2𝜖 }, coefficient 𝛽2 and cali-

ration parameter 𝜃, MCMC is used for generating samples. Since there
s little knowledge of unknown calibration parameter, except for its
omain, a weak uniform prior is commonly used for 𝜃. As for other hy-
erparameters ∈ +, informative inverse-gamma or log-normal priors
re assigned. The prior distributions are set as follows:

∼ Uniform(0.15, 0.4)
2
𝛿1
, 𝜎2𝛿3 ∼ Inverse − Gamma(𝛼 = 2, 𝛽 = 1)

2
𝛿2
, 𝜎2𝜖 , 𝛽2 ∼ Inverse − Gamma(𝛼 = 2, 𝛽 = 0.1)

, 𝓁𝑖 ∼ Log − Normal(𝜇 = 0, 𝜎2 = 1∕4), 𝑖 = 1, 2, 3

From the 26 cuboid experiment parameter sets, 20 were randomly
elected as training data and the remaining 6 points were used as test
ata. MCMC was run in Python using PyMC3 [49]. Two chains of
amples, with the sample size of 30,000 and tuning size of 10,000, were
enerated. We took the posterior mean of 𝛼𝑁𝑖 as the posterior estimate,
i.e., 𝜃∗ = 0.275. For the hyperparameter 𝜙 = {𝑆, {𝜎2𝛿1 , 𝜎

2
𝛿2
, 𝜎2𝛿3 ,𝓁1,𝓁2,𝓁3},

2
𝜖 }, 𝝓

∗
𝑀𝐴𝑃 = {0.560, {0.585, 0.030, 0.455, 0.937, 0.792, 0.452}, 0.069} and

oefficients MAP estimates are 𝜷̂ = [0, 0.047]⊺.
According to Eq. (20), 𝑀𝑠 for the test points can now be predicted.

Table 5 contains performance metrics of model predictions against
experimental measurements, for the 6 test data points, in terms of the
root mean squared error (RMSE) and mean absolute percentage error
(MAPE) for both the surrogate (𝛼𝑁𝑖 = 𝜃⋆) and calibrated model. Upon
evaluation, the calibrated model achieved an RMSE and MAPE value
of 11.8 ◦C and 3.1%, respectively, in contrast to the surrogate model’s
RMSE of 17.0 ◦C and MAPE of 5.9%. These results make evident the
effective improvement in the predictive power of the model resulting
from Bayesian calibration.

Furthermore, through uncertainty quantification of the calibrated
model parameter, Ni activity, increased comprehension of the model
framework’s utility for the purpose of robust design can be ascertained.
Fig. 11 illustrates the propagated uncertainty through the multi-model
framework for each of the 26 LPBF NiTiHf parameter sets, stemming
from MCMC samples generated through the calibration of the DEM. In
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Table 5
Performance metrics for the surrogate (𝛼𝑁𝑖 =
𝜃⋆) prediction and calibrated prediction on
the 6 test data points.
Model RMSE [◦C] MAPE [%]

Surrogate 17.0 5.9
Calibrated 11.8 3.1

RMSE — root mean square error; MAPE —
mean absolute percentage error.

Fig. 11. Uncertainty propagation with 95% CIs for model predictions of 𝑀𝑠 compared
with empirical values for LPBF Ni50.3Ti29.7Hf20 samples. Here, uncertainty propagation
is from the DEM only.

this case, the last 500 samples for the Ni activity parameter selected
from each of the two MCMC sample chains (generated from two
different initial parameter values) are combined and used as model
input, after which the top and bottom 2.5% output values, i.e., 𝑀𝑠, are
emoved for each experimental condition to provide a 95% CI. Through
his uncertainty quantification, experimental measurements are shown
o fall within the 95% CIs of model predictions, with the exception of
hree cases. In Section 5, the total model uncertainty and 95% CIs are
determined and compared with experiments to provide a complete and
more robust measure of the model framework’s utility for AM design.

5. Model validation and discussion

Through the calibrated ICME framework, 𝑀𝑠 properties were pre-
dicted and validated with the 26 LPBF NiTiHf cuboids discussed in
Section 4.2 Table 4. The model framework input parameters and ther-
mophysical properties are listed in Table 6.

5.1. Probabilistic model prediction in the presence of experimental uncer-
tainties

In addition to model uncertainties due to assumptions and missing
physics, expressed in Section 2 through Section 4, there are several
ources of experimental uncertainties contributing to variation in re-
orted process–structure–property relationships. These experimental
ncertainties stem from the initial powder composition measurement,
elt pool dimension measurements due to melt pool non-uniformity
cross single-track prints, and transformation temperature measure-
ent of NiTiHf through DSC. It should also be reiterated that although
alibration, conducted in Section 2.3 and Section 4.3, does not fix
xperimental measurement uncertainties and uncertainties pertaining
15
Fig. 12. Model predictions of 𝑀𝑠 with their 95% CIs compared with empirical values
for LPBF Ni50.3Ti29.7Hf20 samples, resulting from DEM uncertainty propagation only
nd uncertainty propagation for all components of the ICME framework.

o missing physics in the applied models, if measured 𝑀𝑠 values are
captured within the uncertainty bounds of predictions, this is sufficient
proof for the utility of the model chain towards material and process
design.

Fig. 12 provides a comparison of model predictions for 𝑀𝑠 and
DSC measurements from experiments. The root mean square error
(RMSE) and mean absolute percentage error (MAPE) for the 26 samples
is 28.9 ◦C and 8.2%, respectively, representing a good measure of
predictive accuracy for the model when compared with experiments.
Furthermore, the Pearson correlation, 𝜌𝑀𝑠

, of 0.83 indicates a strong
positive linear correlation between predicted and measured 𝑀𝑠. The
coefficient of determination, 𝑅2, of 0.64 demonstrates a moderate abil-
ity for predicting 𝑀𝑠, which, coupled with uncertainty quantification,
provides sufficient utility for design. The strength of these predictions
is further reinforced when considering the uncertainty of standard
composition measurement techniques such as wavelength dispersive
spectroscopy (WDS) and inductively coupled plasma atomic emission
spectroscopy (ICP-AES), ± 0.5 at.%. Additionally, for the measurement
of major constituents, ICP-AES uncertainty has been reported to be
as large as ±2% of the absolute value [50]. Converting Ni content
measured through these techniques to 𝑀𝑠 could then result in an
uncertainty of ±75 ◦C. This demonstrates the model framework’s ca-
pability to accurately and efficiently predict 𝑀𝑠 property values from
processing parameters, performing well within the range of uncertainty
for composition measurement techniques.

Equally important in understanding the utility of the model frame-
work for the purpose of robust design, uncertainty quantification
through the uncertainty propagation of calibrated model parameters
has been conducted. Fig. 13 illustrates the propagated uncertainty
through the model framework for each of the 26 LPBF NiTiHf condi-
tions, stemming from MCMC samples generated through the calibration
of both the DSM and the DEM. In this case, the last 1000 MCMC samples
from the DSM calibration and the same 1000 samples from the prior
DEM uncertainty propagation, Section 4.4, are combined and used as
model input. The top and bottom 2.5% output values are then removed
to provide 95% CIs for model predictions based on the uncertainty
propagation across the entire model framework.

It should be noted that the model framework was run on Texas A&M
University’s High Performance Computing Research platform GRACE.
Multiple parameter sets were run in parallel, utilizing a portion of the
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Table 6
Model input parameters and thermophysical properties for the 26 LPBF NiTiHf experiments.
P [W] 𝜐 [mm/s] hs [μm] Lt [μm] 𝜂 𝜅 [W/m K] Cp [J/kg K] C 𝜎 [μm] 𝜌 [kg/m3] T0 [◦C]

80–140 330–1080 10–87 41 0.64 13.2 652.5 0.81 20 8893 25
6
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Fig. 13. Model predictions of 𝑀𝑠 with their 95% CIs in terms of VED for LPBF
Ni50.3Ti29.7Hf20 samples, resulting from uncertainty propagation for all components of
the ICME framework.

800 48-core computer nodes with 384 GB RAM (dual socket server with
two Intel 6248R 3.0 GHz 24-core processors). With these resources, the
DSM can predict the width and depth of a melt pool in several seconds.
The melt pool length calculation extends this computation to several
minutes. The computational time of evaluating melt pool overlaps
through the MLM and subsequent chemistry propagation through the
DEM across multiple tracks and layers can vary greatly based on process
parameters. This can range from 1 to 4 h for several thousand melt pool
evaluations and results in location-specific composition predictions.

When comparing uncertainty from the DEM alone to the complete
framework uncertainty, an increase in the range of the 95% CI is
observed. This is expected due to the consideration of increased un-
certainty stemming from the DSM. It should be noted that the peak 𝑀𝑠
set by Eq. (16) results in uncertainty bounds which do not capture 𝑀𝑠
alues exceeding 306 ◦C, although the model predictions still follow
xperimental trends. This is observed for higher VED cases, where
ncreased Ni evaporation and 𝑀𝑠 values are expected, and can be
esolved through additional experiments to refine the empirical Ni-
𝑠 relationship. Furthermore, with experimental measurements falling
ithin the 95% confidence interval of model predictions, the calibrated
CME framework demonstrates its utility and potential to guide and
nform experiments in the context of robust design.

.2. Process map construction for AM design

In materials design, process maps have also been constructed to
urther accelerate and expedite development by providing valuable
nsight into PSPP trends of alloy system. Fig. 14 illustrates process maps
or the additively manufactured Ni50.3Ti29.2Hf20 system by LPBF with
n incremental hatch spacing of 30 μm, 60 μm, and 90 μm, from which
everal observations can be made:

• First, for all hatch space values, there is an increase in 𝑀𝑠 with
increasing power and velocity, corresponding to the keyholing
print region. This culminates in a Ni-𝑀𝑠 insensitive region where
additional Ni loss does not increase 𝑀𝑠 beyond 306 ◦C. Con-
16

versely, as power and velocity decrease, there is a corresponding t
decrease in 𝑀𝑠. A region with 𝑀𝑠 of approximately 101.9 ◦C,
corresponding to the 𝑀𝑠 of the initial powder composition, is
also observed once power and velocity combinations are low
enough. This region is a result of the assumption which states that
evaporation is negligible below the boiling temperature, where
although these specific combinations of laser power and laser
velocity could result in temperatures exceeding the melting point
of the alloy system, this does not result in the evaporation of Ni
from the melt pool or a change in𝑀𝑠 from the initial composition.

• Second, as the hatch spacing increases, the process region cor-
responding to the peak 𝑀𝑠 is shown to diminish. This trend
aligns with expectations that increasing hatch spacing results in
the reduced magnitude of thermal events during the AM process,
resulting in less evaporation, higher Ni content, and lower 𝑀𝑠
than process parameters with lower hatch spacing and the same
power and velocity values.

• Third, as the hatch spacing increases, the processing window to
achieve a specific range of 𝑀𝑠 increases. This translates to an
increased tailorability of 𝑀𝑠 for the design of components when
utilizing larger hatch space values, in contrast to an increased
sensitivity of 𝑀𝑠 with power and velocity at smaller hatch space
values. If a larger hatch spacing can be used in combination with
multiple layer scans, a dramatic increase in the robustness of
tailored location-specific properties can be achieved. When com-
bined with printability maps depicting the relationship between
process parameters and print quality (good, keyholing, balling,
lack of fusion), the design space can be further constrained for the
accelerated development and cost-effective design of defect-free
components with location-specific properties [8,51].

. Summary and conclusion

The complex physics of AM processes give rise to numerous chal-
enges in material development and design. Not only is it necessary
o accurately resolve the forward modeling problem of linking process
arameters to properties for accelerated development, but a measure
f confidence in model predictions is required for robust design. The
orward model framework can then be leveraged for the inverse design
f AM components with tailored location-specific properties. In this
tudy, a fast-acting ICME framework was developed to predict location-
pecific properties based on process parameters for Ni50.3Ti29.7Hf20
MAs manufactured by LPBF. Model components were calibrated and
he framework validated with experiments, demonstrating good agree-
ent between model predictions and experimentally measured𝑀𝑠 with
n RMSE of 28.9 ◦C, a MAPE of 8.2%, and a Pearson correlation
f 0.83. Furthermore, the viability of this modeling framework as
tool to inform and guide experiments for accelerated and robust
esign is supported by the 95% CIs determined through uncertainty
uantification. In this regard, after accounting for the limitation on
eak𝑀𝑠 value as determined through the empirical Ni-𝑀𝑠 relationship,
00% of the measured SHT 𝑀𝑠 values for the Ni50.3Ti29.7Hf20 cuboid
pecimens fell within the 2𝜎 or 95% CIs of the framework predictions.
odel predictions for measurements which exceeded the peak𝑀𝑠 could
e improved upon through an improved empirical Ni-𝑀𝑠 relationship,
owever predictions are still within 20 ◦C of measurements and align
ith expected Ni-𝑀𝑠 trends. Additionally, the total framework un-
ertainty of predicted values fall within a tighter window than the
ncertainty of standard composition measurement techniques such as
DS and ICP-AES. With confidence through validation and uncer-

ainty quantification, the ICME framework is then leveraged to develop
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Fig. 14. Process maps for Ni50.3Ti29.7Hf20 SMAs manufactured by LPBF as predicted by the calibrated ICME framework for several hatch spacing values: (a) 30 μm, (b) 60 μm, (c)
90 μm. Laser velocity and laser power bounds are also selected based on experimental conditions. The associated M𝑠 [◦C] value is represented by the color scale, ranging from
101.9 [◦C] (light) to 306 [◦C] (dark).
-

)

process maps providing further insight into PSPP relationships across
design space and to aid in cost-effective material development. 𝑀𝑠
trends as a function of hatch spacing indicate an increased robustness
of the design space with increased hath spacing. This can be exploited
for the fabrication of tailored AM components with location-specific
properties by leveraging printability maps in combination with multiple
remelts of a single-layer to reduce the design space and maintain the
larger 𝑀𝑠 processing window provided by an increased hatch spacing.

In order to investigate the most impactful elements of this model
chain, it would be necessary to carry out an in-depth sensitivity anal-
ysis. While this is out of the scope of the present contribution, one
can surmise that the most impactful stage of the modeling chain is
the evaporation model, given the extreme sensitivity of the transfor-
mation temperature to Ni amount. Of all the factors that control Ni
evaporation, we are most uncertain about the Ni activity in the NiTi
melt, as this quantity has never been measured for this system and
in the CALPHAD model results from fits of the Gibbs energy of the
liquid phase against phase diagram data. In future work, a more in-
depth investigation could be used to elucidate, in unambiguous terms,
the most impactful uncertainty source in this framework.
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