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ARTICLE INFO ABSTRACT
Keywords: Integrated computational materials engineering (ICME) combines the utility and efficiency of simulations with
ICME experimentation to drive forward materials design and discovery. These physics-based and data-driven frame-

Uncertainty quantification
Markov Chain Monte Carlo
Bayesian calibration

NiTiHf shape memory alloys
Differential evaporation

works have enabled material advancement by querying the complex process-structure-property—performance
relationships to inform and guide experiments for the cost-effective design of alloy systems. In this study,
a proven computational framework is presented and applied towards the tailored design of additively
manufactured (AM) high-temperature NiTiHf shape-memory alloy (SMA) parts. Specifically, the effort deploys
a design tool to attain specific transformation temperatures by composition control through differential
evaporation, which in turn depends on processing conditions. This framework consists of a fast-acting discrete
source model to simulate thermal history, a multi-layer model to account for composition evolution across
melt pools, and a differential evaporation model to evaluate Nickel loss throughout the fabrication process.
Besides the development of this multi-model chain, proper quantification of model uncertainties is critical to
an ICME approach for materials design. Addressing these concerns, the parameter calibration and uncertainty
quantification (UQ) of hierarchical model components is conducted through a Markov Chain Monte Carlo
(MCMC) Bayesian approach over either the model itself or a representative Gaussian process-based surrogate
model. These uncertainties are propagated across the models to the final response, i.e., martensitic start
temperature. Subsequently, the hierarchical model framework is validated by comparing the experimental
results with the most plausible values and uncertainty bounds obtained for the multi-model predictions at
different processing conditions. From this calibrated and validated framework, process maps to streamline
and illustrate the tailored design of AM high-temperature NiTiHf SMAs are developed, which demonstrates a
promising path towards efficient design under uncertainty in additive manufacturing processes.

1. Introduction memory alloys (SMAs) exhibit a functional response based on tem-
perature, where the ternary alloying element affects material proper-
ties such as hardness, superelasticity, and transformation temperature.
NiTi, prominently known for its biocompatibility, and functional and
mechanical properties, exhibits a martensitic start transformation tem-
perature, M, spanning 100 °C for a composition range of (50-51) Ni
at% [3]. However, NiTi SMA is limited in its use for high-temperature
(HT) applications due to a low ceiling for M, approximately 70 °C. For

Beyond the original and well-proven capabilities of Additive Man-
ufacturing (AM) processes, such as geometric freedom and mass cus-
tomization, a fast emerging avenue of development involves AM of
functional materials such as NiTi-based alloys, with variations of the
ternary component including Pt, Pd, Au, Zr, and Hf [1,2]. These shape
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Nomenclature
Shape parameter

@; N Activity (species i, Nickel)

p Equilibrium vapor pressure

'3 System hyperparameters, ¢ = {S,y, af,}

174 Kernel hyperparameters

0 Vectors of calibration parameters

INi Nickel content

At Source discretization time scale

§ Model discrepancy term

rm-out-evap Mass flow relative to the melt pool (in, out,
evaporation)

3 Scale hyperparameter in kernel function

n Efficiency

R Surrogate function

§ Volumetric energy source

K Thermal conductivity

B Linear coefficient

3 Variance matrix of d

D Observed data

d Full data vector, d = (yT,z")T

H Weight matrix

h Weight vector

I Prior information

t Variance matrix

ty Calibration inputs

w Weighted variance matrix

X Control inputs vector

X New control inputs vector

X Parameter space of control inputs

v Matérn smoothness parameter

® Weight fraction

p Density

P, Pearson correlation coefficient of predicted
and measured M,

Pxy Pearson correlation coefficient of parameter
Xand Y
Standard deviation

2 Variance term
oy Beam size
Z Variance of observation error

7; Time of source activation

6 Parameter space of calibration parameters

Oy Heaviside step function

v Velocity

F Vector of spatial coordinates (x;, y;, z,)

Ay, By Cy Antoine coefficients

A, Cross-sectional area

c Correction factor

c Covariance function

C, Specific heat capacity

covyy Covariance of parameter X and Y

d Depth of melt pool

this purpose, tertiary SMA NiTiHf enables the cost-effective application
of functional materials in high-temperature environments, exhibiting
transformation temperatures dependent on both Ni and Hf content and
an M, ceiling exceeding 500 °C [4,5]. Umale et al. [6] demonstrate this
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Gaussian process

High temperature

Integrated computational materials engi-
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Linear energy density
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Mean absolute percentage error

Markov Chain Monte Carlo
Metropolis—Hastings

Multi-layer model

Optical microscopy
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Process—structure-property—performance
Root mean squared error

Solution heat-treated

Shape memory alloy

Uncertainty propagation

NiTiHf composition-property relationship by varying Ni and Hf content
between (49.8-51.3) at% and (0-30) at% respectively, resulting in an
M, range of nearly 700 °C, from —163 to 519 °C.
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UuQ Uncertainty quantification
VED Volumetric energy density
WDS Wavelength dispersive spectroscopy

Of crucial importance for the tailored design of AM-fabricated Ni-
TiHf HT-SMA across this window of transformation temperatures is the
knowledge of underlying physics and mechanisms to control process—
structure-property—performance (PSPP) relationships. During the laser
powder bed fusion AM (LPBF), a material undergoes multiple bouts of
rapid solidification and cooling. The magnitude and duration of these
events at a specific location depend on a combination of process param-
eters, including laser power, laser velocity, hatch spacing, etc. These
parameters directly relate to melt pool geometry and the loss of alloying
elements due to differential evaporation, resulting in location-specific
composition throughout an AM part [7,8]. For NiTi alloys, a significant
difference in volatility between alloying elements is conducive to sig-
nificant changes in composition and properties through Ni loss and a
sensitive Ni-M| correlation [3]. Additively manufactured NiTiHf SMA
shares this difference in volatility between alloying elements, allowing
for quantifiable composition change due to differential evaporation [6,
8]. Informed modulation of AM process parameters then enables con-
trolled modification of melt pool structure and composition change due
to evaporation, corresponding to tailored changes in properties and
fit-for-purpose components. However, this is not easily achieved and
requires effective leveraging of simulations and experiments along the
PSPP chain of integrated computational materials engineering (ICME)
shown in Fig. 1.

Generally, the development of models and simulations is a vital
task in the ICME framework to direct experiments in materials and
product design along the PSPP chain. However, design is not viable
without the calibration and uncertainty quantification (UQ) of these
computational tools. These needs arise from our lack of knowledge
about the physical systems, applied assumptions and simplifications,
and incomplete parameterization [9]. In other words, UQ is necessary
in order to provide a notion of confidence in computational-guided
design. This necessity is especially prominent in AM process design
due to the many complex physical phenomena and hard-to-measure
variables involved, which correspond to multiple assumptions, missing
physics, and lack of parameter knowledge in the relevant models and
simulations. In the recent decade, Markov Chain Monte Carlo (MCMC)
approaches in the context of the Bayesian inference have been com-
monly used to perform model calibration and UQ in different materials
science and engineering problems [7,10-22]. The popularity of these
UQ approaches is driven by their simple implementation, powerful and
rigorous analysis, consideration of prior knowledge, and capability of
updating analysis results upon acquiring new data [9]. However, the
high computational cost of these methods restricts their application
in the UQ of expensive models and simulations. In these cases, a
surrogate-based MCMC technique, such as Kennedy and O’Hagan’s
Gaussian process (GP)-based approach [23] can be applied to quantify
uncertainties [24,25].

In this work, a fast-acting ICME framework [7], consisting of a
thermal model, multi-layer model, and differential evaporation model,
is developed to achieve designable and controllable location-specific
actuation in additively manufactured NiTiHf SMA components. For the
purpose of accelerated materials design and discovery, the capabilities
and speed alotted by this fast-acting framework serve as a swift tool
ideal for screening PSPP trends. This is in contrast to high-fidelity
models, e.g., finite element models, that require a high computational
cost not suitable for expedited material development in the large and
complex design space provided by AM. Additionally, the difficulties and
costs associated with the calibration of high-fidelity models further hin-
der their application in the ICME materials design. However, to fill the
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accuracy gap resulting from the reduction of considered physics in low-
fidelity models, probabilistic calibration approaches are applied over
the fast-acting low-fidelity models in this framework to identify the
uncertainty bounds of the final model outcomes, i.e., location-specific
properties of additively manufactured parts, sufficient to provide a
notion of robustness in materials design.

The current work seeks to develop a framework for the robust design
of additively manufactured NiTiHf. By quantifying the overall uncer-
tainty, obtained from the contribution of individual model parameters,
the framework can then be leveraged for design. In this regard, the
calibration process and uncertainty quantification are performed using
an MCMC Bayesian approach directly over the thermal model compo-
nent and indirectly over the differential evaporation model through a
representative Gaussian process-based surrogate model. Following this,
quantified uncertainties are propagated across the modeling frame-
work to the final model response, martensitic start temperature. Subse-
quently, the hierarchical model framework is validated through com-
paring the experimental results with the most plausible values and
uncertainty bounds obtained for the multi-model predictions at dif-
ferent processing conditions. Exploiting this calibrated and validated
computational framework, process maps are developed for the sake
of tailored design of additively manufactured high-temperature Ni-
TiHf SMAs, providing a promising path towards efficient design under
uncertainty in AM processes.

2. Material response during the thermal process
2.1. Thermal model

A discrete source model (DSM) proposed by Schwalbach et al. [26]
is applied in this work to predict the thermal history and melt pool
characteristics in a fast-acting manner during the thermal process of
an AM part. While high-fidelity numerical simulations, such as finite
difference, volume, or element, are required to precisely capture the
physics in the AM thermal processes, their high computational cost
makes them impractical for process design in the context of the ICME
paradigm, particularly the processes involving forward-feeding and
in-line feedback control. Therefore, the development of low-fidelity
fast-acting analytical models with comparable precision is essential to
a successful approach in tackling AM design problems.

2.1.1. Assumptions

The DSM enables fast-acting temperature predictions of AM parts
by simulating thermal history while accounting for a series of key
assumptions. These assumptions offer a balance between computational
cost and accuracy. In this regard, the main considerations fall into the
categories of thermophysical properties and heat transfer.

For the purpose of predicting AM melt pool characteristics, Schwal-
bach et al. [26] has quantified small differences resulting from material
property temperature dependence. From this, temperature-independent
thermophysical properties are thus assumed by the DSM in this work.
Additionally, experiments are utilized in a probabilistic calibration of
the model to provide effective thermophysical property values along-
side the property’s associated distributions. Uncertainties stemming
from the temperature-independence assumptions are accounted for
through the calibration procedure.

Heat transfer within the material system is directly governed by
thermal conduction. Additionally, material absorption and thermal
transport mechanisms including convection and radiation, as well as
evaporation, are accounted for through a calibrated efficiency param-
eter. Considering the dependence of melt pool shape on convection,
a shape factor variable to adjust the volumetric energy source and
consequent melt pool geometry for a given set of process conditions can
be tuned and calibrated [26]. However, a calibrated shape factor is not
transferable to multiple process parameters within the same material
system and will result in extensive computational cost when screening
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Fig. 1. Schematic of an integrated computational materials engineering modeling approach for LPBF AM. This is established through a process-structure-property-performance

(PSPP) relationships.

for trends. For this reason, the shape factor is assumed to have a value
equal to 1, but a generalized physics-based depth correction factor is
considered [27] and calibrated with experiments for cases when the
AM process is characterized by keyholing mode through a criterion
derived from NiTiHf printability maps [8]. This presents significant
disparities in melt pool width to depth ratios for the keyholing con-
ditions due to substantial evaporation of material and corresponding
recoil pressure [28].

In the context of heat transfer and temperature distribution of the
melt pool, latent heat due to liquid-solid and solid-state phase change,
as well as sensible heat, are also considered, subsumed by a calibrated
effective heat capacity parameter. The calibration approach and results
for the thermophysical properties, efficiency, and depth correction are
discussed in Sections 2.3 and 2.4, respectively.

2.1.2. Thermal profile

The DSM predicts temperature, T, at any given spatial location
along the x,, y,, and z, coordinates, Fj, over the AM process. These
predictions at any given process time, ,, provide isotherm contours
that are used to determine the melt pool dimensions based on the ma-
terial melting temperature. In this model, the temperature prediction
is performed by solving the heat conduction equation in the presence
of a series of volumetric discrete heat sources, {§,-}fi  at designated
locations, {7; }fi ,» which sequentially activate at different process times,
{?,-}I,Ii ,» depending on the laser beam velocity, v. This equation is
expressed as:
aT

— =D,VT +
ot, d

S 5ty
Z —Cc @
iz P

where D,, p, and C, are the thermal diffusivity, mass density, and
mass specific heat capacity of the given material, respectively. As men-
tioned in Section 2.1.1, these parameters are considered temperature-
independent and represented by their effective quantities. It should also
be noted that the thermal diffusivity can be related to the thermal

conductivity, k, as D, = p%. Assuming normally-distributed volumetric

heat sources centered at 7; with standard deviation, ¢, representing the
beam size, the following solution based on Green’s function technique
can be derived from Eq. (1) for an infinite uniform medium assigned
at initial temperature Tj:

N
- n; P, At -15
TG 1) =Ty+ Y { ——0y, - 7)(c} +2D(t, - 7))

i=1 pCp\/Ezrl-S

R?
- v )
exP( 2(c2 +2D,(t, - 7)) > } @

where #; is an adjusting factor called efficiency, indicating the energy
received by the material from the heat source §;. In other words, this
factor accounts primarily for energy loss due to limited absorptivity,
and secondarily for the energy loss due to convection, radiation, and
evaporation phenomena in the final solution. While P, is the power
of heat source i, 5P, is known as its effective power. n; and P, are
considered fixed in this work and denoted by # and P. 4t is the source
discretization timescale. R;; = |F; —r;| corresponds to the distance
between the given spatial position and the position of the heat source
§;. O is the Heaviside step function accounting for the contribution of
heat sources activated at process time 7,. For further information about
DSM, the readers are referred to [26].

2.1.3. Melt pool geometry

LPBF AM process parameters and material properties directly affect
melt pool geometry and structure. For a given material, modulating
laser power, laser speed, and hatch spacing translates to different
energy inputs into the system and variations in melt pool geometry.
Even within a single layer there is variation in location-specific energy,
resulting in unique melting and solidification events throughout the AM
process. Proper evaluation of these events at specific points in time then
enables the approximation of corresponding melt pool geometries. By
leveraging the DSM to simulate a desired print, melt pool geometries
for any point in time and at any spatial location can be generated.

Resolving melt pool dimensions follows a short sequence begin-
ning with the generation of an AM layer based on desired process
parameters. Next, a specific point of interest on the simulated layer
is chosen and the thermal history is generated. For the identification
of a specific thermal event within the thermal history, an approximate
range of times corresponding to the melting and solidification event
should also be specified. The material’s melt temperature is then used
as a criterion to determine the start and end, respectively the melting
and solidification time, of the thermal event. The melt pool width and
depth are then determined by querying points for the solidification
temperature in a radial vector search pattern originating from the
location of interest, bounded by the timing of the thermal event. This
results in a cross-section of queried points, where the thermal history
of each point should be resolved to determine a respective duration
of the thermal event, defined by the melting and solidification time.
Under the steady-state assumption, the length for each point in the
cross-section can then be calculated as a summation of its length before,
L, and length after, L, the cross-section, as shown in Fig. 2. These
lengths are based on the distance traveled by the laser relative to the
solidification time of the cross-section boundary points, where length
is zero, and both the solidification time and melting time of individual
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Fig. 2. Sample melt pool with queried points in the YZ cross-section. The melt pool
length corresponding to any point in the cross-section is comprised of components for
both the length before, L, and the length in front, L, of the cross-section.

points within the cross-section. The total length L, ., corresponding
to a specific point in the cross-section can be solved as:

L’(yd.,za) = [LB+LF]U = [(tsolid.(yx,zs)_txalid$min)+(tsolid,min_tmelt,(yx,zx))]U (3)

where t,5q 5 -y and t,,.; (- ) are the solidification and melting time
of a point in the cross-section, respectively, # ;s ., is the earliest
solidification time from all points in the cross-section, and v is the laser
velocity. By generating lengths for each point in the cross-section, an
approximation of the 3D melt pool is resolved and a melt pool volume
is determined. This is a critical component to calculating composition
evolution through an AM part, discussed in Section 3.

2.1.4. Prediction correction for the keyhole depth

Keyholing is a common defect in the AM processes which occurs
in high input energy processes resulting from specific combinations of
high laser power and low laser velocity. In these conditions, materials’
incapability of dissipating sufficient heat from the melt pool underneath
the laser beam leads to a local increase in temperature above the
materials boiling point, inducing massive elemental evaporation from
the melt pool. Therefore, an evaporation-induced force, also known as
the recoil pressure, is produced in an opposite direction perpendicular
to the melt pool surface [7,10]. When the recoil pressure is larger than
its opposing counterpart resulting from surface tension, it forms a vapor
cavity by pushing out its inner molten material. This cavity promotes
heat absorption and enables the laser beam to penetrate deeper than
non-keyhole conditions [29].

Analytical thermal models, such as the model described in Sec-
tion 2.1, typically ignore the physics involved in keyholing mode,
resulting in melt pool depth underestimation at these conditions. For
this reason, the same depth correction as our previous studies [7,10] is
applied here for cases undergoing the keyholing phenomenon. This cor-
rection is taken into account using the simplified analytical model for
the keyhole depth, d,, suggested by Gladush and Smurov [27], which
is derived by solving the heat conduction equation for a cylindrical-
assumed keyhole of radius r,;, under the laser beam with a semi-infinite
boundary condition. The final general solution is expressed in terms of
the processing conditions, i.e., laser power, velocity, and beam size, as
well as some materials properties, as follows:

en + b
d = 12 1n<"" > @
27xT) Tkh
where T}, is the material boiling temperature alongside other previously
defined properties.
Assuming the depth prediction in Eq. (4) can perfectly represent
the experimental data for keyhole depths, the discrepancy between the

DSM prediction and experimental data is considered a constant fraction
of this depth under the keyholing conditions. This constant fraction is
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called the correction factor, C, in our studies in order to account for
keyholing missing physics in the DSM and calibrated probabilistically
besides other uncertain model parameters against available experimen-
tal data for melt pool dimensions. The correction factor should change
between 0 and 1 based on the high-precision assumption for Eq. (4).
However, our previous studies [7,10] showed that it can be higher than
1 since the keyhole depth can still be underestimated by Eq. (4).

For the sake of parameter calibration, an experimentally-derived
criterion is used to identify the processing conditions in the given data
corresponding to the keyholing occurrence, at which the DSM depth
predictions are required to be corrected. This criterion is expressed
as an inequality between melt pool width, w,,,, and depth, d,,,, as
(W,y,/1.5) < d,,, for Ni-based SMAs, which corresponds to a classified
P — v region in the printability maps for these alloys [30]. Therefore,
the depth correction can also be performed based on a criterion for the
combinatory values of P and v input into the thermal model.

2.2. Experimental procedure

Nisg 3Tisg sHfy (at.%) ingots were acquired from Ingpuls GmbH
and then gas atomized by Nanoval GmbH & Co. KG. The atomized
powder possessed a D80 (80th percentile of particle size distribution) of
41 pm and was utilized for single track and solid specimen fabrication
throughout this study. Thin disks of the NiTiHf were cut by wire
electrical discharge machining (wire-EDM) for printing NiTiHf single
tracks. Fifty four single tracks with length of 10 mm and spacing
of 1 mm were fabricated using DMP ProX 200 LPBF system by 3D
Systems with different combinations of laser power and scanning speed
under argon atmosphere. These print conditions, their linear energy
density (LED), and their corresponding average values of melt pool
width and depth are listed in Table 1. Additionally, these prints are
split into training and test sets to calibrate and validate the thermal
model parameters. It should be noted that melt pool width and depth
are the only measurable quantities in this experimental setup, while
melt pool length and thermal profiles must be predicted through the
calibrated thermal model. Furthermore, the data is identical to that of
Zhang et al. [8], which can be referenced for additional information on
the experimental details.

After the single track experiments, top-view optical microscopy
(OM) images were taken at the middle of each single track using a
Keyence VH-X digital microscope, and the widths were measured and
averaged at five different locations from the OM images. For each
single track, three cross-sectional samples were cut using wire-EDM at
equal-spaced distance. The cross-sectional samples were mechanically
polished up to 1200 grit, followed by a final polishing with colloidal
silica solution. In order to reveal the melt pool shapes, the polished
samples were etched with the etchant (3 parts HNO;, 1 part HF, 10
parts distilled water). OM was carried out on each etched cross-section
to measure the melt pool depths, and the average of three cross-
sectional samples was calculated for each single track. Fig. 3 contains
cross-section images of these single-track prints for several processing
conditions, characterizing differences in melt pool geometry for lack of
fusion, good quality, balling, and keyholing print modes.

2.3. Probabilistic calibration approach

Computer models are always imperfect due to the incomplete pa-
rameterization and physical knowledge incorporated in these mod-
els [9]. Therefore, model calibration is required and should utilize
a probabilistic approach in order to assess validity [31]. Bayesian
inference is a simple and straightforward approach that applies the
Bayes’ theorem to identify the probability of the parameter quantities
represented by a parameter posterior density function (PDF), given the
observed data, D, and parameter prior information, I. Parameter pos-
terior probability, p(6|D,I), is proportional to the product of parameter
prior probability, p(6|I), and likelihood, p(D|6,I) in this context [32].
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Power: 80 W
Velocity: 330 mm/s

Power: 200 W
Velocity: 330 mm/s

Fig. 3. Cross-section images for LPBF Nig, 3Ti,g ,Hf,, single-track prints obtained through optical microscopy. Based on print conditions, different print modes are experienced:

(a) lack of fusion (b) good quality (c) balling (d) keyholing.

However, this inference typically involves solving multi-dimensional
intractable integrals to determine the posterior statistical characteris-
tics. These integrations are difficult or often impossible to compute
through the analytical and conventional numerical methods [9,33].
Markov Chain Monte Carlo sampling techniques are mostly used in or-
der to tackle these integration problems in a robust and straightforward
manner [34-36].

In this work, an MCMC toolbox in Matlab [37] based on the adap-
tive Metropolis-Hastings (MH) algorithm is employed to infer the
posterior distribution of the model parameters. For this purpose, param-
eter vectors are sampled from this multivariate posterior distribution,
iteratively, after defining the parameters’ initial guess, bounds, and
prior distribution. In each iteration of this process denoted by index i, a
candidate, 6°"¢, is sampled from a proposal posterior distribution, q. In
the beginning, the proposal distribution is considered as a multivariate
Gaussian proposal distribution centered at the parameters’ initial guess
with an arbitrary variance-covariance matrix. Then, it is adapted to a
multivariate Gaussian distribution centered at the previous parameter
vector, 6D, in the MCMC chain with a variance-covariance matrix
calculated as a function of the variance—covariance matrix of all the
previous parameter vectors in the chain, based on Haario et al.’s
works [38,39]. The acceptance/rejection of the sampled candidate is
performed based on the MH ratio that is:

o= p(ecand |I)p(D|6mnd, I) q(ei—l |ecand)
PO DpDIOT D) g |6’

where the first ratio is the Metropolis ratio expressed as the product
of the prior probability of 6°“*? and the likelihood of obtaining the
observed data given this sample over its counterpart given 60V, In
other words, the posterior probabilities of 6 and 6" are com-
pared through this ratio. It should be noted that the parameter prior

i={1,....n} 5)

distribution is defined based on prior knowledge about the parameters.
However, a non-informative distribution, e.g., uniform, is considered
when no previous information is available. Moreover, likelihood is a
multivariate Gaussian distribution in the applied MCMC toolbox, which
compares a vector of the observed data at different input conditions
with its corresponding vector of model outputs at any given theta.
This multivariate Gaussian distribution is centered at the observed data
vector with a diagonal variance-covariance matrix of data variances.

The second ratio in Eq. (5) is the Hastings ratio that compares the
probability of moving forward from 6~V to 6°®*¢ with its counterpart
for the reverse move. The parameter vector candidate is accepted if
the M H ratio is higher than a random value between 0 and 1. This is
equivalent to an acceptance probability of min{ M H, 1} for the candi-
date. 6’ equals 6°“* in the case 6°®* is accepted; otherwise, &' is the
same as 6D, The iterative sampling of parameter vectors continues
until the proposal distribution becomes almost stationary, which is
generally equivalent to parameter convergence in the MCMC process.
Then, the parameter samples generated after the convergence can
represent the parameter posterior PDF and its statistical properties for
the sake of parameter calibration and uncertainty quantification. The
model outputs at these parameter samples are used to find uncertainties
propagated from the parameters to the model outputs. Moreover, 2.5%
of the model output samples can be discarded from their upper and
lower bounds to predict 95% credible intervals (CIs).

2.4. Calibration results

The DSM, similar to all models with any range of fidelity or preci-
sion, is incapable of emulating reality perfectly due to its assumptions,
simplifications, and incomplete physics. Therefore, the quantification of
existing errors is required in order to have a notion of confidence for the



M. Randiefar et al.

Table 1

Average measured melt pool width and depth for single-track prints at
different LPBF process conditions over Nig, 3Tiyg,Hfy, (at.%) powder.
Experimental data selected for the calibration and validation of the
thermal model are separated.

P [W] v [mm/s] LED [J/m] W [pum] d [um]
Training data for thermal model calibration

40 80 500.0 126.9 21.4
80 80 1000.0 244.9 64.9
120 80 1500.0 385.6 235.3
160 80 2000.0 462.7 400.9
240 80 3000.0 551.2 721.8
40 330 121.2 83.1 9.4
80 330 242.4 116.4 42.3
120 330 363.6 173.6 129.7
160 330 484.8 206.6 222.5
200 330 606.1 227.7 247.3
80 580 137.9 97.2 32.4
120 580 206.9 125.0 63.4
200 580 344.8 165.9 100.8
240 580 413.8 173.6 112.3
80 830 96.4 78.7 11.6
120 830 144.6 113.2 42.3
160 830 192.8 137.8 71.3
200 830 241.0 142.9 72.8
240 830 289.2 157.0 144.1
80 1080 74.1 73.9 11.6
160 1080 148.1 113.5 57.0
240 1080 222.2 138.4 94.8
80 1330 60.2 74.6 6.8
120 1330 90.2 80.6 17.8
160 1330 120.3 83.8 40.8
240 1330 180.5 109.4 78.3
160 1580 101.3 74.8 32.7
200 1580 126.6 79.0 49.3
120 1830 65.6 72.3 10.8
160 1830 87.4 66.8 27.4
240 1830 131.1 69.1 53.5
120 2080 57.7 68.5 7.6
160 2080 76.9 59.8 23.2
200 2080 96.2 59.5 34.2
240 2080 115.4 67.8 39.1
120 2330 51.5 69.8 8.7
160 2330 68.7 58.5 20.2
240 2330 103.0 68.7 43.8
60 205 292.7 101.0 16.8
100 205 487.8 181.9 51.8
140 205 682.9 248.4 183.5
100 455 219.8 109.0 35.4
140 455 307.7 162.4 71.5
Test data for thermal model validation

200 80 2500.0 522.5 557.0
240 330 727.3 240.4 320.3
160 580 275.9 158.3 74.0
120 1080 1111 84.4 28.1
200 1080 185.2 123.1 71.5
200 1330 150.4 94.0 55.5
120 1580 75.9 76.8 10.4
240 1580 151.9 75.5 63.4
200 1830 109.3 73.9 38.4
200 2330 85.8 63.9 26.9
60 455 131.7 77.8 9.5

model predictions, enabling the application of such a model in design
methodologies. For this purpose, the Bayesian MCMC inference method
described in Section 2.3 is applied to perform the probabilistic calibra-
tion of the model parameters against the closest information source to
reality, i.e., experimental data. Then, the parameter uncertainties are
propagated to the model outputs in order to have predictions within
uncertainty bounds at any given processing condition.

Out of 54 available experimental data points for melt pool width
and depth presented in Table 1 at different processing conditions of
printing Nisg 3Tisg ,Hfyg o SMA single-tracks, 43 data points (80%) are
considered as training data for the probabilistic calibration and the
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Table 2

The most plausible (mean) values and standard deviation of the DSM
parameters after the MCMC calibration against the experimental data
for Nigg 3Tiyg ,Hfy5 o SMA single-track melt pool dimensions.

n x [W/m K] C, [J/kg K] C

0.64 + 0.08 13.22 + 1.87 652.53 + 76.38 0.81 + 0.03

rest (20%) are used as test data for the validation of the calibrated
model. It should be noted that the Bayesian inference provides the best
plausible results based on the current experimental information and is
not impeded by the number of data points. However, this statistical
inference can be updated when more data is available.

Using all the training experimental data points from both con-
duction and keyholing modes at the same time, the uncertain model
parameters, i.e., 1, kor 75 Cpeffs and C, are probabilistically calibrated
through the MCMC sampling approach in a multi-objective optimiza-
tion scheme. This process starts by considering appropriate ranges
for parameters based on the physical constraints and expert intuition
alongside a uniform prior distribution due to the lack of knowledge
about the parameters’ distribution form. Subsequently, 20,000 param-
eter vector samples are generated using the MH criterion discussed
in Section 2.3. After discarding the burn-in period from the sample
chain, the parameter vector samples represent a multivariate joint
posterior probability density function (PDF) for the parameters that
is illustrated through the marginal (individual) and bivariate (pair)
joint parameter PDFs in Figs. 4 and 5, respectively. The statistical
properties of the marginal PDFs that include the mean and standard
deviation of samples for the individual parameters are reported in
Table 2 as their calibrated values and uncertainties. Also, the pair joint
PDFs that show the probability densities in the parameter pair spaces
in different colors, increasing from blue to red, imply the extent of
linear correlation between each parameter pair in a qualitative manner
through the linearity of color features.

The Pearson correlation coefficient, pyy = cov(X,Y)/oxoy, pro-
vides a quantitative measure enabling the comparison of the linear
correlations, where oy, oy, and cov(X,Y) are the standard deviation of
parameter X, the standard deviation of parameter Y, and the covari-
ance of these two parameters, respectively. This quantitative parameter
alters from —1 to 1. The upper and lower bounds correspond to a
full linear correlation between the given parameter pair, contrarily
0 implies no linear correlation. Also, the negative and positive signs
indicate the correlation direction, meaning whether the value of one of
the pairs decreases or increases as the value of the other pair increases.
As shown in the bottom right corner of plots in Fig. 5, there is almost a
full linear correlation between # and C,, ¢ and fairly high correlations
between # and k,, as well as k., and C,, .. These correlations can
also be observed in the marginal PDFs in Fig. 4. Part (c) of this figure
shows that the Cp_ distribution peak falls beyond the lower bound
of this parameter since the probability density increases as the Cp, ¢
value approaches the lower bound. However, having a parameter value
under its lower bound is physically unreasonable, which can result from
assumptions and missing physics in the DSM or errors in the experi-
mental results. As a result of a very high linear correlation between 5
and Cp o (r = 0.99), Fig. 4-(a) also shows a very similar marginal PDF
for n. However, as shown in Fig. 4-(b), the marginal PDF in the case of
ke s is less similar to the one for Cj,_.¢ and mostly shows a double peak
distribution as the linear correlation drops to 0.81. Fig. 5 also exhibits
low linear correlations between C and the other three parameters,
indicating C has an independent contribution to predictions and cannot
be replaced by the mentioned model parameters. This independent
behavior results in a clear peak in the marginal PDF of parameter C
in Fig. 4-(d).

The most plausible values and uncertainties of the DSM parameters
listed in Table 2 are propagated to the model outputs, i.e., melt pool
width and depth, through the model forward analysis of the parameter
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Fig. 4. Marginal posterior PDFs of the DSM parameters obtained after the MCMC calibration against the experimental data for Nigg3Tiyg,Hfyy, SMA single-track melt pool

dimensions.

mean vector and the MCMC parameter vector samples after discarding
the burn-in period. In this uncertainty propagation (UP) scheme, 2.5%
of the output samples for melt pool width or depth are discarded from
the upper and lower bounds of the sorted output samples in order to
obtain 95% CIs at each experimental print condition. These probabilis-
tic predictions versus their corresponding experimental data are plotted
in Fig. 6 for both training (part (a) and (b)) and test (part (c) and
(d)) experimental conditions. Colors in this figure represent the LED
values at different print conditions. As observed in Fig. 6-(a) and (b),
the predictions of the calibrated DSM model are in excellent agreement
with their corresponding training data with R* and RMSE values of
0.94 and 32 pm for melt pool width and 0.93 and 43 pm for melt pool
depth. Comparable R? and RMSE values of 0.95 and 35 pm for melt pool
width and 0.97 and 31 pm for melt pool depth for test-experimental
conditions in Fig. 6-(c) and (d) also validate the calibration results
with no over-fitting. Therefore, the calibrated DSM model is applied in
our multi-model framework in Section 3 and Section 4 to predict melt
pool overlap, evaporation flux, final composition, and transformation
temperatures for different print conditions of cuboid specimen.

3. Composition evolution across melt pools
3.1. Multi-layer model

A multi-layer model (MLM) proposed by Ranaiefar et al. [7] is
applied in this work to assess melt pool overlaps resulting from the AM
process and to account for composition evolution across a part. The
MLM is important for appropriately defining the PSPP chain of an AM
part because it assists in accounting for the multiple thermal events and
the associated evaporation of alloying elements which occur during the
AM fabrication process. By simulating multiple layers within an AM
part and the corresponding melt pool overlap and differential evapora-
tion, the model framework takes an additional step towards becoming

a fast-acting 3D model, analog to a digital twin, ideal for screening
PSPP trends. Additionally, the MLM receives melt pool geometry input
directly from the calibrated DSM and does not require direct calibration
as there are no uncertain parameters in this model. However, model
uncertainty may be propagated from the DSM through the MLM and to
the remainder of the model framework by utilizing the MCMC samples
generated in Section 2.4 as input parameters, as demonstrated later in
Section 5.1.

3.1.1. Assumptions

Simulating each of the hundreds to thousands of layers fabricated
during the AM process is computationally expensive and impractical
in the context of utilizing the model framework to screen for PSPP
trends and accelerated development in design. For this reason, the MLM
implements a series of assumptions to reduce computational cost for the
simulation of multiple layers. In this regard, the main considerations
fall into the categories of preheat effects and melt pool overlap.

During the AM process, there are both intralayer and interlayer
preheating effects which impact melt pool dimensions. Intralayer pre-
heating describes the diffusion and build-up of heat across a single
layer. The influence of intralayer preheating on melt pool dimensions
is highly dependent on the scan strategy and the part shape, where
small hatch spacing and quick turn-arounds result in larger preheat
temperatures in adjacent tracks relative to increased hatch spacing
and delayed turn-around times. When a region with raised preheat
temperature is processed, the thermal field at a point in time, defined
by the melting temperature, would be larger than at a point with no
or less thermal build-up. This intralayer preheating effect is inherently
accounted for through the DSM and translates to larger melt pool
volumes and variations in melt pool overlap.

In the current work, a conventional snaking scan strategy is utilized
by the DSM, where an initial thermal build-up is experienced through
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dimensions.

the first several tracks until an approximately steady-state preheat is
experienced by the remaining tracks. These thermal build-up events
correspond to an increase in melt pool dimensions for each track until
the steady-state intralayer preheating is reached, resulting in approx-
imately equivalent melt pool widths and depths for the remaining
tracks. The start of this steady-state region varies between process
parameters, but can be leveraged to reduce computational cost by
setting a melt pool dimension-based criterion. For this reason, it is
assumed that if a point on the current track and a parallel point on
the prior track entertain a desired tolerance of 10716 pm in width and
depth, then the steady-state region has been reached and all remaining
tracks have the same dimensions.

Interlayer preheating refers to the effect of residual heat on the pro-
cessing of an AM layer resulting from the processing of the prior layer.
Again, the influence of interlayer preheating on melt pool dimensions
is highly dependent on the AM process parameters and scan strategy.
Due to the intrinsic time-temperature process of AM, as a single layer
is printed it experiences thermal diffusion and, given enough time,

eventually cools to room temperature. This layer may now act as a
substrate and allow the next layer to be printed in conditions similar
to the first layer. This results in melt pool dimensions that are constant
through each progressive layer. In the case where insufficient time is
given between printed layers, the residual heat build-up could result in
slightly larger melt pools and variation in melt pool geometry for pro-
gressive layers. Therefore, assuming enough time is given to diminish
interlayer preheating effects allows the use of a single predicted layer to
model all layers of the AM build and reduce the overall computational
cost. This directly correlates to the improved efficiency of the model
framework for quickly simulating AM components to screen location-
specific properties and guide experiments. For this reason, it is assumed
that interlayer preheating is negligible.

Similar to preheating effects, the degree of melt pool overlap with
adjacent solidified melt pools also varies based on process parameters
and scan strategy. In some cases, the degree of melt pool overlap
with solidified tracks from the same or previous layer is marginal,
resulting in minor interaction and minimal composition evolution.
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However, the increased computational cost for calculating these small
melt pool overlaps remains. For this reason, it is assumed that overlaps
comprised of less than 1% of the melt pool cross-sectional area are
considered negligible. The implementation and consideration of melt
pool overlaps within the model framework are discussed in greater
detail in Section 3.1.2.

3.1.2. Melt pool overlap

Melt pool overlap refers to the multiple melting and solidification
events occurring on both adjacent tracks and adjacent layers during the
AM process, resulting in repeated processing and interaction of melt
pool regions. Then by accurately modeling and capturing these melt
pool overlaps, the processed composition within each melt pool can be
propagated across successive melt pools, resulting in the identification
of location-specific composition across the AM part.

10

The degree of melt pool overlap within an AM build varies based
on material properties and process parameters, where process param-
eters are user-defined. By manipulating process parameters such as
hatch spacing, the melt pool overlap and printability of an AM part
can be directly controlled, as well as its properties [8]. Scenarios
of AM processing with small hatch spacing may produce melt pools
which experience overlap with multiple adjacent tracks, while a large
enough hatch spacing could result in lack of fusion defects and no
overlap. Another aspect to consider with smaller hatch spacing is the
corresponding increased volumetric energy density and an increased
significance for the evaporation of alloying elements from the melt
pool, further influencing location-specific composition and properties.
The MLM works in concert with a differential evaporation model
discussed in Section 4 to account for the loss of alloying elements due to
evaporation. Melt pool overlap is also affected to a varying degree by
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Fig. 8. Mass balance analysis of a melt pool control volume in a reference frame
moving with the laser. Republished with permission from [7].

intralayer preheating, which itself is dependent on scan strategy and
part geometry. In the current work, the DSM utilizes a conventional
snaking pattern along a square geometry with tracks running parallel to
the X-axis, as illustrated in Fig. 7. The thermal history within the layer
could then be defined by transient regions where thermal events are in
greater flux, located near the start and end of each track, and a larger
steady-state region where thermal history is constant, located about
the center of each track [40]. The melt pool dimensions for a point
along a single-track in the steady-state region could then be repeated
for remaining points within the steady-state region of the track. Due
to the assumption of negligible interlayer preheating and negligible
composition effect (across small changes in composition) on melt pool
dimensions, this single melt pool can also represent the melt pool
dimensions in the proceeding layer. By extension, a slice of resolved
melt pool dimensions in the XY-plane, for a single layer, effectively
captures and simulates the complete 3D steady-state region of the AM
part.

After the AM layers have been simulated, the process of evaluating
melt pool overlaps and composition evolution begins with the first melt
pool. The melt pool cross-section along the XY-plane is compared with
prior melt pool cross-sections along the same plane, as well as the
substrate. If no overlap is found, then a lack of fusion defect is likely
present and subsequent analysis unnecessary. In the case of multiple
overlaps, a precedent is set based on print-time hierarchy. In the case
of the first melt pool, the only overlap should be with the substrate.
The entirety of the overlap can then be used to determine overlap
volume and an average composition calculated based on both powder
and substrate volume and composition. This average composition will
then be utilized by the differential evaporation model to determine the
final solidified melt pool composition after evaporation.

Next, the second melt pool should overlap with the prior melt pool
as well as the substrate. Referring to the print-time hierarchy, the
overlap with the most recent solidified melt pool should be considered
first. From Fig. 7, the referenced overlap could refer to the green region
within the melt pool cross-section schematic. This region partially
extends into the former substrate region, as it was processed within
the first melt pool and corresponds to the first melt pool’s calculated
composition. The substrate cross-section overlap is then represented by
the blue region and substrate composition. Similar to the first melt pool,
these overlaps and compositions are then used to determine the second
melt pool’s average composition. Through this process, the propagation
of composition through the first two melt pools has been considered.
Similarly, this process can be repeated for remaining melt pools within
layer and for proceeding layers, effectively capturing location-specific
composition and composition evolution throughout the AM part.

11
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It can be noted that because of constant process parameters and
negligible interlayer preheating, a symmetric pattern in melt pool over-
lap can be drawn from the simulated layers. The number of overlaps
will vary based on process parameters, but generally melt pools will
only overlap with prior tracks within the same layer and several tracks
within the prior layer. Due to consistent depths in the simulated melt
pool geometries, melt pools do not extend 2 layers prior and melt
pool overlap search criteria can account for this to further reduce
computational cost. This is beneficial when an AM part can consist of
hundreds of tracks and layers, requiring thousands of melt pools to be
accounted for. In the case that variable process parameters modulate
within a single build, the search criteria should be re-evaluated to
capture appropriate melt pool overlaps and composition evolution.

4. Evaporation induced chemical analysis
4.1. Differential evaporation model

A differential evaporation model (DEM) proposed by [7] is adapted
for this work to evaluate melt pool evaporation throughout the AM
fabrication process, providing location-specific final composition and
transformation temperature properties for the ternary NiTiHf system.
The DEM is important in the ICME framework to accurately correlate
PSPP relationships by accounting for changes in melt pool composition
resulting from the extensive thermal processing and the corresponding
evaporation loss of alloying elements experienced by AM components.
In this regard, the melt pool post-evaporation predicted composition
can be correlated to location-specific properties, such as martensitic
start transformation temperature in SMAs. Through the combined DSM-
MLM-DEM chain, melt pools and corresponding properties representa-
tive of a full-scale AM build can be simulated and used to inform future
experiments in the context of AM product design.

4.1.1. Assumptions

The fabrication of an AM part involves the complex interaction
of physics between a material and energy source, where accurately
capturing the entirety of these interactions is infeasible with current
computational methods. In this work, the DEM seeks to leverage the
fast-acting DSM and account for missing physics which serve as a loss
mechanism within the AM process, important for NiTi-based alloys
due to Ni volatility and its evaporation during fabrication. Applying
several assumptions, this workflow maintains a reduced computational
cost ideal for screening PSPP trends within AM while accounting for
material evaporation which prominently affects the composition and
properties of AM NiTiHf alloys. These assumptions can then be catego-
rized as the ones related to the prediction of evaporation flux and those
corresponding to the calculation of final composition.

When evaluating the thermal processing which occurs during AM
fabrication, it is assumed that the flow of molecules during evaporation
events abides by The Kinetic Theory of Gases [41]. A formulation for
the evaporation flux of a species i, j; [g/cm?®s], is then derived as:

w1

Ji =44.331p; [ ] (6)
Tabx

where p; [atm] and M, [g] represent the equilibrium vapor pressure and

molecular weight of species i, respectively, and T,,, [K] represents the

absolute temperature. Additionally, the value 44.331 has the associated

s KU/2 moll/2
units [2 . b

m—gllz]‘ The calculation of evaporation flux within the DEM
is further explained in Section 4.1.2.

When evaluating the effect of evaporation, it is also assumed that
evaporation below the boiling temperature is negligible. This stems
from the exponential increase in the vapor pressure and activity, «,
of alloying elements with increasing temperature, resulting in the
most significant evaporation at the boiling temperature [42]. For this
purpose, it is assumed the melt pool surface can be described through
the summation of multiple discretized isotherms where the surface
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area corresponding to each isotherm domain is defined by a uni-
form temperature. Additionally, for the case of NiTiHf, Ni experiences
the majority of evaporation within the system due to the substantial
volatility and large at% of Ni within the NiTiHf system relative to the
alloying elements [42]. This change in Ni content should result in an
increase in the at% of Hf and Ti. However, also noting insufficient
experimental data for M, across a range of Hf at% in NiTiHfy and a
reduced M;-Hf sensitivity in the (20 + 1) at% range relative to M;-
Ni in the 49.8 at.% - 50.8 at.% range [6], Hf at% is assumed to be a
constant 20 at.% for model predictions in this work. This assumption
is further expanded upon in Section 4.1.3. As a result, an increase in
Ti at% accounts for the corresponding loss in Ni content. Furthermore,
through these assumptions, a reduction in the number of calculations
and the total computational cost is achieved for the sake of the efficient
establishment of PSPP relationships towards AM product design.

After quantifying evaporation loss from the melt pool, the associated
change in composition of the melt pool must also be accounted for.
For this purpose, it is assumed that the melt pool can be defined as a
mass balance problem of a control volume. This is accompanied by a
formulation for the mass flow in, s, the mass flow out, #m°“, and the
mass loss due to evaporation from the system, m®’*?:

out s in

WO = " — ipever

@

The mass balance and composition change is discussed further
in Section 4.1.2. However, to make these calculations tractable, a
secondary assumption is made. Here it is assumed that the flow of
material within the melt pool allows for the complete mixing of the
contained elements. Through this assumption, an average composition
can be determined for a given melt pool and utilized within the model
framework for the calculation of location-specific final composition as
well as composition evolution throughout the component.

4.1.2. Composition change

In order to calculate the composition change within a melt pool,
the mass balance described by Eq. (7) must be resolved. Illustrated by
Fig. 8, this control volume analysis of the melt pool is in a reference
frame moving with the laser [7].

Here, both the mass flow into and out of the control volume may be
deconstructed as a function of density, p [kg/m’], and flow velocity, v
[m/s], over the cross-sectional area, A, _ [m?2], of the control volume:

m=/(pwu)dAx_S

Solving for " and m°, while accounting for the weight fraction,
w, of the alloying species i, yields:

(€))

mlﬂ lﬂwlﬂDAIVl

9

out

— pout outDAout
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The mass flow out of the melt pool due to evaporation for each
alloying species i, m;""’, can then be similarly deconstructed as:

evup

Z ./1 /YA’)(B""’TISO) Siso (11)

iso=1
where the evaporation rate for a species i, j;, is dependent on both
the composition of the alloying elements and an isotherm temperature,
(4> x----) and T, respectively. This evaporation rate is multiplied
with the corresponding surface area of the isotherm, .S;,,. The meltpool
surface can be discretized into multiple temperature isotherm bins, n,
and summed to determine the total mass loss of the alloying species
due to evaporation. However, due to the simplifying assumption of
negligible evaporation below the boiling temperature, this equation is
reduced to:

m"" = ji (xas B>+ Tooit) Aboir 12)
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Table 3

Antoine coefficients for Ni, Ti, and Hf.
Element A, B, [°C] C, [°C]
Ni 8.75 17882.38 134.99
Ti 8.90 20948.99 190.76
Hf 9.06 30232.91 285.82

The reader is referred to Ranaiefar et al. [7] for additional details
on the mass balance in a control volume derivation. However, from
Egs. (7)-(12), a first-order solution to the problem, describing the mass
flow due to each alloying species i through the melt pool, can be
rewritten as:

s Thoir) Apoit 13)

As part of this solution, further decomposition of variable compo-
nents for evaporation flux, Eq. (6), is required. The equilibrium vapor
pressure for an alloying species i can be calculated through the product
of standard vapor pressure and activity for the species i, p; [atm] and
«;, respectively, as [43]:

out — in m in .
= p" oAl - j; (IAs/YB=

pi=rq a4

It should be noted that activity values were generated through the
Thermocalc 2020b TCHEA4 database and are not easily measured.
For this reason, Ni activity, corresponding to the most volatile and
prominent constituent of the NiTiHf system is subject to calibration
in Section 4.4. Furthermore, the standard vapor pressure of a species
i is determined through an empirical expression, derived from the
Clausius—Clapeyron relation, dependent on temperature, T [°C], and a
set of species dependent Antoine coefficients, A, ;, B4, [°C], and C;
[°CI:

(1n-e)
pe =10\ CAT 76071 (15)

Here, the coefficient % has associated units [ aim_ 1 With Antoine
coefficients corresponding to each alloying element o% the NiTiHf sys-
tem [42], defined in Table 3, a solution to mass loss and composition
change in a melt pool due to evaporation can be determined. Based on
the low vapor pressure of Hf within the system, it should be noted that

the evaporation flux of Hf is set to zero.

4.1.3. Nickel-martensitic transformation temperature (m,) relationship

The binary NiTi SMA has been widely studied in literature, where
current challenges include a lack of technologically advanced tools,
with sufficient precision, for the chemical analysis and exact measure-
ment of Ni content in these alloys [3,44,45]. Due to the addition of
ternary Hf, measurement of Ni-content within the NiTiHf system is
made further difficult [6,46,47]. Additionally, mapping the M,-Ni rela-
tionship becomes more difficult in this case, as M, is highly sensitive to
both Ni and Hf content. However, as mentioned in Section 4.1.1, these
SMAs can be treated the same as binary NiTi SMAs since it is assumed
that only their Ni content changes during the fabrication process, due to
the significantly greater volatility of this element. Due to Hf’s negligible
evaporation and noting insufficient experimental data for M, at other
NiTiHf compositions, Hf content remains at a constant 20 at.% for
model predictions in this work, where any associated error is covered
by the estimation of the overall model uncertainty. Fig. 9 illustrates the
M -Ni relationship for the NiTiHf system with a constant Hf content,
Zn s> of 20 at.%.

It is shown that at Ni-rich content, a decrease in just 0.2 Ni at%
can result in a AM, of 100 °C. This strong negative trend of increasing
M, with decreasing Ni content eventually weakens as M, reaches an
approximate peak of 306 °C at 49.8 Ni at%. Overall, this trend lends
to reinforcing the extreme sensitivity of M, with Ni content along
with the importance and potential for utilizing this relationship to
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Table 4
Process parameters and transformation temperatures after solution heat treatment of
26 LPBF fabricated Nisg 3Tiyg,Hf,, cuboid specimens.

[ == Umaleetal. [6]]

50.0 50.2 50.4 50.6 50.8 51.0
Xni [at. %]

49.8

Fig. 9. Relationship between Ni and martensitic start

transformation temperature, M, [°C].

content, yy; [at%],

tailor location-specific properties of NiTiHf SMA components manufac-
tured by LPBF. From DSC measured Ni  Tiy Hf,, data [6], an empirical
relation describing the M -Ni relationship can be developed:

M(xn;) = —225.8347%, +22513.431 y,; — 560785.997 (16)

This formulation is then used in the current study to link predicted
location-specific Ni content to the martensite start transformation tem-
perature property.

It should also be noted that although the as-received NiTiHf ingots
used in this work had a reported Ni content of 50.3 at.%, discussed
in Section 2.2, the solutionized powder M, value was measured as
101.9 °C through differential scanning calorimeter characterization.
Based on Fig. 9 and Eq. (16), this M value is best characterized by a Ni
content of 50.8 at.%. Therefore, for the current work, model predictions
for the NiTiHf system will utilize Nis, g Tisg oHf5q as the initial powder
composition.

4.2. Experimental procedure

The 26 cuboid NiTiHf samples with size of 10 mm x 10 mm X
5 mm (building direction) were fabricated on NiTi substrates using
DMP ProX 200 LPBF system under argon atmosphere. The oxygen level
was kept below 100 ppm during the fabrication process to mitigate
potential oxidation and associated performance degradation. Cell scan-
ning strategy with cell size of 3 mm, overlap of 0.3 mm, and rotation
of 67° between sequential layers was applied to reduce residual stress
build-up. Within each cell, the normal back-and-forth laser paths were
applied orthogonal to cell edges.

After printing, the cuboid NiTiHf samples were wire-EDM cut from
the substrates for further characterization. A TA Instruments Q2000
differential scanning calorimeter (DSC) was used to measure the trans-
formation temperatures of the fabricated samples. For each cuboid
sample, the DSC specimen with 1 mm thickness and 3 mm diameter
was cut from the middle of the cuboid sample and solution heat treated
at 900 °C for 1 h followed by water quenching before DSC character-
ization. Two thermal cycles from 25 to 400 °C were performed at the
heating/cooling rate of 10 °C/min. The transformation temperatures
were then obtained from the plots of the second cycles using the
tangent method according to ASTM F2004-17. Table 4 contains the
solution heat-treated (SHT) M, data corresponding to laser power, P,
laser speed, v, hatch spacing, h,, linear energy density (LED), and
volumetric energy density (VED) of 26 experiments with a constant
layer thickness, L,, of 41 pm. Furthermore, the data is identical to that
of Zhang et al. [8], which can be referenced for additional information
on the experimental details.

13

P [W] v [mm/s] h, [pm] LED [J/m] VED [J/mm?] SHT M; [°C]
80 330 40 242.4 147.8 305.8
100 455 40 219.8 134.0 297.8
100 600 75 166.7 54.2 201.8
100 600 40 166.7 101.6 215.2
100 600 30 166.7 135.5 300.9
100 600 26 166.7 156.3 325.5
100 600 20 166.7 203.3 309.9
100 800 87 125.0 35.0 191.2
100 800 60 125.0 50.8 198.0
100 800 40 125.0 76.2 256.2
100 800 30 125.0 101.6 262.7
100 800 25 125.0 122.0 316.1
100 800 20 125.0 152.4 305.3
100 800 15 125.0 203.3 308.9
100 800 12 125.0 254.1 313.6
120 830 35 144.6 100.8 212.4
120 830 25 144.6 141.1 274.6
120 830 18 144.6 196.0 304.9
120 1080 77 111.1 35.2 187.7
120 1080 50 111.1 54.2 194.4
120 1080 36 111.1 75.3 236.8
120 1080 27 111.1 100.4 286.0
120 1080 20 111.1 135.5 313.7
120 1080 13 111.1 208.5 314.9
120 1080 10 111.1 271.0 329.6
140 1080 25 129.7 126.5 251.1

4.3. Calibration approach

Although the DSM can directly utilize MCMC sampling for Bayesian
calibration due its low computational cost, the combined DSM-MLM-
DEM chain has an added computational expense where the utilization
of a surrogate model could reduce the complexity of the coupled
models and hence offset the overall cost to run tens of thousands of
simulations across the full model framework. Such an advantage is es-
pecially important for the implementation of MCMC based uncertainty
quantification and the Bayesian calibration method. In this section, a
computationally cheap surrogate for the DSM-MLM-DEM chain is de-
veloped. However, the prediction performance of the surrogate model
is influenced by various uncertainties. One major uncertainty source is
from the simulation data used for surrogate training, which stems from
model assumptions and simplifications in the DSM, MLM and DEM.
Another key contribution to uncertainty is from the assumption that the
surrogate is a Gaussian process model. Additionally, the unknown Ni
activity parameter also brings uncertainty into the system. To quantify
the prediction error of the surrogate model, the Ni activity parameter
is sampled 10,000 times from Uniform (0.15, 0.4). We predict M, at 26
sets of process parameters, each with 95% confidence bands. As shown
in Fig. 10, the surrogate model has great uncertainty in prediction and
probabilistic calibration is required.

To further calibrate the Ni activity parameter and correct the bias
of the surrogate model, the statistical model proposed by [23], deemed
the Kennedy and O’Hagan (KOH) framework, is applied:

z; =87, (x,-,G) +6(x;)+e; a7z

where § is a scaling parameter, x is control inputs, 6 is calibration
parameters, #,(-,-) is the surrogate model output, 5(-) is the model
discrepancy term, z; is the ith experimental observation and e; is the
ith observation error. #,(-,-), 6(-), and z; are assumed to be mutually
independent.

Specifically, e; is an independently distributed Gaussian noise with
zero mean and a constant variance 0'3, ie., e; ~ N(O, 03). ny(-,-) and
5(-) follow Gaussian process distributions with different mean function
and covariance function, i.e., #,(-,-) ~ GP(m(-,-),¢;(-,-)) and 6(-) ~
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Fig. 10. Prediction performance of the DSM-MLM-DEM surrogate with 95% confidence
bands.

GP(m,(+), ¢,(-,-)). We adopt a linear form for the mean function, there-
fore m;(x,t;) = h(x,ty)TB; and my(x) = hy,(x)Tf,. It is well known
that selecting a well-fit covariance function (also called kernel) and
choosing proper kernel hyperparameters (denoted as y) are nontrivial
jobs in GP modeling. The goal of calibration is to use simulation
data yT" and experimental observations z' to estimate linear estimates
B = (B, BT, system hyperparameters ¢ = {S,y,c?}, and calibration
parameters 6. These parameters should be independent of each other,
so the prior distributions is:

p(B.0,$) = p(B)p(O)p(¢) (18)

For data d = (yT,z")T, its likelihood function is p(d|6, ¢, B). Using the
Bayes’ rule, we are able to obtain the posterior distribution:

p(B. 6, ¢1d)  p(d| .6, $)p(B)p(0)p(¢) 19

In order to efficiently conduct calibration, we use the two-step
strategy by [23] to estimate hyperparameters ¢. The first step is to
tune the surrogate model using simulation data, namely to estimate
the hyperparameters y, of ¢,(-,-); next, fix y, and use data d to
estimate {.S, y/z,af}. Based on the distribution of MCMC samples, we
take the posterior estimates in the form of the maximum a posterior
probability (MAP) estimates or posterior means. Conditional on the
estimated parameters, the calibrated model z(x,) with input x, is a
Gaussian process, its mean and covariance functions are expressed as
follows:

Elz(xo)|d, 6, $] = h(x), 0)TB(6) + t(x). 0) ()™ (d — H(0)B(6)) (20)
COV[z(xy)|d, 0, Pl = S ¢;((Xg, 6), (Xp, B) + ¢5(Xg» Xg) — t(Xy, )T Z(O) ' t(x,,0) (21)
+ (h(xy, 0) — H(0)T3(0) ' t(x,, 0))W()(h(x,, 0)

— H(0)'Z(0) " t(x). 6))
where

h(xp,0) =[S h;(x5,0) hy(x)]I"
t(xg,0) =[S ¢;((x(,0), D) s? ¢1((Xg» ), D5(0)) + ¢5(xg, DT

H,(D)) 0
S H(Dy(0)) Hy(Dy)

_ [ ¢ (Dy, Dy) S ¢;(Dy, Dy(6))
S ¢1(Dy(0). D)) 071+ 5% ¢;(D(6). Dy(9)) + c2(Dy. Dy)

W = (HO)'=(0)'H(®))™!

H(0) = [

14
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D, is the inputs of simulation data yT, containing control inputs and cal-
ibration inputs; D, is the control inputs of experimental measurements
z7; D,(6) combines D, with the estimates of calibration parameters.
H,(D)) is the matrix form of hiT on D, for example, the ith row of
H,(D,) takes the form of h,(x;)T.

4.4. Calibration results

The proposed differential evaporation model takes power P, veloc-
ity, v, and hatch spacing, h,, as control inputs, i.e., x = { P,v, h,} and Ni
activity as the calibration parameter, i.e., @ = {ay;}. The prediction of
the model is the martensite start transformation temperature, denoted
as M,. For surrogate model development, 556 data points were gener-
ated uniformly over the parameter space X x©, bounded by experiment
conditions, using Latin Hypercube Sampling.

Before modeling, the mean and covariance functions of the GP
models should be specified. We take h, (x, t;) = h,(x) = (1); for surrogate
model we adopt the Matérn kernel (v=3/2), with hyperparameters
v, = {62,2,}; for discrepancy model we define its covariance function
with hyperparameters y, = {crgl,agz, ags,f 2N

3 2

(x; — X3)
N 2 ' i 2 " 2
e (X,X') = o5 exp(————— XX X
H(X,X') 5, I Il p( )+(;52 +‘71>3
i=

2¢2 22)

As explained in Section 4.3, the first step is training the surro-
gate model. With 90% 10-fold cross validation accuracy, a zero-mean
(namely g, = 0), Matérn (v = 3/2) kernel GP model was selected and
trained on 556 simulation data using the GaussianProcessRegressor
function through the Python scikit-learn package by [48], outputting
hyperparameters y; = {0.655,0.328}.

For remaining hyperparameters {.S,y,, 02}, coefficient g, and cali-
bration parameter §, MCMC is used for generating samples. Since there
is little knowledge of unknown calibration parameter, except for its
domain, a weak uniform prior is commonly used for 6. As for other hy-
perparameters € R*, informative inverse-gamma or log-normal priors
are assigned. The prior distributions are set as follows:

6 ~ Uniform(0.15,0.4)
(?1 s §3 ~ Inverse — Gamma(a =2, = 1)

2 2
05,5 O

c c

p, ~ Inverse — Gamma(a = 2, =0.1)
S, #; ~Log — Normal(u = 0,62 = 1/4), i =1,2,3

From the 26 cuboid experiment parameter sets, 20 were randomly
selected as training data and the remaining 6 points were used as test
data. MCMC was run in Python using PyMC3 [49]. Two chains of
samples, with the sample size of 30,000 and tuning size of 10,000, were
generated. We took the posterior mean of ay; as the posterior estimate,
i.e., #* = 0.275. For the hyperparameter ¢ = {.5, {6§1 ,ogz, Ui 1,65, C5),
o2}, ¢%, ,p = {0560, {0.585,0.030,0.455,0.937,0.792,0.452},0.069} and
coefficients MAP estimates are § = [0,0.047]T.

According to Eq. (20), M, for the test points can now be predicted.
Table 5 contains performance metrics of model predictions against
experimental measurements, for the 6 test data points, in terms of the
root mean squared error (RMSE) and mean absolute percentage error
(MAPE) for both the surrogate (ay; = 6*) and calibrated model. Upon
evaluation, the calibrated model achieved an RMSE and MAPE value
of 11.8 °C and 3.1%, respectively, in contrast to the surrogate model’s
RMSE of 17.0 °C and MAPE of 5.9%. These results make evident the
effective improvement in the predictive power of the model resulting
from Bayesian calibration.

Furthermore, through uncertainty quantification of the calibrated
model parameter, Ni activity, increased comprehension of the model
framework’s utility for the purpose of robust design can be ascertained.
Fig. 11 illustrates the propagated uncertainty through the multi-model
framework for each of the 26 LPBF NiTiHf parameter sets, stemming
from MCMC samples generated through the calibration of the DEM. In
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Table 5

Performance metrics for the surrogate (ay,; =
0*) prediction and calibrated prediction on
the 6 test data points.

Model RMSE [°C] MAPE [%]
Surrogate 17.0 5.9
Calibrated 11.8 3.1

RMSE — root mean square error; MAPE —
mean absolute percentage error.
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Fig. 11. Uncertainty propagation with 95% CIs for model predictions of M, compared
with empirical values for LPBF Nis, 5Tiyg ,Hf,, samples. Here, uncertainty propagation
is from the DEM only.

this case, the last 500 samples for the Ni activity parameter selected
from each of the two MCMC sample chains (generated from two
different initial parameter values) are combined and used as model
input, after which the top and bottom 2.5% output values, i.e., M|, are
removed for each experimental condition to provide a 95% CIL. Through
this uncertainty quantification, experimental measurements are shown
to fall within the 95% CIs of model predictions, with the exception of
three cases. In Section 5, the total model uncertainty and 95% CIs are
determined and compared with experiments to provide a complete and
more robust measure of the model framework’s utility for AM design.

5. Model validation and discussion

Through the calibrated ICME framework, M, properties were pre-
dicted and validated with the 26 LPBF NiTiHf cuboids discussed in
Section 4.2 Table 4. The model framework input parameters and ther-
mophysical properties are listed in Table 6.

5.1. Probabilistic model prediction in the presence of experimental uncer-
tainties

In addition to model uncertainties due to assumptions and missing
physics, expressed in Section 2 through Section 4, there are several
sources of experimental uncertainties contributing to variation in re-
ported process-structure—property relationships. These experimental
uncertainties stem from the initial powder composition measurement,
melt pool dimension measurements due to melt pool non-uniformity
across single-track prints, and transformation temperature measure-
ment of NiTiHf through DSC. It should also be reiterated that although
calibration, conducted in Section 2.3 and Section 4.3, does not fix
experimental measurement uncertainties and uncertainties pertaining

15
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Fig. 12. Model predictions of M, with their 95% CIs compared with empirical values
for LPBF Nis 3 Tigg yHfy, samples, resulting from DEM uncertainty propagation only
and uncertainty propagation for all components of the ICME framework.

to missing physics in the applied models, if measured M, values are
captured within the uncertainty bounds of predictions, this is sufficient
proof for the utility of the model chain towards material and process
design.

Fig. 12 provides a comparison of model predictions for M, and
DSC measurements from experiments. The root mean square error
(RMSE) and mean absolute percentage error (MAPE) for the 26 samples
is 28.9 °C and 8.2%, respectively, representing a good measure of
predictive accuracy for the model when compared with experiments.
Furthermore, the Pearson correlation, P, of 0.83 indicates a strong
positive linear correlation between predicted and measured M. The
coefficient of determination, R?, of 0.64 demonstrates a moderate abil-
ity for predicting M, which, coupled with uncertainty quantification,
provides sufficient utility for design. The strength of these predictions
is further reinforced when considering the uncertainty of standard
composition measurement techniques such as wavelength dispersive
spectroscopy (WDS) and inductively coupled plasma atomic emission
spectroscopy (ICP-AES), + 0.5 at.%. Additionally, for the measurement
of major constituents, ICP-AES uncertainty has been reported to be
as large as +2% of the absolute value [50]. Converting Ni content
measured through these techniques to M, could then result in an
uncertainty of +75 °C. This demonstrates the model framework’s ca-
pability to accurately and efficiently predict M, property values from
processing parameters, performing well within the range of uncertainty
for composition measurement techniques.

Equally important in understanding the utility of the model frame-
work for the purpose of robust design, uncertainty quantification
through the uncertainty propagation of calibrated model parameters
has been conducted. Fig. 13 illustrates the propagated uncertainty
through the model framework for each of the 26 LPBF NiTiHf condi-
tions, stemming from MCMC samples generated through the calibration
of both the DSM and the DEM. In this case, the last 1000 MCMC samples
from the DSM calibration and the same 1000 samples from the prior
DEM uncertainty propagation, Section 4.4, are combined and used as
model input. The top and bottom 2.5% output values are then removed
to provide 95% CIs for model predictions based on the uncertainty
propagation across the entire model framework.

It should be noted that the model framework was run on Texas A&M

University’s High Performance Computing Research platform GRACE.
Multiple parameter sets were run in parallel, utilizing a portion of the
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Table 6
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Model input parameters and thermophysical properties for the 26 LPBF NiTiHf experiments.

P [W] v [mm/s] hy [pm] L, [pm] n

k [W/m K]

G, [J/kgKl C o [pm]  p [kg/m’] T, [°C]

80-140 330-1080 10-87 41 0.64 13.2

652.5 0.81 20 8893 25

Max Predicted M, o

Ms Value
Experiment
Predicted
20 (Total)

Powder after solution o
heat treatment
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L
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Volumetric Energy Density E, [J/mm?]

Fig. 13. Model predictions of M, with their 95% CIs in terms of VED for LPBF
Nigg 3 Tiyg ;Hf5 samples, resulting from uncertainty propagation for all components of
the ICME framework.

800 48-core computer nodes with 384 GB RAM (dual socket server with
two Intel 6248R 3.0 GHz 24-core processors). With these resources, the
DSM can predict the width and depth of a melt pool in several seconds.
The melt pool length calculation extends this computation to several
minutes. The computational time of evaluating melt pool overlaps
through the MLM and subsequent chemistry propagation through the
DEM across multiple tracks and layers can vary greatly based on process
parameters. This can range from 1 to 4 h for several thousand melt pool
evaluations and results in location-specific composition predictions.

When comparing uncertainty from the DEM alone to the complete
framework uncertainty, an increase in the range of the 95% CI is
observed. This is expected due to the consideration of increased un-
certainty stemming from the DSM. It should be noted that the peak M|
set by Eq. (16) results in uncertainty bounds which do not capture M
values exceeding 306 °C, although the model predictions still follow
experimental trends. This is observed for higher VED cases, where
increased Ni evaporation and M, values are expected, and can be
resolved through additional experiments to refine the empirical Ni-
M, relationship. Furthermore, with experimental measurements falling
within the 95% confidence interval of model predictions, the calibrated
ICME framework demonstrates its utility and potential to guide and
inform experiments in the context of robust design.

5.2. Process map construction for AM design

In materials design, process maps have also been constructed to
further accelerate and expedite development by providing valuable
insight into PSPP trends of alloy system. Fig. 14 illustrates process maps
for the additively manufactured Nis 3Tiyg oHf, system by LPBF with
an incremental hatch spacing of 30 pm, 60 pm, and 90 pm, from which
several observations can be made:

« First, for all hatch space values, there is an increase in M with
increasing power and velocity, corresponding to the keyholing
print region. This culminates in a Ni- M insensitive region where
additional Ni loss does not increase M, beyond 306 °C. Con-
versely, as power and velocity decrease, there is a corresponding

16

decrease in M,. A region with M, of approximately 101.9 °C,
corresponding to the M, of the initial powder composition, is
also observed once power and velocity combinations are low
enough. This region is a result of the assumption which states that
evaporation is negligible below the boiling temperature, where
although these specific combinations of laser power and laser
velocity could result in temperatures exceeding the melting point
of the alloy system, this does not result in the evaporation of Ni
from the melt pool or a change in M from the initial composition.
Second, as the hatch spacing increases, the process region cor-
responding to the peak M, is shown to diminish. This trend
aligns with expectations that increasing hatch spacing results in
the reduced magnitude of thermal events during the AM process,
resulting in less evaporation, higher Ni content, and lower M
than process parameters with lower hatch spacing and the same
power and velocity values.

Third, as the hatch spacing increases, the processing window to
achieve a specific range of M, increases. This translates to an
increased tailorability of M| for the design of components when
utilizing larger hatch space values, in contrast to an increased
sensitivity of M, with power and velocity at smaller hatch space
values. If a larger hatch spacing can be used in combination with
multiple layer scans, a dramatic increase in the robustness of
tailored location-specific properties can be achieved. When com-
bined with printability maps depicting the relationship between
process parameters and print quality (good, keyholing, balling,
lack of fusion), the design space can be further constrained for the
accelerated development and cost-effective design of defect-free
components with location-specific properties [8,51].

6. Summary and conclusion

The complex physics of AM processes give rise to numerous chal-
lenges in material development and design. Not only is it necessary
to accurately resolve the forward modeling problem of linking process
parameters to properties for accelerated development, but a measure
of confidence in model predictions is required for robust design. The
forward model framework can then be leveraged for the inverse design
of AM components with tailored location-specific properties. In this
study, a fast-acting ICME framework was developed to predict location-
specific properties based on process parameters for Nigg 3Tisg,Hfo,
SMAs manufactured by LPBF. Model components were calibrated and
the framework validated with experiments, demonstrating good agree-
ment between model predictions and experimentally measured M, with
an RMSE of 28.9 °C, a MAPE of 8.2%, and a Pearson correlation
of 0.83. Furthermore, the viability of this modeling framework as
a tool to inform and guide experiments for accelerated and robust
design is supported by the 95% CIs determined through uncertainty
quantification. In this regard, after accounting for the limitation on
peak M, value as determined through the empirical Ni- M relationship,
100% of the measured SHT M, values for the Nigg 3Tisg ,Hf, cuboid
specimens fell within the 26 or 95% ClIs of the framework predictions.
Model predictions for measurements which exceeded the peak M, could
be improved upon through an improved empirical Ni-M| relationship,
however predictions are still within 20 °C of measurements and align
with expected Ni-M, trends. Additionally, the total framework un-
certainty of predicted values fall within a tighter window than the
uncertainty of standard composition measurement techniques such as
WDS and ICP-AES. With confidence through validation and uncer-
tainty quantification, the ICME framework is then leveraged to develop
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Fig. 14. Process maps for Nis, 3 Tiyg,Hf,y SMAs manufactured by LPBF as predicted by the calibrated ICME framework for several hatch spacing values: (a) 30 pm, (b) 60 pm, (c)
90 pm. Laser velocity and laser power bounds are also selected based on experimental conditions. The associated M, [°C] value is represented by the color scale, ranging from

101.9 [°C] (light) to 306 [°C] (dark).

process maps providing further insight into PSPP relationships across
design space and to aid in cost-effective material development. M
trends as a function of hatch spacing indicate an increased robustness
of the design space with increased hath spacing. This can be exploited
for the fabrication of tailored AM components with location-specific
properties by leveraging printability maps in combination with multiple
remelts of a single-layer to reduce the design space and maintain the
larger M, processing window provided by an increased hatch spacing.

In order to investigate the most impactful elements of this model
chain, it would be necessary to carry out an in-depth sensitivity anal-
ysis. While this is out of the scope of the present contribution, one
can surmise that the most impactful stage of the modeling chain is
the evaporation model, given the extreme sensitivity of the transfor-
mation temperature to Ni amount. Of all the factors that control Ni
evaporation, we are most uncertain about the Ni activity in the NiTi
melt, as this quantity has never been measured for this system and
in the CALPHAD model results from fits of the Gibbs energy of the
liquid phase against phase diagram data. In future work, a more in-
depth investigation could be used to elucidate, in unambiguous terms,
the most impactful uncertainty source in this framework.
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