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Additive manufacturing (AM) has gained considerable academic and industrial interest due to its ability to
produce parts with complex geometries with the potential for local microstructural control. However, due to the
large number of material and process variables associated with AM, optimization of alloying compositions and
process parameters to achieve desired properties is an arduous task. There is a fundamental gap in understanding
how changes in process variables and alloy composition and thermodynamics affect additively manufactured
parts. The present systematic study sheds light on the effects of alloying composition and corresponding phase
diagram features on the printability and solidification microstructures of four binary nickel-based alloys, namely,
Ni-20 at% Cu, Ni-5 at% Al, Ni-5 at% Zr, and Ni-8.8 at% Zr. These compositions are selected to represent binary
isomorphous, weak solute partitioning, strong solute partitioning, and eutectic alloying conditions, respectively.
Single track and bulk experiments are conducted to quantify the effects of varying material thermodynamic
properties such as solidification temperature ranges, alloy melting temperatures, and other solidification con-
ditions on resultant microstructures across the laser powder bed fusion (L-PBF) parameter space. A simple
framework for developing processing maps detailing porosity formation and microsegregation across the laser
power — scan speed parameter space is established and validated for each of these alloys to determine how
material properties affect printability and microstructure in L-PBF. This knowledge will be vital in optimizing
alloy chemistry and process parameters to design alloys specifically for additive manufacturing, as well as to
provide a path toward local microstructure control.

1. Introduction

Laser powder bed fusion (L-PBF) is an additive manufacturing (AM)
process with the ability to manufacture metallic parts with complex
geometries that would be challenging or impossible to produce with
traditional manufacturing techniques. L-PBF has been used to fabricate a
variety of alloy systems originally designed for traditional
manufacturing processes such as nickel-based super alloys [1-5],
Al-Si-Mg alloys [2,6,7], austenitic steels [2,8], Ti-6Al-4V [2,9,10], as
well as many other alloys [11-14].

Alloy systems historically used in L-PBF vary widely in both the
ranges of manufacturing process parameters required to build fully
dense parts as well as their microstructural responses to L-PBF
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processing. Nickel-based superalloys such as Inconel 718®, for example,
can display cellular-dendritic microsegregation that results from the
high cooling rates during solidification associated with L-PBF [2,5,15,
16]. On the other hand, Ti-6Al-4V does not typically display micro-
segregation structures in the as-fabricated condition [17]. Differences in
microsegregation between alloys have typically been attributed to the
solidification ranges and partition coefficients of the alloys being pro-
cessed [2], though these discrepancies have not been sufficiently
quantified for AM.

Microsegregation can have an impact on the mechanical properties
and performance of fabricated parts. In nickel-based superalloys,
microsegregation of niobium can lead to the growth of & and laves
phases which are detrimental to the performance of these alloys [1,2,5,
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15]. Mitigation of these issues has generally consisted of identifying
optimized process parameters that circumvent the formation of micro-
segregation structures [14,18], or implementing post processing ho-
mogenization heat treatments [1,2,5,15,19,20]. However, post
processing treatments can result in coarse grain structures, and may not
be able to resolve the formation of detrimental phases that are stable at
high temperatures such as 8§ phase and MC carbides in nickel-based
superalloys [5,15]. Therefore, the ideal strategies for mitigating the
formation of such detrimental phases are preventing microsegregation
by wusing optimized process parameters or by tailoring alloy
composition.

In addition to differences between alloy systems, the selection of
process parameters can also have a significant impact on microstructural
development [2,14,21]. Using a laser rapid directional solidification
model, Liang et al. [21] predicted an increase in the microsegregation of
tungsten at low scan speeds and high laser powers in the single crys-
talline nickel-based super alloy SRR99. Karayagiz et al. [14] developed a
framework coupling a finite element thermal model with a
non-equilibrium phase field model in order to accurately predict
microsegregation in single track scans of an L-PBF fabricated Ni-Nb
alloy. They found that cellular-dendritic growth structures varied in
both size and solute segregation depending on the linear energy density
used for each laser scan [14]. Cellular structures with Nb-rich bound-
aries were observed at high energy densities, whereas planar growth was
shown to dominate the microstructures of low energy density Ni-Nb
single tracks [14]. However, these predictions target single laser scans
due to the complex thermal histories associated with the layer-by-layer
development of L-PBF which can be difficult and computationally
expensive to model. Additionally, current literature has focused on
predicting microstructural evolution as a function of interface growth
velocities (R) and thermal gradients (G), which do not easily translate to
usable input parameters for the L-PBF process such as laser power and
scan speed [14,22-24]. The establishment of a simple approach to
evaluate bulk solidification microstructures across the L-PBF parameter
space is therefore highly valuable.

In order to construct processing maps and establish the relationships
between L-PBF process parameters and solidification microstructures, a
range of parameters that result in full part densification must first be
established. Selection of process parameters has a significant impact on
the density of AM parts. The mechanisms for porosity formation during
AM are well understood [2,25-27], but mitigation strategies are still in
the developmental stages. In the past, parameter optimization for
fabrication of high density parts was achieved by printing bulk parts in a
broad sweep of the parameter space [28-31]. More recently, several
approaches have been proposed that utilize predictions of melt pool
dimensions to reduce the experimental trials for determining parameters
that promote full part density [10,26,27,32-34]. Seede et al. [27]
combined an analytical model calibrated with single track experiments
and a geometry-based hatch spacing equation in order to build pro-
cessing maps including three critical L-PBF parameters: laser power,
laser scan speed, and hatch spacing. These processing maps were
demonstrated to consist of optimal parameter ranges for the production
of fully dense parts of a newly developed low alloy steel with a high
degree of success [27]. This framework has been validated in-full or
in-part for several different alloy systems including steels, Ni-based al-
loys, and shape memory alloys [27,35-38]. Further development of
these processing maps to include a solidification microstructure
component would provide a direct link between processing parameters
and developed microstructures during LPBF, and allow for both the
optimization of microstructure in additively manufactured parts, and
the ability to compare printability and microstructure across various
alloying compositions in a systematic manner.

There is substantial interest in designing new alloys to address the
complex challenges posed by additive manufacturing [39]. In order to
develop new alloys, an understanding of how compositional and mate-
rial property changes affect additively manufactured parts is critical.
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The present work utilizes a parameter optimization framework [27]
combined with experimental single track microsegregation data in order
to develop processing maps for both densification and microstructure in
L-PBF. Processing maps are then developed for four binary nickel-based
alloys, namely, Ni-20 at% Cu, Ni-5 at% Al, Ni-5 at% Zr, and Ni-8.8 at%
Zr in order to represent binary isomorphous, weak solute partitioning,
strong solute partitioning, and eutectic alloying conditions, respectively.
Quantitative wavelength dispersive spectroscopy (WDS) observations of
both single track and bulk experiments are used to validate the pro-
cessing maps as well as to elucidate the effects of material properties and
alloying conditions on printability and microstructure in L-PBF. An
empirical model is developed by exploiting the dataset generated in this
study using machine learning approaches to accurately predict dendritic
microsegregation structures as a function of L-PBF process parameters
and easily accessible material property inputs.

2. Experimental methodology
2.1. Alloy selection

There are currently no generally recognized criteria for the devel-
opment or selection of alloy systems tailored to AM. However, insight
can be gained from welding literature and studies on rapid solidification
[40]. A key challenge is posed by microsegregation from dendritic so-
lidification which can cause solidification cracking and undesirable
phase formation in AM. This phenomenon depends on the speed of the
solidification front and the equilibrium partition coefficient (ke). The
equilibrium partition coefficient is the ratio of solid and liquid solute
concentrations in an alloy system (ke = Cs/Cj). Under non-equilibrium
rapid solidification conditions, such as those typical in L-PBF, the
partition coefficient is velocity dependent [41]. This indicates that an
increase of solidification speed through the increase in laser scan speed
is expected to reduce microsegregation, as has been demonstrated in the
literature [14]. However, it may not be feasible to process certain alloys
at high enough speeds to completely resolve dendritic solidification.
When designing alloys for AM, the equilibrium partition coefficient can
be utilized to control microsegregation. An alloy with a ke ~ 1 may not
require high printing speeds as microsegregation is not expected to
occur. It may therefore be possible to use simple equilibrium phase di-
agram features to select potential alloy systems that would not exhibit
solute trapping. Similarly, eutectic alloys solidify into two solid phases
without passing through a liquid plus solid region which would
circumvent microsegregation. The coupled phases that grow during
eutectic solidification become more refined with increasing cooling rate,
and often display excellent mechanical properties [42,43]. The micro-
structural complexity and the differences in alloy compositions of
multicomponent commercial alloys can make generalized analysis of
printability across alloy systems difficult. For these reasons, the
following four binary alloys are selected as simple model alloy systems
for L-PBF processing to assess the role of alloy composition, phase dia-
gram features, and material physical properties in printability and
microstructure evolution during AM. Binary phase diagrams for these
alloys are displayed in Fig. 1 [44-46], and relevant material properties
calculated using CALPHAD Thermo-Calc software [47] can be found in
Table 1.

e Ni-20 at% Cu: A Ni-Cu alloy is selected due to its fully isomorphous
system. This alloy is expected to exhibit microsegregation due to its
non-unity partition coefficient (k¢ = 0.74) and moderate solidifica-
tion range (20 K). The lack of secondary phase formation during
solidification in this alloy will serve to contrast with microstructural
development in the multi-phase alloy systems selected below.

Ni-5 at% Al and Ni-5 at% Zr: In order to investigate the effect of an
alloy’s partition coefficient on the homogeneity of AM microstruc-
tures, two nickel-based alloys with equivalent binary composition
NigsXs (at%), where X is the solute element, are selected. The Ni-Al
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Fig. 1. Binary phase diagrams of the four alloys used in this study: Ni-20 at% Cu, Ni-5 at% Al, Ni-5 at% Zr, and Ni-8.8 at% Zr [44-46]. The dashed red lines indicate
the alloy composition within each of the phase diagrams. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

e Ni-8.8 at% Zr: This composition of the Ni-Zr system is selected in
TableAI . o . . order to study and contrast the effects of L-PBF processing conditions
Material properties of the four alloys used in this study: Ni-20 at% Cu, Ni-5 at% . . . . .
. . L . on a eutectic alloy in comparison with the previously selected alloys.
Al, Ni-5 at% Zr, and Ni-8.8 at% Zr. The values in this table were calculated using E i all hibi led hb h h
CALPHAD Thermo-Cale software [47]. utectic alloys exhibit coup e. .gr.owF etween two phases t ?lt ex-
change mass ahead of the solidification front. Under very rapid so-

;)l)loys (at ?Zlgﬁﬁcation Range Z:fig;:m “© ?fgl)ﬁng Temperature lidification conditions, microstructural formation can become
‘ dominated by nucleation of the uncoupled solid phases. This effect is
Ni-20 at% 20 0.74 1377 termed anomalous growth and is due to solidification time scales
Nf: at% 02 0.96 1417 becoming too short for effective diffusion to occur ahead of the so-
Al lidification front [48,49]. If this does not occur, microsegregation is
Ni-5 at% 172 0.11 1327 not expected to be observed in the eutectic alloy. Instead, a fine
K lamellar structure may be expected due to the high cooling rates
N;E:S at% 0 ! 1167 characteristic of the L-PBF process [2].
and Ni-Zr systems are ideal for testing partition coefficient effects 2.2. Process parameter optimization
due to the significant difference in solute partitioning. Ni-5 at% Al is
expected to display little to no microsegregation as its liquidus and In order to determine a region in the laser power-scan speed
solidus are nearly identical for all temperatures and its k. = 0.96. parameter space that circumvents porosity formation for each of the four
However, significant microsegregation is expected in the Ni-5 at% Zr alloys, a parameter optimization framework proposed by Seede et al.
alloy due to the large freezing range (172 K) and low partition co- [27] is implemented. This framework uses the computationally inex-
efficient (k. = 0.11). pensive Eagar-Tsai (E-T) [50] analytical thermal model to provide low

fidelity predictions of melt pool dimensions across the parameter space.
These initial predictions are then used to sample the laser power-scan
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speed space with single track experiments to conduct statistical cali-
bration of the model for higher fidelity predictions. For this purpose, 46
single track experiments were sampled with a grid-based sampling
strategy throughout the parameter space and are displayed as markers
on the plots in Fig. 2. Boundaries of the laser power (P) — scan speed (v)
sampling space were selected as (Ppin, Pmax) = {71, 260 W} and (Vpin,
Vmax) = {0.05, 2.5 m/s}. Values for Py.x and vpax were set to the ma-
chine limitations, and vy,i, was selected to avoid prohibitively slow scan
speeds. Pnin was selected as the lowest power necessary to attain a melt
pool depth equal to one layer thickness at v, in the alloy with the
largest melting temperature (Ni-5 at% Al) as predicted by the E-T model.
The parameter space was then split into two regions for grid-based single
track sampling. Thirty single tracks were sampled between v,
= 0.05m/s and v = 1.3 m/s, and the remaining 16 single tracks were
sampled between v = 1.3 m/s and vpax = 2.5 m/s. The first region was
sampled more densely as it is expected to contain most of the optimal
printability regions for all alloy systems. Keyholing and balling single
tracks were classified qualitatively from top-view and cross sectional
micrographs based on the characteristic features of these defect mech-
anisms [2,26,27,51,52]. Previous studies have classified lack of fusion
single tracks using a melt pool depth = layer thickness criteria [26,27,
35]. However, Zhang et al. [35] reported that high density prints can
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still be achieved within this lack of fusion region, demonstrating the
need to relax this constraint. Since a single track lack of fusion criterion
is somewhat arbitrary due to the necessity of printing multiple single
tracks and at least few layers to form lack of fusion porosity, a less
conservative value is selected to expand the functional printability re-
gion. Lack of fusion single tracks were classified based on the experi-
mental measurements and a criterion of melt pool depth
< 0.667 x layer thickness (D < 0.667 t). This value is selected as the
minimum single track depth required to penetrate the solid printed
substrate after 10 layers, based on the assumptions that the effective
height of a layer printed on the substrate is equal to the powder packing
density x the layer thickness and that the relative powder packing
density is ~60%.

A statistical methodology based on the Kennedy and O’Hagan [53]
calibration framework is then implemented in two steps. The first step
consists of constructing a surrogate model using Gaussian process
regression which is combined with the measured melt pool dimensions
for calibration. The next step utilizes a discrepancy function to account
for model inadequacies to ensure accuracy between the calibrated
model predictions and the experimental measurements. Melt pool
dimension predictions from the fully calibrated model are then used to
establish the lack of fusion and keyholing boundaries displayed in Fig. 2.

Ni_zoat.% Cu Ni-5at.% Al Fig. 2. L-PBF process parameter maps are
/ displayed for Ni-20 at% Cu, Ni-5 at% Al,
Ni-5 at% Zr, and Ni-8.8 at% Zr. These maps
250 250 contain various keyholing criteria (W/
D < 1.2, 1.5, 2.0) to determine which cri-
200 200 terion fits best, and a lack of fusion crite-
rion (D <0.667t), predicted by the
E E calibrated Eagar — Tsai (ET) model dis-
= 150 = 150 cussed in Section 2.2. A balling region fit to
g g single track experiments using a Support
8 ¥ 3K g X~ X X Vector Machine (SVM) classifier is also
N 100 X X X X N 100 X X X X plotted. Experimentally classified single-
P . b tracks exhibiting keyholing, lack of fusion,
. - X XXX balling, and good track characteristics are
50 50 marked with different symbols and colors
in these maps demonstrating a good match
0 0 i with ET model predictions. D: Melt Pool
0.0 0.5 1.0 1.5 2.0 2' 5 0.0 0’ 5 1' ) 1' 5 2.0 2'5 Depth, W: Melt Pool Width, t: Powder
: : : y : ) : : ) ¥ : : Layer Thickness. (For interpretation of the
Scan Speed [m/s] Scan Speed [m/s] references to color in this figure legend, the
Ni-5at.% Zr Ni-8.8at.% Zr reader is referred to the web version of this
article.)
250 250
200 200
2 -3
5 150 5 150
3 3
[«] [o]
Q. Q.
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0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
Scan Speed [m/s] Scan Speed [m/s]
D= W/2.0 (Keyholing) X Keyholing
B D= W/1.5 (Keyholing) X Balling
= D= W/1.2 (Keyholing) X Lack of Fusion
D= 0.667*t (Lack of Fusion) ~ @ Good Track

mm Balling



R. Seede et al.

Potential defect boundaries are selected based on melt pool dimension
relationships that have been observed to correspond well with defect
formation, namely, a melt pool width/depth relationship (W/D) to
determine keyholing and a melt pool depth/layer thickness (D/t) rela-
tionship to determine lack of fusion boundaries [26,27,32,54,55].
Several keyhole criteria are plotted and compared to experimentally
characterized single tracks in Fig. 2 to visualize which boundary best fits
each material based on the experimental observations. The keyholing
criteria selected for comparison were chosen based on values established
in the literature (W/D < 1.2, 1.5, 2.0) [27], and the lack of fusion cri-
terion was selected as D/t < 0.667. A defect boundary for balling was
established using a support vector machine classifier (SVM) [56] that
uses experimental single track classifications to divide the processing
map into balling and non-balling regions. A 3rd degree polynomial
kernel SVM classifier [57] was used to determine the balling region of
each material. Once these defect criteria are established, finalized pro-
cessing maps can be created for each alloy. It should be noted that the
methodology described for building processing maps in this work is
intended to be AM machine specific, as single tracks built in different
machines may display differences in melt pool morphologies.

To ensure proper fusion between melt pools, a geometrically-based
hatch spacing criterion is implemented [27]. This criterion was

Ni-20at.% Cu
250 250
— 200 | — 200 |
3 =
g o
2 150 2 150
a a.
2 g
5 100 5 100
50 7 7 /~ 50
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derived under the conservative assumption that the transverse shape of
each melt pool is parabolic both above and below the printing surface.
Melt pool height is also assumed to be equal to the layer thickness due to
the difficulty of predicting melt pool height. The criterion states that the
maximum value of hatch spacing (hpax) that can be used before voids
form between two melt pools in two successive tracks follows the
equation:

/ t
hmax=W 1_(I+D)7 (1)

where W is the width of a melt pool, D is the depth of a melt pool, and t is
the layer thickness. This equation allows for the determination of a
maximum hatch spacing boundary at any point in the parameter space
based only on melt pool dimensions and layer thickness. This equation
was used to plot maximum hatch spacing contours on finalized pro-
cessing maps for each alloy, as displayed in Fig. 3. Three parameter sets
were selected from each alloy at different locations in the parameter
space to print 8 x 8 x 8 mm cubes based on the processing maps in
Fig. 3. Hatch spacing values selected to print the cubes were rounded
down to the nearest multiple of five. The parameters chosen for each of
these cubes is listed in Table 2.

Fig. 3. L-PBF process parameter
maps with finalized selections of
keyholing criteria and maximum
hatch spacing contours. The key-
holing criterion selected for Ni-20 at
% Cu and Ni-5 at% Al is W/D < 1.2,
and W/D < 1.5 for Ni-5 at% Zr and
Ni-8.8 at% Zr. Lack of fusion criteria
is kept at D < 0.667t for all maps, and
the balling region was fit to single
track experimental data using a Sup-
port Vector Machine (SVM) classifier.
D: Melt Pool Depth, W: Melt Pool
Width, t Powder Layer Thickness,
hmax: Maximum Hatch Spacing.

Ni-5at.% Al

1.0 15 20 25
Scan Speed [m/s]

—— Maximum hatch spacing criterion [um]

Ni-8.8at.% Zr

1.0 15 2.5
Scan Speed [m/s]

0.5

2.0

—— Maximum hatch spacing criterion [um]
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Table 2
A list of the processing parameters selected to print 8 x 8 x 8 mm cubes within
the optimal process parameter regions of the processing maps in Fig. 3.

Alloy Laser Scan Speed Hatch Layer
Composition Power (W) (m/s) Spacing (um) Thickness (um)
Ni-20 at% Cu 115 0.05 200 49
120 0.30 110
225 0.90 100
Ni-5 at% Al 100 0.05 130
125 0.30 85
240 0.90 85
Ni-5 at% Zr 75 0.05 120
110 0.30 125
140 0.90 60
Ni-8.8 at% Zr 80 0.05 165
120 0.30 160
130 0.90 60

2.3. Microsegregation processing maps

The calibration framework outlined in Section 2.2 provides pro-
cessing maps detailing porosity formation regions in the L-PBF param-
eter space. However, these maps do not provide information detailing
changes in microstructural features across the parameter space. One
difficulty in characterizing microstructural feature differences is the
quantification of these features. Microsegregation of solute elements can
be measured using energy dispersive (EDS) or wavelength dispersive
spectroscopy (WDS), however, generating this data for a large number of
samples is preventatively costly and time consuming. Primary dendrite
arm spacing (PDAS) in microsegregation structures has been demon-
strated to be dependent on both laser power and scan speed in L-PBF
[14]. However, PDAS can vary significantly at different locations within
a single melt pool [14]. It is therefore crucial to note that PDAS is used as
a convenient quantifiable value with the intent of qualitatively mapping
microsegregation across the parameter space. PDAS values measured in
single tracks will likely not be representative of PDAS values in bulk
parts. However, a decreasing trend in PDAS values within the parameter
space is expected to indicate a decrease in overall microsegregation
within a part. In order to map microsegregation in each alloy across the
laser power-scan speed parameter space, PDAS is measured in each of
the 46 single tracks printed for all four alloy systems. Interpolation over
the laser power-scan speed parameter space is then conducted on the
PDAS dataset via multilevel B-splines approximation using the R func-
tion mba.surf in the MBA package [58] in order to generate heat maps
based PDAS values in the laser power-scan speed parameter space.
Observations of planar growth instead of cellular-dendritic growth
structures are indicated by zero values in the heat map. These maps are
validated by WDS composition maps of the single tracks and cubes.
Lastly, the heat maps are combined with the porosity-free processing
maps to detail a processing region that will result in full density parts
with desired microstructural outcomes.

2.4. Materials fabrication and characterization

Gas atomized Ni-5 at% Al, Ni-20 at% Cu, Ni-5 at% Zr, and Ni-8.8 at
% Zr powder provided by Nanoval GmbH & Co. KG were used to
manufacture L-PBF single tracks and cubes. These specimens were
printed using a 3D Systems ProX DMP 200 commercial L-PBF system
(fiber laser with a Gaussian profile A = 1070 nm, and nominal beam
diameter = 80 pm).

Single tracks were printed on a base plate of the same composition as
each respective alloy. Base plates were all procured in the as-cast con-
dition. The Ni-5 at% Al as-cast base plate was subjected to homogeni-
zation at 1100 °C for 1 h, 50% cold rolling, and recrystallization at
700 °C for 1 h. The Ni-20 at% Cu as-cast base plate was subjected to
homogenization at 1100 °C for 1 h, 50% cold rolling, and recrystalli-
zation at 800 °C for 1 h. The Ni-5 at% Zr as-cast base plate was subjected
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to homogenization at 1000 °C for 1 h and 38% hot rolling at 850 °C. The
Ni-8.8 at% Zr as-cast base plate was subjected to homogenization at
850 °C for 1 h and 12.6% hot rolling at 800 °C. Single tracks were
10 mm in length with 1 mm spacing between tracks, and each material
was printed at the same 46 combinations of laser power and scan speed
with a constant powder layer thickness of 49 um, which roughly cor-
responds to the d80 of the powders (the 80th percentile of the powder
size distribution). Cross sections of the single tracks were cut using wire
electrical discharge machining (EDM), and these specimens were pol-
ished down to 0.25 pm with water-based diamond suspension polishing
solutions, and vibratory polished with 0.04 um colloidal silica for 2 h.
Kalling’s Solution No. 2 (5 g CuCl2, 100 mL HCl, and 100 mL ethanol)
was used to etch the single tracks to obtain optical and backscattered
electron micrographs. Melt pool dimensions were taken from the
average values measured in cross sectional images of each single track at
three locations. Primary dendrite arm spacing (PDAS) was imaged using
backscattered electron micrographs of the single track cross sections in
the as-etched condition. At least 20 PDAS measurements were made at
the melt pool edge of each single track. Three cross sections of each
single track were used for analysis of PDAS to ensure that the observa-
tions were representative of the entire melt pool. Single tracks display-
ing planar growth were marked as having a PDAS of O um. Square cubes
(8 x 8 x 8 mm) were printed using the process parameters listed in
Table 2 for microstructural analysis.

Optical microscopy (OM) was carried out using a Keyence VH-X
digital microscope equipped with a VH-Z100 wide range zoom lens.
Wavelength dispersive spectroscopy (WDS) was performed with a
CAMECA SXFive electron probe microanalyzer equipped with a LaBg
electron source. Quantitative WDS composition maps were obtained at
settings of 15 kV, 50 nA, and 110 ps pixel dwell time with a 0.1 um step
size. WDS was carried out on specimens in the as-polished condition,
and WDS maps are displayed in atomic% (at%). Backscattered electron
images were taken using a FEI Quanta 600 SEM equipped with a field
emission electron source.

3. Results and discussion
3.1. Powder characterization

Surface morphology and cross sectional microstructure of the gas
atomized Ni-5 at% Al (NiAl), Ni-20 at% Cu (NiCu), Ni-5 at% Zr (Ni-5Zr),
and Ni-8.8 at% Zr (Ni-8.8Zr) powders are displayed in Fig. 4. Micro-
dendritic features are directly observable on the surfaces of the NiCu and
Ni-5Zr powder particles. Grain boundaries are similarly observed on the
surfaces of the NiCu and NiAl powder. Cross sections of the Ni-5Zr
powder revealed white segregation structures, whereas grain struc-
tures are observed in the NiCu and NiAl cross sections. NiCu powder
particles may contain Cu segregation, however, the similarity in atomic
number between Ni and Cu may result in poor contrast in the back-
scattered electron micrograph between regions of Cu segregation and
the matrix. The Ni-8.8Zr eutectic powder displays a fine lamellar
microstructure characteristic of eutectic alloys subjected to high solid-
ification rates [42,43]. These results indicate the dependence of solidi-
fication microstructures on the solidification range of each alloy. The
clear microsegregation observed in Ni-5Zr is likely due to the large so-
lidification range and low k. of the alloy (172 K and 0.11, respectively).
On the other hand, no segregation of Al is present in the NiAl alloy due to
its small freezing range and k. value (0.2 K and 0.96, respectively). The
larger freezing range allows time for solute rejection from the matrix
phase during solidification. This results in the observed
cellular-dendritic structures in the powder particles.

3.2. Comparing single track dimensions and printability across alloy
systems

Two laser heating modes influence melt pool geometry: conduction
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Ni-20at.% Cu Ni-5at.% Al Ni-5at.% Zr Ni-8.8at.% Zr

. N

Fig. 4. Scanning electron microscope images of gas atomized Ni-20 at% Cu, Ni-5 at% Al, Ni-5 at% Zr, and Ni-8.8 at% Zr powder particle morphology is displayed in
the first row of micrographs and cross sections of these particles are displayed in the second row of micrographs.

mode and keyhole mode heating. Conduction mode melting occurs at terized by deep melt pools. The optical micrographs in Fig. 5 reveal a
low energy densities and is characterized by a wide and shallow melt clear trend from conduction to keyhole mode heating as the linear en-
pool, whereas keyholing occurs at high energy densities and is charac- ergy density (LED = &) increases from left to right in each alloy (147.5 J/

P=118(W),V=0.8 (m/s) P=165(W),V=0.55(m/s) P =259 (W), V =0.05(m/s)

Ni-5at.% Al

Ni-5at.% Zr

Ni-8.8at.% Zr

Fig. 5. Optical micrographs of cross sections of single tracks printed at three different parameter sets for each of the alloys printed in this study: P: 118 W, v: 0.8 m/s;
P: 165 W, v: 0.55 m/s; and P: 259 W, v: 0.05 m/s. White dotted lines indicate the boundaries of single tracks that are difficult to distinguish in these images. These
single tracks demonstrate a transition between conduction mode heating and keyholing in L-PBF.
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m, 300 J/m, 5180 J/m respectively). The contrast between single tracks
printed at the same parameters is easily observed in Fig. 5, and a cor-
relation between alloy liquidus temperature and melt pool dimensions
can be seen. NiAl has the highest melting temperature (1417 °C) of the
four alloys and appears to have the smallest melt pools at each param-
eter set. In comparison, Ni-8.8Zr displays the largest observable melt
pools and has the lowest melting temperature (1167 °C). At the LED of
300 J/m, NiCu, Ni-5Zr, and Ni-8.8Zr show mixed conduction — keyhole
mode melting whereas NiAl displays a melt pool morphology indicative
of conduction mode melting. This relationship between melt pool di-
mensions and alloy melting temperature is more clearly demonstrated in
Fig. 6, which displays distinct trends in melt pool width (Fig. 6a) and
depth (Fig. 6b) for each material. Both the width and depth of the single
tracks appear to be dependent on the melting temperature of each alloy.
For both width and depth, the order of materials from smallest to largest
melt pools and highest to lowest melting temperatures is: NiAl
(1417 °C), NiCu (1377 °C), Ni-5Zr (1327 °C), and Ni-8.8Zr (1167 °C).
These results are intuitive, as alloys that require less energy to melt
would be expected to undergo more melting when exposed to the same
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level of energy. However, it is interesting to note that despite the large
difference in melting temperature (up to 285 K for NiAl and Ni-8.8Zr),
many of the single tracks are within one standard deviation of each
other in both width and depth at each parameter set. The largest dif-
ferences in melt pool dimensions between alloys occur at LEDs above
1000 J/m.

These melt pool dimension variations can explain the differences in
the identified optimal printing region between each alloy’s processing
map displayed in Fig. 3. NiAl is observed to have the smallest printable
region out of the four alloys due to the large lack of fusion region. Since
the lack of fusion region criterion is based on predicted melt pool depth,
NiAl’s higher melting temperature and shallower melt pools result in a
larger lack of fusion region compared to the other alloys. The lack of
fusion boundaries for all four alloys follow a similar trend as the melt
pool dimensions. Alloys with larger melting temperatures display larger
lack of fusion regions. However, the opposite appears to be true of
keyholing boundaries in these alloys. Ni-5Zr and Ni-8.8Zr display larger
keyholing regions compared to the NiCu and NiAl alloys. This is in part
due to the difference in keyholing criteria selected for these maps; NiCu
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Fig. 6. Plots of measured single-track melt pool dimensions against linear energy density: a) is a plot of the observed single-track widths for each material and b) is a
plot of the observed single-track depths for each material. Error bars display 1 standard deviation away from the mean in each direction. The black arrows indicate
that alloys displaying larger melt pool dimensions have lower melting temperatures (Tp,).
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and NiAl have a keyholing criterion of W/D < 1.2, whereas Ni-5Zr and
Ni-8.8Zr have a keyholing criterion of W/D < 1.5. However, these
criteria were selected based on experimental observations of single
tracks in these regions. Single tracks in the two Ni-Zr alloys were
observed to display keyholing at lower laser powers than those in NiCu
and NiAl. This is also likely to be attributable to melting temperature.
Lower melting temperatures reduce the energy barrier for melting
resulting in deeper melt pools, as is observed in Fig. 6b. It appears that
the lack of fusion boundary is more sensitive to this effect than the
keyholing boundary, since the printable region for each of the alloys gets
larger at lower melting temperatures.

3.3. Comparing single track microstructure across alloy systems

Composition analysis of the single tracks at several parameter sets
was conducted using quantitative WDS measurements. Fig. 7 displays
optical micrographs and WDS maps taken from the largest energy den-
sity parameter set (P =259 W, v =0.05m/s, and LED = 5180 J/m)
used to print single tracks for each alloy. Fig. 7 displays optical micro-
graphs of the single tracks in the left column with red and blue boxes
indicating WDS map locations. The middle column of Fig. 7 shows WDS
maps taken from the top of each melt pool, and the right column shows
maps taken from the edges of each melt pool. Differences in segregation
structure are easily observable in WDS maps at the top of each melt pool.
NiCu displays notable cellular structures in both the top and the edge of
the melt pool. Up to 5 at% additional segregation of Cu is observed in the
WDS map at the top location of the melt pool. NiAl and Ni-8.8Zr display
completely homogenous microstructures, showing no compositional

P =259 (W), V = 0.05 (m/s)

Ni-20at.% Cu

Ni-5at.% Al

Ni-5at.% Zr

Ni-8.8at.% Zr
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segregation at the top of the melt pools. This is likely due to the small
solidification ranges in NiAl and Ni-8.8Zr (0.2 K and 0 K respectively).
Even lamellar structures are not observable in WDS maps of the eutectic
Ni-8.8Zr alloy. This may be due to the extremely high cooling rates
associated with the additive manufacturing process, which may result in
nanoscale lamellar solidification too fine to be detected by the instru-
ment. Ni-5Zr displays large dendrite structures at the top of the melt
pool. These structures appear to have primary and secondary dendrite
arms with up to 6 at% additional segregation of Zr. Large dendrite
structures have time to form during solidification of the Ni-5Zr alloy due
to the large solidification range of the material (172 K).

Single-track fusion boundaries are observable in the WDS maps taken
at the edges of each melt pool (Fig. 7). Around 4 at% Cu depletion is
observed at the fusion boundary of the NiCu single track, along with
columnar segregation structures inside the melt pool. This Cu depletion
is indicative of a transient at the fusion boundary as the solidification
grows by accelerating from zero velocity. Low growth rates during so-
lidification can explain the appearance of planar structures near the
fusion boundary. Solidification starts at the fusion boundary once the
material drops below the liquidus temperature. The planar structure at
the fusion boundary transitions to a columnar segregation structure as
the temperature drops below the liquidus and the growth rate surpasses
the constitutional supercooling limit. The microstructure differs greatly
at each location of the melt pool in NiCu, showing cellular segregation at
the top and columnar segregation at the edge. This is due to variation in
thermal conditions and growth velocities at different locations along the
solidification front. However, the cell structures at the top of the NiCu
melt pool display similar sizes, which suggests that the cells are in a

Cuat.%
25

Fig. 7. Optical micrographs of single tracks for each alloying composition printed at 259 W and 0.05 m/s are displayed in the left column with red and blue boxes
indicating where WDS maps were conducted. The middle column shows WDS maps taken from the top of each melt pool, and the right column shows maps taken
from the edges of each melt pool as color coded in the optical micrographs. White dotted lines indicate the boundaries of single tracks that are difficult to distinguish
in these images. The white dotted arrow indicates the edge of the NiAl single track. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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steady-state condition at that location. NiAl similarly displays Al
depletion at the melt pool boundary. However, the solute Al atoms have
far less time to segregate out of the matrix due to the lower solidification
range (AT) and the effect is much smaller than in NiCu (< 1 at%
depletion). Ni-5Zr displays a large homogenous region along the melt
pool boundary and Zr depleted dendrite structures inside the melt pool
at the edge location. This may indicate the opposite effect of those
observed in NiCu and NiAl, where Zr segregates at the melt pool
boundary enough to solidify as a eutectic. It is also possible that mixing
between the molten pool and the observed local NisZr phases in the base
plate caused a local increase of Zr during the laser scan. This would
explain the compositional homogeneity observed along the melt pool
boundary in Ni-5Zr, which is very similar to what is observed at the top
of the eutectic Ni-8.8Zr single track. The Ni-8.8Zr alloy displays an
immediate transition between the molten pool and the eutectic base
plate, with no Zr depletion observed. The complete homogeneity within
the Ni-8.8Zr melt pool indicates how critical the freezing range of an
alloy is to microstructure in additively manufactured materials.

Figs. 8 and 9 display optical micrographs and WDS maps of single
tracks at several parameter sets with lower energy densities than Fig. 7.
Cellular microsegregation structures are faintly observable in both the
top and edge locations of NiCu printed at P = 212 W, v = 0.3 m/s, and
LED = 706.7 J/m. At these parameters, less Cu segregation is observed
(up to 3.5 at%) compared to single tracks printed at 5180 J/m (up to
5 at%). No significant features are observed in the NiAl WDS maps in
Fig. 8, indicating that solidification speeds at these parameters are too
high for even solute depletion at the melt pool boundary. Similarly to
NiCu, Ni-5Zr displays lower relative amounts of segregation (up to 4 at%
Zr) compared to tracks printed at 5180 J/m (up to 6 at%). Ni-8.8Zr does

P =212 (W), V =0.3 (m/s)

Ni-20at.% Cu

Ni-5at.% Al

Ni-5at.% Zr

Ni-8.8at.% Zr

Melt Pool Top
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not show significant differences in microstructure between the tracks
printed at 706.7 J/m and 5180 J/m, displaying complete compositional
homogeneity at both parameter sets. Fig. 9 shows single tracks printed at
two parameter sets ({P = 165 W, v = 0.55 m/s, LED = 300 J/m}, and
{P =118 W, v = 0.8 m/s, LED = 147.5 J/m}). NiCu, NiAl, and Ni-8.8Zr
display planar microstructures at both parameter sets. Compositional
fluctuation is observed in the WDS maps of NiCu, which may be due to
local compositional differences in the baseplate and mixing between the
base plate and the deposited powder. Ni-5Zr displays faint dendrite
structures in the single track printed at 300 J/m, however, a planar
structure is observed at 147.5 J/m. Variations in composition for Ni-5Zr
printed at 147.5 J/m can be similarly attributed to local compositional
differences between the powder and baseplate.

3.4. Printability-microstructure processing maps and cube sample
validation

PDAS is measured for each of the 46 single tracks across the four
alloy systems to map the evolution of microsegregation across the laser
power — scan speed parameter space. Fig. 10 displays backscattered
electron micrographs of etched NiCu single track cross sections that
exemplify changes in PDAS at four different parameter sets. These mi-
crographs demonstrate significant increases in dendrite size with
increasing energy density. This is due to the changes in temperature
gradient (G) and growth rate (R) with changing process parameters.
Decreasing heat input results in smaller molten pools and a higher
cooling rate (G x R), whereas increasing heat input results in larger
molten pools and lower cooling rates [23]. Lower relative cooling rates
in the LPBF process promote the growth of larger dendritic structures

Melt Pool Edge Crats

Fig. 8. Optical micrographs of single tracks for each alloying composition printed at 212 W and 0.30 m/s are displayed in the left column with red and blue boxes
indicating where WDS maps were conducted. The middle column shows WDS maps taken from the top of each melt pool, and the right column shows maps taken
from the edges of each melt pool as color coded in the optical micrographs. White dotted lines indicate the boundaries of single tracks that are difficult to distinguish
in these images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Optical micrographs of single tracks for each alloying composition printed at {165 W and 0.55 m/s} and {118 W and 0.80 m/s} are displayed to the left of
their associated WDS maps. All WDS maps were taken from the top of each melt pool. White dotted lines indicate the boundaries of single tracks that are difficult to

distinguish in these images.

and vice versa. The heat maps plotted in Fig. 11 show dendrite arm
spacing quantified across the parameter space for each material. NiCu is
observed to have dendritic structures between laser powers of 70-260 W
and scan speed between 0 and 0.7 m/s, whereas dendrites are observed
between 70 and 260 W and 0-1.3 m/s in Ni-5Zr. This larger range of
dendritic growth in Ni-5Zr can be attributed to the larger solidification
range and lower partition coefficient (172 K and 0.11 respectively)
compared to NiCu (20 K and 0.74 respectively). However, the differ-
ences in scale bars for the two alloys in Fig. 11 indicate that larger PDAS
is observed in NiCu compared to Ni-5Zr. The heat maps also indicate
that planar growth is observed throughout the parameter space for both
NiAl and Ni-8.8Zr. These maps give a qualitative indication of expected
dendritic growth throughout the parameter space for each of the alloys.

To validate the PDAS heat maps displayed in Fig. 11, the cubes are
printed at three locations in the parameter space based on both the
porosity processing maps and PDAS heat maps. Figs. 12-15 display the
combined porosity-microstructure processing maps for NiCu, NiAl, Ni-
5Zr, and Ni-8.8Zr respectively, as well as WDS maps for each of the
printed cubes. Compositional measurements from the as-printed cubes
correlate well with expected dendrite growth displayed in each of the
processing maps. Cubes selected at PDAS values of 0.7 um, 0.4 um, and
0 um from the NiCu processing map in Fig. 12 demonstrate this corre-
lation, showing significant dendrite structures at the 0.7 um PDAS
parameter set, moderate dendrite structures at 0.4 um, and a planar
microstructure at 0 um. Solute depletion along melt pool boundaries is
observable in each of the NiCu cubes. Similarly, Fig. 14 displays sig-
nificant segregation of Zr (up to 4 at%) in cubes printed at PDAS values
of 0.3 ym and 0.25 pm in the processing map, but shows lower relative
amounts of Zr segregation (~1 at%) at 0.15 um. Both NiAl and Ni-8.8Zr
in Figs. 13 and 15 display planar microstructures in cubes across the
parameter space, as is expected from the processing maps. Additionally,
a general depletion of Al is observed in Fig. 13 with an increase in laser
power. This may be due to the evaporation of Al in the as-printed bulk
material under higher laser powers. These results validate that obser-
vations of microsegregation and dendrite size in single tracks can be

11

used to qualitatively assess microstructural development in printed parts
and generate microstructure processing maps for L-PBF.

3.5. Statistical analysis and empirical equation for PDAS in L-PBF

Several equations have been proposed to predict PDAS for alloys
subjected to rapid solidification conditions. The Kurz-Fisher [59] and
Trivedi [60] models predict PDAS as a function of material properties
such as the equilibrium and rapid solidification ranges, liquid diffusion
coefficient, Gibbs-Thomson coefficient, and partition coefficient as well
as solidification conditions such as the temperature gradient and solid-
ification rate. However, material properties such as the Gibbs-Thomson
coefficient and liquid diffusion coefficient are not easily obtainable for
new alloy systems. Additionally, L-PBF conditions can vary locally
throughout a build and solidification conditions are subject to signifi-
cant variation depending on the local thermal histories and heat dissi-
pation mechanisms. These variables do not readily translate to usable
parameter input data or material selection constraints. A model pre-
dicting PDAS as a function of easily obtainable material properties and
L-PBF process parameters such as laser power and scan speed would
therefore be useful in determining PDAS. Single track data from this
study is used to statistically test the sensitivity of PDAS values to ma-
terial properties and process parameters, and an empirical equation is
developed to predict PDAS in L-PBF.

The dataset presented in this study is considered sparse and high
dimensional. To better understand the influence of different variables on
PDAS, as well as to create predictive models, materials informatics
strategies were employed. Materials informatics allows analysis of high-
dimensional materials data through machine learning [61,62]. Features
included in the database consisted of the material properties listed in
Table 2, single track process parameters and PDAS values, and other
available thermodynamic properties of the alloy systems. The PDAS
dataset collected from the four alloys was initially sampled to obtain an
optimal distribution of data representative of the PDAS value range. This
required many of the PDAS values equal to zero to be dropped from the
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Ni-20at.% Cu

P =71 (W), V = 0.05 (m/s), LED = 1420 J/m

P =165 (W), V = 0.05 (m/s), LED = 3300 J/m

10 um

P =259 (W), V = 0.05 (m/s), LED = 5180 J/m

Fig. 10. Backscattered electron images taken of Ni-20 at% Cu single tracks printed at {71 W and 0.05 m/s}, {165 W and 0.05 m/s}, {212 W and 0.05 m/s}, and
{259 W and 0.05 m/s}. These micrographs display the significant differences in cellular-dendritic segregation structures at different locations in the laser power-scan

speed parameter space.

analysis. The dataset was then split into two parts with 80% of the data
being used to train the machine learning model and the remaining 20%
of the data used to test model accuracy. Primary analysis of the data was
done using a Random Forest regression technique [63] and the model
performance values for the test set are displayed in Fig. 16a. The trained
model predicted the test set with a root mean squared error of 0.12 pm
and a mean absolute error of 0.08 um, indicating a high degree of model
accuracy. Feature sensitivity analysis was used to identify feature
importance and determined that the most important features contrib-
uting to PDAS were: scan speed, melting temperature, laser power,
partition coefficient, and freezing range, as can be seen in Fig. 16b. Scan
speed is observed to have the most substantial impact on PDAS. Laser
scan speed is highly correlated with solidification growth rate since the
tail of a molten pool is expected to have a growth rate equal to the scan
speed of the laser [14]. This result is therefore consistent with expec-
tations of laser scan speed’s effect on dendrite growth. PDAS is also
observed to be sensitive to alloy melting temperature. However, this
sensitivity may be inflated by the relatively low number of alloy systems
used as training data for this analysis as well as the omission of many of
the PDAS values equal to zero as previously discussed.

Feature engineering and generation was used to create new features
using mathematical operators and combinations of process parameters
and material properties. A linear regression model was then used to
evaluate the accuracy of the new features in predicting PDAS. Linear
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regression is employed for its simplicity and low computational cost.
Features that showed poor predictive accuracy were dropped from the
model, and those with good performance were improved upon in an
iterative process. This feature engineering and selection process is
described in more detail by Horn et al. [64]. No more than 6 parameter
and material property combinations were used to generate a new
feature. After numerous iterations, the following empirical formula was
derived:
PO'ISATO'%kSJSCZ
Appas = Log(w) +16.10, (2)
Here, P is laser power, v is laser scan speed, AT equilibrium solidi-
fication range, k. is the partition coefficient, c, is the specific heat ca-
pacity, Ty, is the alloy melting temperature, and Appas is the primary
dendrite arm spacing in um. This equation is fit to single track PDAS data
in Fig. 16c and exhibits a root mean squared error of 0.0842 ym and a
mean absolute error of 0.0641 um. The feature engineered model takes a
similar approach to the classical mass balance and minimum under-
cooling PDAS prediction model developed by Hunt [65] in that k. and
AT are multiplied in the expression. This relationship illustrates the
differences in segregation across the parameter space between the al-
loys. If the k. and AT values are multiplied for each alloy, NiCu has a k.
x AT =~ 15 and Ni-5Zr has a value ~ 19, whereas NiAl and Ni-8.8Zr have
values of ke x AT near or equal to zero. However, this does not explain
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Fig. 11. Primary dendrite arm spacing measurements taken from 46 single tracks across the parameter space are interpolated using multilevel B-splines approxi-
mation to construct heat maps of each alloy. Observations of planar growth instead of cellular-dendritic growth structures are indicated by zero values in the heat
maps. The markers displayed inside the heat maps indicate the location of 46 single tracks that PDAS measurements were taken from.
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Fig. 12. A combined Porosity-Microstructure processing map for Ni-20 at% Cu, as well as wavelength dispersive spectroscopy (WDS) composition maps taken from
each of the printed cubes listed in Table 2. The cubes were printed at {P =115 W, v = 0.05 m/s, h = 200 um}, {P = 120 W, v=0.30 m/s, h = 110 um}, and
{P=225W, v=0.90 m/s, h = 100 um}.
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Fig. 13. A combined Porosity-Microstructure processing map for Ni-5 at% Al, as well as wavelength dispersive spectroscopy (WDS) composition maps taken from
each of the printed cubes listed in Table 2. The cubes were printed at {P =100 W, v = 0.05 m/s, h = 130 pm}, {P =125 W, v = 0.30 m/s, h = 85 um}, and

{P =240 W, v = 0.90 m/s, h = 85 um}.
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Fig. 14. A combined Porosity-Microstructure processing map for Ni-5 at% Zr, as well as wavelength dispersive spectroscopy (WDS) composition maps taken from
each of the printed cubes listed in Table 2. The cubes were printed at {P =75W, v=0.05m/s, h =120 ym}, {P =110 W, v = 0.30 m/s, h = 125 um}, and

{P=140 W, v =0.90 m/s, h = 60 pm}.

why the NiCu single tracks were observed to have PDAS values larger
than Ni-5Zr. Thermal properties not reported for these alloy systems
such as the liquid diffusion coefficients, Gibbs-Thomson coefficients,
and thermal conductivities may play a role in the observed differences in
absolute PDAS values. Additionally, the inverse relationship between k.
and AT and their effect on dendrite growth may explain why PDAS does

14

not appear to be as sensitive to these values as v and P. In general, a
larger solidification range implies a smaller partition coefficient. When
the quantities are multiplied this inverse relationship results in them
‘canceling’ each other. In contrast, the other important factors (Tp, P,
and v) are completely independent of each other and their effect on
PDAS is more direct. Due to the limited dataset generated by this study it
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Fig. 15. A combined Porosity-Microstructure processing map for Ni-8.8 at% Zr, as well as wavelength dispersive spectroscopy (WDS) composition maps taken from
each of the printed cubes listed in Table 2. The cubes were printed at {P =80 W, v =0.05m/s, h = 165 um}, {P =120 W, v = 0.30 m/s, h = 160 pm}, and

{P=130W, v=0.90 m/s, h = 60 pm}.

is likely that the empirical model will need modification to be general-
izable for significantly different alloy systems. However, a generalizable
model using L-PBF process parameters and simple material property
inputs will likely prove invaluable for designing new alloys for AM.

4. Summary and conclusions

The present work reports the effects of alloying composition, phase
diagram features, and material properties on the printability and so-
lidification microstructures in four binary nickel-based alloys, namely,
Ni-20 at% Cu, Ni-5 at% Al, Ni-5 at% Zr, and Ni-8.8 at% Zr. A method-
ology for developing porosity-microstructure processing maps across the
laser power — scan speed parameter space is established and validated
for each of these alloys to determine how alloy composition and material
properties affect printability and microstructure in L-PBF. The following
conclusions can be drawn from this study:

o Alloy melting temperature is observed to have a significant effect on
both melt pool dimensions and printability in L-PBF. Alloys with high
melting temperatures require more energy to melt, resulting in
shallower melt pool structures. These shallow melt pools result in
larger lack of fusion boundaries in the processing maps developed in
this study, shrinking the parameter space expected to produce
porosity free parts. However, keyhole defect boundaries in these
processing maps are oppositely affected by melting temperature.
Larger keyhole defect regions are observed in alloys with lower
melting temperatures. The lack of fusion boundary is more sensitive
to this phenomenon than the keyhole boundary, resulting in larger
optimal parameter ranges for alloys with lower melting
temperatures.

Solidification temperature range and partition coefficient have a
substantial impact on microsegregation in L-PBF. A wider region of
the L-PBF parameter space is expected to result in segregation in
alloys with large solidification ranges and small partition co-
efficients. Dendrite size and segregation amount are also highly
dependent on scan speed and, to a lesser extent, laser power. Larger
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dendrites with increased solute segregation form when using low
scan speeds and high laser powers.

e Quantification of primary dendrite arm spacing (PDAS) in single
track scans across the parameter space allowed for the construction
of processing maps qualitatively detailing expected segregation
across the parameter space. These processing maps were successful
at predicting the extent of solute segregation as demonstrated in four
Ni-based alloys. Control over microsegregation can be achieved by
optimizing process parameters utilizing these processing maps.

e An empirical equation to predict PDAS using L-PBF process param-
eters and simple material properties was proposed in this study. This
model fit well to the measured single track PDAS data. However, the
model will likely need modification before it can be generalized to
alloys significantly different from those presented here.

o The methodology introduced in this study allows for the successful
development of processing maps capable of predicting both porosity
formation (and thus the elimination of porosity) and micro-
segregation in bulk parts built using L-PBF. In addition to easing
process parameter optimization for new alloy systems, this meth-
odology also provides a pathway to evaluate and compare print-
ability across alloy systems.
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