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a b s t r a c t

Several important problems in multi-agent systems, machine learning, data mining, scheduling and
others, may be formulated as set function maximization problems subject to cardinality constraints.
In such problems, the set (objective) functions of interest often have monotonicity and submodularity
properties. Hence, the class of monotone submodular set function maximization problems has been
widely studied in the literature. Owing to its challenging nature, almost all existing solutions for
this class of problems are based on greedy algorithms. A seminal work on this topic has exploited
the submodularity property to prove a (1-1/e) performance bound for such greedy solutions. More
recent literature on this topic has been focused on exploiting different curvature properties to establish
improved (tighter) performance bounds. However, such improvements come at the cost of enforcing
additional assumptions and increasing computational complexity while facing significant inherent
limitations. In this paper, first, a brief review of existing performance bounds is provided. Then, a
new performance bound that does not require any additional assumptions and is both practical and
computationally inexpensive is proposed. In particular, this new performance bound is established
based on a series of upper bounds derived for the objective function that can be computed in parallel
with the execution of the greedy algorithm. Finally, to highlight the effectiveness of the proposed
performance bound, extensive numerical results obtained from a well-known class of multi-agent
coverage problems are provided.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

The salient feature that characterizes a submodular set func-
ion is its diminishing returns property. Simply, this property
means that the marginal gain (return) of adding an element to
a set decreases as the set grows (accumulates new elements). In
this sense, submodularity bears a similarity to concavity. How-
ever, it has been established that maximizing submodular set
functions is NP-hard (Corneuejols, Fisher, & Nemhauser, 1977;
emhauser, Wolsey, & Fisher, 1978) while minimizing them can
e achieved in polynomial time (Grötschel, Lovász, & Schrijver,
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1981; Schrijver, 2000). Therefore, submodularity also has a re-
semblance to convexity. Despite this duality, submodular set
functions appear naturally in many real-world problems such as
in the coverage control (Sun, Cassandras, & Meng, 2019; Sun,
Welikala, & Cassandras, 2020), persistent monitoring (Rezazadeh
& Kia, 2019), feature selection (Das & Kempe, 2008), document
summarization (Lin & Bilmes, 2011), image segmentation (Jegelka
& Bilmes, 2011), marketing (Kempe, Kleinberg, & Tardos, 2003),
ata mining (Mirzasoleiman, Karbasi, Sarkar, & Krause, 2013), ma-
hine scheduling (Liu, 2020) and recommender systems (El-Arini
Guestrin, 2011).
Motivated by its applicability, submodular maximization prob-

ems have been theoretically studied in the literature under a
iverse set of conditions (Liu, Chong, Pezeshki, & Zhang, 2020).
or example, the submodular objective function is assumed to
e: monotone in Wang, Moran, Wang, and Pan (2016), non-
onotone in Fahrbach, Mirrokni, and Zadimoghaddam (2019)
nd weakly submodular in Khanna, Elenberg, Dimakis, Negah-
an, and Ghosh (2017). Similarly, different types of set variable
onstraints such as cardinality (Nemhauser et al., 1978), ma-
roid (Fisher, Nemhauser, & Wolsey, 1978), knapsack (Wolsey,
982) and matchoid (Badanidiyuru, Karbasi, Kazemi, & Vondrak,

https://doi.org/10.1016/j.automatica.2022.110493
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2022.110493&domain=pdf
mailto:wwelikal@nd.edu
mailto:cgc@bu.edu
mailto:hlin1@nd.edu
mailto:pantsakl@nd.edu
https://doi.org/10.1016/j.automatica.2022.110493


S. Welikala, C.G. Cassandras, H. Lin et al. Automatica 144 (2022) 110493

2
t
u
o
C
e
s
i
s
m
c
&

e
p

b
c
s
t
e
β

n
t

e
a

020) have been considered throughout the literature. Even
hough submodular maximization problems have been studied
nder various conditions, their solutions are predominantly based
n greedy algorithms. In this paper, similar to Conforti and
ornuéjols (1984), Liu, Chong, and Pezeshki (2018), Nemhauser
t al. (1978) and Wang et al. (2016), we consider the class of
ubmodular maximization problems where the objective function
s monotone, the set variable is cardinality constrained, and the
olution is obtained by a vanilla greedy algorithm. Such maxi-
ization problems arise naturally from applications like coverage
ontrol (Sun et al., 2019, 2020), persistent monitoring (Rezazadeh
Kia, 2019), machine scheduling (Liu, 2020) and resource allo-

cation (Liu et al., 2020). However, in contrast to the prior work
in Conforti and Cornuéjols (1984), Liu et al. (2018), Nemhauser
t al. (1978) and Wang et al. (2016), here we propose a novel
erformance bound for the obtained greedy solutions.
Formally, a performance bound of a greedy solution is a lower

ound to the ratio f G/f ∗ so that β ≤ f G/f ∗, where f G and f ∗

orrespond to the objective function values under the greedy
olution and the global optimal solution, respectively. For mono-
one submodular objective functions, the seminal papers Fisher
t al. (1978) and Nemhauser et al. (1978) respectively show that
=

1
2 when the set variable is constrained over a general matroid

and β = (1 − (1 −
1
N )

N ) when the set variable’s cardinality is
constrained by N . Note that having a performance bound closer
to 1 is preferred, as it implies that the greedy solution is almost
globally optimal.

Recent work on this class of problems has shown an in-
creasing interest in improving the aforementioned conventional
performance bounds by exploiting structural properties of the
underlying problem. The typical approach is first to define a
curvature measure that characterizes the structural properties of
the underlying objective function, the feasible space and the gen-
erated greedy solution. Then, based on this curvature measure,
an improved (closer to 1 compared to conventional counter-
parts) performance bound is established. For example, Conforti
and Cornuéjols (1984) defined a curvature measure named total
curvature based on the nature of the objective function and the
feasible space. Then, a provably improved performance bound
was developed using the said total curvature measure. The au-
thors of Conforti and Cornuéjols (1984) also proposed another
curvature metric named greedy curvature based on the generated
greedy solution and used it to develop another performance
bound. The same procedure was followed in Liu et al. (2018)
and Wang et al. (2016) to propose two new curvature metrics
amed elemental curvature and partial curvature respectively and
hen to develop corresponding performance bounds.

In this work, we first review the aforementioned total, greedy,
lemental and partial curvature measures proposed in Conforti
nd Cornuéjols (1984), Liu et al. (2018) and Wang et al. (2016)

while outlining their strengths and weaknesses. In particular,
we point out that some of these curvature measures can be:
(i) computationally expensive to obtain, (ii) require enforcing
additional assumptions and (iii) may have inherent limitations
that prevent them from providing improved performance bounds
(e.g., if the submodularity property of the objective function is
strong or weak). We next propose a novel curvature measure
(which we named the extended greedy curvature) along with a
corresponding performance bound that can be computed effi-
ciently in parallel with the execution of the greedy algorithm.
We show that this performance bound may be improved by
executing extra greedy iterations (hence the name ‘‘extended’’).
This new performance bound does not require any additional
assumptions, and it also does not suffer from the said inherent
limitations of its predecessors. Finally, we use a widely studied
class of multi-agent coverage problems (Sun et al., 2019, 2020)
2

and implement all the aforementioned performance bounds to
highlight the effectiveness of the proposed performance bound
in this paper.

The paper is organized as follows. The used preliminary con-
cepts and notations are introduced in Section 2. A brief review of
existing performance bounds is provided in Section 3. Section 4
presents the details of the proposed new performance bound. The
multi-agent coverage problem setup and the observed numerical
results are reported in Section 5 before concluding the paper in
Section 6.

2. Preliminaries

We consider X = {x1, x2, . . . , xM} to be the finite ground
set that represents all possible options/actions available. The set
function f : 2X

→ R≥0 is considered as the objective function
where 2X denotes the power set of X . We use the notation

∆f (x|A) ≜ f (A ∪ {x}) − f (A), (1)

to represent themarginal gain value of adding an element x ∈ X\A
to the set A ⊂ X (where ‘‘·\·’’ stands for the set subtraction
operation). Note that this notation can also be used more liberally
as ∆f (B|A) ≜ f (A∪ B)− f (A) for any A, B ⊆ X (here the set B ⊆ X
is allowed to be such that A ∩ B ̸= ∅).

Definition 1. Over the ground set X , the set function f is:

(a) normalized if f (∅) = 0,
(b) monotone if f (B) ≤ f (A) for all B, A where B ⊆ A ⊆ X ,
(c) submodular if ∆f (x|A) ≤ ∆f (x|B) for all x, A, B where B ⊆

A ⊆ X and x ∈ X\A, or equivalently, if f (A ∪ B) + f (A ∩ B) ≤

f (A) + f (B) for all A, B ⊆ X ,
(d) a polymatroid set function (Liu et al., 2018) if it is normalized,

monotone and submodular.

Note that the first equivalent condition given for the submodu-
larity property (in Definition 1(c)) is more commonly known as
the diminishing returns condition. The following lemma presents a
preliminary result regarding the marginal gain function that will
be exploited in the sequel.

Lemma 1. If f (Y ) is a polymatroid set function over the ground set
X, for a fixed set A ⊂ X, the set function g(Y ) ≜ ∆f (Y |A) over the
set X\A is also a polymatroid set function.

Proof. Since g(∅) = ∆f (∅|A) = f (A ∪ ∅) − f (A) = 0, g(Y ) is
normalized. According to the definition of g(Y ) and (1), for any
set B ∈ X\A, g(B) = ∆f (B|A) = f (B ∪ A) − f (A). Similarly,
for any set C ∈ X\A, g(C) = f (C ∪ A) − f (A). Now, in order
for g(Y ) to be monotone, according to Definition 1(b), for any
B ⊆ C ⊆ (X\A), g(B) ≤ g(A), i.e., f (B∪A) ≤ f (C ∪A). Note that the
latter inequality holds true as f is monotone over the set X and
(B∪ A) ⊆ (C ∪ A) ⊆ X . Hence, g(Y ) is monotone over the set X\A.
Similarly, the inequality condition given in Definition 1(c) can be
established for g(Y ) to prove its submodularity. Hence, g(Y ) is a
polymatroid set function over the set X\A.

Submodular maximization problem. Recall that the domain of the
objective function f (Y ) is the power set 2X (by definition). How-
ever, depending on the application, the number of options that
can be selected from the ground set X to form the set variable
Y may be limited. To this end, we assume that only N options
can be selected from X , where 1 < N < M = |X | and ‘‘| · |’’
represents the cardinality operator. Formally, this constraint on
Y is represented by writing Y ∈ I N where I N ≜ {Y : Y ⊆

X, |Y | ≤ N}. We also point out that the set system (X, I N ) is

commonly known in the literature (Liu et al., 2018) as a uniform
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atroid of rank N . We now can state the considered submodular
aximization problem in this paper as follows.
For a given polymatroid set function f : 2X

→ R≥0 over the
niform matroid (X, I N ) find the optimal set Y ∗ where
∗

= argmax
Y∈I N

f (Y ). (2)

The above problem is an NP-hard combinatorial optimization
problem that has been widely studied in the literature (Liu et al.,
2018). One trivial approach to solve (2) is to use a brute force
search algorithm that evaluates f over each element in I N . While
such an approach can give the exact global optimal Y ∗, in many
applications of interest, it is computationally intractable due to
the involved search space size: |I N

| =
∑N

r=0
M!

r!(M−r)! , which is of
omplexity O(M!).

he greedy solution. As an alternative, a widely popular computa-
ionally efficient approach to generate a reasonable approximate
sub-optimal) solution to (2) is to use a greedy algorithm. A typical
reedy algorithm (considered in this paper as well as in many
thers, including Conforti & Cornuéjols, 1984; Liu et al., 2018;
emhauser et al., 1978; Wang et al., 2016) is given in Algorithm 1.
n the remainder of this paper, the solution generated by this
reedy algorithm is referred to as the greedy solution and is
enoted by Y G.

Algorithm 1 The greedy algorithm to solve (2)

1: i = 0; Z i
= ∅; ▷ Greedy iteration index and solution

2: for i = 1, 2, 3, . . . ,N do
3: z i = argmax{x:Z i−1∪{x}∈I N } ∆f (x|Z i−1); ▷ New option
4: Z i

= Z i−1
∪ {z i}; ▷ Append the new option

5: end for
6: Y G

:= ZN ; Return Y G;

In practice, the performance of the greedy solution is usually
ub-optimal (i.e., f (Y G) ≤ f (Y ∗)). However, its proximity to
he global optimal performance can be characterized using the
oncept of performance bound defined next.

efinition 2. A valid performance bound (denoted by β) for the
greedy solution YG obtained for the problem (2) is a theoretically
stablished lower bound for the ratio f (YG)

f (Y∗) , i.e.,

≤
f (Y G)
f (Y ∗)

. (3)

Note that if the performance bound β is close to 1, it implies
that the performance of the greedy solution is close to that of the
global optimal solution (i.e., f (Y G) ≃ f (Y ∗)). Hence, β can also be
een as a measure of effectiveness of using a greedy algorithm to
olve the problem (2).
For the considered class of submodular maximization prob-

ems in (2), the seminal paper (Nemhauser et al., 1978) has
stablished the performance bound (denoted by βf and referred
o as the fundamental performance bound):

f ≜ 1 −

(
1 −

1
N

)N

≤
f (Y G)
f (Y ∗)

. (4)

Note that βf > 1−
1
e ≃ 0.6321 for any N < ∞ and limN→∞ βf =

(1−
1
e ). This means that for any submodular maximization prob-

em of the form (2), the corresponding greedy solution will al-
ays perform not worse than 63.21% of the maximum achievable
erformance level.
3

Remark 1. Upon obtaining a greedy solution, there are numer-
ous established ways to improve it further. For example, Sun
t al. (2019, 2020) proposed (continuous) gradient ascent pro-
esses while Nemhauser et al. (1978) and Welikala and Cas-
andras (2020, 2021) proposed (discrete) interchange schemes.
ven though this paper does not consider such an improvement
cheme, the following proposition can be made regarding how
n established performance bound for a greedy solution should
e modified upon an improvement to that greedy solution.

roposition 1. Consider a greedy solution Y G that has a perfor-
ance bound β . Upon executing an improvement scheme on YG, if

¯ G
∈ I N is found with f (Ȳ G) > f (Y G), its performance bound is

¯ ≜ β ∗
f (ȲG)
f (YG)

≤
f (ȲG)
f (Y∗) and β̄ > β .

roof. The proof follows from multiplying both sides of (3) by
f (ȲG)
f (YG)

and noticing the fact that f (Ȳ G) > f (Y G).

Finally, note that in the sequel we use the notation Z i
=

{z1, z2, . . . , z i} (with Z0
= ∅ and ZN

= Y G) to represent the
greedy solution constructed after running i greedy iterations in
Algorithm 1. Note also that even though Algorithm 1 is limited
to running only N greedy iterations, we use this (Z i, z i) notation
more liberally for any i ∈ {0, 1, 2, . . . ,M}.

3. A brief review of existing performance bounds

In this section, we briefly review several tighter performance
bounds (i.e., closer to 1 compared to βf in (4)) established in the
literature for the greedy solution given by Algorithm 1 for the
class of problems in (2). To the best of the authors’ knowledge,
the list of performance bounds reviewed here is exhaustive. Note
also that even though we consider the same greedy solution
Y G, having a tighter performance bound is still important as it
allows us to: (i) have a more accurate sense of proximity of Y G

to the global optimal Y ∗ and (ii) make more informed decisions
regarding spending extra resources to seek an improved solution
(as mentioned in Remark 1).

As we will see next, each of these tighter performance bounds
has been established using a curvature measure that characterizes
the structural properties of the objective function f , the ground
set X and the feasible space I N involved in the considered prob-
lem (2). In particular, four such established curvature measures
and their respective performance bounds are briefly reviewed in
this section, outlining their properties, strengths and weaknesses.

3.1. Total curvature (Conforti & Cornuéjols, 1984)

For the problem (2), the total curvature measure αt is defined
as

αt ≜ max
x∈X

[
1 −

∆f (x|X\{x})
∆f (x|∅)

]
. (5)

The corresponding performance bound βt is given by

βt ≜
1
αt

[
1 −

(
1 −

αt

N

)N
]

≤
f (Y G)
f (Y ∗)

. (6)

Note that 0 ≤ αt ≤ 1 and βt is a decreasing function with respect
to αt . Therefore, if αt → 0, the corresponding performance bound
βt → 1. In contrast, if αt → 1, the corresponding performance
ound βt → βf (recall that βf is given in (4)).
Note that the αt expression in (5) can be written as

αt = 1 − min
[

∆f (x|X\{x})
]

.

x∈X ∆f (x|∅)
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ince f is submodular over X , ∆f (x|X\{x}) ≤ f (x|∅), ∀x ∈

X . Therefore, αt will provide an improved performance bound
(i.e., βt → 1) if f and X in (2) are such that ∆f (x|∅) ≃

∆f (x|X\{x}), ∀x ∈ X , i.e., in other words, if the submodularity
property is weak (see also Remark 2 given below). Moreover,
s ∆f (x|X\{x}) = f (X) − f (X\{x}), evaluating αt requires eval-
ating f (X) - which in some applications might be ill-defined
e.g., see Sun et al., 2020) and also computationally expensive (as
often f (Y ) is of complexity O(|Y |)).

Remark 2. In the remainder of this paper, we use notions of
‘‘weak’’ and ‘‘strong’’ to qualify the submodularity; they can be
inferred based on the respective qualitative properties: the weak-
ness or strength of satisfaction of an inequality based on the
submodularity property. For example, as discussed above, we
refer to the submodularity property of f over X as weak or strong
based on whether ∆f (x|X\{x}) ≃ f (x|∅), ∀x ∈ X or ∆f (x|X\{x}) ≪

(x|∅), ∀x ∈ X , respectively.

.2. Greedy curvature (Conforti & Cornuéjols, 1984)

The greedy curvature measure αg is computed based on suc-
cessive greedy solutions that the greedy algorithm generates
(i.e., based on Z0, . . . , ZN ). Specifically, αg is defined as

αg ≜ max
0≤i≤N−1

[
max
x∈X i

(
1 −

∆f (x|Z i)
∆f (x|∅)

)]
, (7)

where X i ≜ {x : x ∈ X\Z i, (Z i
∪ {x}) ∈ I N

} (the set of feasible
ptions in the (i + 1)th greedy iteration). The corresponding
erformance bound βg is given by

g ≜ 1 − αg

(
1 −

1
N

)
≤

f (Y G)
f (Y ∗)

. (8)

Note that 0 ≤ αg ≤ 1 and βg is a decreasing function in αg .
herefore, when αg → 0, βg → 1. However, when αg → 1,
nlike in the case of βt , βg →

1
N < βf .

The expression of αg in (7) can be written as

g = 1 − min
0≤i≤N−1

[
min
x∈X i

(
∆f (x|Z i)
∆f (x|∅)

)]
.

ince f is submodular, ∆f (x|Z i) ≤ ∆f (x|∅). Therefore, to get an
mproved performance bound (i.e., βg → 1), f , X and Z i, i ∈

0, 1, . . . ,N} of the problem (2) should be such that ∆f (x|Z i) ≃

f (x|∅), ∀x ∈ X\Z i, i ∈ {0, 1, . . . ,N − 1}, i.e., in other words,
he submodularity property should be weak. Moreover, note that
g in (8) can be computed in parallel with the execution of
he greedy algorithm without requiring any additional numerical
valuations of f . Hence, unlike βt in (6), βg is computationally
nexpensive as well as always fully-defined.

.3. Elemental curvature (Wang et al., 2016)

For the problem (2), the elemental curvature measure αe is
efined as

e ≜ max
(Y ,xi,xj):Y⊂X,

xi,xj∈X\Y , xi ̸=xj .

[
∆f (xi|Y ∪ {xj})

∆f (xi|Y )

]
. (9)

he corresponding performance bound βe is given by

e ≜ 1 −

(
αe + α2

e + · · · + αN−1
e

1 + αe + α2
e + · · · + αN−1

e

)N

≤
f (Y G)
f (Y ∗)

. (10)

ote that 0 ≤ αe ≤ 1 and βe is a decreasing function with respect
to αe. Therefore, when αe → 0, βe → 1 and when αe → 1, similar
to the case of β , β → β .
t e f

4

It can be shown that f is submodular over X if and only if
∆f (xi|Y ∪ {xj}) ≤ ∆f (xi|Y ) for all feasible (Y , xi, xj) choices con-
sidered in (9) (see Nemhauser et al., 1978, Prop. 2.1). Therefore, if
f (xi|Y ∪ {xj}) = ∆f (xi|Y ) occurs for some feasible combination
f (Y , xi, xj), it means f is modular in that region. According to (9),
uch an existence of a modular region of f over X causes αe = 1
esulting βe = βf . A trivial situation where this (βe = βf ) occurs
s when f and X in problem (2) are such that ∃xi, xj ∈ X with
i ̸= xj where f ({xi}) + f ({xj}) = f ({xi, xj}). Therefore, it is clear
hat the elemental curvature based performance bound βe fails
i.e., βe = βf occurs) unless f is strictly submodular everywhere
ver its domain, i.e., ∆f (xi|Y ∪ {xj}) ≪ ∆f (xi|Y ) for all feasible
Y , xi, xj) choices. We highlight that this particular behavior of βe
ontrasts from that of βt and βg discussed before (where weakly
ubmodular scenarios were preferred).

Moreover, note that evaluating βe is significantly computa-
ionally expensive (even compared to βt ) as αe in (9) involves
olving a set function maximization problem (notice the set vari-
ble Y in (9)). Hence, such a problem can even be more com-
licated than the original set function maximization problem
2) that we consider unless there are some special structural
roperties that can be exploited (e.g., see Sun et al., 2019).

.4. Partial curvature (Liu et al., 2018)

The motivation behind the partial curvature measure αp is
o be an alternative to the total curvature measure αt in (5).
nlike αt , αp can be evaluated when f has a constrained domain,
.e., when f : I → R≥0 with I ⊂ 2X (where αt is ill-defined due
o its f (X) term). Specifically, αp is defined as

p = max
(Y ,x):x∈Y∈I N

[
1 −

∆f (x|Y\{x})
∆f (x|∅)

]
. (11)

he corresponding performance bound βp is given by

βp ≜
1
αp

[
1 −

(
1 −

αp

N

)N
]

≤
f (Y G)
f (Y ∗)

. (12)

e highlight that the above βp expression is only valid under
a few additional conditions on f , X and I N (which are omitted
ere, but can be found in Liu et al., 2018). Note that βp in (12)

and βt in (6) has identical forms — enabling a direct comparison
between αt and αp. The work in Liu et al. (2018) has shown that
αp ≤ αt , which implies that βp ≥ βt , i.e., βp is always tighter than
βt . Note also that, similar to βt , βp will provide a much improved
performance bound (i.e., βp → 1) if the underlying submodularity
property (of f over X) is weak.

Moreover, similar to αe in (9), evaluating αp in (11) involves
solving a set function maximization problem (notice the set vari-
able Y in (11)). Therefore, evaluating βp is significantly computa-
tionally expensive compared to evaluating βt . In fact, evaluating
βp can even be more complicated than the original set function
maximization problem (2) that we consider unless there are some
special structural properties that can be exploited (e.g., see We-
likala, 2021, Ch. 3.2.4).

4. The new performance bound

From the review presented in the previous section, three main
limitations of existing improved performance bounds (i.e., of βt ,
Conforti & Cornuéjols, 1984, βg , Conforti & Cornuéjols, 1984, βe,
Wang et al., 2016 and βp, Liu et al., 2018) can be identified:

(1) Computational complexity: For example, βe and βp (i.e., the
most recently proposed performance bounds) require solving
hard combinatorial optimization problems.
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(2) Inherent limitations: For example, βt , βg and βp inher-
ently provide improved performance bounds only when the
submodularity property (of f over X) is weak.

(3) Technical limitations: For example, βt and βp have technical
conditions that need to be satisfied (by f , X and I N involved
in (2)) to validate their usage.

o counter the limitations mentioned above, in this section, a new
erformance bound (denoted by βu) is proposed for the greedy
olution Y G given by Algorithm 1 for the class of problems in
2). Similar to the previously reviewed improved performance
ounds, this new performance bound βu is also defined through
corresponding (also new) curvature measure. In particular, we
enote this new curvature measure as αu and call it the extended
reedy curvature.
As the name suggests, this new curvature measure αu (and

hence βu) is derived exploiting the information computed when
executing an extended number of greedy iterations (i.e., more
than the usual N greedy iterations executed in Algorithm 1).
As we will see in the sequel, the exact number of extra greedy
iterations required depends on the application and the user pref-
erence. Since running greedy iterations is computationally inex-
pensive, the complexity of computing βu is much less than that of
βe or βp and is in the same order of computing βt or βg . Moreover,
as we will see in the sequel, unlike βt , βg , βe and βp, βu does not
ave any inherent or technical limitations.

.1. Preliminary theoretical results

We start with establishing the following minor theoretical
esult that relates an upper bound found for the global optimal
olution performance f (Y ∗) with a performance bound found for
he greedy solution performance f (Y G).

emma 2. Given the greedy solution performance f (Y G):

(a) α is an upper bound for f (Y ∗) if and only if β =
f (YG)

α
is a valid

performance bound for f (Y G).
(b) β is a valid performance bound for f (Y G) if and only if α =

1
β
f (Y G) is an upper bound for f (Y ∗).

roof. Cases (a) and (b) can be proved using the relationships:
≥ f (Y ∗) ⇐⇒

f (YG)
α

≤
f (YG)
f (Y∗) and β ≤

f (YG)
f (Y∗) ⇐⇒ f (Y ∗) ≤

1
β
f (Y G), respectively.

We now introduce some additional notations. Let [0, k] be
the set {0, 1, 2, . . . , k}. Recall the (Z i, z i) notation introduced in
Section 2 for i ∈ [0,M]. Using that, let us define

Y G
n ≜ Z (n+1)N

\ZnN
= {znN+1, znN+2, . . . , znN+N

}, (13)

for any n ∈ [0,m − 1] where m ≜
⌊M

N

⌋
(⌊·⌋ denotes the floor

operator). Simply, Y G
n is the (n+1)th block of N greedily selected

ptions. Hence, |Y G
n | = N and Y G

0 = Y G. Along the same lines, let
us also define

Xn ≜ X\ZnN and I N
n ≜ {Y : Y ⊆ Xn, |Y | ≤ N}, (14)

for any n ∈ [0,m−1]. Simply, Xn is the set of remaining available
options after selecting n blocks of N greedy options (i.e., after nN
greedy iterations). Hence, X0 = X and I N

0 = I N . Similar to the
set system (X, I N ) considered in (2), the set system (Xn, I N

n ) is a
niform matroid of rank N , for any n ∈ [0,m − 1].
Let us also consider a series of auxiliary set function maximiza-

ion problems: {Pn}n∈[0,m−1] where

n : Y ∗

n ≜ argmax
N

∆f (Y |ZnN ). (15)

Y∈In

5

According to Lemma 1, the objective function of Pn
(i.e., ∆f (Y |ZnN )) is a polymatroid set function over Xn. This implies
that Pn aims to find the optimal set Y ∗

n that maximizes the
polymatroid set function ∆f (Y |ZnN ) over the uniform matroid
(Xn, I N

n ). Hence, each Pn, n ∈ [0,m − 1] falls into the same
class of problems as in (2), and in fact, P0 is equivalent to (2)
i.e., Y ∗

0 = Y ∗). Moreover, it is easy to see that Y G
n introduced in

(13) is the greedy solution to Pn in (15) for n ∈ [0,m − 1].
Next, we establish two lemmas that provide two different

upper bounds for the global optimal performance of Pn in (15).

Lemma 3. For n ∈ [0,m − 1],

∆f (Y ∗

n |ZnN ) ≤ max
Y∈I N

n

⎡⎣∑
y∈Y

∆f (y|ZnN )

⎤⎦ . (16)

Proof. Due to the normalized and monotone nature of the set
function f (see Definition 1(a)–(b)), we have 0 ≤ f (A ∩ B) for all
A, B ⊆ X . Using this result in the second equivalent condition
given for the submodularity property in Definition 1(c), we can
write f (A ∪ B) ≤ f (A ∪ B) + f (A ∩ B) ≤ f (A) + f (B), i.e., f (A ∪ B) ≤

f (A) + f (B) for all A, B ⊆ X (notice the resemblance with the
triangle inequality). Based on this result, it is easy to see that any
normalized monotone submodular set function f defined over a
ground set X will follow the property:

f (A) ≤

∑
a∈A

f ({a}), ∀A ⊆ X . (17)

As mentioned before, ∆f (Y |ZnN ) is a normalized monotone sub-
modular set function in Y over the ground set Xn (from Lemma 1).
Therefore, ∆f (Y |ZnN ) should follow the property in (17), i.e.,

∆f (Y |ZnN ) ≤

∑
y∈Y

∆f (y|ZnN ), ∀Y ∈ I N
n , (18)

(note that, according to (14), Y ∈ I N
n ⇐⇒ Y ⊆ Xn). Now, taking

the maximum of both sides of (18) over all possible Y ∈ I N
n , we

get

max
Y∈I N

n

∆f (Y |ZnN ) ≤ max
Y∈I N

n

⎡⎣∑
y∈Y

∆f (y|ZnN )

⎤⎦ . (19)

Finally, using (15), we can rewrite the left hand side (LHS) of the
above expression as ∆f (Y ∗

n |ZnN ). This completes the proof.

Lemma 4. For n ∈ [0,m − 1],

∆f (Y ∗

n |ZnN ) ≤
1
βf

[
f (Z (n+1)N ) − f (ZnN )

]
. (20)

Proof. Using (15), let us rewrite the LHS of (20) as

f (Y ∗

n |ZnN ) = max
Y∈I N

n

∆f (Y |ZnN ). (21)

ince ∆f (Y |ZnN ) is a polymatroid set function in Y over the
niform matroid (Xn, I N

n ), the performance bound βf given in
4) can be applied for a greedy solution of the above set function
aximization problem (on right hand side of (21)). In fact, from

he used notation, Y = Y G
n is the greedy solution that maximizes

f (Y |ZnN ). Therefore, using the known performance bound βf
nd the greedy solution performance ∆f (Y G

n |ZnN ) in Lemma 2(b),
e obtain an upper bound to (21) as

f (Y ∗

n |ZnN ) = max
N

∆f (Y |ZnN ) ≤
1

∆f (Y G
n |ZnN ). (22)
Y∈In βf
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f

inally, we use (1) and (13) to simplify ∆f (Y G
n |ZnN ) as

f (Y G
n |ZnN ) = f (Y G

n ∪ ZnN ) − f (ZnN ) = f (Z (n+1)N ) − f (ZnN ).
ubstituting this result in (22) completes the proof.

The following lemma establishes an important equality condi-
tion that will be used later on.

Lemma 5. For n ∈ [0,m − 1],

max
Y∈I N

n

∆f (Y |Z (n+1)N ) = max
Y∈I N

n+1

∆f (Y |Z (n+1)N ). (23)

Proof. Note that this result is non-trivial as the feasible spaces of
the optimization problems on both sides of (23) are related such
hat I N

n ⊃ I N
n+1. Let us denote Y = {y1, y2, . . . , yN} ∈ I N

n and
ewrite ∆f (Y |Z (n+1)N ) as a telescoping sum:

f (Y |Z (n+1)N ) =f ({y1, . . . , yN} ∪ Z (n+1)N ) − f (Z (n+1)N )

=f ({y1, . . . , yN} ∪ Z (n+1)N )

− f ({y1, . . . , yN−1} ∪ Z (n+1)N ) + · · ·

· · · + f ({y1} ∪ Z (n+1)N ) − f (Z (n+1)N )

=

N∑
i=1

∆f (yi|{y1, . . . , yi−1} ∪ Z (n+1)N ). (24)

ote that ∆f (yi|{y1, . . . , yi−1} ∪ Z (n+1)N ) = 0 for any yi ∈ Z (n+1)N

nd ∆f (yi|{y1, . . . , yi−1} ∪ Z (n+1)N ) > 0 for any yi ∈ X\Z (n+1)N .
herefore, according (24), when maximizing the set function
f (Y |Z (n+1)N ) with respect to Y , selecting Y ⊂ X\Z (n+1)N (a.k.a.
∈ I N

n+1) is sufficient as opposed to selecting Y ⊆ X\ZnN (a.k.a.
∈ I N

n ). Hence (23) holds.

Now, we establish a lemma that provides an upper bound for
he performance of the global optimal solution of (2).

emma 6. For n ∈ [0,m − 1],

(Y ∗) ≤ f (ZnN ) + ∆f (Y ∗

n |ZnN ). (25)

roof. Since ∆f (Y |ZnN ) is a monotone set function in Y over the
round set Xn (from Lemma 1, for any n ∈ [0,m − 1]),

f (Y ∗

n |ZnN ) ≤ ∆f (Y ∗

n ∪ Y G
n |ZnN ),

=∆f (Y G
n |ZnN ) + ∆f (Y ∗

n ∪ Y G
n |ZnN ) − ∆f (Y G

n |ZnN )

=∆f (Y G
n |ZnN ) + f (Y ∗

n ∪ Y G
n ∪ ZnN ) − f (ZnN )

− f (Y G
n ∪ ZnN ) + f (ZnN ) (using (1))

=∆f (Y G
n |ZnN ) + f (Y ∗

n ∪ Y G
n ∪ ZnN ) − f (Y G

n ∪ ZnN )

=∆f (Y G
n |ZnN ) + ∆f (Y ∗

n |Y G
n ∪ ZnN ) (using (1))

=∆f (Y G
n |ZnN ) + ∆f (Y ∗

n |Z (n+1)N ), (using (13))

.e.,

f (Y ∗

n |ZnN ) ≤ ∆f (Y G
n |ZnN ) + ∆f (Y ∗

n |Z (n+1)N ). (26)

ote that ∆f (Y ∗
n |Z (n+1)N ) ≤ max

Y∈I N
n

∆f (Y |Z (n+1)N ) as Y ∗
n ∈ I N

n .

sing this result in (26), we can write

f (Y ∗

n |ZnN ) ≤ ∆f (Y G
n |ZnN ) + max

Y∈I N
n

∆f (Y |Z (n+1)N )

=∆f (Y G
n |ZnN ) + max

Y∈I N
n+1

∆f (Y |Z (n+1)N ) (from Lemma 5)

=∆f (Y G
n |ZnN ) + ∆f (Y ∗

n+1|Z
(n+1)N ). (using (15))

eplacing n with k, the above result can be written as

f (Y ∗
|ZkN ) ≤ ∆f (Y G

|ZkN ) + ∆f (Y ∗
|Z (k+1)N ), (27)
k k k+1

6

or k ∈ [0,m − 1]. Now summing (27) for k ∈ [0, n − 1] we get

∆f (Y ∗

0 |Z0) ≤

n−1∑
k=0

∆f (Y G
k |ZkN ) + ∆f (Y ∗

n |ZnN ). (28)

ote that Y ∗

0 = Y ∗ in (2) and Z0
= ∅ by definition. Thus,

f (Y ∗

0 |Z0) = f (Y ∗). Further, using (1) and (13), we can show that
n−1

k=0

∆f (Y G
k |ZkN ) =

n−1∑
k=0

∆f (Z (k+1)N
\ZkN

|ZkN )

=

n−1∑
k=0

f (Z (k+1)N ) − f (ZkN )

=f (ZnN ).

herefore, using the above two results in (28), we now can obtain
25), which holds for any n ∈ [0,m − 1] (equality holds when
= 0).

.2. Extended greedy curvature based performance bound

We now define the proposed extended greedy curvature mea-
ure αu as

u ≜ min
i∈Q

αi
u, (29)

here Q ⊆ Q̄ ≜ {1,N,N + 1, 2N, 2N + 1, . . . , (m − 1)N +

,mN,M} and

i
u ≜

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f (Z i−1) + max
Y∈I N

(i−1)/N

[∑
y∈Y ∆f (y|Z i−1)

]
if i = 1,N + 1, 2N + 1, . . . , (m − 1)N + 1,

f (Z i−N ) +
1
βf

[
f (Z i) − f (Z i−N )

]
if i = N, 2N, . . . ,mN,

f (Z i) if i = M.

(30)

e point out that Q̄ is a fixed set of greedy iteration indexes
pon each of which a corresponding αi

u value can be computed
sing already known information. This is because all the f (·)
nd ∆f (·|·) terms required to evaluate any αi

u form in (30) are
utomatically computed during the execution of first i greedy
terations. Hence, αi

u sequence over i ∈ Q̄ can be thought of
s a sequence of byproducts generated during (in parallel with)
he execution of greedy iterations. In contrast to Q̄ , Q is an
rbitrary subset selected from Q̄ based on the user preference.
or example, one can simply set Q = {1,N,N + 1, 2N} so that

αu value can be obtained upon executing only N extra greedy
iterations (i.e., 2N greedy iterations in total).

The performance bound βu corresponding to the extended
greedy curvature measure αu is given in the following theorem.

Theorem 1. For the submodular maximization problem in (2), the
greedy solution Y G given by Algorithm 1 satisfies the performance
ound βu where

u ≜
f (Y G)
αu

≤
f (Y G)
f (Y ∗)

. (31)

roof. To prove this result, according to Lemma 2(a) and (29),
e only need to show that f (Y ∗) ≤ αi

u for all i ∈ Q̄ (note also
hat Q ⊆ Q̄ ). We do this in three steps.

First, by adding the main results established in Lemmas 6 and
(i.e., (25) and (16), respectively) we get

(Y ∗) ≤ f (ZnN ) + max
Y∈I N

n

⎡⎣∑
∆f (y|ZnN )

⎤⎦ , (32)

y∈Y
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or n ∈ [0,m − 1]. Now, replacing the variable n with i using
he substitution i = nN + 1 we obtain f (Y ∗) ≤ αi

u for i ∈

{1,N + 1, 2N + 1, . . . , (m − 1)N + 1}.
Second, using the main results of Lemmas 4 and 6, we get

f (Y ∗) ≤ f (ZnN ) +
1
βf

[
f (Z (n+1)N ) − f (ZnN )

]
, (33)

or n ∈ [0,m − 1]. Now, replacing the variable n with i using
he substitution i = nN + N we obtain f (Y ∗) ≤ αi

u for i ∈

{N, 2N, 3N, . . . ,mN}.
Finally, we use the monotonicity property of f and the fact that

Y ∗
⊆ ZM

= X to obtain f (Y ∗) ≤ f (Z i) = αi
u for i = M .

4.3. Discussion

As mentioned earlier, the set Q used for computing αu in (29)
can be smaller compared to the set Q̄ (specially if the compu-
tational cost associated with running extra greedy iterations is a
concern). However, based on (29) and (31), it is easy to show that
the performance bound βu is a monotone set function in Q ⊆ Q̄ .
This implies that a superset of Q will always provide a higher (or
at least equal) βu value compared to the βu value corresponding
o the set Q .

Let us now consider a case where the submodularity property
f f is weak (i.e., f is close to being a modular set function, see
lso Remark 2). In a such setting, the α1

u value (from (30), with
i = 1) can be simplified as

α1
u = f (Z0) + max

Y∈I N
0

⎡⎣∑
y∈Y

∆f (y|Z0)

⎤⎦ = max
Y∈I N

⎡⎣∑
y∈Y

f ({y})

⎤⎦
= max

Y∈I N
f (Y ) + ϵ = f (Y ∗) + ϵ, (34)

here ϵ ≥ 0 is a parameter that represents the strength of
the submodularity property (ϵ = 0 if f is modular). The above
xpression implies that the evaluated α1

u value will be a tight
pper bound for f (Y ∗) as f become more modular (i.e., as ϵ →

). Therefore, in a such setting, the corresponding performance
ound βu will also be tight (close to 1). In that sense, βu behaves
imilar to the performance bounds βt , βg , βp discussed in the
previous section.

Remark 3. The strength of the submodularity can formally be
defined as an additive constant ϵa ∈ R≥0 or a multiplicative
constant ϵm ∈ R≥0 applicable for the submodularity inequality
provided in Definition 1(c). Based on this definition, it can be
shown that the parameter ϵ we introduced in (34) (to represent
he strength of the submodularity) satisfies ϵ ≥ ϵa and ϵ

f (Y∗) ≥ ϵm.

On the other hand, let us now consider a case where the
ubmodularity property of f is strong. In a such setting, according
o the ‘‘diminishing returns’’ view of the submodularity property
see Definition 1(c)), f (Z i) should saturate quickly with respect to
. Keeping this in mind, let us consider the α2N

u value (from (30),
ith i = 2N) that can be simplified as

2N
u = f (ZN ) +

1
βf

[
f (Z2N ) − f (ZN )

]
= f (Y G) +

1
βf

[
f (Z2N ) − f (ZN )

]
.

ote that when the submodularity property of f is strong, the
bove difference term

[
f (Z2N ) − f (ZN )

]
will become small. There-

ore, α2N
u → f (Y G) and the corresponding performance bound

u =
f (YG)
α2N
u

→ 1 revealing a tight performance bound. In that
ense, βu behaves similar to the performance bound βe discussed
n the previous section.
7

Therefore, βu is designed to have the best of both worlds while
also being computationally inexpensive and having no additional
technical limitations on its applicability. In the next section, we
confirm these conclusions using numerical results generated from
several different experiments.

5. Application to multi-agent coverage problems

In this section, we consider a widely studied class of multi-
agent coverage problems (Sun et al., 2019; Welikala & Cassandras,
2020; Zhong & Cassandras, 2011) and show that problems in
this class can be modeled as submodular maximization problems
of the form (2). Therefore, we use the simple greedy algorithm
(Algorithm 1) to solve these multi-agent coverage problems. Sub-
sequently, we study the effectiveness of different performance
bounds (discussed in previous sections) in characterizing such
greedy solutions.

5.1. Multi-agent coverage problem formulation

The multi-agent coverage problem aims to find an optimal
arrangement for a given set of sensors (agents) inside a given
mission space to maximize the probability of detecting randomly
occurring events in that mission space.

The mission space Ω ⊂ R2 is modeled as a non-self-
intersecting polygon (Zhong & Cassandras, 2011) that may con-
tain a finite set of polygonal obstacles {M̃1, M̃2, . . . , M̃h} where
M̃i ⊂ Ω represents the interior of the ith obstacle. Hence,
the agent deployment is constrained to the feasible space F =

Ω\(
⋃h

i=1 M̃i). The likelihood of random event occurrence over the
mission space is modeled by the event density function R : Ω →

R≥0. It is assumed that R(x) = 0, ∀x ̸∈ F and
∫

Ω
R(x)dx < 0.

In the case where no prior information about R(x) is available,
R(x) = 1, ∀x ∈ F is used.

Inside the feasible space F , N homogeneous agents must be
placed. We use s = [s1, s2, . . . , sN ] ∈ R2×N to represent the
selected agent locations (i.e., the control variable). Each agent is
assumed to have a finite sensing radius δ ∈ R beyond which
it cannot detect any events. Further, obstacles are assumed to
obstruct the sensing capability of the agents. In particular, the
visibility region of an agent located at si ∈ F is denoted by V (si) =

{x : ∥x − si∥ ≤ δ, ∀q ∈ [0, 1], (qx + (1 − q)si) ∈ F} (where
∥ · ∥ represents the Euclidean norm, see also Fig. 1). Moreover,
a sensing function p(x, si) = e−λ∥x−si∥ · 1{x ∈ V (si)} is used to
quantify the probability of an agent located at si ∈ F detecting an
event occurring at x ∈ F . In this p(x, si) expression, the parameter
λ is called the sensing decay rate.

Assuming independently detecting agents, the probability of
detecting an event occurring at x ∈ F by at least one agent
(when in an agent placement s) is given by P(x, s) = 1 −∏N

i=1 [1 − p(x, si)]. This is more commonly known as the joint de-
tection probability function. Using the event density function and
the joint detection probability function, the objective function
of the multi-agent coverage problem can be written as H(s) =∫

Ω
R(x)P(x, s)dx. Therefore, the multi-agent coverage problem can

be stated as

s∗
= argmax

s: si∈F ,∀i∈[1,N]

H(s). (35)

5.2. Set function approach for multi-agent coverage problems

To model the multi-agent coverage problem in (35) as a set
function maximization problem of the form (2), we use the fol-
lowing set of steps. First, the ground set X = {x1, x2, . . . , xM}

is created by discretizing the continuous feasible space F ⊂ R2.
Next, a set variable is defined as S = {s , s , . . . , s } to represent
1 2 N
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Fig. 1. A mission space with one agent.

he selected agent locations from the ground set X . Since we
re interested in deploying only N agents, a uniform matroid

constraint of rank N can be introduced as S ∈ I N where I N
=

{Y : Y ⊆ X, |Y | ≤ N}. Now the corresponding set function
maximization problem for (35) can be written as

S∗
= argmax

S∈I N
H(S), (36)

here H(S) (called the set coverage function) is the set function
ersion of the coverage objective function H(s), i.e.,

(S) =

∫
F
R(x)(1 −

∏
si∈S

[1 − p(x, si)])dx. (37)

he work in Sun et al. (2019) has established that H(S) in (37) is
polymatroid set function. Hence, it is clear that the multi-agent
overage problem in (35) is a submodular maximization problem
of the form (2).

As a consequence, we now can solve the multi-agent coverage
problem conveniently using the greedy algorithm (Algorithm 1)
and also get a performance bound that characterizes how close
the obtained greedy coverage level is to the global optimal cover-
age level. As mentioned in Remark 1, similar to the works in Sun
et al. (2019, 2020), a subsequent gradient ascent stage or an
interchange stage can be added to further improve any greedy
solution obtained for (36). However, as shown in Proposition 1,
such an improvement will only scale any performance bound
(already found for the greedy solution) by a fixed constant factor.
Therefore, in this paper, we omit executing such improvement
stages and directly study the performance bounds found for the
greedy solution.

5.3. Numerical results

The greedy algorithm (Algorithm 1), the newly proposed per-
formance bound βu (31) (αu in (31) was determined using (29)
with Q = Q̄ ) and the existing other performance bounds:
βf (4), βt (6), βg (8), βe (10) and βp (12) were all implemented
for the considered class of multi-agent coverage problems in an
interactive JavaScript-based simulator which is available at http://

www.bu.edu/codes/simulations/shiran27/CoverageFinal/ (the

8

Fig. 2. Performance bound vs. sensing range (δ) for the General mission space
configuration. Sub-figures (b)–(d) show three greedy solutions obtained for three
different δ values. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Performance bound vs. sensing decay rate (λ) for the General mission
space configuration. Sub-figures (b)–(d) show three greedy solutions obtained
for three different λ values. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

source code is available at: https://github.com/shiran27/Coverage
Control). It may be used by the reader to reproduce the reported
results and also to try different new problem configurations.

In particular, mission spaces with three different obstacle ar-
rangements named ‘General,’ ‘Maze’ and ‘Blank’ were consid-
ered (can be seen in Figs. 2(b), 4(d) and 5(b), respectively). In
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Fig. 4. Performance bound vs. number of agents (N) for the Maze mission space configuration: Agent sensing capabilities (or proportionately, the strength of the
ubmodularity property of the set coverage objective) is: (a) weak, (b) moderate and (c) strong. Each of the corresponding three sub-figure groups (d)–(f), (g)–(i)
nd (j)–(l) shows three greedy solutions obtained for different N values. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)
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Fig. 5. Performance bound vs. sensing decay rate (λ) for the Blank mission space
configuration. Sub-figures (b)–(d) show three greedy solutions obtained for three
different λ values. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

uch mission space diagrams, obstacles are shown as dark green-
olored blocks and agent locations are shown as red-colored dots.
oreover, light-colored areas indicate low coverage levels while
ark-colored areas indicate the opposite.
The main focus here is to study the behavior of different per-

ormance bounds (found for the greedy solution) under different
overage problem configurations. In each experiment shown in
igs. 3–5, one of the three parameters: (i) sensing range δ, (ii)
9

sensing decay rate λ or (iii) the number of deployed agents N , was
aried while keeping the other two fixed. Note that as δ increases
r λ decreases or N increases, the agent sensing capability over

the mission space also increases. For convenience, each graph has
been drawn so that along its x-axis, the agent sensing capability
increases. It is easy to see that agent sensing capability directly
maps to the strength of the submodularity property of the set
coverage objective function (i.e., agents with high sensing capa-
bilities make the submodularity property of the corresponding
set coverage objective function strong, and vice versa). In the
graphs shown in Figs. 2(a), 3(a), 4(a), 4(b), 4(c) and 5(a), whenever
only a few of the said performance bounds have been drawn,
it means the other performance bounds were found redundant
(no better than βf ). The average improvement value reported in
each such graph (caption) was computed by taking the average of
(βu − max{βf , βt , βg , βe, βf }) value across all the corresponding
ata points.
Across almost all the numerical results shown (see Fig. 3(a),
= 11 × 10−3 case for an exception), the proposed extended

reedy curvature based performance bound βu has shown the
best performance bounds irrespective of the level of the agent
sensing capabilities (i.e., irrespective of the strength of the sub-
modularity property). In particular, the dip in the βu curve seen
in each of Figs. 2, 3, 4(a), 4(b), 4(c) and 5 point out that using
a greedy algorithm to solve a multi-agent coverage problem is
most challenging when the agents have a moderate sensing ca-
pability. Therefore, in such scenarios, the use of a greedy solution
improvement scheme (see Remark 1) can be recommended. We
also highlight that in each βu curve, the decreasing set of data
points (to the left of the dip point) have come from the extended
greedy curvature measure αu = α1

u (that can be computed in the
ery first greedy iteration). Hence, in all such scenarios, no extra
reedy iterations were required.
To further study this, let us denote i∗ as the argmin value of

he problem (29). In other words, i∗ is the minimum number of
reedy iterations required to obtain the extended greedy curva-
ure measure αu = αi∗

u (29) and the corresponding performance
ound βu = f (Y G)/αi∗

u (31). For the same experiments that gen-
erated the results shown in Figs. 2(a) and 3(a), the corresponding
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Fig. 6. Extend greedy curvature based performance bound vs. sensing range (δ)
vs. no. of greedy iterations for the General mission space configuration with
λ = 0.006, N = 10. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

i∗ vs βu behaviors observed (under different λ and α values) are
illustrated in Figs. 6 and 7, respectively. Note that the red curves
n Figs. 6(b) and 7(b) imply that the number of greedy iterations
equired to compute the proposed extended greedy curvature
ased performance bound βu (31) (i.e., i∗) is generally non-trivial
nd typically N < i∗ < M . Note also that the same curves indicate
he need for a higher number of greedy iterations to compute
he proposed performance bound βu (31) (i.e., i∗ ≫ N) whenever
he agents have a moderate sensing capability. This observation is
n line with our previous conclusion that a multi-agent coverage
roblem is most challenging when the agents have a moderate
ensing capability.

omparison with the previous work in (Sun et al., 2019, 2020). For
his class of multi-agent coverage problems, the work in Sun
t al. (2019) first proposed to adopt the performance bounds
t (6) and βe (10) (from Conforti & Cornuéjols, 1984 and Wang
t al., 2016, respectively). Then, the subsequent work in Sun
t al. (2020) proposed to adopt the performance bounds βg (8)
nd βp (12) (from Conforti & Cornuéjols, 1984 and Liu et al.,
018, respectively). The numerical results shown in Fig. 5 jus-
ify these contributions of Sun et al. (2019, 2020) as they have
ead to improved performance bounds compared to βf . However,
ven in this case (Fig. 5), it is notable that the proposed novel
erformance bound in this paper βu (31) has achieved an av-
rage improvement of 0.1248 compared to the state of the art
i.e., compared to max{β , β , β , β , β }).
f t e g p

10
Fig. 7. Extend greedy curvature based performance bound vs. sensing decay rate
(λ) vs. no. of greedy iterations for the General mission space configuration with
δ = 400, N = 10. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

6. Conclusion

In this paper, we considered the class of monotone submod-
ular set function maximization problems subject to cardinality
constraints. Different curvature measures and corresponding per-
formance bounds found in the literature were reviewed for this
class of problems, outlining their strengths and weaknesses. In
particular, computational complexity, technical requirements and
inherent limitations were the main weaknesses observed. A novel
curvature measure was proposed along with a corresponding
performance bound that does not suffer from the limitations
identified in its predecessors. We named this curvature mea-
sure as the extended greedy curvature since it thrives on the
information seen when executing additional greedy iterations. A
well-known class of multi-agent coverage problems was used to
examine the effectiveness of the proposed performance bound
compared to the other performance bounds found in the liter-
ature. Ongoing research explores the effectiveness of this new
performance bound on other applications and under different
quantified strength levels of the submodularity property.
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