Automatica 144 (2022) 110493

Contents lists available at ScienceDirect
automatica

Automatica

journal homepage: www.elsevier.com/locate/automatica

A new performance bound for submodular maximization problems
and its application to multi-agent optimal coverage problems™

Check for
updates

Shirantha Welikala ***, Christos G. Cassandras?, Hai Lin °, Panos J. Antsaklis "

2 Division of Systems Engineering and Center for Information and Systems Engineering, Boston University, Brookline, MA 02446, USA
b Department of Electrical Engineering, University of Notre Dame, South Bend, IN 02446, USA

ARTICLE INFO ABSTRACT

Article history:

Received 5 October 2021

Received in revised form 15 March 2022
Accepted 11 May 2022

Available online xxxx

Several important problems in multi-agent systems, machine learning, data mining, scheduling and
others, may be formulated as set function maximization problems subject to cardinality constraints.
In such problems, the set (objective) functions of interest often have monotonicity and submodularity
properties. Hence, the class of monotone submodular set function maximization problems has been
widely studied in the literature. Owing to its challenging nature, almost all existing solutions for
this class of problems are based on greedy algorithms. A seminal work on this topic has exploited
the submodularity property to prove a (1-1/e) performance bound for such greedy solutions. More
recent literature on this topic has been focused on exploiting different curvature properties to establish
improved (tighter) performance bounds. However, such improvements come at the cost of enforcing
additional assumptions and increasing computational complexity while facing significant inherent
limitations. In this paper, first, a brief review of existing performance bounds is provided. Then, a
new performance bound that does not require any additional assumptions and is both practical and
computationally inexpensive is proposed. In particular, this new performance bound is established
based on a series of upper bounds derived for the objective function that can be computed in parallel
with the execution of the greedy algorithm. Finally, to highlight the effectiveness of the proposed
performance bound, extensive numerical results obtained from a well-known class of multi-agent
coverage problems are provided.

Keywords:
Multi-agent systems
Optimization
Cooperative control
Control of networks
Persistent monitoring
Parametric control

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction 1981; Schrijver, 2000). Therefore, submodularity also has a re-
semblance to convexity. Despite this duality, submodular set
functions appear naturally in many real-world problems such as
in the coverage control (Sun, Cassandras, & Meng, 2019; Sun,
Welikala, & Cassandras, 2020), persistent monitoring (Rezazadeh
& Kia, 2019), feature selection (Das & Kempe, 2008), document
summarization (Lin & Bilmes, 2011), image segmentation (Jegelka
& Bilmes, 2011), marketing (Kempe, Kleinberg, & Tardos, 2003),
data mining (Mirzasoleiman, Karbasi, Sarkar, & Krause, 2013), ma-
chine scheduling (Liu, 2020) and recommender systems (EI-Arini
& Guestrin, 2011).

Motivated by its applicability, submodular maximization prob-
lems have been theoretically studied in the literature under a
diverse set of conditions (Liu, Chong, Pezeshki, & Zhang, 2020).

The salient feature that characterizes a submodular set func-
tion is its diminishing returns property. Simply, this property
means that the marginal gain (return) of adding an element to
a set decreases as the set grows (accumulates new elements). In
this sense, submodularity bears a similarity to concavity. How-
ever, it has been established that maximizing submodular set
functions is NP-hard (Corneuejols, Fisher, & Nemhauser, 1977;
Nembhauser, Wolsey, & Fisher, 1978) while minimizing them can
be achieved in polynomial time (Grotschel, Lovasz, & Schrijver,

* This work was supported in part by NSF under grants ECCS-1931600,

DMS-1664644, CNS-1645681, CNS-1830335 and 11S-2007949, by AFOSR under
grant FA9550-19-1-0158, by ARPA-E under grant DE-AR0001282 and by the
MathWorks. The material in this paper was not presented at any conference.
This paper was recommended for publication in revised form by Associate Editor
Sergio Grammatico under the direction of Editor lan R. Petersen.

* Corresponding author at: Department of Electrical Engineering, University
of Notre Dame, South Bend, IN 02446, USA.

E-mail addresses: wwelikal@nd.edu (S. Welikala), cgc@bu.edu

(C.G. Cassandras), hlin1@nd.edu (H. Lin), pantsakl@nd.edu (P.J. Antsaklis).

https://doi.org/10.1016/j.automatica.2022.110493
0005-1098/© 2022 Elsevier Ltd. All rights reserved.

For example, the submodular objective function is assumed to
be: monotone in Wang, Moran, Wang, and Pan (2016), non-
monotone in Fahrbach, Mirrokni, and Zadimoghaddam (2019)
and weakly submodular in Khanna, Elenberg, Dimakis, Negah-
ban, and Ghosh (2017). Similarly, different types of set variable
constraints such as cardinality (Nemhauser et al., 1978), ma-
troid (Fisher, Nemhauser, & Wolsey, 1978), knapsack (Wolsey,
1982) and matchoid (Badanidiyuru, Karbasi, Kazemi, & Vondrak,

https://doi.org/10.1016/j.automatica.2022.110493
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2022.110493&domain=pdf
mailto:wwelikal@nd.edu
mailto:cgc@bu.edu
mailto:hlin1@nd.edu
mailto:pantsakl@nd.edu
https://doi.org/10.1016/j.automatica.2022.110493

S. Welikala, C.G. Cassandras, H. Lin et al.

2020) have been considered throughout the literature. Even
though submodular maximization problems have been studied
under various conditions, their solutions are predominantly based
on greedy algorithms. In this paper, similar to Conforti and
Cornuéjols (1984), Liu, Chong, and Pezeshki (2018), Nemhauser
et al. (1978) and Wang et al. (2016), we consider the class of
submodular maximization problems where the objective function
is monotone, the set variable is cardinality constrained, and the
solution is obtained by a vanilla greedy algorithm. Such maxi-
mization problems arise naturally from applications like coverage
control (Sun et al., 2019, 2020), persistent monitoring (Rezazadeh
& Kia, 2019), machine scheduling (Liu, 2020) and resource allo-
cation (Liu et al., 2020). However, in contrast to the prior work
in Conforti and Cornuéjols (1984), Liu et al. (2018), Nemhauser
et al. (1978) and Wang et al. (2016), here we propose a novel
performance bound for the obtained greedy solutions.

Formally, a performance bound of a greedy solution is a lower
bound to the ratio f¢/f* so that 8 < f¢/f* where f¢ and f*
correspond to the objective function values under the greedy
solution and the global optimal solution, respectively. For mono-
tone submodular objective functions, the seminal papers Fisher
et al. (1978) and Nemhauser et al. (1978) respectively show that
B = % when the set variable is constrained over a general matroid
and 8 = (1 — (1 — ﬁ)"’) when the set variable’s cardinality is
constrained by N. Note that having a performance bound closer
to 1 is preferred, as it implies that the greedy solution is almost
globally optimal.

Recent work on this class of problems has shown an in-
creasing interest in improving the aforementioned conventional
performance bounds by exploiting structural properties of the
underlying problem. The typical approach is first to define a
curvature measure that characterizes the structural properties of
the underlying objective function, the feasible space and the gen-
erated greedy solution. Then, based on this curvature measure,
an improved (closer to 1 compared to conventional counter-
parts) performance bound is established. For example, Conforti
and Cornuéjols (1984) defined a curvature measure named total
curvature based on the nature of the objective function and the
feasible space. Then, a provably improved performance bound
was developed using the said total curvature measure. The au-
thors of Conforti and Cornuéjols (1984) also proposed another
curvature metric named greedy curvature based on the generated
greedy solution and used it to develop another performance
bound. The same procedure was followed in Liu et al. (2018)
and Wang et al. (2016) to propose two new curvature metrics
named elemental curvature and partial curvature respectively and
then to develop corresponding performance bounds.

In this work, we first review the aforementioned total, greedy,
elemental and partial curvature measures proposed in Conforti
and Cornuéjols (1984), Liu et al. (2018) and Wang et al. (2016)
while outlining their strengths and weaknesses. In particular,
we point out that some of these curvature measures can be:
(i) computationally expensive to obtain, (ii) require enforcing
additional assumptions and (iii) may have inherent limitations
that prevent them from providing improved performance bounds
(e.g., if the submodularity property of the objective function is
strong or weak). We next propose a novel curvature measure
(which we named the extended greedy curvature) along with a
corresponding performance bound that can be computed effi-
ciently in parallel with the execution of the greedy algorithm.
We show that this performance bound may be improved by
executing extra greedy iterations (hence the name “extended”).
This new performance bound does not require any additional
assumptions, and it also does not suffer from the said inherent
limitations of its predecessors. Finally, we use a widely studied
class of multi-agent coverage problems (Sun et al., 2019, 2020)

Automatica 144 (2022) 110493

and implement all the aforementioned performance bounds to
highlight the effectiveness of the proposed performance bound
in this paper.

The paper is organized as follows. The used preliminary con-
cepts and notations are introduced in Section 2. A brief review of
existing performance bounds is provided in Section 3. Section 4
presents the details of the proposed new performance bound. The
multi-agent coverage problem setup and the observed numerical
results are reported in Section 5 before concluding the paper in
Section 6.

2. Preliminaries

We consider X = {x1,X2,...,Xy} to be the finite ground
set that represents all possible options/actions available. The set
function f : 2X — Ry is considered as the objective function
where 2X denotes the power set of X. We use the notation

Af(x|A) £ f(AU {x}) — f(A), (1)

to represent the marginal gain value of adding an element x € X\A
to the set A C X (where *“-\-” stands for the set subtraction
operation). Note that this notation can also be used more liberally
as Af(B|A) £ f(AUB) — f(A) for any A, B C X (here the set BC X
is allowed to be such that AN B # 7).

Definition 1. Over the ground set X, the set function f is:

(a) normalized if f(@) = 0O,

(b) monotone if f(B) < f(A) for all B, A where BC A C X,

(c) submodular if Af(x|A) < Af(x|B) for all x, A, B where B
A C X and x € X\A, or equivalently, if f(AUB)+ f(AN B)
f(A)+ f(B) for all A, B C X,

(d) a polymatroid set function (Liu et al., 2018) if it is normalized,
monotone and submodular.

c
=

Note that the first equivalent condition given for the submodu-
larity property (in Definition 1(c)) is more commonly known as
the diminishing returns condition. The following lemma presents a
preliminary result regarding the marginal gain function that will
be exploited in the sequel.

Lemma 1. If f(Y) is a polymatroid set function over the ground set
X, for a fixed set A C X, the set function g(Y) £ Af(Y|A) over the
set X\A is also a polymatroid set function.

Proof. Since g(}) = Af(#|A) = f(AU @) — f(A) = 0, g(Y) is
normalized. According to the definition of g(Y) and (1), for any
set B € X\A, g(B) = Af(B|A) = f(B U A) — f(A). Similarly,
for any set C € X\A, g(C) = f(C U A) — f(A). Now, in order
for g(Y) to be monotone, according to Definition 1(b), for any
B C C C (X\A), g(B) < g(A),i.e., f(BUA) < f(CUA). Note that the
latter inequality holds true as f is monotone over the set X and
(BUA) € (CUA) C X. Hence, g(Y) is monotone over the set X\A.
Similarly, the inequality condition given in Definition 1(c) can be
established for g(Y) to prove its submodularity. Hence, g(Y) is a
polymatroid set function over the set X\A.

Submodular maximization problem. Recall that the domain of the
objective function f(Y) is the power set 2X (by definition). How-
ever, depending on the application, the number of options that
can be selected from the ground set X to form the set variable
Y may be limited. To this end, we assume that only N options
can be selected from X, where 1 < N < M = |X]| and “|-|"
represents the cardinality operator. Formally, this constraint on
Y is represented by writing Y € N where #N £ [Y : Y C
X,|Y| < N}. We also point out that the set system (X, .#V) is
commonly known in the literature (Liu et al., 2018) as a uniform

S. Welikala, C.G. Cassandras, H. Lin et al.

matroid of rank N. We now can state the considered submodular
maximization problem in this paper as follows.

For a given polymatroid set function f : 2X — R over the
uniform matroid (X, .#N) find the optimal set Y* where

Y* = arg max f(Y). (2)
YesN

The above problem is an NP-hard combinatorial optimization
problem that has been widely studied in the literature (Liu et al.,
2018). One trivial approach to solve (2) is to use a brute force
search algorithm that evaluates f over each element in .#N, While
such an approach can give the exact global optimal Y*, in many
applications of interest, it is computationally intractable due to
the involved search space size: |#N| = ervzo % which is of
complexity O(M!).

The greedy solution. As an alternative, a widely popular computa-
tionally efficient approach to generate a reasonable approximate
(sub-optimal) solution to (2) is to use a greedy algorithm. A typical
greedy algorithm (considered in this paper as well as in many
others, including Conforti & Cornuéjols, 1984; Liu et al., 2018;
Nemhauser et al., 1978; Wang et al., 2016) is given in Algorithm 1.
In the remainder of this paper, the solution generated by this
greedy algorithm is referred to as the greedy solution and is
denoted by YC.

Algorithm 1 The greedy algorithm to solve (2)

i=0;Z =0 > Greedy iteration index and solution
:fori=1,2,3,...,Ndo
Z' = arg maxzi-1ype.on) AF(XIZT1); > New option
Zi=7"Tu {7} > Append the new option
end for
. Y¢ :=ZN; Return Y¢;

A e

In practice, the performance of the greedy solution is usually
sub-optimal (i.e., f(Y®) < f(Y*)). However, its proximity to

the global optimal performance can be characterized using the
concept of performance bound defined next.

Definition 2. A valid performance bound (denoted by 8) for the
greedy solution Y; obtained for the problcem (2) is a theoretically
established lower bound for the ratio L&) e,

FY*)?
f(re)
fY#)
Note that if the performance bound g is close to 1, it implies
that the performance of the greedy solution is close to that of the
global optimal solution (i.e., f(Y®) >~ f(Y*)). Hence, 8 can also be
seen as a measure of effectiveness of using a greedy algorithm to
solve the problem (2).

For the considered class of submodular maximization prob-
lems in (2), the seminal paper (Nemhauser et al., 1978) has
established the performance bound (denoted by f; and referred
to as the fundamental performance bound):

. 1\" _ fy%
@1_G_N>Sﬂwr)

Note that fr > 1—1 ~0.6321 for any N < oo and limy_. ff =
(1— %). This means that for any submodular maximization prob-
lem of the form (2), the corresponding greedy solution will al-
ways perform not worse than 63.21% of the maximum achievable
performance level.

B = (3)

Automatica 144 (2022) 110493

Remark 1. Upon obtaining a greedy solution, there are numer-
ous established ways to improve it further. For example, Sun
et al. (2019, 2020) proposed (continuous) gradient ascent pro-
cesses while Nemhauser et al. (1978) and Welikala and Cas-
sandras (2020, 2021) proposed (discrete) interchange schemes.
Even though this paper does not consider such an improvement
scheme, the following proposition can be made regarding how
an established performance bound for a greedy solution should
be modified upon an improvement to that greedy solution.

Proposition 1. Consider a greedy solution Y¢ that has a perfor-
mance bound B. Upon executing an improvement scheme on YC, if
Y e #N is found with f(Y®) > f(Y©), its performance bound is

- ?G ?G -
B2Bx }{—EYG; < ﬁY*; and 8 > B.

Proof. The proof follows from multiplying both sides of (3) by
%ﬁ; and noticing the fact that f(YS) > f(Y©).

Finally, note that in the sequel we use the notation Z! =
(z1,2%,...,2"} (with Z° = @ and Z¥ = Y©) to represent the
greedy solution constructed after running i greedy iterations in
Algorithm 1. Note also that even though Algorithm 1 is limited
to running only N greedy iterations, we use this (Z%, z') notation
more liberally for any i € {0,1,2,..., M}.

3. A brief review of existing performance bounds

In this section, we briefly review several tighter performance
bounds (i.e., closer to 1 compared to f; in (4)) established in the
literature for the greedy solution given by Algorithm 1 for the
class of problems in (2). To the best of the authors’ knowledge,
the list of performance bounds reviewed here is exhaustive. Note
also that even though we consider the same greedy solution
Y, having a tighter performance bound is still important as it
allows us to: (i) have a more accurate sense of proximity of Y©
to the global optimal Y* and (ii) make more informed decisions
regarding spending extra resources to seek an improved solution
(as mentioned in Remark 1).

As we will see next, each of these tighter performance bounds
has been established using a curvature measure that characterizes
the structural properties of the objective function f, the ground
set X and the feasible space .#" involved in the considered prob-
lem (2). In particular, four such established curvature measures
and their respective performance bounds are briefly reviewed in
this section, outlining their properties, strengths and weaknesses.

3.1. Total curvature (Conforti & Cornuéjols, 1984)

For the problem (2), the total curvature measure «; is defined
as

. Af(xIX\[x))
o & I}?&X |:1 AFD) :| . (5)
The corresponding performance bound j§; is given by

R an\NT _ f(Y©)
m_mP_O_N)}EﬂWY (©)

Note that 0 < oy < 1 and B is a decreasing function with respect
to a;. Therefore, if «; — 0, the corresponding performance bound
Bt — 1. In contrast, if @ — 1, the corresponding performance
bound B; — B (recall that f5 is given in (4)).

Note that the «; expression in (5) can be written as

Af(XIX\{x})] .

a[=l—min|: AFGI9)

xeX

S. Welikala, C.G. Cassandras, H. Lin et al.

Since f is submodular over X, Af(x|X\{x}) < f(x|¥),vx €
X. Therefore, «; will provide an improved performance bound
(ie., B — 1) if f and X in (2) are such that Af(x|0) =~
Af(x)X\{x}), Vx € X, i.e,, in other words, if the submodularity
property is weak (see also Remark 2 given below). Moreover,
as Af(x|X\{x}) = f(X) — f(X\{x}), evaluating «; requires eval-
uating f(X) - which in some applications might be ill-defined
(e.g., see Sun et al., 2020) and also computationally expensive (as
often f(Y) is of complexity O(|Y|)).

Remark 2. In the remainder of this paper, we use notions of
“weak” and “strong” to qualify the submodularity; they can be
inferred based on the respective qualitative properties: the weak-
ness or strength of satisfaction of an inequality based on the
submodularity property. For example, as discussed above, we
refer to the submodularity property of f over X as weak or strong
based on whether Af(x|X\{x}) >~ f(x]@), Vx € X or Af(x|X\{x}) <
f(x19), Vx € X, respectively.

3.2. Greedy curvature (Conforti & Cornuéjols, 1984)

The greedy curvature measure «, is computed based on suc-
cessive greedy solutions that the greedy algorithm generates

(ie. based on Z°, ..., ZN). Specifically, a, is defined as
Af(x|Z!
og £ max |max I—M , (7)
0<i<N—1 | xexi Af (x|9)

where X' 2 {x : x € X\Z, (Z' U {x}) € #"} (the set of feasible
options in the (i + 1)th greedy iteration). The corresponding
performance bound S, is given by

R 1 f(r©)
Be 21 —ay (1—N) = 7o

Note that 0 < oy < 1 and B, is a decreasing function in a.
Therefore, when oy — 0, B, — 1. However, when oz — 1,
unlike in the case of B, Bz = & < fr.

The expression of a; in (7) can be written as

o, =1— min |min Af(X|Z'))
8 0<i<N—1 | xexi \ Af(x|0) .

Since f is submodular, Af(x|Z) < Af(x|®). Therefore, to get an
improved performance bound (ie., 8, — 1), f,X and Z\,i €
{0,1, ..., N} of the problem (2) should be such that Af(x|Z!) ~
Af(x|?),Vx € X\Z',i € {0,1,...,N — 1}, i.e,, in other words,
the submodularity property should be weak. Moreover, note that
Bg in (8) can be computed in parallel with the execution of
the greedy algorithm without requiring any additional numerical
evaluations of f. Hence, unlike 8; in (6), B, is computationally
inexpensive as well as always fully-defined.

(8)

3.3. Elemental curvature (Wang et al., 2016)

For the problem (2), the elemental curvature measure «, is
defined as

o & max
(Y,x; .x]-):YCXv

xi,XjeX\Y, xi#xju

AﬂIYU{})} , (9)

Af(xilY)

The corresponding performance bound S, is given by

52 _(e+ a2+ -+l)” _ 9
’ T+ae+o2+---+al) = fY*)
Note that 0 < o, < 1 and S, is a decreasing function with respect

to a. Therefore, when o, — 0, B — 1 and when «, — 1, similar
to the case of B;, B. — Br.

(10)

Automatica 144 (2022) 110493

It can be shown that f is submodular over X if and only if
Af(xilY U {x;}) < Af(xi]Y) for all feasible (Y, x;, x;) choices con-
sidered in (9) (see Nemhauser et al., 1978, Prop. 2.1). Therefore, if
Af(x;ilY U {x;}) = Af(xi]Y) occurs for some feasible combination
of (Y, x;, x;), it means f is modular in that region. According to (9),
such an existence of a modular region of f over X causes o, = 1
resulting B, = fB. A trivial situation where this (8. = Bf) occurs
is when f and X in problem (2) are such that 3x;, x; € X with
x; # x; where f({x;}) + f({x;}) = f({xi, x;}). Therefore, it is clear
that the elemental curvature based performance bound g, fails
(i.e., Be = Py occurs) unless f is strictly submodular everywhere
over its domain, i.e., Af(x]Y U {x;}) < Af(x;]Y) for all feasible
(Y, xi, X;) choices. We highlight that this particular behavior of 8.
contrasts from that of g; and B, discussed before (where weakly
submodular scenarios were preferred).

Moreover, note that evaluating S, is significantly computa-
tionally expensive (even compared to ;) as «, in (9) involves
solving a set function maximization problem (notice the set vari-
able Y in (9)). Hence, such a problem can even be more com-
plicated than the original set function maximization problem
(2) that we consider unless there are some special structural
properties that can be exploited (e.g., see Sun et al.,, 2019).

3.4. Partial curvature (Liu et al., 2018)

The motivation behind the partial curvature measure o) is
to be an alternative to the total curvature measure «; in (5).
Unlike o, ot can be evaluated when f has a constrained domain,
ie,whenf: .7/ — Ryo with . C 2X (where «; is ill-defined due
to its f(X) term). Specifically, o, is defined as

Af(XIY\{X})]
= max 1——F———. 11
% (Y,x):xeYe s N |: Af (x|9) ()
The corresponding performance bound B, is given by
1 ap\N] _ FYY)
s Ly (1o* _ 12
P ap[(N)}Sf(v*) (12)

We highlight that the above B, expression is only valid under
a few additional conditions on f, X and .#V (which are omitted
here, but can be found in Liu et al., 2018). Note that 8, in (12)
and B; in (6) has identical forms — enabling a direct comparison
between «; and «p. The work in Liu et al. (2018) has shown that
ap < ar, which implies that g, > B, i.e., B, is always tighter than
Bt. Note also that, similar to g;, 8, will provide a much improved
performance bound (i.e., 8, — 1) if the underlying submodularity
property (of f over X) is weak.

Moreover, similar to «. in (9), evaluating o, in (11) involves
solving a set function maximization problem (notice the set vari-
able Y in (11)). Therefore, evaluating B, is significantly computa-
tionally expensive compared to evaluating B;. In fact, evaluating
Bp can even be more complicated than the original set function
maximization problem (2) that we consider unless there are some
special structural properties that can be exploited (e.g., see We-
likala, 2021, Ch. 3.2.4).

4. The new performance bound

From the review presented in the previous section, three main
limitations of existing improved performance bounds (i.e., of S,
Conforti & Cornuéjols, 1984, B, Conforti & Cornuéjols, 1984, S,
Wang et al.,, 2016 and B, Liu et al., 2018) can be identified:

(1) Computational complexity: For example, B, and g, (i.e., the
most recently proposed performance bounds) require solving
hard combinatorial optimization problems.

S. Welikala, C.G. Cassandras, H. Lin et al.

(2) Inherent limitations: For example, B;, B; and B, inher-
ently provide improved performance bounds only when the
submodularity property (of f over X) is weak.

(3) Technical limitations: For example, 8; and 8, have technical
conditions that need to be satisfied (by f, X and .#" involved
in (2)) to validate their usage.

To counter the limitations mentioned above, in this section, a new
performance bound (denoted by B,) is proposed for the greedy
solution Y¢ given by Algorithm 1 for the class of problems in
(2). Similar to the previously reviewed improved performance
bounds, this new performance bound g, is also defined through
a corresponding (also new) curvature measure. In particular, we
denote this new curvature measure as «, and call it the extended
greedy curvature.

As the name suggests, this new curvature measure «, (and
hence B,) is derived exploiting the information computed when
executing an extended number of greedy iterations (i.e., more
than the usual N greedy iterations executed in Algorithm 1).
As we will see in the sequel, the exact number of extra greedy
iterations required depends on the application and the user pref-
erence. Since running greedy iterations is computationally inex-
pensive, the complexity of computing 8, is much less than that of
Be or B, and is in the same order of computing §; or B,. Moreover,
as we will see in the sequel, unlike g, s, B. and B,, B, does not
have any inherent or technical limitations.

4.1. Preliminary theoretical results

We start with establishing the following minor theoretical
result that relates an upper bound found for the global optimal
solution performance f(Y*) with a performance bound found for
the greedy solution performance f(Y°).

Lemma 2. Given the greedy solution performance f(Y®):

(a) « is an upper bound for f(Y*) if and only if B = f(y) is a valid
performance bound for f(Y©).

(b) B is a valid performance bound for f(Y®) if and only if « =
%f(YG) is an upper bound for f(Y*).

Proof. Cases (a) and gb) can be proved usmg the relationships:
@z f(y7) e < M and g < 00— f(ve) <
%f (Y©), respectively.

We now introduce some additio'nall notations. Let [0, k] be
the set {0, 1,2, ..., k}. Recall the (Z', z') notation introduced in
Section 2 for i € [0, M]. Using that, let us define
YG éz(nJrl)N\ZnN — {ZnN+1 ZnN+2 ZnN+N} (]3)
for any n € [0,m — 1] where m 2 | ¥ | (|-] denotes the floor
operator). Simply, YHG is the (n+ 1)th block of N greedily selected
options. Hence, |Y¢| = N and Y§ = Y°. Along the same lines, let
us also define

X, 2X\Z™ and Y 2{Y:Y C X, |Y| <N}, (14)

for any n € [0, m— 1]. Simply, X, is the set of remaining available
options after selecting n blocks of N greedy options (i.e., after nN
greedy iterations). Hence, Xo = X and .#})' = .#". Similar to the
set system (X, .#") considered in (2), the set system (X,, .7N) is a
uniform matroid of rank N, for any n € [0, m — 1].

Let us also consider a series of auxiliary set function maximiza-
tion problems: {P;},e[0,m—1; Where

P, : * 2 argmax Af(Y]|Z"™). (15)
YesN

Automatica 144 (2022) 110493

According to Lemma 1, the objective function of P,
(i.e., Af(Y|Z™))is a polymatroid set function over X,. This implies
that P, aims to find the optimal set Y, that maximizes the
polymatroid set function Af(Y|Z™) over the uniform matroid
(X, J,f’). Hence, each P,,n € [0,m — 1] falls into the same
class of problems as in (2), and in fact, Py is equivalent to (2)
(i.e., Y§ = Y*). Moreover, it is easy to see that Y,,G introduced in
(13) is the greedy solution to P, in (15) for n € [0, m — 1].

Next, we establish two lemmas that provide two different
upper bounds for the global optimal performance of P, in (15).

Lemma 3. Forn € [0, m — 1],

Af(Y;IZ™) < max | > Af(yIz™) | (16)

Ye. ﬁn yey

Proof. Due to the normalized and monotone nature of the set
function f (see Definition 1(a)-(b)), we have 0 < f(A N B) for all
A, B C X. Using this result in the second equivalent condition
given for the submodularity property in Definition 1(c), we can
write f(AUB) < f(AUB)+f(ANB) < f(A)+f(B), ie., f(AUB) <
f(A) + f(B) for all A,B € X (notice the resemblance with the
triangle inequality). Based on this result, it is easy to see that any
normalized monotone submodular set function f defined over a
ground set X will follow the property:

<Y fdah,

aeA

VA C X. (17)

As mentioned before, Af(Y|Z™) is a normalized monotone sub-
modular set function in Y over the ground set X,, (from Lemma 1).
Therefore, Af(Y|Z™) should follow the property in (17), i.e.,

<Y Af(yIZ™), VY €., (18)
yey

Y|ZnN

(note that, according to (14), Y € ﬂ,f’ < Y C X™"). Now, taking
the maximum of both sides of (18) over all possible Y € i,f’ we
get

max Af(Y|Z™) < max ZAf (y|z™) | . (19)

Ye. 7 Ye. ﬁn yey

Finally, using (15), we can rewrite the left hand side (LHS) of the
above expression as Af(Y; |Z™). This completes the proof.

Lemma 4. Forn € [0, m — 1],

AF(YIZ™) < ﬁl [F@) —). (20)
f
Proof. Using (15), let us rewrite the LHS of (20) as
Af(YyZ™) = max Af(Y(Z™). (21)
Ye 9

Since Af(Y|Z™) is a polymatroid set function in Y over the
uniform matroid (X, .7"), the performance bound B given in
(4) can be applied for a greedy solution of the above set function
maximization problem (on right hand side of (21)). In fact, from
the used notation, Y = Ync is the greedy solution that maximizes
Af(Y|Z™). Therefore, using the known performance bound g
and the greedy solution performance Af(Y?|Z™) in Lemma 2(b),
we obtain an upper bound to (21) as
Af(Yy1Z™) = max Af(Y|z™) < Af(Y,f 1z™). (22)
vesN ,Bf

S. Welikala, C.G. Cassandras, H. Lin et al.

Finally, we use (1) and (13) to simplify Af(YS|Z™) as
Af(Y1Z™) = f(Yg U Z™) = f(Z™) = fZU"DN) — f(z™).
Substituting this result in (22) completes the proof.

The following lemma establishes an important equality condi-
tion that will be used later on.

Lemma 5. For n € [0, m — 1],

max Af(Y|ZNY = max Af(Y|ZHDN).
ves) vesN |

(23)
Proof. Note that this result is non-trivial as the feasible spaces of
the optimization problems on both sides of (23) are related such
that 7 > 7N . Let us denote Y = {y1,ys,...,yn} € 1 and
rewrite Af(Y|Z("*DN) as a telescoping sum:

AF(YIZOONY =f({yq, ..., yn} U Z0FDN) — f(ZHDNY
=f({y1,...,yn} UZMFDN)
— f(y1s .. yny UZTINY
e f({y u ZMINY — f(ZDN

N

= AfGilys, -

i=1

Note that Af(yil{y1, ..., ¥yi—1} UZ®DN) = 0 for any y; € Z(+DN
and Af(yil{y1, ..., yie1) UZOFINY > 0 for any y; € X\Z(FDN,
Therefore, according (24), when maximizing the set function
Af(Y]Z(+DNY with respect to Y, selecting Y ¢ X\Z"DN (aka.
Y e #N) is sufficient as opposed to selecting Y € X\Z™ (a.k.a.

n+1
Y € .#N). Hence (23) holds.

,Yio1) UZINy, (24)

Now, we establish a lemma that provides an upper bound for
the performance of the global optimal solution of (2).

Lemma 6. For n € [0, m — 1],

FOY*) < FZ™) + Af(YF1Z™). (25)

Proof. Since Af(Y|Z™) is a monotone set function in Y over the
ground set X, (from Lemma 1, for any n € [0, m — 1]),

Af(YF1Z™) < Af(Yy U YZIZ™),
=AF(Y71Z™) + Af(Yy U Yy |Z™) — Af(Y71Z™)
=Af(Y71Z™) + f(Yy v Yy uzZ™) - f(Z™)
— fyg uz™)+f(z™)
=Af(YC1Z™) + FYFUYSUZ™) —F(YE uzZ™)
=Af(YS1Z™) + AF(YFIYE UZ™)
=Af(YS1Z™) + Af(Yy|ZHDN),

(using (1))

((using (1))

((using (13))
ie.,

AF(YF1Z™) < AF(YSIZ™) + AF(YF1ZFON), (26)

Note that Af(Y}Z"+DNy < max Af(Y|ZHDNY a5 Y* e N,
Ye sy
Using this result in (26), we can write

Af(Y;1Z™) = Af(Y71Z™) + max Af(v|Z"FON)
Ye sy
=Af(Y;1Z™) + max Af(y|z"N)

Yejn-%—l

=Af(YZ|Z™) + Af(Y;r, 12N, (using (15))
Replacing n with k, the above result can be written as

Af(YF1ZMNY < AF(YEI1ZMY) + Af (Y, 120D, (27)

(from Lemma 5)

Automatica 144 (2022) 110493

for k € [0, m — 1]. Now summing (27) for k € [0, n — 1] we get
n—1

AF(YF1Z°%) < D7 AF(YE1Z) + Af(Yy1z™).
k=0

Note that Y; = Y* in (2) and Z° = ¢ by definition. Thus,

Af(Y5*|Z°) = f(Y*). Further, using (1) and (13), we can show that

n—1 n—1

ZAf(YkC|ZkN) ZZAf(Z(k+])N\ZkN|ZkN)

k=0 k=0

n—1
— Zf(z(k+1)N) _f(ZkN)
k=0

=f@™).

Therefore, using the above two results in (28), we now can obtain
(25), which holds for any n € [0, m — 1] (equality holds when
n=0).

(28)

4.2. Extended greedy curvature based performance bound

We now define the proposed extended greedy curvature mea-
sure oy, as

oy £ min aL, (29)

ieQ
where Q € Q 2 {1,N,N+ 1,2N,2N + 1,...,(m —)N +
1, mN, M} and

f@h+ max [, Af(yIZT)]
Yey(i—l)/N
ifi=1,N+1L2N+1,....(m— DN +1,
FEN+ L [1@) - f)
ifi =N, 2N,...,mN,
ifi =M.

1>

f(z
(30)

We point out that Q is a fixed set of greedy iteration indexes
upon each of which a corresponding «;, value can be computed
using already known information. This is because all the f(.)
and Af(-|-) terms required to evaluate any «;, form in (30) are
automatically computed during the execution of first i greedy
iterations. Hence, «;, sequence over i € Q can be thought of
as a sequence of byproducts generated during (in parallel with)
the execution of greedy iterations. In contrast to Q, Q is an
arbitrary subset selected from Q based on the user preference.
For example, one can simply set Q = {1, N, N + 1, 2N} so that
oy value can be obtained upon executing only N extra greedy
iterations (i.e., 2N greedy iterations in total).

The performance bound B, corresponding to the extended
greedy curvature measure ¢, is given in the following theorem.

Theorem 1. For the submodular maximization problem in (2), the
greedy solution Y© given by Algorithm 1 satisfies the performance
bound B, where

fYe _ f(©)

Pu oy Sf(Y*.

(31)

—

Proof. To prove this result, according to Lemma 2(a) and (29),
we only need to show that f(Y*) < «, for alli € Q (note also
that Q € Q). We do this in three steps.

First, by adding the main results established in Lemmas 6 and
3 (i.e., (25) and (16), respectively) we get

fOY) < f(@™) + max
Ye.#)

> Afyiz™) |

yey

(32)

S. Welikala, C.G. Cassandras, H. Lin et al.

for n € [0, m — 1]. Now, replacing the variable n with i using
the substitution i = nN + 1 we obtain f(Y*) < ozL fori €
{I,N+1,2N+1,...,(m—1)N + 1}.

Second, using the main results of Lemmas 4 and 6, we get

1
FY) < f@™) + B [fzmN) — fz™], (33)

for n € [0, m — 1]. Now, replacing the variable n with i using
the substitution i = nN + N we obtain f(Y*) < aﬁ, fori e
{N,2N, 3N, ..., mN}.

Finally, we use the monotonicity property of f and the fact that
Y* C ZM = X to obtain f(Y*) < f(Z') = o/ for i = M.

4.3, Discussion

As mentioned earlier, the set Q used for computing «,, in (29)
can be smaller compared to the set Q (specially if the compu-
tational cost associated with running extra greedy iterations is a
concern). However, based on (29) and (31), it is easy to show that
the performance bound g, is a monotone set function in Q C Q.
This implies that a superset of Q will always provide a higher (or
at least equal) B, value compared to the g, value corresponding
to the set Q.

Let us now consider a case where the submodularity property
of f is weak (i.e,, f is close to being a modular set function, see
also Remark 2). In a such setting, the af, value (from (30), with
i = 1) can be simplified as

1 _ 0 0 —
o, =fZ°)+ max | 3 AfIZ") | = max | D f({y)

0 | yey yeY
= maxf(Y)+e =f(Y*)+e, (34)
yesN

where ¢ > 0 is a parameter that represents the strength of
the submodularity property (¢ = 0 if f is modular). The above
expression implies that the evaluated o} value will be a tight
upper bound for f(Y*) as f become more modular (i.e., as € —
0). Therefore, in a such setting, the corresponding performance
bound g, will also be tight (close to 1). In that sense, 8, behaves
similar to the performance bounds B, B, B, discussed in the
previous section.

Remark 3. The strength of the submodularity can formally be
defined as an additive constant ¢, € Rs(or a multiplicative
constant €, € Rs(applicable for the submodularity inequality
provided in Definition 1(c). Based on this definition, it can be
shown that the parameter ¢ we introduced in (34) (to represent

the strength of the submodularity) satisfies € > ¢, and ﬁ > €m.

On the other hand, let us now consider a case where the
submodularity property of f is strong. In a such setting, according
to the “diminishing returns” view of the submodularity property
(see Definition 1(c)), f(Z') should saturate quickly with respect to
i. Keeping this in mind, let us consider the af,” value (from (30),
with i = 2N) that can be simplified as

o2 = f(ZV) + ﬁl [F2) - £(z%)]
f

1
=f(Y)+ — [fZz?N) = f(zM].
f()+ﬁf [F(Z*") - f(zM)]

Note that when the submodularity property of f is strong, the
above difference term [f(z?") — f(z")] will become small. There-
fore, @2N — f(Y) and the corresponding performance bound
By = %,3) — 1 revealing a tight performance bound. In that

u . . .
sense, B, behaves similar to the performance bound S, discussed
in the previous section.

Automatica 144 (2022) 110493

Therefore, B, is designed to have the best of both worlds while
also being computationally inexpensive and having no additional
technical limitations on its applicability. In the next section, we
confirm these conclusions using numerical results generated from
several different experiments.

5. Application to multi-agent coverage problems

In this section, we consider a widely studied class of multi-
agent coverage problems (Sun et al., 2019; Welikala & Cassandras,
2020; Zhong & Cassandras, 2011) and show that problems in
this class can be modeled as submodular maximization problems
of the form (2). Therefore, we use the simple greedy algorithm
(Algorithm 1) to solve these multi-agent coverage problems. Sub-
sequently, we study the effectiveness of different performance
bounds (discussed in previous sections) in characterizing such
greedy solutions.

5.1. Multi-agent coverage problem formulation

The multi-agent coverage problem aims to find an optimal
arrangement for a given set of sensors (agents) inside a given
mission space to maximize the probability of detecting randomly
occurring events in that mission space.

The mission space 2 C R? is modeled as a non-self-
intersecting polygon (Zhong & Cassandras, 2011) that may con-
tain a finite set of polygonal obstacles {M;, My, ..., My} where
M; C £ represents the interior of the ith obstacle. Hence,
the agent deployment is constrained to the feasible space F =
.Q\(U?:l M;). The likelihood of random event occurrence over the
mission space is modeled by the event density function R : 2 —
Rso. It is assumed that R(x) = 0,Vx ¢ F and fQ R(x)dx < 0.
In the case where no prior information about R(x) is available,
R(x) = 1,Vx € F is used.

Inside the feasible space F, N homogeneous agents must be
placed. We use s = [s1,52,...,5y] € R*N to represent the
selected agent locations (i.e., the control variable). Each agent is
assumed to have a finite sensing radius § € R beyond which
it cannot detect any events. Further, obstacles are assumed to
obstruct the sensing capability of the agents. In particular, the
visibility region of an agent located at s; € F is denoted by V(s;) =
{x : llx —sill <6,vq € [0,1],(gx + (1 — q)s;) € F} (where
| - || represents the Euclidean norm, see also Fig. 1). Moreover,
a sensing function p(x,s;) = e sl . 1{x e V(s;)} is used to
quantify the probability of an agent located at s; € F detecting an
event occurring at x € F. In this p(x, s;) expression, the parameter
A is called the sensing decay rate.

Assuming independently detecting agents, the probability of
detecting an event occurring at x € F by at least one agent
(when in an agent placement s) is given by P(x,s) = 1 —
]_[f; [1 — p(x, s;)]. This is more commonly known as the joint de-
tection probability function. Using the event density function and
the joint detection probability function, the objective function
of the multi-agent coverage problem can be written as H(s) =
f o R(X)P(x, s)dx. Therefore, the multi-agent coverage problem can
be stated as

s* = argmax H(s). (35)
s:s;eF,Vie[1,N]

5.2. Set function approach for multi-agent coverage problems

To model the multi-agent coverage problem in (35) as a set
function maximization problem of the form (2), we use the fol-
lowing set of steps. First, the ground set X = {x1,X2,...,Xxu}
is created by discretizing the continuous feasible space F ¢ R2.
Next, a set variable is defined as S = {s1, 53, ..., Sy} to represent

S. Welikala, C.G. Cassandras, H. Lin et al.

Visibility Region
V(s:)

Location of
Agenti : S

Mission Space
0

Fig. 1. A mission space with one agent.

the selected agent locations from the ground set X. Since we
are interested in deploying only N agents, a uniform matroid
constraint of rank N can be introduced as S € .#" where N =
{Y 1 Y C X,|Y|] < N}. Now the corresponding set function
maximization problem for (35) can be written as

§* = arg max H(S), (36)
SegN

where H(S) (called the set coverage function) is the set function

version of the coverage objective function H(s), i.e.,

#(s) = [Reort =TT 11 = plx. sl (37)
F

sieS

The work in Sun et al. (2019) has established that H(S) in (37) is
a polymatroid set function. Hence, it is clear that the multi-agent
coverage problem in (35) is a submodular maximization problem
of the form (2).

As a consequence, we now can solve the multi-agent coverage
problem conveniently using the greedy algorithm (Algorithm 1)
and also get a performance bound that characterizes how close
the obtained greedy coverage level is to the global optimal cover-
age level. As mentioned in Remark 1, similar to the works in Sun
et al. (2019, 2020), a subsequent gradient ascent stage or an
interchange stage can be added to further improve any greedy
solution obtained for (36). However, as shown in Proposition 1,
such an improvement will only scale any performance bound
(already found for the greedy solution) by a fixed constant factor.
Therefore, in this paper, we omit executing such improvement
stages and directly study the performance bounds found for the
greedy solution.

5.3. Numerical results

The greedy algorithm (Algorithm 1), the newly proposed per-
formance bound B, (31) (o in (31) was determined using (29)
with Q = Q) and the existing other performance bounds:
Br (4), Bt (6), By (8), Be (10) and B, (12) were all implemented
for the considered class of multi-agent coverage problems in an
interactive JavaScript-based simulator which is available at http://
www.bu.edu/codes/simulations/shiran27/CoverageFinal/ (the

Automatica 144 (2022) 110493

——0 A0
—0
P
209 3
3 u
o
fis]
3
5 0.8
E
5
a 0.7

0.6
100 200 300 400 500 600
Sensing Range (d)

(a) A =0.006,N =10

(b) 6 =100 (c) 6 =350 (d) 6 =600

Fig. 2. Performance bound vs. sensing range (8) for the General mission space
configuration. Sub-figures (b)-(d) show three greedy solutions obtained for three
different § values. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

o
©
ey

Performance Bound
o
oo

o
5

ST
o

0.6
14 12 10 8 6 4 2

Sensing Decay Rate (\) 103

(a) 6 =400,N =10
Average Improvement = 0.1386

(b) A =0.014 () A=0.007 (d) A =0.001

Fig. 3. Performance bound vs. sensing decay rate (i) for the General mission
space configuration. Sub-figures (b)-(d) show three greedy solutions obtained
for three different A values. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

source code is available at: https://github.com/shiran27/Coverage
Control). It may be used by the reader to reproduce the reported
results and also to try different new problem configurations.

In particular, mission spaces with three different obstacle ar-
rangements named ‘General, ‘Maze’ and ‘Blank’ were consid-
ered (can be seen in Figs. 2(b), 4(d) and 5(b), respectively). In

http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/
http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/
http://www.bu.edu/codes/simulations/shiran27/CoverageFinal/
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl
https://github.com/shiran27/CoverageControl

S. Welikala, C.G. Cassandras, H. Lin et al.

Automatica 144 (2022) 110493

e
©

Performance Bound
Performance Bound
o
(e}

Performance Bound

oo o e o Sy

5 10 15
Number of Agents (N)

(a) 6§ =200,4 = 0.008

20 5

10

Number of Agents (N)

(b) 6 =300,A = 0.006

15 20 5 10 15

Number of Agents (N)

(c) 6 =400,A =0.004
Average Improvement = 0.2106

20

N=5 @©@N=10 (HN=15 (@ N=5

(hy N=10

HN=15 GN=5 (KN=10

Fig. 4. Performance bound vs. number of agents (N) for the Maze mission space configuration: Agent sensing capabilities (or proportionately, the strength of the
submodularity property of the set coverage objective) is: (a) weak, (b) moderate and (c) strong. Each of the corresponding three sub-figure groups (d)-(f), (g)-(i)
and (j)-(1) shows three greedy solutions obtained for different N values. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

Performance Bound

0.04 0.03 0.02
Sensing Decay Rate (1))

0.01

(a) 6 =800,N =10
Average Improvement = 0.1248

(b) A =0.046 (c) A =0.026

(d) A =0.006

Fig. 5. Performance bound vs. sensing decay rate (1) for the Blank mission space
configuration. Sub-figures (b)-(d) show three greedy solutions obtained for three
different A values. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

such mission space diagrams, obstacles are shown as dark green-
colored blocks and agent locations are shown as red-colored dots.
Moreover, light-colored areas indicate low coverage levels while
dark-colored areas indicate the opposite.

The main focus here is to study the behavior of different per-
formance bounds (found for the greedy solution) under different
coverage problem configurations. In each experiment shown in
Figs. 3-5, one of the three parameters: (i) sensing range 8, (ii)

sensing decay rate A or (iii) the number of deployed agents N, was
varied while keeping the other two fixed. Note that as § increases
or A decreases or N increases, the agent sensing capability over
the mission space also increases. For convenience, each graph has
been drawn so that along its x-axis, the agent sensing capability
increases. It is easy to see that agent sensing capability directly
maps to the strength of the submodularity property of the set
coverage objective function (i.e., agents with high sensing capa-
bilities make the submodularity property of the corresponding
set coverage objective function strong, and vice versa). In the
graphs shown in Figs. 2(a), 3(a), 4(a), 4(b), 4(c) and 5(a), whenever
only a few of the said performance bounds have been drawn,
it means the other performance bounds were found redundant
(no better than gr). The average improvement value reported in
each such graph (caption) was computed by taking the average of
(Bu — max{B, Bt, By, Pe, Br}) value across all the corresponding
data points.

Across almost all the numerical results shown (see Fig. 3(a),
A = 11 x 1073 case for an exception), the proposed extended
greedy curvature based performance bound B, has shown the
best performance bounds irrespective of the level of the agent
sensing capabilities (i.e., irrespective of the strength of the sub-
modularity property). In particular, the dip in the 8, curve seen
in each of Figs. 2, 3, 4(a), 4(b), 4(c) and 5 point out that using
a greedy algorithm to solve a multi-agent coverage problem is
most challenging when the agents have a moderate sensing ca-
pability. Therefore, in such scenarios, the use of a greedy solution
improvement scheme (see Remark 1) can be recommended. We
also highlight that in each 8, curve, the decreasing set of data
points (to the left of the dip point) have come from the extended
greedy curvature measure o, = o} (that can be computed in the
very first greedy iteration). Hence, in all such scenarios, no extra
greedy iterations were required.

To further study this, let us denote i* as the argmin value of
the problem (29). In other words, i* is the minimum number of
greedy iterations required to obtain the extended greedy curva-
ture measure o, = o' (29) and the corresponding performance
bound B, = f(Y®)/a! (31). For the same experiments that gen-
erated the results shown in Figs. 2(a) and 3(a), the corresponding

S. Welikala, C.G. Cassandras, H. Lin et al.

e o o9
~ © ©

Performance Bound
I
o

o
)

100

600

)
“ay . “a“%e\
PN NE

400

(a) The surface plot. Red line: 8, vs. 0 vs. i*.

100

o
<)

o
3

50

I
o

Performance Bound

o
3

Greedy Iterations (i)

200 400
Sensing Range (§)

600

200
Sensing Range ()

400 600

(b) XY-View (c) XZ-View (Fig. 2(a))

Fig. 6. Extend greedy curvature based performance bound vs. sensing range (§)
vs. no. of greedy iterations for the General mission space configuration with
X = 0.006, N = 10. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

i* vs B, behaviors observed (under different A and « values) are
illustrated in Figs. 6 and 7, respectively. Note that the red curves
in Figs. 6(b) and 7(b) imply that the number of greedy iterations
required to compute the proposed extended greedy curvature
based performance bound B, (31) (i.e., i*) is generally non-trivial
and typically N < i* < M. Note also that the same curves indicate
the need for a higher number of greedy iterations to compute
the proposed performance bound 8, (31) (i.e., i* > N) whenever
the agents have a moderate sensing capability. This observation is
in line with our previous conclusion that a multi-agent coverage
problem is most challenging when the agents have a moderate
sensing capability.

Comparison with the previous work in (Sun et al, 2019, 2020). For
this class of multi-agent coverage problems, the work in Sun
et al. (2019) first proposed to adopt the performance bounds
B¢ (6) and B, (10) (from Conforti & Cornuéjols, 1984 and Wang
et al, 2016, respectively). Then, the subsequent work in Sun
et al. (2020) proposed to adopt the performance bounds S, (8)
and B, (12) (from Conforti & Cornuéjols, 1984 and Liu et al.,
2018, respectively). The numerical results shown in Fig. 5 jus-
tify these contributions of Sun et al. (2019, 2020) as they have
lead to improved performance bounds compared to ;. However,
even in this case (Fig. 5), it is notable that the proposed novel
performance bound in this paper g, (31) has achieved an av-
erage improvement of 0.1248 compared to the state of the art
(i.e., compared to max{p, B, Be, B Bp})-

10

Automatica 144 (2022) 110493

Performance Bound

0

0.005
De(;a‘] k)

0.01
0 3)

(a) The surface plot. Red line: 3, vs. A vs. i*.

100 1
= 2
2 308
£ a
= o
£ 50 206
& 5 04
1<) A
001 0005 0 001 0005 0

Sensing Decay (\) Sensing Decay (\)

(b) XY-View (¢) XZ-View (Fig. 3(a))

Fig. 7. Extend greedy curvature based performance bound vs. sensing decay rate
(1) vs. no. of greedy iterations for the General mission space configuration with
8 = 400, N = 10. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

6. Conclusion

In this paper, we considered the class of monotone submod-
ular set function maximization problems subject to cardinality
constraints. Different curvature measures and corresponding per-
formance bounds found in the literature were reviewed for this
class of problems, outlining their strengths and weaknesses. In
particular, computational complexity, technical requirements and
inherent limitations were the main weaknesses observed. A novel
curvature measure was proposed along with a corresponding
performance bound that does not suffer from the limitations
identified in its predecessors. We named this curvature mea-
sure as the extended greedy curvature since it thrives on the
information seen when executing additional greedy iterations. A
well-known class of multi-agent coverage problems was used to
examine the effectiveness of the proposed performance bound
compared to the other performance bounds found in the liter-
ature. Ongoing research explores the effectiveness of this new
performance bound on other applications and under different
quantified strength levels of the submodularity property.

Acknowledgments

We are immensely grateful to Prof. David A. Castafién,
Prof. Sean B. Andersson and Prof. Ioannis Ch. Paschalidis of Boston
University, Brookline, MA, USA, for sharing their expertise, in-
sights and comments on an earlier version of this manuscript.

S. Welikala, C.G. Cassandras, H. Lin et al.

References

Badanidiyuru, Ashwinkumar, Karbasi, Amin, Kazemi, Ehsan, & Vondrak, Jan
(2020). Submodular maximization through barrier functions. In Advances in
neural information processing systems: vol. 33, (pp. 524-534).

Conforti, Michele, & Cornuéjols, Gérard (1984). Submodular set functions,
matroids and the greedy algorithm: Tight worst-case bounds and some
generalizations of the rado-edmonds theorem. Discrete Applied Mathematics,
7(3), 251-274.

Corneuejols, Gerard, Fisher, Marshall L., & Nemhauser, George L. (1977). Location
of bank accounts to optimize float: An analytic study of exact and approx-
imate algorithms. Management Science, 23(8), 789-810. http://dx.doi.org/10.
1287/mnsc.23.8.789.

Das, Abhimanyu, & Kempe, David (2008). Algorithms for Subset Selection in
Linear Regression. In Proc. of 40th annual ACM symposium on theory of
computing (pp. 45-54).

El-Arini, Khalid, & Guestrin, Carlos (2011). Beyond Keyword Search: Discovering
Relevant Scientific Literature. In Proc. of 17th ACM SIGKDD intl. conf. on
knowledge discovery and data mining (pp. 439-447).

Fahrbach, Matthew, Mirrokni, Vahab, & Zadimoghaddam, Morteza (2019). Non-
monotone submodular maximization with nearly optimal adaptivity and
query complexity. In Proc. of the 36th intl. conf. on machine learning: vol.
97, (pp. 1833-1842).

Fisher, M. L., Nemhauser, G. L., & Wolsey, L. A. (1978). An analysis of approxima-
tions for maximizing submodular set functions—II. Polyhedral Combinatorics:
Dedicated To the Memory of D.R. Fulkerson, 73-87.

Grotschel, M., Lovasz, L., & Schrijver, A. (1981). The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2), 169-197.
http://dx.doi.org/10.1007 /BF02579273.

Jegelka, Stefanie, & Bilmes, Jeff (2011). Submodularity beyond submodular
energies: Coupling edges in graph cuts. In Proc. of IEEE computer society conf.
on computer vision and pattern recognition (pp. 1897-1904). http://dx.doi.org/
10.1109/CVPR.2011.5995589.

Kempe, David, Kleinberg, Jon, & Tardos, Eva (2003). Maximizing the Spread of
Influence through a Social Network. In Proc. of 9th ACM SIGKDD intl. conf. on
knowledge discovery and data mining (pp. 137-146).

Khanna, Rajiv, Elenberg, Ethan, Dimakis, Alex, Negahban, Sahand, & Ghosh, Joy-
deep (2017). Scalable greedy feature selection via weak submodularity. In
Proc. of 20th intl. conf. on artificial intelligence and statistics: vol. 54, (pp.
1560-1568).

Lin, Hui, & Bilmes, Jeff (2011). A class of submodular functions for docu-
ment summarization. In Proc. of 49th annual meeting of the association for
computational linguistics: Human language technologies (pp. 510-520).

Liu, Siwen (2020). A review for submodular optimization on machine scheduling
problems. In Complexity and approximation: In memory of Ker-I Ko (pp.
252-267). http://dx.doi.org/10.1007/978-3-030-41672-0_16.

Liu, Yajing, Chong, Edwin K. P., & Pezeshki, Ali (2018). Improved bounds for
the greedy strategy in optimization problems with curvature. Journal of
Combinatorial Optimization, 37(4), 1126-1149.

Liu, Yajing, Chong, Edwin K. P., Pezeshki, Ali, & Zhang, Zhenliang (2020).
Submodular optimization problems and greedy strategies: A survey. Discrete
Event Dynamic Systems: Theory and Applications, 30(3), 381-412. http://dx.
doi.org/10.1007/s10626-019-00308-7.

Mirzasoleiman, Baharan, Karbasi, Amin, Sarkar, Rik, & Krause, Andreas (2013).
Distributed submodular maximization: Identifying representative elements
in massive data. In Advances in neural information processing systems: vol. 26.

Nembhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approxima-
tions for maximizing submodular set functions—I. Mathematical Programming,
14(1), 265-294.

Rezazadeh, Navid, & Kia, Solmaz S. (2019). A sub-modular receding horizon
approach to persistent monitoring for a group of mobile agents over an
urban area. IFAC-PapersOnlLine, 52(20), 217-222.

Schrijver, Alexander (2000). A combinatorial algorithm minimizing submodular
functions in strongly polynomial time. Journal of Combinatorial Theory. Series
B, 80(2), 346-355. http://dx.doi.org/10.1006/jctb.2000.1989.

Sun, Xinmiao, Cassandras, Christos G., & Meng, Xiangyu (2019). Exploiting
submodularity to quantify near-optimality in multi-agent coverage problems.
Automatica, 100, 349-359.

Sun, Chuangchuang, Welikala, Shirantha, & Cassandras, Christos G. (2020). Opti-
mal composition of heterogeneous multi-agent teams for coverage problems
with performance bound guarantees. Automatica, 117, Article 108961. http:
//dx.doi.org/10.1016/j.automatica.2020.108961.

Wang, Zengfu, Moran, Bill, Wang, Xuezhi, & Pan, Quan (2016). Approximation for
maximizing monotone non-decreasing set functions with a greedy method.
Journal of Combinatorial Optimization, 31(1), 29-43.

Welikala, Shirantha (2021). Overcoming local optima in control and optimization
of cooperative multi-agent systems (Ph.D. thesis), (p. 233). Boston University.

11

Automatica 144 (2022) 110493

Welikala, Shirantha, & Cassandras, Christos G. (2020). Asymptotic analysis for
greedy initialization of threshold-based distributed optimization of persis-
tent monitoring on graphs. 53, In Proc. of 21st IFAC world congress (2),
(pp. 3433-3438). http://dx.doi.org/10.1016/j.ifacol.2020.12.1670, URL https:
//www.sciencedirect.com/science/article/pii/S2405896320322734.

Welikala, Shirantha, & Cassandras, Christos G. (2020). Distributed non-convex
optimization of multi-agent systems using boosting functions to escape local
optima. IEEE Transactions on Automatic Control, http://dx.doi.org/10.1109/TAC.
2020.3034869.

Welikala, Shirantha, & Cassandras, Christos G. (2021). Greedy initialization
for distributed persistent monitoring in network systems. Automatica, 134,
109943. http://dx.doi.org/10.1016/j.automatica.2021.109943.

Wolsey, Laurence A. (1982). Maximising real-valued submodular functions:
Primal and dual heuristics for location problems. Mathematics of Operations
Research, 7(3), 410-425.

Zhong, M., & Cassandras, C. G. (2011). Distributed coverage control and data
collection with mobile sensor networks. IEEE Transactions on Automatic
Control, 56(10), 2445-2455.

Shirantha Welikala received the B.Sc. degree in Elec-
trical and Electronic Engineering from the University
of Peradeniya, Peradeniya, Sri Lanka, in 2015 and the
M.Sc. and the Ph.D. degrees in Systems Engineering
from Boston University, Brookline, MA, USA, in 2019
and 2021, respectively. From 2015 to 2017, he was
with the Department of Electrical and Electronic En-
gineering, University of Peradeniya, where he worked
first as a Temporary Instructor and subsequently as
o G a Research Assistant. He is currently a Postdoctoral

Research Fellow in the Department of Electrical En-
gineering, University of Notre Dame, South Bend, IN, USA. His main research
interests include control and optimization of cooperative multi-agent systems
with a particular emphasis on coverage and monitoring applications, networked
systems, passivity, symbolic control, machine-learning, robotics, and smart-grid
applications. He is a recipient of several awards, including the 2015 Ceylon
Electricity Board Gold Medal, the 2019 President’s Award for Scientific Research
in Sri Lanka, and the 2021 Outstanding Ph.D. Dissertation Award in Systems
Engineering.

Christos G. Cassandras (F'96) is Distinguished Profes-
sor of Engineering at Boston University. He is Head
of the Division of Systems Engineering, Professor of
Electrical and Computer Engineering, and co-founder of
Boston University’s Center for Information and Systems
Engineering (CISE). He received degrees from Yale Uni-
versity, Stanford University, and Harvard University.

In 1982-84 he was with ITP Boston, Inc. where
he worked on the design of automated manufacturing
systems. In 1984-1996 he was a faculty member at the
Department of Electrical and Computer Engineering,
University of Massachusetts/Amherst. He specializes in the areas of discrete
event and hybrid systems, cooperative control, stochastic optimization, and
computer simulation, with applications to computer and sensor networks,
manufacturing systems, and transportation systems. He has published about
450 refereed papers in these areas, and six books. He has guest-edited several
technical journal issues and currently serves on several journal Editorial Boards,
including Editor of Automatica. In addition to his academic activities, he has
worked extensively with industrial organizations on various systems integration
projects and the development of decision support software. He has most recently
collaborated with The MathWorks, Inc. in the development of the discrete event
and hybrid system simulator SimEvents.

Dr. Cassandras was Editor-in-Chief of the IEEE Transactions on Automatic
Control from 1998 through 2009 and has also served as Editor for Technical
Notes and Correspondence and Associate Editor. He was the 2012 President of
the IEEE Control Systems Society (CSS). He has also served as Vice President for
Publications and on the Board of Governors of the CSS, as well as on several IEEE
committees, and has chaired several conferences. He has been a plenary/keynote
speaker at numerous international conferences, including the 2017 IFAC World
Congress, the American Control Conference in 2001 and the IEEE Conference on
Decision and Control in 2002 and 2016, and has also been an IEEE Distinguished
Lecturer.

He is the recipient of several awards, including the 2011 IEEE Control Sys-
tems Technology Award, the Distinguished Member Award of the IEEE Control
Systems Society (2006), the 1999 Harold Chestnut Prize (IFAC Best Control
Engineering Textbook) for “Discrete Event Systems: Modeling and Performance
Analysis,” a 2011 prize and a 2014 prize for the IBM/IEEE Smarter Planet
Challenge competition, the 2014 Engineering Distinguished Scholar Award at
Boston University, several honorary professorships, a 1991 Lilly Fellowship and

http://refhub.elsevier.com/S0005-1098(22)00352-1/sb1
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb1
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb1
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb1
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb1
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb2
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb2
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb2
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb2
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb2
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb2
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb2
http://dx.doi.org/10.1287/mnsc.23.8.789
http://dx.doi.org/10.1287/mnsc.23.8.789
http://dx.doi.org/10.1287/mnsc.23.8.789
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb6
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb6
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb6
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb6
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb6
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb6
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb6
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb7
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb7
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb7
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb7
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb7
http://dx.doi.org/10.1007/BF02579273
http://dx.doi.org/10.1109/CVPR.2011.5995589
http://dx.doi.org/10.1109/CVPR.2011.5995589
http://dx.doi.org/10.1109/CVPR.2011.5995589
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb11
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb11
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb11
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb11
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb11
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb11
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb11
http://dx.doi.org/10.1007/978-3-030-41672-0_16
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb14
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb14
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb14
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb14
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb14
http://dx.doi.org/10.1007/s10626-019-00308-7
http://dx.doi.org/10.1007/s10626-019-00308-7
http://dx.doi.org/10.1007/s10626-019-00308-7
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb16
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb16
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb16
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb16
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb16
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb17
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb17
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb17
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb17
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb17
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb18
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb18
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb18
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb18
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb18
http://dx.doi.org/10.1006/jctb.2000.1989
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb20
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb20
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb20
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb20
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb20
http://dx.doi.org/10.1016/j.automatica.2020.108961
http://dx.doi.org/10.1016/j.automatica.2020.108961
http://dx.doi.org/10.1016/j.automatica.2020.108961
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb22
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb22
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb22
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb22
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb22
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb23
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb23
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb23
http://dx.doi.org/10.1016/j.ifacol.2020.12.1670
https://www.sciencedirect.com/science/article/pii/S2405896320322734
https://www.sciencedirect.com/science/article/pii/S2405896320322734
https://www.sciencedirect.com/science/article/pii/S2405896320322734
http://dx.doi.org/10.1109/TAC.2020.3034869
http://dx.doi.org/10.1109/TAC.2020.3034869
http://dx.doi.org/10.1109/TAC.2020.3034869
http://dx.doi.org/10.1016/j.automatica.2021.109943
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb27
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb27
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb27
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb27
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb27
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb28
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb28
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb28
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb28
http://refhub.elsevier.com/S0005-1098(22)00352-1/sb28

S. Welikala, C.G. Cassandras, H. Lin et al.

a 2012 Kern Fellowship. He is a member of Phi Beta Kappa and Tau Beta Pi. He
is also a Fellow of the IEEE and a Fellow of the IFAC.

Hai Lin is a professor at the Department of Electri-
cal Engineering, University of Notre Dame, where he
got his Ph.D. in 2005. Before returning to his alma
mater, he worked as an assistant professor in the
National University of Singapore from 2006 to 2011.
Dr. Lin’s teaching and research activities focus on the
multidisciplinary study of fundamental problems at
the intersections of control theory, machine learning
and formal methods. His current research thrust is
motivated by challenges in cyber-physical systems,
long-term autonomy, multi-robot cooperative tasking,
and human-machine collaboration. Dr. Lin has served on several committees
and editorial boards, including IEEE Transactions on Automatic Control. He served
as the chair for the IEEE CSS Technical Committee on Discrete Event Systems
from 2016 to 2018, the program chair for IEEE ICCA 2011, IEEE CIS 2011 and
the chair for IEEE Systems, Man and Cybernetics Singapore Chapter for 2009
and 2010. He is a senior member of IEEE and a recipient of 2013 NSF CAREER
award.

12

Automatica 144 (2022) 110493

Panos Antsaklis is the H.C. & E.A. Brosey Professor of
Electrical Engineering at the University of Notre Dame.
He is graduate of the National Technical University of
Athens, Greece, and holds MS and Ph.D. degrees from
Brown University. His research addresses problems of
control and automation and examines ways to design
control systems that will exhibit high degree of auton-
omy. His current research focuses on Cyber-Physical
Systems and the interdisciplinary research area of con-
trol, computing and communication networks, and on
hybrid and discrete event dynamical systems. He is
IEEE, IFAC and AAAS Fellow, President of the Mediterranean Control Association,
the 2006 recipient of the Engineering Alumni Medal of Brown University and
holds an Honorary Doctorate from the University of Lorraine in France. He
served as the President of the IEEE Control Systems Society in 1997 and was
the Editor-in-Chief of the IEEE Transactions on Automatic Control for 8 years,
2010-2017.

	A new performance bound for submodular maximization problems and its application to multi-agent optimal coverage problems
	Introduction
	Preliminaries
	A brief review of existing performance bounds
	Total curvature Conforti1984
	Greedy curvature Conforti1984
	Elemental curvature Wang2016
	Partial curvature Liu2018

	The new performance bound
	Preliminary theoretical results
	Extended greedy curvature based performance bound
	Discussion

	Application to multi-agent coverage problems
	Multi-agent coverage problem formulation
	Set function approach for multi-agent coverage problems
	Numerical results

	Conclusion
	Acknowledgments
	References

