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Aqueous Zn rechargeable batteries are an emerging sustain-
able system for grid-scale energy storage due to their low 
cost, high safety and good performance1–5. Various cathode 

materials have been tried to couple with the Zn anode, among which 
MnO2 is particularly attractive owing to its favourable processabil-
ity, natural abundance and environmental advantages6–9. While the 
application of MnO2 in alkaline batteries has been plagued by para-
sitic reactions, recent studies have improved the rechargeability uti-
lizing mild acidic aqueous electrolytes1,10–12.

Intensive research efforts have been made to understand the 
charge storage mechanism of α-MnO2, a common cathode material 
that adopts a crystal structure with interconnected [MnO6] octa-
hedra forming one-dimensional 1 × 1 and 2 × 2 tunnels to facili-
tate reversible ion insertion/extraction13–16. However, its working 
mechanism when coupled with a Zn anode in aqueous mild-acid 
electrolyte remains under debate. Different mechanisms have been 
proposed, including (1) Zn2+ insertion while maintaining the origi-
nal tunnel configuration17; (2) Zn2+ insertion forming new phases 
such as spinel ZnMn2O4 (refs. 18,19) and layered ZnxMnO2 (refs. 20–23); 
(3) H+ insertion forming new phases (MnOOH)1,24; and (4) H+/Zn2+ 
co-insertion converting the tunnel host to MnOOH and ZnMn2O4 
(refs. 2,25–28).

While there are reports claiming that the tunnel phase of α-MnO2 
is transformed completely to a new phase on discharge and recov-
ers subsequently on charge, such high structural reversibility seems 
to be questionable since previous work points to a high energy 
demand for charge ordering during tunnel formation29. In addition, 
most bulk-level characterizations detect signals at particle-assembly 
level and can thus be easily misinterpreted by the presence of side 
products or electrolyte residuals. It is thus important to elucidate 

the charge storage mechanism of this system by examining the pre-
cise composition and structure of single MnO2 particles, preferably 
down to the atomic level.

To fill this gap, we report a combined atomic-level electron 
microscopy, electrochemistry and modelling study of the recharge-
able aqueous Zn–MnO2 battery. Atomic structure imaging shows 
that the possibility of Zn2+ intercalation into α-MnO2 lattice is 
extremely low, but reversible H+ intercalation dominates the pro-
cess. In addition, the structural inhomogeneity within a single 
MnO2 nanowire is revealed, showing that the tunnels on the surface 
region are distorted appreciably with a high degree of anisotropic 
expansion as a result of H+ uptake. Ab initio simulations support 
our experimental observations and provide additional atomic 
insights, further advancing the fundamental understanding of this 
battery system.

Results
Structure/performance analysis of α-MnO2. The as-synthesized 
α-MnO2 tunnels are typically occupied by large cations such as 
K+ (ref. 30). We therefore first investigated such cation effects on 
the performance of MnO2 cathode by removing K+ from the tun-
nels with the results shown in Fig. 1a–c. Before cation removal, 
the presence of K+ in tunnel centre can be directly confirmed by 
energy-dispersive X-ray spectroscopy (EDS) and atomic imaging 
(Fig. 1d). After K+ removal, Fig. 1a–c shows no sign of K+, leaving 
the tunnel space essentially empty and its framework well main-
tained. Note that α-MnO2 exhibits a nanowire-like morphology  
(Fig. 1a) with [001] axial direction (also the tunnel direction). Figure 1b  
shows the [001]-projection of ultramicrotomed α-MnO2 nanow-
ire (its axial direction) while Fig. 1c shows the [010]-projection  
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(its radial direction). More crystallographic/imaging details are 
given in Supplementary Fig. 1 (Supplementary Note 1).

The voltage profiles of the aqueous Zn–MnO2 batteries with and 
without K+ are given in Supplementary Fig. 2. Both profiles exhibit 
a single plateau between 1.2 and 1.3 V for the first discharge reac-
tion and two plateaus at 1.5 V and 1.6 V for the first charge. For the 
subsequent cycles, the two-plateau phenomenon is reproducible 
for both charge (1.5 V and 1.6 V) and discharge (1.45 V and 1.3 V). 
The high consistency of the voltage profiles for α-MnO2 with and 
without K+ points to a similar charge storage mechanism in both 
cases. The K+ within the tunnels is relatively stable upon cycling as 

further confirmed in Supplementary Fig. 3, implying a weak charge 
carrier-K+ interaction.

Our aim to test the possibility of Zn2+ intercalation into 
the tunnel may have been compromised by the presence of K+  
in the tunnels; we therefore focus on the case of K+-free α-MnO2 in  
the following discussion considering their electrochemical simi-
larities as already described. The voltage profiles of an aqueous Zn–
MnO2 (K+-free) battery are depicted in Fig. 1e. It is noticeable that 
with the increase of cycling number, the discharge capacity contrib-
uted from the first plateau (~1.45 V) changes in a different way from 
that of the second plateau (1.3 V). The first-plateau capacity keeps 
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Fig. 1 | Structure analysis and battery performance of α-MnO2. a, Low-magnification TEM image showing the morphology of α-MnO2 nanowires without 
K+. Insets are EDS quantification. b, [001] down-tunnel imaging (along nanowire axis) showing the atomic structure of α-MnO2 without K+ occupying 
the tunnel. Each bright dot in the image represents an Mn atomic column. Insets are the corresponding polyhedral model. c, [010] zone axis (nanowire 
radial direction) imaging showing the atomic structure of α-MnO2 tunnels without K+. Inset profiles the intensity distribution over the yellow dashed line. 
d, [001] and [010] axes imaging showing the atomic structure of α-MnO2 nanowires with K+ occupying the tunnel centre position. The red arrows in the 
line profile indicate presence of K+. Inset is the corresponding polyhedral model with K+ (yellow dots) at Wyckoff 2a sites. Scale bars in a and b–c are 
100 nm and 1 nm, respectively. e, Voltage profiles of the first 19 cycles of a Zn–MnO2 battery. f, The specific discharge/charge capacity (left y axis) and the 
Coulombic efficiency (right y axis) on cycling. g, In situ XRD showing the structural evolution of α-MnO2 electrode during the first cycle and the second 
discharge. h, EELS analysing Mn valence for the pristine, discharged and charged samples.
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increasing with cycling, while the second-plateau capacity decreases 
more obviously, resulting in an overall decreasing discharge capac-
ity with cycling. This phenomenon implies that the charge storage 
mechanisms for these two discharge plateaus are different. We also 
measured the cycling performance (Fig. 1f), showing that the first 
discharge capacity is above 300 mAh g−1, close to the theoretical 
capacity assuming all Mn reduced to Mn3+ on charge carrier inser-
tion. However, on cycling, both discharge and charge capacity clearly 
decrease. After 120 cycles, the capacity drops to ~100 mAh g−1. By 
contrast, the Coulombic efficiency is roughly maintained at 100%, 
except for the first few cycles. This indicates that the capacity drop 
with cycling is caused by the irreversible structural change of the 
electrode material itself, which we return to later. Decent long-term 
cycling performance of Zn–MnO2 batteries at high rates has been 
reported previously1,2,20,22. Several key factors could contribute to 
the reported high performance but are not implemented in our 
work, for example, the use of Mn2+ additives in the electrolyte, the 
phase/morphology control and surface engineering of MnO2. In 
our work, with a main focus on fundamental understanding, these 
performance-enhancing strategies are not applied so as to highlight 
the electrode’s working mechanisms.

To further study the phase evolution during cycling, in situ 
X-ray diffraction (XRD) was used (Fig. 1g). It shows that the char-
acteristic peaks of α-MnO2 remain noticeable throughout the whole 
discharge–charge process, indicating that the tunnel phase is pre-
served. However, these peaks exhibit slight broadening towards the 
larger d-spacing direction during discharge, possibly due to a strain 
or distortion effect. New peaks immediately appear at d-spacings 
of 1.1 nm, 0.55 nm and 0.42 nm at the beginning of discharge, 
and their intensity increases during discharge and decreases dur-
ing charge. This phenomenon points to reversible phase transition 
upon cycling, which should be different from the MnO2-related 
structural evolution and will be later analysed in the discussions of  
Fig. 2. Notably, these results fail to explain the difference in mecha-
nism between the first and second voltage plateaus within one 
discharge reaction, implying the importance of underlying kinetic 
factors. To track the Mn valence change, electron energy-loss spec-
troscopy (EELS) is applied (Fig. 1h). According to the literature31 and 
our quantification analyses, the Mn valence is seen to decrease from 
3.9+ to 3.0+ during discharge and increase back to 3.6 + (rounded 
values) when charged, implying that the change of Mn valence is 
largely reversible upon cycling. Refer to Supplementary Fig. 4 and 
Supplementary Note 1 for details.

Microscopy analysis of H+ versus Zn2+ insertion. The preceding 
discussions indicate the existence of a reversible Faradaic charge 
storage reaction in single α-MnO2 particles. Intensive focus is thus 
put into the microscopic exploration of the discharged α-MnO2 
structure. Figure 2a–d shows the scanning transmission electron 
microscopy– (STEM–) EDS analysis for a single MnO2 nanowire 
after the first discharge process. The nanowire largely maintains 
its shape with its surface unevenly covered by flake-like pieces  
(Fig. 2a). The EDS mapping (Fig. 2b) shows that while the distri-
bution of Mn and O reflects the shape of the MnO2 nanowire, Zn 
stays within the flake-like pieces, not within the MnO2 nanowire, 
indicating a low possibility of Zn2+ insertion into the MnO2 lattice. 
Furthermore, the nanowire is seen to be composed mainly of Mn 
and O (MnO2) without Zn presence (Fig. 2a insets). More statistical 
STEM–EDS analyses are provided in Supplementary Fig. 5 to dem-
onstrate that Zn2+ did not insert into the MnO2 lattice. Instead, with 
an aqueous ZnSO4 electrolyte (mild acidic, pH~4.8), we suggest that 
the dominant charge storage mechanism is intercalation of H+ ions 
into the MnO2 tunnels without noticeable phase transition.

The hypothesis of a proton intercalation mechanism is further 
tested by EDS analysis of the flake-like pieces generated during dis-
charge (Fig. 2a, inset), which are rich in Zn, O and S, with a Zn/S 

atomic ratio of ~4. Combined with the in situ XRD results in Fig. 1g 
revealing emerging peaks at ~1.1 nm, one can reasonably claim these 
pieces to be Zn4(OH)6SO4·xH2O possessing a large layer spacing of 
~1.1 nm supported by water molecules. The fact that this phase 
contains a large amount of OH− points to an OH−-rich electrolyte 
as a result of H+ insertion into the tunnels. Both the in situ XRD  
(Fig. 1g) and the ex situ transmission electron microscopy (TEM) 
analyses (Supplementary Fig. 6) confirm that Zn4(OH)6SO4·xH2O 
can be reversibly formed/decomposed during discharge/charge. 
The lattice positions of the inserted protons as OH groups within the 
α-MnO2 tunnels are addressed by ab initio modelling discussed in 
the following section. It is worth mentioning that the previous stud-
ies proposing Zn2+ insertion into MnO2 generally relied on (EDS) 
elemental analysis of the discharged MnO2 electrode2,23, whose 
accuracy could be compromised as it might not be able to distin-
guish the Zn signals from the residual salts or other by-products 
(for example, Zn4(OH)6SO4·xH2O revealed in this work) adjacent 
or attached to MnO2 particles. Additional evidence excluding Zn2+ 
insertion is provided by discussing the performance of an aprotic 
Zn–MnO2 battery (Supplementary Fig. 7).

Further key evidence excluding the possibility of Zn2+ insertion 
is the direct atomic imaging of discharged MnO2 along its vari-
ous zone axes (Fig. 2c–d). The radially projected imaging (Fig. 2c) 
shows that the tunnels are essentially empty without the presence 
of Zn2+ as their occupation in the tunnels would have resulted in 
a brighter contrast in the line profile (Fig. 2c inset); indeed, the 
actual profile shows only the presence of Mn atomic columns. The 
tunnel structure is maintained after discharge as indicated by the 
fast Fourier transform showing a typical α–MnO2–[010] pattern. 
Imaging down the tunnels in Fig. 2d directly confirms that α-MnO2 
tunnels are well maintained and unoccupied by any heavy cations 
(Zn2+ or K+), indicating that H+ insertion should be the dominant 
mechanism. Note that the previous study1 reported a seemingly 
similar mechanism of H+ insertion in α-MnO2, in which the dis-
charge product of MnO2 nanofibres was found to be much shorter 
MnOOH nanorods with different morphology and phase (denoted 
as α-MnO2 + H+ + e− = MnOOH). By contrast, our findings point to 
a completely different mechanism featuring H+ intercalation into 
MnO2 with the original tunnel phase and nanowire morphology 
largely maintained (denoted as α-MnO2 + H+ + e− = α-H1MnO2).

Figure 2e–h depicts the atomic analysis of discharged MnO2 
along its tunnel direction. Interestingly, the tunnel structures, 
although well maintained after discharge, exhibit non-uniform lat-
tice distortion, particularly when comparing the tunnels close to 
the surface region with those in the bulk (Fig. 2e). Within the bulk, 
MnO2 maintains its tetragonal symmetry without major distortion; 
by contrast, close to the surface region, lattice distortion is obvious 
with the tunnels severely distorted. Moreover, the distortion appears 
in an ordered fashion; that is, the tunnels close to the surface are all 
distorted along one specific direction. This results in the increase 
of lattice parameter a and decrease of lattice parameter b, causing 
the deviation from the initial tetragonal symmetry (a–b angle (γ) 
reduced to 85°) as illustrated in Fig. 2e,h (and supported by atom-
istic modelling detailed in the following section). Such a symmetry 
change is less obvious within the bulk region (a–b angle (γ) close 
to 90°) although there is a similar a-increase and b-decrease trend.

There are a few studies reporting the direct microscopic imaging 
of hydrogen atoms in well-crystallized hydrides such as YH2 and 
TiH (refs. 32,33); achieving this goal in MnO2 is, however, quite chal-
lenging for several reasons. First, H+ are electrochemically inserted 
into MnO2 as ‘foreign or dopant species’, distorting the host lattice 
and thus disturbing direct H+ imaging. Second, H+ imaging requires 
a sufficiently thin sample, for example, 8 nm for H imaging in YH2 
(ref. 32); however, it is technically challenging to achieve this in our 
work. Third, electrochemically inserted H+ coordinated to oxygen 
has an theoretical O–H bond length of 0.10 nm as discussed in 
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the next section, which is quite close to the resolution limit of the 
microscope (0.08 nm).

Note that the microscopic structural features revealed above 
could not be caused by electron beam effect/damage, which is 
addressed in Supplementary Note 1. Moreover, the coordinated 
anisotropic lattice distortion of discharged MnO2 implies that H+ 
intercalation follows an energetically favourable pathway, necessi-
tating the implementation of ab initio modelling.

Atomistic modelling of H+ versus Zn2+ insertion. There are lim-
ited studies attempting to characterize the local structural positions 
or perturbations resulting from proton insertion in α-MnO2, due 
largely to the difficulty in probing the exact positions of such tiny 
ions. To complement our microscopy work, we use ab initio simu-
lations based on density functional theory (DFT) to examine the 
effect of H+ and Zn2+ insertion and to identify the preferred proton 
(OH) positions in α-HxMnO2 (0 ≤ x ≤ 1), extending our previous 
computational work on MnO2 (refs. 34,35). (The computational meth-
ods are detailed in Methods and Supplementary Note 2). Previous 
DFT studies36,37 have examined H+ insertion in other polymorphs of 
MnO2 (γ- and β-MnO2) but have not focused on both Zn2+ and H+ 
insertion in the Zn/α-MnO2 system.

We first investigate the possible sites for proton insertion into 
the large 2 × 2 and small 1 × 1 tunnels of α-HxMnO2 by examining 
numerous configurations and their energetics at each composi-
tion (x). The lowest energy structures of α-HxMnO2 (x = 0.25, 0.5, 
0.75 and 1.0) are illustrated in Fig. 3a–d, which shows the positions 
and orientations of the OH groups formed by the inserted protons 
bonding to lattice oxygen ions. Two main features emerge. First, 
for 0 < x ≤ 0.5, our results indicate that insertion adjacent to the tri-
gonal pyramidal oxygen in the 2 × 2 tunnel has the lowest energy  
(Fig. 3a); the O–H bond length has a typical value of 0.10 nm in 
theory. As expected, the calculations indicate that Mn is reduced 

from 4+ to 3+ as H+ is inserted. Second, for x > 0.5, we find that 
insertion into the smaller 1 × 1 tunnel in addition to the 2 × 2 tun-
nel becomes favourable (Fig. 3c). The resulting structures indicate 
that the H+ ions distribute as uniformly as possible to minimize the 
ion–ion electrostatic repulsion; for example, this feature is illus-
trated by the low energy structure of α-H0.5MnO2 containing two H+ 
ions in each adjacent 2 × 2 tunnel (Fig. 3b). This result also accords 
with our previous DFT studies investigating Li+/Na+ insertion in  
α-MnO2 (ref. 38).

The high levels of proton insertion are also important to struc-
tural changes. The variations in the calculated lattice parameters 
and unit cell volume of α-HxMnO2 as a function of x are plotted 
in Fig. 3e. The unit cell volume expands with increasing x, which 
is attributed partly to the increase of the effective ionic radii of Mn 
on reduction from Mn4+ (0.53 Å) to Mn3+ (0.645 Å). The change in 
unit cell volume of protonated HxMnO2 structures exhibit a nonlin-
ear dependence, expanding by only +4% up to x = 0.5 but by +16% 
at x = 1.0. This significant structural change from x = 0.5 and the 
aforementioned change of proton positions from 2 × 2 tunnels to 
1 × 1 tunnels may be related to the two-plateau feature of the volt-
age profiles (Fig. 1e). It can then be reasonably proposed that the 
elongation of the first discharge plateau (~1.45 V) and the shorten-
ing of the second discharge plateau (1.3 V) upon cycling could be 
directly related to the change of H+ insertion kinetics in 2 × 2 tun-
nels (for the first plateau) and 1 × 1 tunnels (for the second plateau), 
respectively. To test this hypothesis, the diffusion coefficient of H+ 
as a function of discharge capacity and the cyclability of two MnO2 
electrodes when discharged to 1.1 V versus 1.32 V are measured and 
discussed (Supplementary Figs. 9 and 10); the results indicate that 
the second plateau exhibits much poorer H+ insertion kinetics.

Regarding the crystal structure, the ab initio simulations also 
show that the lattice symmetry changes with the a–b angle (γ), 
decreasing from 90.0° to 88.5° on proton insertion to form HMnO2, 
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in good agreement with our experiments (~88° in bulk HMnO2; 
Fig. 2e). This result is highlighted in Fig. 3e, showing the calcu-
lated increase of up to 20% in lattice parameter a and the decrease 
of up to 10% in b, also observed experimentally (Fig. 2h). Hence, 
our atomistic simulations have helped to quantify the anisotro-
pic tunnel structural change along the a and b directions and the 
consequent symmetry change. From experiment, the lattice distor-
tion is more obvious in the particle surface region probably due 
to the diffusion-controlled H+ insertion kinetics. The DFT results 
also confirm that, despite the tunnel expansion and symmetry 

change, the tunnels themselves remain intact and do not collapse 
on proton intercalation. We note that ab initio molecular dynam-
ics simulations of protonated α-MnO2 (Supplementary Note 2 and 
Supplementary Fig. 11) indicate no long-range proton conduction 
via hopping between oxygen sites.

We used DFT methods to further investigate whether H+ or Zn2+ 
insertion into MnO2 is preferred. The approach used to identify the 
possible Zn2+ insertion sites is discussed in Supplementary Note 3 
and Supplementary Fig. 12 and follows our previous studies inves-
tigating Li+/Na+ insertion into α-MnO2 (ref. 38). Figure 3f shows the 
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energy of Zn2+ insertion into ZnxMnO2 as a function of Zn content 
(x), relative to the corresponding H+ insertion energy. An important 
finding is that at low content (x = 0.125), Zn2+ insertion is already 
unfavourable compared with proton insertion. As x increases, Zn2+ 
insertion becomes increasingly energetically unfavourable. This 
result is in agreement with our STEM analysis and other experi-
mental studies1,24 in which there is no evidence for Zn2+ insertion.

As discussed in the Introduction, previous studies also pro-
posed a charge storage mechanism of co-insertion of H+ and Zn2+ 
into MnO2 lattice2,25,26. To probe the possibility that the two-step 
discharge plateau (Fig. 1e) is caused by the insertion of H+ and 
then Zn2+, we investigated Zn2+ insertion into α-H0.5MnO2 using 
DFT. The most stable Zn2+ insertion site was in the 1 × 1 tunnel 
(Supplementary Fig. 12), but this configuration was still found to 
be higher in energy (221 meV per formula unit) than inserting 
another proton into α-H0.5MnO2. This indicates that, even after 
initial proton intercalation up to H0.5MnO2, Zn2+ insertion remains 
unfavourable. In short, our combined experimental and computa-
tional results indicate that H+ insertion is always more favourable 
than either Zn2+ insertion or Zn2+/H+ co-insertion.

Mechanism for cycling-induced capacity decay. As H+ inter-
calation/extraction continues for several cycles, the MnO2 host 
will experience repetitive Mn valence change together with lat-
tice distortion/recovery. A possible hypothesis is that the capacity 
decay of the MnO2 cathode on cycling could be caused by loss of 
active MnO2 mass, which is described in Supplementary Fig. 13.  

Figure 4 further explores the structural change of the electrode dur-
ing cycling. One can tell that MnO2 nanowires gradually decompose 
on cycling; after 100 cycles, the nanowire-like particles can hardly be 
seen. In addition, after 50 cycles, some tiny needle-like nanograins 
appear, whose diameter and length seem to be independent of cycle 
number while their number keeps increasing, making them a major 
component after 100 cycles (Fig. 4c,d). See Supplementary Fig. 14 
for more evidence and discussion. TEM analyses in Fig. 4e,f demon-
strate that these cycling-induced nanograins have a large interlayer 
spacing of ~1 nm and that within two adjacent layers lies another 
layer featuring lower-contrast atoms. These tiny nanograins are 
rich in Zn, Mn and O but poor in S, exhibiting a Zn/Mn ratio of 
~3/2 (Fig. 4g). See Supplementary Fig. 15 for more statistical anal-
yses. The Zn-rich nature of these nanograins indicates that there 
cannot be any Zn2+-inserted manganese oxides derived from the 
MnO2 host; rather, they are some precipitated phases from the elec-
trolyte when it is rich in Zn2+ and Mn2+ as a result of Mn2+ dis-
solution during the discharge process. See Supplementary Figs. 4c, 
16 and 17 for more analyses of such tiny nanograins. It is worth 
mentioning that these cycling-induced nanograins seem to be irre-
versible. Once they are formed and attached to the electrode, they 
cannot be electrochemically decomposed during the charge process  
(Supplementary Fig. 16), which could account for the capacity 
decay of the MnO2 cathode.

To test the mechanism of Mn2+ dissolution and irreversible Zn–
Mn–O nanograin precipitation for capacity decay, inductively cou-
pled plasma (ICP) analysis of the electrolytes with different cycles 
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is carried out. The Mn concentration in the electrolyte is evaluated 
with reference to the Zn concentration, with the latter considered to 
be relatively constant. The Mn/Zn ratios in the electrolyte solutions 
collected after different cycles are shown in Fig. 4h. It can be seen that 
within 50 cycles, the Mn concentration keeps increasing, indicating 
the gradual accumulation of dissolvable Mn2+ in the electrolyte as a 
result of H+ intercalation and Mn3+ disproportionation reaction. For 
the charged electrolyte, the Mn2+ concentration largely decreases 
but also exhibits a slight increasing trend with cycle number; this 
indicates that the Mn3+ disproportionation reaction is largely but 
not totally reversible and that MnO2 gradually loses its active mass 
on cycling. After 50 cycles, however, for both the discharged and 
charged electrolytes, the Mn concentration decreases with increas-
ing cycle number, which points to the reprecipitation of Mn2+ with 
the irreversible formation of tiny nanograins as discussed.

Discussion
Compared with energy storage technologies based on lithium ions, 
rechargeable aqueous Zn batteries are much closer to entering the 
stationary battery market owing to their low cost, high safety and 
environmental friendliness, which form important dimensions 
of sustainability. Yet it is exactly the use of an aqueous electrolyte 
that complicates the essential electrochemistry and introduces 
mechanistic ambiguity, which consequently compromises the sus-
tainability of aqueous batteries. In this respect, this work provides 
atomic insights into the mechanisms of the representative aqueous 
Zn–MnO2 battery and points to future strategies for sustainability 
enhancement, such as the tuning of proton insertion kinetics and 
the suppression of Mn dissolution. Furthermore, the unveiled criti-
cal role of proton insertion could inspire the development of more 
sustainable systems beyond the Zn–MnO2 battery where aqueous 
electrolyte is present with enhanced performance.

Methods
Material synthesis. The α-MnO2 nanowires are prepared by a hydrothermal 
reaction. KMnO4 (0.9878 g) and MnSO4·H2O (0.4226 g) are mixed in 80 ml 
deionized (DI) water to form a purple solution. The obtained slurry was then 
sealed into a 100 ml autoclave and heated at 160 °C for 12 h. After centrifugation 
and DI water wash of the obtained products, a four-day acid treatment using 
concentrated HNO3 was applied to remove tunnel cations (K+) as previously 
reported39. Then the nanowires were washed by DI water several times until the  
pH value of the solution was ~7.

Materials characterizations. In situ high-energy XRD was carried out at the 
11-ID-C beamline of the Advanced Photon Source (Argonne National Laboratory). 
A high-energy X-ray (beam size 0.2 mm × 0.2 mm, wavelength 0.1173 Å) was used. 
Patterns were collected using a Perkin–Elmer area detector (placed at 1,800 mm 
from the samples) in the Laue diffraction geometry. The low absorption and high 
penetration of high-energy XRD is capable of detecting tiny phase changes that 
are usually invisible using lab XRD. A 3 mm hole was made in the 2032 coin cells, 
allowing X-rays to pass through with diffraction patterns collected once every 
10 min. The holes of the coin cells were sealed by Kapton tape to prevent  
against air exposure.

Microscopic analysis. The cross-sectioned MnO2 sample for down-tunnel imaging 
was prepared via ultramicrotome with a diamond knife and a cutting step size 
of 200 nm. The embedding of the nanowires was done using epoxy resin and 
hardener. The TEM/STEM data were obtained using an aberration-corrected JEOL 
ARM 200CF microscope with a 200 kV gun and a 22 mrad convergence angle. 
EDS data were acquired using an Oxford X-Max 100TLE windowless silicon drift 
detector. EELS data were obtained using a Gatan GIF Continuum (5 mm entrance 
aperture, dual-EELS mode, ~53 mrad collection angle). The energy dispersion 
was set to be 0.2 eV per channel. A ~0.8 eV full-width at half maximum of zero 
loss peak was measured to be considered as the energy resolution (Supplementary 
Fig. 4a), which can be considered as a moderate energy resolution, and it should 
have limited effect on Mn valence quantification based on peak area integration 
since the same analysis method is consistently applied to all samples of interest in 
this work. The background was subtracted using the power-law mode by placing 
a ~50 eV window right before the white line peak onset positions to define the 
background (Supplementary Fig. 4b). The spectra were fitted using a Gaussian 
function with an R-square value >0.99. The quantification of Mn valence is carried 
out using two independent methods: one is the Mn L3/L2 edge white line ratio 

I(L3/L2) method, and the other is the energy difference between Mn L3 and L2, 
ΔE(L2 − L3). See Supplementary Note 1 for more information.

Electrochemical testing. The MnO2 cathode for battery testing is made of 
10 wt% polyvinylidene difluoride binder in N-methylpyrrolidinone, 10 wt% super 
P carbon and 80 wt% α-MnO2. The mixture was then cast onto stainless steel 
foils to make the electrode. The electrode was dried at 70 °C for 4 h, followed by 
thorough drying at 70 °C overnight under vacuum. Battery testing was carried 
out using CR2032 coin cells with zinc metal as the counter electrode, 1 M ZnSO4 
aqueous solution as the electrolyte and glass microfibre as the separator. Cells 
were cycled between 1.8 and 1.0 V. Before the battery cycling, the cross-sectioned 
MnO2 sample was preloaded to a TEM grid, which was then placed adjacent to 
the MnO2 electrode laminate and got cycled with the electrode simultaneously 
until intentionally terminated for ex situ TEM analysis. Galvanostatic intermittent 
titration technique (GITT) was applied using the following procedure. The 
lamination of the MnO2 electrode and battery assembly operations is the same 
as that for the normal battery performance testing. After two normal discharge–
charge cycles (30 mA g−1 between 1.8 V and 1.1 V), the third discharge process was 
targeted for the GITT measurement. The discharge current was set at 15 mA g−1, 
and it ran for 30 min every time with an intermittent rest period of 3 h. This 
procedure was repeated until the discharge voltage dropped below 1.1 V.

ICP measurement. ICP was done using an ICP spectrometer (iCAP 7000 Series). 
The sample was directly obtained by collecting the electrolytes of cycled Zn–MnO2 
coin cells after they were opened in atmosphere.

Computational methods. Computational methods based on DFT are well 
established for examining properties of battery electrode materials40–43. All 
calculations here were performed using periodic DFT as implemented in the 
Vienna ab initio simulation package44–46. A plane-wave basis set to represent the 
wave functions and the projected augmented wave method were used47,48. The 
exchange-correlation energy was calculated within the generalized gradient 
approximation using the Perde–Burke–Ernzerhof functional49. A plane-wave 
cut-off of 520 eV and a minimum of 6 × 6 × 20 k-points were used for each 
calculation. As in previous work38, the calculations were performed in a 
ferromagnetic spin polarized configuration and using the DFT + U approach50 
to account for on-site Coulomb interactions. A U–J value of 5.2 eV and a J 
value of 1.0 eV were used for Mn, as determined in previous work38. The ionic 
and electronic self-consistent convergence was set to 5 × 10−2 and 1 × 10−5 eV, 
respectively. We performed total energy calculations in a 1 × 1 × 1 cell (24 atoms) 
of α-MnO2 using the experimental structure51 at room temperature. The α-MnO2 
crystal occurs in the tetragonal space group I4/m (no. 87) with lattice parameters 
a = b = 9.815 Å and c = 2.847 Å. In Supplementary Table 4, we show the calculated 
lattice parameters for α-MnO2, which agree with the experimental parameters 
to within 3.2%. Ewald energies were used to screen for candidate low-energy 
configurations of ZnxMnO2, where x = 0.5 and 0.75, due to the huge number of 
possible configurations. These low-energy candidates were then treated with 
ab initio DFT, which more fully describes the electronic effects of the system. 
Well-established methodology has been used in previous computational studies of 
battery materials to calculate ion insertion (intercalation) energies38,52. Likewise, 
insertion energies for H and Zn into MnO2 were calculated by comparing the 
energy of empty MnO2 and an H2 molecule or Zn metal with the atom intercalated 
within MnO2 using the most favourable ion sites. As well as ferromagnetic 
ordering, we performed test proton insertion calculations on H0.125MnO2 with 
antiferromagnetic ordering, which produced the same energetic trends and lowest 
energy ion sites. We recognize that there is significant debate in the existing 
literature on the magnetic ordering in α-MnO2, which we detail in Supplementary 
Note 2. Our DFT calculations find ferromagnetic ordering only slightly more 
favourable than antiferromagnetic ordering. We stress that magnetic behaviour 
was not our focus here, and our simulations have provided valuable atomic-scale 
insights and energetic trends into Zn2+ insertion versus H+ insertion in the charge 
storage process.

Data availability
All relevant data that support the findings of this study are presented in the article 
and Supplementary Information. Source data are available from the corresponding 
authors upon reasonable request.
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