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Abstract—We consider the merging control problem for
Connected and Automated Vehicles (CAVs) aiming to jointly
minimize travel time and energy consumption while providing
speed-dependent safety guarantees and satisfying velocity and
acceleration constraints. Applying the joint optimal control and
control barrier function (OCBF) method, a controller that
optimally tracks the unconstrained optimal control solution
while guaranteeing the satisfaction of all constraints is efficiently
obtained by transforming the optimal tracking problem into
a sequence of quadratic programs (QPs). However, these QPs
can become infeasible, especially under tight control bounds,
thus failing to guarantee safety constraints. We solve this
problem by deriving a control-dependent feasibility constraint
corresponding to each CBF constraint, add it to each QP and
show that such modified QPs are guaranteed to be feasible.
Extensive simulations of the merging control problem illustrate
the effectiveness of this feasibility guaranteed controller.

I. INTRODUCTION

The performance of transportation networks critically de-
pends on the management of traffic at conflict areas such
as intersections, roundabouts and merging roadways [1].
Coordinating and controlling vehicles in such conflict areas
is a challenging problem in terms of reducing congestion and
energy consumption while also ensuring passenger comfort
and guaranteeing safety [2], [3]. The emergence of Connected
and Automated Vehicles (CAVs) [1] and the development of
new traffic infrastructure technologies [4] provide a promis-
ing solution to this problem.

Both centralized and decentralized methods have been
studied to deal with the control and coordination of CAVs
at conflict areas. Centralized mechanisms are often used in
forming platoons in merging problems [5] and determining
passing sequences at intersections [6]. These approaches tend
to work better when the safety constraints are independent
of speed and they generally require significant computation
resources, especially when traffic is heavy. They are also not
easily amenable to disturbances.

Decentralized mechanisms restrict all computation to be
done on board each CAV with information sharing limited
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to a small number of neighbor vehicles [7]–[10]. Optimal
control problem formulations are often used, with Model Pre-
dictive Control (MPC) techniques employed as an alternative
to account for additional constraints and to compensate for
disturbances by re-evaluating optimal actions [11]–[13]. The
objectives typically target the minimization of acceleration
or the maximization of passenger comfort (measured as the
acceleration derivative or jerk). An alternative to MPC has
recently been proposed through the use of Control Barrier
Functions (CBFs) [14], [15] which provide provable guaran-
tees that safety constraints are always satisfied.

For the merging control problem under CAV traffic, a
decentralized optimal merging control framework with a
complete solution is given in [16]. The objective jointly
minimizes (i) the travel time of each CAV over a given road
segment from a point entering a Control Zone (CZ) to the
eventual merging point and (ii) a measure of its energy con-
sumption. However, the computational complexity in deriving
this solution, even under simple vehicle dynamics, becomes
prohibitive for real-time applications when safety constraints
(e.g., preventing rear-end collisions) become active. This
limitation can be overcome by the joint Optimal Control with
Control Barrier Functions (OCBF) approach in [14]. In this
approach, we first derive the solution of the optimal merging
control problem when no constraints become active. Then,
we solve another problem to optimally track this solution
while also guaranteeing the satisfaction of all constraints
using CBFs [15]. As shown in [14], this also allows the use
of more accurate vehicle dynamics, possibly including noise,
and the presence of more complicated objective functions.
The OCBF controller is derived through a sequence of
Quadratic Programs (QPs) over time which are simple to
solve. However, they may become infeasible when the control
bounds conflict with the CBF constraints, in which case the
safety constraints can no longer be guaranteed. Thus, a basic
question in CBF-based methods is: how can we guarantee
the feasibility of all QP problems that need to be solved in
deriving explicit solutions?

This paper resolves the QP feasibility problem above when
an OCBF controller is used in decentralized merging control,
thus ensuring that feasible trajectories are always possible.
The merging control problem is formulated as in [16] to
jointly minimize the travel time and energy consumption
subject to speed-dependent safety constraints as well as
vehicle limitations. We adopt the OCBF approach and guar-
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antee the feasibility of each QP problem by adding a single
feasibility constraint to it following the strategy developed
in [17] for general optimal control problems. While the
feasibility constraints constructed in [17] are limited to be
independent of the control, here we exploit the structure
of the safety constraints in the merging problem to derive
control-dependent feasibility constraints and prove that all
QPs needed to fully solve the merging problem are feasible.

The paper is organized as follows. In Section II, the
formulation of the merging control problem is reviewed. In
Section III, we explain how to transition from an optimal
control solution to the OCBF controller using a sequence
of QPs. In Section IV, we derive the new constraints added
to the QPs and prove that this ensures their feasibility.
Simulation results in Section V illustrate how to prevent CAV
trajectories from becoming eventually infeasible by using the
new feasibility constraints included in the OCBF controller.

II. PROBLEM FORMULATION AND APPROACH

The merging problem arises when traffic must be joined
from two different roads, usually associated with a main
lane and a merging lane as shown in Fig.1. We consider the
case where all traffic consists of CAVs randomly arriving
at the two roads joined at the Merging Point (MP) M
where a collision may occur. A coordinator is associated
with the MP whose function is to maintain a First-In-First-
Out (FIFO) queue of CAVs based on their arrival time at
the CZ and enable real-time Vehicle-to Infrastructure (V2I)
communication with the CAVs that are in the CZ, as well as
the last one leaving the CZ. The segment from the origin O
or O′ to the MP M has a length L for both roads, where L is
selected to be as large as possible subject to the coordinator’s
communication range and the road network’s configuration
and it defines the CZ. Since we consider single-lane roads
in this merging problem, CAVs may not overtake each other
in the CZ (extensions to multi-lane merging are given in
[18]). The FIFO assumption imposed so that CAVs cross
the MP in their order of arrival is made for simplicity (and
often to ensure fairness), but can be relaxed through dynamic
resequencing schemes as in [19] where optimal solutions are
similarly derived but for different selected CAV sequences.

Let S(t) be the set of FIFO-ordered indices of all CAVs
located in the CZ at time t along with the CAV (whose index
is 0 as shown in Fig.1) that has just left the CZ. Let N(t) be
the cardinality of S(t). Thus, if a CAV arrives at time t it is
assigned the index N(t). All CAV indices in S(t) decrease
by one when a CAV passes over the MP and the vehicle
whose index is −1 is dropped.

The vehicle dynamics for each CAV i ∈ S(t) along the
lane to which it belongs take the form[

ẋi(t)
v̇i(t)

]
=

[
vi(t)
ui(t)

]
(1)

where xi(t) denotes the distance to the origin O (O′) along
the main (merging) lane if the vehicle i is located in the main
(merging) lane, vi(t) denotes the velocity, and ui(t) denotes

Figure 1. The merging problem. CAVs randomly arrive at the origins of the
main and merging roads. Collisons may occur at the MP. A coordinator is
associated with the MP to maintain the FIFO queue and share information
among CAVs as needed.

the control input (acceleration). We consider two objectives
for each CAV subject to three constraints, as detailed next.

Objective 1 (Minimizing travel time): Let t0i and tmi
denote the time that CAV i ∈ S(t) arrives at the origin O
or O′ and the MP M , respectively. We wish to minimize the
travel time tmi − t0i for CAV i.

Objective 2 (Minimizing energy consumption): We also
wish to minimize energy consumption for each CAV i ∈ S(t)
expressed as

Ji(ui(t)) =

∫ tmi

t0i

C(ui(t))dt, (2)

where C(·) is a strictly increasing function of its argument.
Constraint 1 (Safety constraints between i and ip): Let ip

denote the index of the CAV which physically immediately
precedes i in the CZ (if one is present). We require that the
distance zi,ip(t) := xip(t)− xi(t) be constrained so that

zi,ip(t) ≥ φvi(t) + δ, ∀t ∈ [t0i , t
m
i ], (3)

where vi(t) is the speed of CAV i ∈ S(t) and φ denotes the
reaction time (as a rule, φ = 1.8s is used, e.g., [20]). If we
define zi,ip to be the distance from the center of CAV i to
the center of CAV ip, then δ is a constant determined by the
length of these two CAVs (generally dependent on i and ip
but taken to be a constant for simplicity).

Constraint 2 (Safe merging (terminal constraint) between
i and i − 1): When i − 1 = ip, this constraint is redundant
since (3) is enforced, but when i − 1 ̸= ip there should be
enough safe space at the MP M for a merging CAV to cut
in, i.e.,

zi,i−1(t
m
i ) ≥ φvi(t

m
i ) + δ. (4)

Constraint 3 (Vehicle limitations): Finally, there are con-
straints on the speed and acceleration for each i ∈ S(t), i.e.,

vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t
m
i ], (5)

ui,min ≤ ui(t) ≤ ui,max, ∀t ∈ [t0i , t
m
i ], (6)

where vmax > 0 and vmin ≥ 0 denote the maximum and
minimum speed allowed in the CZ, while ui,min < 0 and
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ui,max > 0 denote the minimum and maximum control input,
respectively.

Optimization Problem Formulation. Our goal is to
determine a control law (as well as optimal merging time tmi )
to achieve objectives 1-2 subject to constraints 1-3 for each
i ∈ S(t) governed by the dynamics (1). The common way to
minimize energy consumption is by minimizing the control
input effort u2

i (t), noting that the OCBF method allows for
more elaborate fuel consumption models, e.g., as in [21]. By
normalizing travel time and u2

i (t), and using α ∈ [0, 1), we
construct a convex combination as follows:

Ji(ui(t), t
m
i ) =

∫ tmi

t0i

(
α+

(1− α) 1
2
u2
i (t)

1
2
max{u2

i,max, u
2
i,min}

)
dt. (7)

If α = 1, then we solve (7) as a minimum time problem. Oth-
erwise, by defining β :=

αmax{u2
i,max,u

2
i,min}

2(1−α) and multiplying
(7) by β

α , we have:

Ji(ui(t), t
m
i ) := β(tmi − t0i ) +

∫ tmi

t0i

1

2
u2
i (t)dt, (8)

where β ≥ 0 is a weight factor that can be adjusted to
penalize travel time relative to the energy cost, subject to
(1), (3)-(6) and the terminal constraint xi(t

m
i ) = L, given

t0i , xi(t
0
i ), vi(t

0
i ).

III. OPTIMAL CONTROL AND CONTROL BARRIER
FUNCTION CONTROLLER

The merging control problem can be analytically solved,
however, as pointed out in [14], it becomes computationally
intensive when one of more constraints become active. To
obtain a solution in real time while guaranteeing that no
safety constraint is violated, the OCBF approach [14] is
adopted through the following steps: (i) an optimal control
solution for the unconstrained optimal control problem is first
obtained as a reference control, (ii) the resulting reference
trajectory is optimally tracked subject to the control bounds
(6) as well as a set of CBF constraints enforcing (3),
(4). Using the forward invariance property of CBFs [15],
these constraints are guaranteed to be satisfied at all times
if they are initially satisfied. The importance of CBFs is
that they impose linear constraints on the control which, if
satisfied, guarantee the satisfaction of the associated original
constraints that involve the state and/or control. This comes at
the expense of potential conservativeness in the control since
the CBF constraint is a sufficient condition for ensuring its
associated original problem constraint. This whole process
leads to a sequence of QPs solved over discrete time steps,
since the objective function is quadratic and the CBF con-
straints are linear in the control.

Unconstrained optimal control solution: With all con-
straints inactive (including at t0i ), the solution of Problem
1 is achieved by standard Hamiltonian analysis [22] so that,
as shown in [16], the optimal control, velocity and position
trajectories of CAV i have the form:

u∗
i (t) = ait+ bi (9)

v∗i (t) = 1/2 · ait2 + bit+ ci (10)

x∗
i (t) = 1/6 · ait3 + 1/2 · bit2 + cit+ di (11)

where the parameters ai, bi, ci, di and tmi are obtained by
solving a set of nonlinear algebraic equations ((36) in [16]).
This set of equations only needs to be solved when CAV i
enters the CZ and this can be done very efficiently.

Optimal tracking controller with CBFs: Once we obtain
the unconstrained optimal control solutions (9)-(11), we
use a function h(u∗

i (t), x
∗
i (t), xi(t)) as a control reference

uref (t) = h(u∗
i (t), x

∗
i (t), xi(t)), where xi(t) provides feed-

back from the actual observed CAV trajectory. We then
design a controller that minimizes

∫ tmi
t0i

1
2 (ui(t)−uref(t))

2dt

subject to all constraints (3), (4) and (6). This is accomplished
as reviewed next (see also [14]).

First, let xi(t) ≡ (xi(t), vi(t)), x(t) = (x1(t), ...,xN (t)).
Due to the vehicle dynamics (1), define f(xi(t)) =
[vi(t), 0]

T and g(xi(t)) = [0, 1]T . The constraints (3) and (4)
are expressed in the form bq(x(t)) ≥ 0, q ∈ {1, ..., Bi} where
Bi is the number of constraints CAV i needs to satisfy. The
CBF method maps bq(x(t)) ≥ 0 to a new constraint which
directly involves the control ui(t) and takes the (linear in the
control) form

Lfbq(x(t)) + Lgbq(x(t))ui(t) + γ(bq(x(t))) ≥ 0, (12)

where Lf , Lg denote the Lie derivatives of bq(x(t)) along f
and g respectively and γ(·) denotes some class-K function
[15]. The forward invariance property of CBFs guarantees
that a control input that keeps (12) satisfied will also enforce
bq(x(t)) ≥ 0, i.e., the constraints (3), (4) are never violated.

To optimally track the reference speed trajectory, a CLF
function V (xi(t)) is used. A CLF function is not a necessity
in OCBF but often helps tracking the velocity trajectory.
Letting V (xi(t)) = (vi(t) − vref(t))

2, the CLF constraint
takes the form

LfV (xi(t)) + LgV (xi(t))ui(t) + ϵV (xi(t)) ≤ ei(t), (13)

where ϵ > 0, and ei(t) is a relaxation variable which makes
the constraint soft. Then, the OCBF controller optimally
tracks the reference trajectory by solving the optimization
problem:

min
ui(t),ei(t)

∫ tmi

t0i

(
βe2i (t) +

1

2
(ui(t)− uref(t))

2

)
(14)

subject to the CBF constraints (12), the CLF constraints (13)
and the control bounds (6). There are several possible choices
for uref(t) and vref(t). In the sequel, we choose the following
referenced trajectory with feedback included to reduce the
tracking position error:

vref(t) =
x∗
i (t)

xi(t)
v∗i (t), uref(t) =

x∗
i (t)

xi(t)
u∗
i (t) (15)

where u∗
i (t), v

∗
i (t), x

∗
i (t) are obtained from (9)-(11).

We can solve problem (14) by discretizing [t0i , t
m
i ] into

intervals of equal length ∆t and solving (14) over each time
interval. The decision variables ui(t) and ei(t) are assumed
to be constant on each such time interval [t0i +k∆t, t0i +(k+
1)∆t] and can be easily obtained by solving a Quadratic
Program (QP) problem (16) since all CBF constraints are
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linear in the decision variables ui(t) and ei(t) (fixed over
each interval [tki , t

k
i +∆t]).

min
ui(t),ei(t)

βei(t)
2 +

1

2
(ui(t)− uref(t))

2

s.t. (12), (13), (6), t = t0i + k∆t

(16)

By repeating this process until CAV i exits the CZ, the
solution to (14) is obtained if (16) is feasible for each
time interval. This approach is simple and computationally
efficient. However, it is also myopic since each QP is solved
over a single time step, which may lead to infeasible QPs at
future time steps, especially when (6) is tight.

IV. FEASIBILITY GUARANTEED OCBF
To avoid the infeasibility caused by the myopic QP solv-

ing approach in the CBF method, an additional “feasibility
constraint” bF (x(t), ui(t)) ≥ 0 is introduced in [17]. A
feasibility constraint is defined as a constraint that makes
the QP corresponding to the next time interval feasible, thus,
in the case of (16), a feasibility constraint has the following
properties: (i) it guarantees that (12) and (6) do not conflict,
(ii) the feasibility constraint itself conflicts with neither (12)
nor (6). In general, we call any two state and/or control
constraints (e.g., any CBF constraint) conflict-free if their
intersection is non-empty in terms of the control.

In [17], a general sufficient condition for feasibility is
provided based on the assumption that the feasibility con-
straint bF (x(t), u(t)) is independent of the control u(t). This
assumption is hard to meet when it comes to the merging
control problem. In what follows, we show that it is possible
to find a feasibility constraint bF (x(t), u(t)) ≥ 0 for each
CAV i without this assumption and explicitly derive this
constraint which can provably guarantee feasibility.

In the merging control problem, the form of the safety
constraint depends on whether CAV i and CAV i − 1 are
in the same road. If so, i − 1 = ip and the rear-end
safety constraint needs to be considered. Otherwise, the safe
merging constraint (4) must be included.

A. Rear-end Safety Constraint
When CAV i and i − 1 = ip are in the same road, only

the rear-end safety constraint needs to be considered:

b1(x(t)) = zi,ip(t)− φvi(t) + δ ≥ 0 (17)

Note that in (17) only CAV ip’s position xip(t) is needed
in addition to CAV i’s state xi(t), which can be easily
implemented in a decentralized way. As b1(x(t)) is differen-
tiable, we can calculate the Lie derivatives Lf (b1(x(t))) =
vip −vi(t), Lg(b1(x(t))) = −φ. Applying (12) and choosing
a linear function γ(x) = k1x as the class-K function, the
rear-end safety constraint (17) can be directly transformed
into the CBF constraint:

bcbf1(x, ui) = vip − vi − φui + k1b1(x) ≥ 0 (18)

As −Lg(b1(x(t))) = φ > 0, multiplying both sides of
the control bound (6) by −Lg(b1(x(t))) will not change the
direction of the inequalities. Hence, we have

φui,min ≤ φui(t) ≤ φui,max (19)

Note that (18) can be rewritten as

φui(t) ≤ vip(t)− vi(t) + k1b1(x(t)) (20)

where φui(t) ≤ ui,max never conflicts with (20) as they
have the same inequality direction. Thus, we can guarantee
that (18) and (19) are conflict-free by adding

bF (x(t)) = vip(t)− vi(t)+ k1b1(x(t))−φui,min ≥ 0 (21)

We can now consider this feasibility constraint as a new
CBF and apply (12) to transform it into a CBF constraint.
Choosing a linear function γ(x) = kFx as the class K
function, the corresponding CBF constraint is

uip − ui + k1(vip − vi − φui) + kF (vip − vi)

+ kF k1(zi,ip − φvi + δ)− kFφui,min ≥ 0
(22)

where the argument t of the functions above is omitted.
Next, we determine a feasible constraint to be added to

every QP so that it guarantees the QP of the next time interval
is feasible. Choosing kF = k1, (22) becomes

uip − ui + k1(vip − vi − φui,min)

+ k1(vip − vi − φui + k1(zi,ip − φvi + δ)) ≥ 0
(23)

Define a “candidate function” η(x, ui) [17] as

η1(x, ui) = uip − ui + k1(vip − vi − φui,min) (24)

Then, replacing the first three terms of the feasibility CBF
constraint (23) with η1(x, ui) and noting that the remaining
terms are given by bcbf1(x, ui) defined in (18), to substitute
the second row with bcbf1(x, ui), (23) becomes

η1(x, ui) + k1bcbf1(x, ui) ≥ 0 (25)

Since bcbf1(x, ui) ≥ 0 is required in (18), it follows that (25)
will be satisfied if

η1(x, ui) ≥ 0 (26)

Setting
bη1

(x) = vip − vi − φui,min (27)

in (24), we can view bη1
(x) as a CBF and apply (12) to

observe that the corresponding CBF constraint coincides with
(26). Adding the CBF constraint (26) to the QP (16), we
will show next that (26) guarantees the feasibility of the QP
corresponding to the next time interval. Before establishing
this result, we make the following two assumptions.

Assumption 1: All CAVs have the same minimum accel-
eration, i.e. ui,min = umin.

This is a weak assumption guaranteeing that (26) and (6)
are conflict-free. It can be easily enforced since all CAVs are
operating within the same CZ, i.e., they can reach agreement
on a common umin = mini{ui,min}.

Assumption 2: ∆t is adequately small such that the forward
invariance property of CBFs remains in force.

This assumption is made to utilize the forward invariance
property of CBFs to guarantee safety. It can be met by
decreasing the time interval or by using the recently proposed
event-driven technique [23].
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Theorem 1: If bη1
(x(t)) ≥ 0 and the QP (16) subject

to (18), (6) and (26) is feasible at time t, then the QP
corresponding to time t+∆t is also feasible.

The proof of this and all other theorems is omitted due to
page limitations but is included in [24].

Assumption 3: The following initial conditions are satis-
fied: b1(x(t0i )) ≥ 0, bF (x(t

0
i )) ≥ 0, bη1

(x(t0i )) ≥ 0
The constraint b1(x(t0i )) ≥ 0 requires CAV i to meet the

rear-end safety with the immediately preceding CAV (if one
exists) when entering the CZ. In addition, bF (x(t

0
i )) ≥ 0

requires that the CBF constraint is initially conflict-free with
the control bounds and bη1(x(t

0
i )) ≥ 0 indicates that CAV

i should not be too faster than the preceding CAV. These
constraints are reasonable and can be met using a Feasibility
Enforcement Zone (FEZ) [25] that precedes the CZ.

Theorem 2: Under Assumptions 1,2,3, the QP (16) subject
to (18), (6) and (26) corresponding to any time interval [t0i +
k∆t, t0i + (k + 1)∆t] ⊂ [t0i , t

m
i ] is feasible.

B. Safe Merging Constraint
When CAVs i and i−1 are in different roads, they should

also satisfy the merging safety constraint

zi,i−1(t
m
i )− φvi(t

m
i )− δ ≥ 0 (28)

This differs from the rear-end safety constraint in that it only
applies to specific time instants tmi . This poses a technical
complication as a CBF must always be in a continuously
differentiable form. We can convert (28) to such a form using
a technique similar to the one in [14] to define

b2(x(t)) = zi,i−1(t)− Φ(x(t))vi(t)− δ ≥ 0 (29)

where Φ(x(t)) = φ
xi(tmi )xi(t). Note that Φ(x(tmi )) = φ

consistent with (28). Setting φ2 = φ
xi(tmi ) and omitting

the argument t, we get Lf (b2(x)) = vi−1 − vi − φ2v
2
i

and Lg(b2(x)) = −φ2xi. Thus, using (12) and choosing
γ(x) = k2x, (28) is mapped onto the CBF constraint

bcbf2(x, ui) = vi−1 − vi − φ2v
2
i − φ2xiui + k2b2(x) ≥ 0 (30)

Proceeding as in Sec. IV-A, we define η2(x, ui) = ui−1−
ui−2φ2viui−φ2viumin+k2(vi−1−vi−φ2v

2
i −φ2xiumin)

and derive two conditions corresponding to (26) and (27):

η2(x, ui) ≥ 0 (31)

bη2
(x) = vi−1 − vi − φ2v

2
i − φ2xiumin (32)

We can then obtain similar theorems as before:
Theorem 3: If bη2

(x(t)) ≥ 0, vi ≥ 0, umin ≤ 0 and the
QP (16) subject to (30), (6) and (31) is feasible at time t,
then the QP corresponding to time t+∆t is also feasible.

Assumption 4: The following initial conditions are satis-
fied: b2(x(t0i )) ≥ 0, bF (x(t

0
i )) ≥ 0, bη2

(x(t0i )) ≥ 0
Theorem 4: Under Assumptions 1,2,4, if vi ≥ 0, umin ≤ 0,

the QP (16) subject to (30), (6) and (31) corresponding to
any time interval [t0i + k∆t, t0i + (k + 1)∆t] ⊂ [t0i , t

m
i ] is

feasible.
Theorem 5: If bη1

(x(t)) ≥ 0, bη2
(x(t)) ≥ 0, vi ≥

0, umin ≤ 0, the QP (16) subject to (18), (30), (6), (26) and
(31) is feasible at time t, then the QP corresponding to time
t+∆t is also feasible.

V. SIMULATION RESULTS

All simulations are performed in MATLAB using quad-
prog as the solver for the QPs. We first build the model shown
in Fig. 1 with parameters L = 400, umin = −2m/ss, umax =
3m/s2 and adopt the OCBF controller without feasibility
guarantee for each CAV. When a QP for optimally tracking
the unconstrained optimal control of a CAV i becomes
infeasible, we record its index and consider two different
cases corresponding to the rear-end safety constraint and the
safe merging constraint separately. We re-run the simulations
of the two cases with feasibility constraints added to the ego
CAV, keeping all other conditions same.

Rear-end Safety Constraint: We limit ourselves to sim-
ulation results for the rear-end safety constraint, with ad-
ditional results included in [24]. A particular CAV, labeled
“CAV 25”, is chosen as the first case study. As CAV 25 and
CAV 24 are in the same road, the possibly active constraint
of interest is the rear-end safety constraint. We adopt the
OCBF controller and run the simulation twice to derive the
two trajectories of CAV 25, one with the feasibility guarantee
and the other without. Note that in the merging problem, the
control ui(t) is 1-dimensional, thus the feasible set of the QP
is an interval. To illustrate the performance of the feasibility
constraint, the evolution of the feasible set of the QPs over
time are plotted in Fig. 2.

Figure 2. Control History Comparison

In Fig. 2, the solid blue curve shows the control history
u(t) generated by the OCBF controller. The shaded blue
area shows the feasible set of the QP. For each time t,
the shaded blue area marks the maximum and minimum
acceleration allowed by the QP. Note that when t = 85s, the
QP becomes infeasible and the control is set to be −2m/s2

to continue the program execution. The solid red line is the
control history generated by the OCBF controller with the
feasibility constraint added to the QP. The shaded red area
shows the feasible set corresponding to the revised QP. The
dashed black lines shows the control bounds of the CAV.

The figure shows that the OCBF and feasibility guaranteed
OCBF have the same feasible set before 79s, which generates
the same control history. However, after 79s, the feasible
set of the feasibility guaranteed OCBF shrinks due to the
feasibility constraint while the myopic OCBF approach keeps
the same feasible set. This leads to a large difference after
84s. The feasible set of the myopic OCBF approach rapidly
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shrinks and even becomes empty, indicating that the QP is in-
feasible. The feasibility guaranteed OCBF, however, remains
feasible with the help of the advance action introduced by
the feasibility constraint.

75 80 85
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40
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Feasibility Guaranteed OCBF

Figure 3. Rear-end Safety Constraint Satisfaction Comparison

The infeasible QP makes the safety constraints unguaran-
teed as we no longer benefit from the forward invariance
property of the CBF. The rear-end safety constraints of the
two cases are plotted in Fig. 3. We can see that the rear-
end safety constraint is violated after 85s using the OCBF
controllers. This corresponds to the infeasible QP shown in
Fig. 2 after 85s. With the feasibility constraint, the red curve
remains positive, indicating that the rear-end safety constraint
is always satisfied.

VI. CONCLUSION

We have presented a feasibility guaranteed decentralized
control framework combining optimal control and CBFs
leading to OCBF controllers for merging CAVs jointly min-
imizing both the travel time and the energy consumption
subject to speed-dependent safety constraints and vehicle lim-
itations. We resolve the QP feasibility problem which arises
by adding a single control-dependent feasibility constraint
corresponding to each CBF constraint. The explicit control-
dependent feasibility constraints we have derived rely on the
velocity-dependent safety constraint structure. Thus, future
research will explore extending this method to feasibility
constraints for arbitrary optimal control problems, as well
as integrating recently developed event-driven QPs which
relaxes the assumption of an adequately small time interval
in Assumption 2.
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