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Abstract—We consider the problem of controlling Connected
and Automated Vehicles (CAVs) traveling through a roundabout
so as to jointly minimize their travel time, energy consumption,
and centrifugal discomfort while providing speed-dependent and
lateral roll-over safety guarantees, as well as satisfying velocity
and acceleration constraints. We first develop a systematic
approach to determine the safety constraints for each CAV
dynamically, as it moves through different merging points in
the roundabout. We then derive the unconstrained optimal
control solution which is subsequently optimally tracked by
a real-time controller while guaranteeing that all constraints
are always satisfied. Simulation experiments are performed to
compare the controller we develop to a baseline of human-
driven vehicles, showing its effectiveness under symmetric and
asymmetric roundabout configurations, balanced and imbalanced
traffic rates, and different sequencing rules for CAVs.

I. INTRODUCTION

The performance of traffic networks critically depends on
the control of conflict areas such as intersections, roundabouts
and merging roadways which define the main bottlenecks
in these networks [1]. Coordinating and controlling vehicles
in these conflict areas is a challenging problem in terms
of ensuring safety and passenger comfort while minimizing
congestion and energy consumption [2], [3]. The emergence
of Connected and Automated Vehicles (CAVs) provides a
promising solution to this problem through better information
utilization and more precise trajectory design. The automated
control of vehicles has gained increasing attention with the
development of new traffic infrastructure technologies [4], [1].

Both centralized and decentralized methods have been
studied to deal with the control and coordination of CAVs
at conflict areas. Centralized mechanisms are often used in
forming platoons in merging problems [5] and determining
passing sequences at intersections [6]. These approaches tend
to work better when the safety constraints are independent
of speed and they generally require significant computation
resources, especially when traffic is heavy. They are also not
easily amenable to disturbances.

Decentralized mechanisms restrict all computation to be
done on board each CAV with information sharing limited
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to a small number of neighbor vehicles [7]–[10]. Optimal
control problem formulations are often used, with Model Pre-
dictive Control (MPC) techniques employed as an alternative
to account for additional constraints and to compensate for
disturbances by re-evaluating optimal actions [11]–[13]. The
objectives in such problem formulations typically target the
minimization of acceleration or the maximization of passenger
comfort (measured as the acceleration derivative or jerk). An
alternative to MPC has recently been proposed through the
use of Control Barrier Functions (CBFs) [14], [15] which
provide provable guarantees that safety constraints are always
satisfied under very general nonlinear vehicle dynamics affine
in control.

In this paper, we build on the use of optimal control and
CBF-based methods as applied to unsignalized intersections
[16] and merging [17] to study roundabouts with all traffic con-
sisting of CAVs. There are several similarities between merg-
ing, intersections, and roundabouts. The single-lane merging
problem [17] contains a single Merging Point (MP) where
safety constraints must be guaranteed, while CAVs follow the
same moving direction in each lane. In intersection problems,
CAVs have a number of possible paths which conflict at
multiple MPs restricted to a small area. On the other hand, in
a roundabout, CAVs have the same moving direction (either
clockwise or counterclockwise), but multiple possible paths
which cross at multiple MPs. A roundabout problem can be
dealt with as either a whole system, like an intersection, or it
can be decomposed into several coupled merging problems.

Roundabouts are important components of a traffic network
because they usually perform better than typical intersections
in terms of efficiency and safety [18]. However, they can be-
come significant bottleneck points as the traffic rate increases
due to an inappropriate priority system, resulting in significant
delays when the circulating flow is heavy. Previous studies
mainly focus on conventional (human-driven) vehicles and try
to solve the problem through improved road design or traffic
signal control [19]–[21]. More recently, however, researchers
have proposed methods for decentralized optimal control of
CAVs in a roundabout based on formulating an optimal control
problem with an analytical solution provided in [22]. The
problem is decomposed so that first the minimum travel time
problem is solved under the assumption that all vehicles
use the same maximum speed within the roundabout. Then,
fixing this time, the control input that minimizes the energy
consumption is derived analytically. The general framework
for decentralized optimal control of CAVs used in intersections
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is implemented for roundabouts in [23]. The analysis is similar
to [22] except that there is no circulating speed assumption.

In this paper, we formulate an optimal control problem
for controlling CAVs traveling through a roundabout. The
main contributions are as follows. First, unlike [22], [23], we
jointly minimize the travel time and energy consumption while
also considering speed-dependent safety constraints at a set
of MPs rather than merging zones, which makes solutions
less conservative by improving roadway utilization. Second,
unlike our earlier work [24] where we considered roundabouts
consisting of only straight road segments, we analyze cir-
cular roundabout configurations where we include comfort
constraints guaranteed to be satisfied. Third, we overcome
the computational complexity of solving such an optimal
control problem analytically, by adopting the joint Optimal
Control and Barrier Function (OCBF) approach in [15]: we
first derive the optimal solution when no constraints become
active and subsequently optimally track this solution while
also guaranteeing the satisfaction of all constraints at all times
through utilizing the forward invariance property of CBFs.
We divide the roundabout into separate merging problems
so as to introduce different resequencing rules depending
on the MP. Thus, we will show that the commonly used
First-In-First-Out (FIFO) sequencing policy does not perform
well in many “asymmetric” configurations and explore an
alternative sequencing policy, termed Shortest Distance First
(SDF), which our experimental results show to be superior to
FIFO.

The paper is organized as follows. In Section II, the round-
about problem is formulated as an optimal control problem
that jointly minimizes travel times and energy consumption
with safety and vehicle limitation constraints. In Section
III, a decentralized framework is provided to determine the
safety constraints related to a given CAV as it moves through
different MPs in the roundabout. An OCBF controller is
designed in Section IV where several CBFs are introduced to
guarantee the satisfaction of all constraints. Simulation results
are presented in Section V showing significant improvements
in the performance of the OCBF controller compared to a
baseline of human-driven vehicles. Conclusions are provided
in Section VI.

II. PROBLEM FORMULATION

We consider the roundabout model shown in Fig. 1 with 3
entries and 3 exits. Extending our analysis to more than 3 entry
and exit points is straightforward. We assume that each road
segment has a single lane (extensions to multiple lanes and
MPs are possible following natural extensions we have already
applied for merging [25] and for signal-free intersections [26]).

A coordinator, i.e., a Road Side Unit (RSU) associated with
the roundabout, records the information associated with each
CAV and maintains a queue table (see Fig. 1) with CAVs
orfered as they enter the CZ. The CAVs communicate with
the coordinator but are not controlled by it; rather, control
inputs are evaluated on-board each CAV in a decentralized
way. Each CAV is assigned a unique index upon arrival at the
CZ which is used to determine its passing order (i.e., the order
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Fig. 1. CAVs randomly enter the roundabout from three different origin points
O1, O2 and O3 and have randomly assigned exit points E1, E2 and E3. The
gray road segments form the Control Zone (CZ) within which CAVs can share
information and thus be automatically controlled. The entry road segments are
connected with the circular part at the three Merging Points (MPs) labeled as
M1, M2 and M3 where CAVs from different road segments may potentially
collide with each other. A circle, square and triangle represent CAVs entering
from O1, O2 and O3 respectively. The color red, green and blue represents
exiting from E1, E2 and E3 respectively.

in which CAVs go through MPs). The most common scheme
for maintaining such a passing order is the First-In-First-Out
(FIFO) policy based on each CAV’s arrival time at the CZ. The
FIFO policy is one of the simplest schemes, yet works well in
many occasions as also shown in [27]. For simplicity, in what
follows we use the FIFO policy to illustrate the construction of
the coordinator queue table, but we point out that any passing
order policy may be used, such as the Dynamic Resequencing
(DR) method in [28]. We also introduce an alternative policy
in Section III.

Let S(t) be the set of CAV indices in the coordinator queue
table at time t whose cardinality is N(t). When a new CAV
arrives, it is allocated the index N(t) + 1. Each time a CAV
i leaves the CZ, it is dropped and all CAV indices larger than
i decrease by one. When CAV i ∈ S(t) is traveling in the
roundabout, there are several important events whose times
are used in our analysis: (i) CAV i enters the CZ at tme t0i ,
(ii) CAV i arrives at MP Mk at time tki , k ∈ {1, 2, 3}, (iii)
CAV i leaves the CZ at time tfi . Based on this setting, we can
formulate an optimal control problem as described next.

Vehicle Dynamics Denote the distance from the origin
Oj , j ∈ {1, 2, 3} to the current location of CAV i along its
trajectory as xji (t). However, since the CAV’s unique identity
i contains the information about the CAV’s origin Oj , we can
use xi(t) instead of xji (t) (without any loss of information) to
describe the vehicle dynamics as[

ẋi(t)
v̇i(t)

]
=

[
vi(t)
ui(t)

]
(1)

where vi is the velocity of CAV i along its trajectory and
ui is the acceleration (control input). In this paper, we focus
on planning optimal trajectories that guarantee safety while
ignoring lateral vehicle motion. The lateral vehicle offset can
also be dealt with by using detailed models (e.g., the 7-state
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model in [29]) and auxiliary methods like MPC following the
same framework as in this paper.

Objective 1 Minimizing the travel time Ji,1 = tfi − t0i
where t0i and tfi are the times CAV i enters and exits the
CZ respectively.

Objective 2 Minimizing energy consumption:

Ji,2 =

∫ tfi

t0i

Ci(ui(t))dt (2)

where Ci(·) is a strictly increasing function of its argument.
Since the energy consumption rate is a monotonic function of
the acceleration, we adopt this general form to achieve energy
efficiency.

Objective 3 Maximizing centrifugal comfort:

Ji,3 =

∫ tfi

t0i

κ(xi(t))v
2
i (t)dt (3)

where κ(xi) is the curvature of the road at position xi. As
the aim is to minimize the centrifugal force of the vehicle,
the curvature κ(xi) has the form of 1

r(xi)
, where r(xi) is the

radius of the road at position xi.
Constraint 1 (Rear-end safety constraint) Let ip denote the

index of the CAV which immediately precedes CAV i on the
same road segment as i, if one exists. The distance between
ip and i, defined as zi,ip(t) ≡ xip(t)− xi(t), should satisfy a
speed-dependent constraint:

zi,ip(t) ≥ φvi(t) + δ, ∀t ∈ [t0i , t
f
i ], ∀i ∈ S(t) (4)

where φ denotes the reaction time (as a rule, φ = 1.8s is
suggested, see [30]), and δ denotes the minimum safe distance
between CAVs (in general, we may use δi to make this distance
CAV-dependent but will use a fixed δ for simplicity). Note that
the preceding CAV index ip may change after road segment
changing events and is updated by the method described in
section III-B.

Constraint 2 (Safe merging constraint) Let tki , k ∈ {1, 2, 3}
be the arrival time of CAV i at MP Mk. Let im denote the
index of the CAV that CAV i may collide with when arriving
at its next MP Mk. The distance between im and i, defined
as zi,im(t) ≡ xim(t)− xi(t), is constrained by:

zi,im(tki ) ≥ φvi(t
k
i ) + δ, ∀i ∈ S(t), k ∈ {1, 2, 3} (5)

where im can be determined and updated by the method
described in section III-B.

We note that the rear-end safety constraint and the safe
merging constraint take the time-to-collision into considera-
tion, which is the most prevalent indicator used to identify
collisions at roundabouts as reported, for example, in [31].

Constraint 3 (Lateral safety constraint) The moment gen-
erated by the centrifugal force needs to be smaller than the
one generated by gravity in order to avoid rollover:

κ(xi(t))v
2
i (t)h ≤ whg (6)

where h is the height of the CAV, wh is the half width of
the CAV (for simplicity, both assumed the same for all CAVs)
and g is the gravity constant.

Constraint 4 (Vehicle limitations) The CAVs are also
subject to velocity and acceleration constraints due to physical
limitations or traffic rules:

vi,min ≤ vi(t) ≤ vi,max, ∀t ∈ [t0i , t
f
i ], ∀i ∈ S(t)

ui,min ≤ ui(t) ≤ ui,max, ∀t ∈ [t0i , t
f
i ], ∀i ∈ S(t)

(7)

where vi,max > 0 and vi,min ≥ 0 denote the maximum and
minimum speed for CAV i, while ui,max > 0 and ui,min < 0
denote the maximum and minimum acceleration for CAV i.
We further assume common speed limits dictated by the traffic
rules at the roundabout, i.e. vi,min = vmin, vi,max = vmax.

Boundary conditions The initial position and velocity of
the CAV as well as the terminal position are given as

xi(t
0
i ) = 0, vi(t

0
i ) = v0i , xi(t

f
i ) = Li (8)

where v0i is the velocity of the CAV when entering the control
zone CZ and Li is the distance it needs to travel from its entry
point to its assigned exit (Li is determined once CAV i enters
CZ.)

Similar to previous work [17], we construct a convex
combination of the three objectives above:

Ji = α1Ji,1 + α2
Ji,2

1
2 max{u2max , u

2
min }

+ α3
Ji,3

κmaxv2max

(9)

where α1, α2, α3 ∈ [0, 1], α1 + α2 + α3 = 1, Ji,2 and
Ji,3 are properly normalized. Note that these weights are
determined by each CAV according to its owner’s relative
preferences among time, energy, and comfort; they are set
upon a CAV’s arrival and remain unchanged during the CAV’s
trip. In particular, by defining β1 ≡ α1

2α2
max{u2max , u

2
min },

β2 ≡ α3 max{u2
max ,u2

min }
2α2κmaxv2

max
, we can rewrite this minimization

problem as

Ji(ui) =

∫ tfi

t0i

(
β1 +

1

2
u2i (t) + β2κ(xi(t))v

2
i (t)

)
dt (10)

where β1 and β2 are the weight factors derived from α1 and
α2. Finally, in what follows we simply choose in Ji,2 the
quadratic function Ci(ui) =

1
2u

2
i (t). Then, we can formulate

the optimal control problem as follows:
Problem 1: For each CAV i following the dynamics (1),

find the optimal control input ui(t) and terminal time tfi that
minimizes (10) subject to constraints (1), (4), (5), (6), (6), (7),
boundary conditions (8) and given t0i .

III. DECENTRALIZED CONTROL FRAMEWORK

In order to solve Problem 1 for each CAV i, we need to
first determine the corresponding ip and im (when they exist)
required in the safety constraints (4) and (5). Compared to the
single-lane merging or intersection control problems where the
constraints are determined and fixed immediately when CAV i
enters the CZ, the main difficulty in a roundabout is that these
constraints generally change after every event (defined earlier).
In particular, for each CAV i at time t only the merging
constraint related to the next MP ahead is considered. In other
words, we need to determine at most one ip to enforce (4) and
one im to enforce (5) at any time instant.
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There are two different ways to deal with this problem:
(i) Treat the system as a single CZ with three MPs with
advance knowledge of each CAV’s sequence of MPs, or
(ii) Decompose the roundabout into three separate merging
problems corresponding to the three MPs, each with a separate
CZ. The first approach heavily relies on the CAV sequencing
policy used. If FIFO is applied, it is likely to perform poorly
in a large roundabout, because a new CAV may experience
a large delay in order to preserve the global FIFO passing
sequence. In contrast, the second approach allows us to make
use of the solution to the optimal merging problem [17] for
each MP separately; it may, however, cause congestion if a
roundabout is too small to provide adequate space for effective
control at each separate CZ associated with each MP.

In what follows, we first address the task of determining the
indices ip and im for every CAV i in an event-driven manner
which can be used in either of the two approaches above and
for any desired sequencing policy. An extended queue table,
an example of which is shown in Table I corresponding to
Fig. 1, is used to record the essential state information and
identify all conflicting CAVs. We specify the state-updating
mechanism for this queue table so as to determine for each
CAV i the corresponding ip and im. Then, we focus on the
second approach introduced above, and Section IV develops a
general algorithm for solving Problem 1 based on the OCBF
method [15].

A. The Extended Coordinator Queue Table
Starting with the coordinator queue table shown in Fig. 1,

we extend it to include 6 additional columns for each CAV i.
The precise definitions are given below:

TABLE I
THE EXTENDED COORDINATOR QUEUE TABLE S(t)

S(t)
idx state curr. ori. 1st MP 2nd MP 3rd MP ip im
0 x0 l6 l1 M1, M M2, M M3, M
1 x1 l6 l1 M1, M M2, M M3, M 0
2 x2 l5 l2 M2, M
3 x3 l2 l2 M2 M3 M1 2
4 x4 l2 l2 M2 M3 3
5 x5 l3 l3 M3 M1 1
6 x6 l4 l1 M1, M
7 x7 l4 l1 M1, M M2 M3 6 4
8 x8 l1 l1 M1 M2 7
9 x9 l1 l1 M1 M2 M3 8

• idx: Unique CAV index, which allows us to determine
the order in which the CAV will leave the roundabout
according to some policy (e.g., FIFO is assumed in Table
I since rows are ordered by the index value).

• state: CAV state xi = (xi, vi) where xi denotes the
distance from the entry point to the location of CAV i
along its current road segment.

• curr.: Current CAV road segment, which allows us to
determine the rear-end safety constraints.

• ori.: Original CAV road segment, which allows us to
determine its relative position when in road segment curr.

• 1st-3rd MP: These columns record all the MPs on the
CAV trajectory. If a CAV has already passed an MP, this

MP is marked with an “M”. Otherwise, it is unmarked.
This marker is used to systematically determine the safety
constraints in Sec. III-B. As a CAV may not need to go
through all three MPs in the roundabout, some of these
columns may be blank.

• ip: Index of the CAV that immediately precedes CAV i
in the same road segment (if such a CAV exists).

• im: Index of the CAV that may conflict with CAV i at
the next MP. CAV im is the last CAV that passes the
MP ahead of CAV i. Note that if im and i are in the
same road segment, then im (= ip) is the immediately
preceding CAV. In this case, the safe merging constraint
is redundant and need not be included.

Event-driven Update Process for S(t): The extended
coordinator queue table S(t) is updated whenever an event
(as defined earlier) occurs. In particular:

• A new CAV enters the CZ: The CAV is indexed and
added to the bottom of the queue table.

• CAV i exits the CZ: All information of CAV i is removed.
All rows with index larger than i decrease their index
values by 1.

• CAV i passes an MP: Mark the MP with “M” and update
the current road segment value curr of CAV i with the
one it is entering.

Following each event, the values of ip and im are also
updated as detailed next.

B. Determination of Safety Constraints

Recall that for each CAV i in the CZ, we need to consider
two different safety constraints (4) and (5). First, by looking
at each row j < i and the corresponding current road segment
value curr, CAV i can determine its immediately preceding
CAV ip if one exists. This fully specifies the rear-end safety
constraint (4).

Next, we determine im, the CAV (if it exists) which possibly
conflicts with CAV i at the next MP it will pass so as to
specify the safe merging constraint (5). To do so, we find in
the extended queue table the last CAV j < i that will pass or
has passed the same MP as CAV i. In addition, if such a CAV
is in the same road segment as CAV i, it coincides with the
preceding CAV ip. As an example, in Table I (a snapshot of
Fig. 1), CAV 8 has no immediate preceding CAV in l1, but it
needs to yield to CAV 7 at M1, its next MP: although CAV
7 has already passed M1, when CAV 8 arrives at M1 there
needs to be adequate space between CAV 7 and 8 for CAV 8
to enter l4). On the other hand, CAV 9 only needs to satisfy
its rear-end safety constraint with CAV 8.

It is now clear that we can use the information in S(t) in
a systematic way to determine both ip in (4) and im in (5).
Thus, there are two functions ip(e) and im(e) which need to
be updated after event e if this event affects CAV i. First, the
index ip can be easily determined by looking at rows j < i,
starting at row i and moving up in the list, until the first one is
found with the same value curr as CAV i. For example, CAV
9 searches for its ip from CAV 8 to the top and sets ip = 8
as CAV 8 has the curr value l1.
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Next, the index im is determined. To do this, CAV i
compares its MP information to that of each CAV in rows
j < i, starting at row i and moving up in the list. The process
terminates the first time that any one of the following two
conditions is satisfied:

• The MP information of CAV j matches CAV i. We define
j to “match” i if and only if the last marked MP or the
first unmarked MP of CAV j is the same as the first
unmarked MP of CAV i. Thus, im = j.

• All prior rows j < i have been looked up and none of
them matches the MP information of CAV i.

Combining the two updating processes for ip and im to-
gether, there are four different cases as follows:

1. Both ip and im exist. In this case, there are two
possibilities: (i) ip ̸= im. CAV i has to satisfy the safe merging
constraint (5) with im < i and also satisfy the rear-end safety
constraint (4) with ip < i. For example, for i = 7, we have
ip = 6 and im = 4 (M2 is the first unmarked MP for CAV
7 and that matches the first unmarked MP for CAV 4). (ii)
ip = im. CAV i only has to follow ip and satisfy the rear-end
safety constraint (4) with respect to ip. Thus, there is no safe
merging constraint for CAV i to satisfy. For example, i = 4
and ip = im = 3.

2. Only ip exists. In this case, there is no safe merging
constraint for CAV i to satisfy. CAV i only needs to follow
the preceding CAV ip and satisfy the rear-end safety constraint
(4) with respect to ip. For example, i = 1 and ip = 0.

3. Only im exists. In this case, CAV i has to satisfy the safe
merging constraint (5) with the CAV im in S(t). There is no
preceding CAV ip, thus there is no rear-end safety constraint.
For example, i = 5 and im = 1 (M3 is the first unmarked MP
for CAV 5 and that matches the last marked MP for CAV 1
with no other match for j = 4, 3, 2).

4. Neither ip nor im exists. In this case, CAV i does not
have to consider any safety constraints. For example, i = 2.

C. Sequencing Policies Using Local Coordinator Queue Ta-
bles

The extended queue table S(t) is based on a sequencing
policy which applies to the whole roundabout. Thus, if a
FIFO policy is adopted, we have seen how to use a systematic
process for updating ip(e) and im(e) after each event e in
S(t). However, FIFO may not be a good sequencing policy if
applied to the whole roundabout. More generally, we wish to
allow possible resequencing after a CAV passes a MP, based
on the system state information at that time. This can be
accomplished by introducing a local coordinator queue table
Sk(t) associated with each Mk, k = 1, 2, 3. This allows us
to treat the problem of coordinating all CAVs with Mk as
their next (or just passed) MP as a separate optimal merging
control problem along the lines of [17]. We define CZk as
the CZ corresponding to Mk that consists of the three road
segments directly connected to Mk. A local coordinator queue
table can be viewed as a subset of the extended coordinator
queue table except that the CAVs appear in a different order
in the two tables. As an example, Table II (a snapshot of Fig.
1) is the local coordinator queue table corresponding to M1

(in this case, for simplicity, we still use the FIFO policy, but
it is now applied only to CAVs involved with M1).

TABLE II
THE LOCAL-COORDINATOR QUEUE TABLE S1(t)

S1(t)
idx info curr. ori. 1st MP 2nd MP 3rd MP ip im
6 x6 l4 l1 M1, M
7 x7 l4 l1 M1, M M2 M3 6
8 x8 l1 l1 M1 M2 7
0 x0 l6 l1 M1, M M2, M M3, M
1 x1 l6 l1 M1, M M2, M M3, M 0
9 x9 l1 l1 M1 M2 M3 8

Event-driven Update Process for Sk(t): The local-
coordinator queue table Sk(t) is updated as follows after each
event that has caused an update of the extended coordinator
queue table S(t):

• For each CAV i in Sk(t), update its information depend-
ing on the event observed: (i) A new CAV j enters
CZk (either from an entry point to the roundabout CZ
or a MP passing event): Add a new row to Sk(t) and
resequence the local-coordinator queue table according
to the sequencing policy used. (ii) CAV j exits CZk:
Remove all the information of CAV j from Sk(t).

• Determine ip and im in each local-coordinator queue
table with the same method as described in section III-B.

• Update CAV j’s ip and im in the extended coordinator
queue table with the corresponding information in Sk(t),
while Mk is the next MP of CAV j.

Note that CAV j may appear in multiple local-coordinator
queue tables with different ip and im values. However, only
the one in Sk(t) where Mk is the next MP CAV j will pass is
used to update the extended coordinator queue table S(t). The
information of CAV j in other local-coordinator queue tables
is necessary for determining the safety constraints as CAV j
may become CAV ip or im of other CAVs.

Resequencing policy: The local-coordinator queue table
allows resequencing when a CAV passes a MP. A resequencing
policy evaluates a given criterion for each CAV and sorts the
CAVs in the queue table when a new event happens. For
example, FIFO takes the arrival time in the CZ as the criterion,
while the Dynamic Resequencing (DR) policy [28] uses the
overall objective value in (10) as the criterion.

We propose here a straightforward yet effective resequenc-
ing policy for the roundabout as follows. Let x̃ki ≡ xi − dkj
be the position of CAV i relative to Mk, where dkj denotes
the fixed distance from the entry point (origin) Oj to merging
point Mk along the trajectory of CAV i. Then, consider

yi(t) = −x̃ki (t) (11)

This resequencing criterion reflects the distance between the
CAV and the next MP. The CAV which has the smallest yi(t)
value is allocated first, thus this is referred to as the Shortest
Distance First (SDF) policy. This simple resequencing policy
is tested in Section VI. Other policies can also be easily
implemented with the help of the local-coordinator queue
tables.
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IV. UNCONSTRAINED OPTIMAL CONTROL SOLUTION

We now return to the solution of Problem 1, i.e., the
minimization of (10) subject to constraints (1), (4), (5), (7),
(6), the initial condition xi(t

0
i ) = 0, and given t0i , v0i and

xi(t
f
i ). The problem formulation is complete since we have

used the local coordinator queue tables to determine ip and im
(needed for the safety constraints) associated with the closest
MP to CAV i.

As pointed out in [17], when one or more constraints
become active, the solution to Problem 1 becomes compu-
tationally intensive. The problem here is exacerbated by the
fact that the values of ip and im dynamically change due to
different events in the roundabout system. To ensure that a
solution can be obtained in real time while also guaranteeing
that all safety constraints are always satisfied, we adopt the
OCBF approach [15] briefly introduced in the introduction and
further discussed in Section V: we first determine the solution
of the unconstrained optimal control problem and then solve a
problem of optimally tracking this solution while guaranteeing
the satisfaction of all constraints through the use of Control
Barrier Functions (CBFs).

Thus, our first task is to obtain a solution to the un-
constrained roundabout problem through Hamiltonian anal-
ysis. Denoting by Xi(t) := (xi(t), vi(t)) and λi(t) :=
(λxi (t), λ

v
i (t)) the state vector and costate vector respectively,

the Hamiltonian of the system in (10) is

Hi(Xi, λi, ui) =β1 +
1

2
u2i + β2κ(xi)v

2
i + λxi vi + λvi ui

+ µa
i (ui − umax) + µb

i (umin − ui)

+ µc
i (vi − vmax) + µd

i (vmin − vi)

+ µe
i (xi + φvi + δ − xip)

+ µf
i (κ(xi)v

2
i h− whg)

(12)

where µa
i , µ

b
i , µ

c
i , µ

d
i , µ

e
i , µ

f
i are Lagrange multipliers associ-

ated with the constraints (4), (5), (7) and (6). Since the terminal
state constraint ψi,1 := xi(t

f
i ) − Li = 0 is not an explicit

function of time, the transversality condition is

Hi(Xi(t), λi(t), ui(t))|t=tfi
= 0 (13)

The necessary conditions for optimality are

λ̇xi = −∂Hi

∂xi
=− µe

i − β2
∂κ(xi)

∂xi
v2i − µf

i

∂κ(xi)

∂xi
v2i (14)

λ̇vi = −∂Hi

∂vi
=− 2β2κ(xi)vi − λxi − (µc

i − µd
i )

− φµe
i − 2κ(xi)µ

f
i vi (15)

0 =
∂Hi

∂ui
=ui + λvi + µa

i − µb
i (16)

Under the unconstrained assumption, none of the constraints
(4), (5), (7) and (6) is active, therefore, µa

i = µb
i = µc

i =
µd
i = µe

i = µf
i = 0. Then, the most complex part in

solving the equations above is due to ∂κ(xi)
∂xi

appearing in
(14). In [32], a single curved road segment was modeled
by assuming κ(xi) to be a constant taken to be the average
curvature κ̄ or the maximum curvature κmax. However, in a

roundabout road configuration, we cannot take κ(xi) to be a
constant over an entire CAV trajectory, but rather define it as
a piecewise constant function which is 0 when xi ∈ [0, L) and
jumps to 1/r at xi = L. This discontinuity in κ(xi) causes
complications in (14).

There are several ways to deal with this discontinuity
problem in κ(xi). For example, one can approximate it through
a smooth (e.g., sigmoid) function. However, even the simplest
sigmoid function results in a set of complex nonlinear equa-
tions too hard to solve in real time. In what follows, we resolve
this issue by transforming Problem 1 into a bi-level optimal
control problem as described next.

At the lower level, we separate the problem for each CAV
i into two parts: one for the straight road segment and one
for the circular part. Both problems are parameterized by
the terminal speed of CAV i, vmi , at the end of the straight
road segment, which is also the initial speed for the circular
part. Then, the upper level problem consists of determining an
optimal value for the parameter vmi .

To formulate the two lower-level problems, let tmi be the
time a CAV enters the circular part of the roundabout from the
straight road segment. The boundary conditions for the speed
of CAV i when entering the straight road segment and the
circular part are v0i and vmi respectively. Then, we formulate
the two lower-level problems corresponding to the straight line
and the circular part (both parameterized by vmi ) as follows:

min
ui(t)

JS
i (ui(t); v

m
i ) =

∫ tmi

t0i

fSi (ui(t))dt

s.t. (1), (4), (5), (7)

vi(t
0
i ) = v0i , vi(t

m
i ) = vmi

xi(t
m
i ) = 0, xi(t

f
i ) = Li,1

(17)

min
ui(t)

JC
i (ui(t); v

m
i ) =

∫ tfi

tmi

fCi (ui(t),vi(t))dt

s.t. (1), (4), (5), (7), (6)
vi(t

m
i ) = vmi

xi(t
m
i ) = Li,1, xi(t

f
i ) = Li

(18)

where, for notational simplicity, we have defined

fSi (ui(t)) = β1 +
1

2
u2i (t)

fCi (ui(t),vi(t)) = β1 +
1

2
u2i (t) + β2κv

2
i (t)

Note that fSi and fCi are both special cases of the integrand
in (10). In fSi the curvature is κ(xi) = 0, while in fCi the
curvature is a constant κ(xi) = κ̂. Given the speed parameter
vmi , solving the lower level problems yields two optimal
costs J∗S

i (vmi ) and J∗C
i (vmi ), both functions of vmi . We then

formulate the following upper level problem which aims at
finding the optimal terminal velocity vmi :

min
vm
i

Ji(v
m
i ) = J∗S

i (vmi ) + J∗C
i (vmi )

s.t. vmin ≤ vmi ≤ vmax

(19)
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A. Lower level problem 1 – Circular road segment

The circular part problem is a special case of Problem 1
where the curvature κ(xi) is constant, i.e. κ = κ̂. Under the
unconstrained assumption, µa

i = µb
i = µc

i = µd
i = µe

i = µf
i =

0 and the necessary conditions (14), (15), (16) yield:

λ̇xi = −∂Hi

∂xi
= 0 (20)

λ̇vi = −∂Hi

∂vi
= −2β2κ̂vi − λxi (21)

0 =
∂Hi

∂ui
= ui + λvi (22)

Since (20) implies that λxi is a constant, set λxi = ai. Then,
combining (21) and (22) yields

v̈i − 2β2κ̂vi − ai = 0 (23)

Solving this equation gives an explicit solution for the speed:

v∗i (t) = bie
√
2β2κ̂t + cie

−
√
2β2κ̂t − ai

2β2κ̂
(24)

where bi, ci are integration constants. Applying (1), the op-
timal solution for the unconstrained problem is obtained as
follows:

u∗i (t) =
√
2β2κ(bie

√
2β2κ̂t − cie

−
√
2β2κ̂t) (25)

x∗i (t) =
1√
2β2κ

(bie
√
2β2κ̂t−cie−

√
2β2κ̂t)− ai

2β2κ
t+di (26)

where di is also an integration constant.
Given the boundary conditions vi(tmi ) = vmi , xi(tmi ) =

Li,1, λvi (t
f
i ) = 0, xi(t

f
i ) = Li, as well as the transversality

condition (13), we can obtain ai, bi, ci, di and tfi by solving
the set of nonlinear algebraic equations:

bie
√
2β2κ̂t

m
i + cie

−
√
2β2κ̂t

m
i − ai

2β2κ̂
= vmi

1√
2β2κ̂

(bie
√
2β2κ̂t

m
i − cie

−
√
2β2κ̂t

m
i )− ai

2β2κ
tmi + di = Li,1

1√
2β2κ̂

(bie
√
2β2κ̂t

f
i − cie

−
√
2β2κ̂t

f
i )− ai

2β2κ
tfi + di = Li√

2β2κ̂(bie
√
2β2κ̂t

f
i − cie

−
√
2β2κ̂t

f
i ) = 0

β1 + β2κ̂(bie
√
2β2κ̂t

f
i + cie

−
√
2β2κ̂t

f
i − ai

2β2κ̂
)2

+ ai(bie
√
2β2κ̂t

f
i + cie

−
√
2β2κ̂t

f
i − ai

2β2κ̂
) = 0

(27)

Thus, by solving (27) for each i ∈ S(t), we can obtain all
the integration constants ai, bi, ci, di and the terminal time tfi
for CAV i as a function of vmi . Since (27) is usually hard to
solve due to the presence of the exponential terms, we will
present in Section IV-C a computationally efficient approach
to calculate these five constants, as well as the optimal cost.

B. Lower level problem 2 – Straight road segment

In this case, the Hamiltonian in (12) becomes

Hi(Xi, λi, ui) =β1 +
1

2
u2i + λxi vi + λvi ui

+ µa
i (ui − umax) + µb

i (umin − ui)

+ µc
i (vi − vmax) + µd

i (vmin − vi)

+ µe
i (xi + φvi + δ − xip)

(28)

with the transverality condition

Hi(Xi, λi, ui)|t=tmi
= 0 (29)

The necessary conditions for optimality are

λ̇xi = −∂Hi

∂xi
=− µe

i (30)

λ̇vi = −∂Hi

∂vi
=− λxi − (µc

i − µd
i )− φµe

i (31)

0 =
∂Hi

∂ui
=ui + λvi + µa

i − µb
i (32)

Again, under the unconstrained assumption, µa
i = µb

i =
µc
i = µd

i = µe
i = 0. Therefore, solving the equations

above, we can explicitly obtain the optimal solution to the
unconstrained problem as:

u∗i (t) = ait+ bi

v∗i (t) =
1

2
ait

2 + bit+ ci

x∗i (t) =
1

6
ait

3 +
1

2
bit

2 + cit+ di

(33)

The boundary conditions for this problem are vi(t0i ) = v0i ,
vi(t

m
i ) = vmi , xi(t0i ) = 0 and xi(t

m
i ) = Li,1. Combining

these boundary conditions with the tranversality condition
(29) yields the following set of equations from which all the
integration constants ai, bi, ci, di and the terminal time tmi can
be obtained, again as a function of vmi :

1

2
ai · (t0i )2 + bi · t0i + ci = v0i ,

1

2
ai · (tmi )2 + bi · t0i + ci = vmi ,

1

6
ai · (t0i )3 +

1

2
bi · (t0i )2 + cit

0
i + di = 0,

1

6
ai · (tmi )3 +

1

2
bi · (tmi )2 + cit

m
i + di = L,

β − 1

2
b2i + aici = 0.

(34)

This set equations is not difficult to solve; in practice, the
solution can be obtained within ≪ 1s using MATLAB.

C. The upper level problem

Once the solution u∗i (t) in (33) is obtained in conjunction
with (34), we have the optimal cost J∗S

i (vmi ) available in (19).
Similarly, once v∗i (t) and u∗i (t) in (24) and (25) are obtained
in conjunction with (27), then J∗C

i (vmi ) is available and (19)
becomes a standard nonlinear programming problem whose
solution gives an optimal vmi . The difficulty, however, is that
explicit analytical expressions for J∗S

i (vmi ) and J∗C
i (vmi ) are
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generally unavailable. The numerical evaluation of these two
terms, given a particular vmi value, is computationally expen-
sive and this is especially true for J∗C

i (vmi ) where exponential
terms are involved. A straightforward and intuitive way to
solve the upper level problem in real time is to use a regression
approach to obtain explicit expressions for the two optimal cost
functions. This provides a computationally efficient solution at
the expense of some accuracy in determining the optimal vmi .

What is important to note is that the aforementioned re-
gression approach can be carried out off line. To explain this,
let us consider the first lower-level problem for the circular
part. For any CAV i with a given origin and destination, the
physical parameter values of Li,1, Li and κ̂ in (18) are fixed.
Therefore, given the parameters β1, β2, for any fixed vmi , a
shift in the arrival time tmi will only result in a shift in the
optimal control but does not influence the optimal travel time
or the optimal cost. In other words, for i, j ∈ S(t), if vmi = vmj
and ∆t = tmj − tmi , we have u∗i (t) = u∗j (t + ∆t) as well as
tfi − tmi = tfj − tmj . It follows that

J∗C
i (vmi ) =

∫ tfi

tmi

fCi (u∗i (t),x
∗
i (t))dt

=

∫ tfi +∆t

tmi +∆t

fCj (u∗j (t),x
∗
j (t))dt = J∗,C

j (vmj )

(35)

where fCi (u(t), x(t)) = fCj (u(t), x(t)) for given β1 and
β2. This implies that the optimal cost function J∗,C

i (vmi ) is
independent of the initial time tmi . Therefore, given β1, β2 for
a roundabout with physical parameters κ̂, Li,1 and Li, we can
get the optimal cost J∗C

i (vmi ) for any fixed vmi ∈ [vmin
i , vmax

i ]
by solving (27) off line with tmi = 0. Following this approach,
we can calculate a number of optimal cost and initial speed
pairs (J∗C

i (vmi ), vmi ) off line and use any standard regression
method to fit the optimal cost function:

RC
J (v

m
i ) = J∗C

i (vmi ) + ϵ(vmi ) (36)

where RC
J : R → R denotes the regression model for the

optimal cost, and ϵ denotes the regression error.
Using the same technique, another regression model

RS
J (v

m
i ) can be calculated off line as an approximation to

the optimal cost function J∗S
i (vmi ) for CAV i in the straight

road segment. Thus, the objective function of the upper level
problem can be explicitly expressed by the regression model:

Ji(v
m
i ) = RS

J (v
m
i ) +RC

J (v
m
i ) (37)

Then, the upper-level problem becomes a nonlinear program-
ming problem with an explicit objective function. This is
usually easy to solve and the optimal vmi is readily obtained
in real time.

Once the optimal velocity vmi is determined, the explicit
solution of the two lower-level optimal control problems can
be obtained by solving (27) and (34) respectively. Regarding
(27), as mentioned in Section IV-A, a solution can be com-
putationally expensive to obtain due to the exponential terms
involved. To accelerate this solution process, we can eliminate
the variable tfi in (27), hence obtaining a much simpler system

of only four equations to solve; this is accomplished by
employing a similar regression technique for tfi in terms of
vmi as explained next.

As already pointed out, for a specific roundabout where Li,1

and Li are fixed, the total travel time tfi − tmi is independent
of the arrival time tmi . Thus, given β1, β2 and the physical
parameters κ̂, Li,1 and Li, we can calculate a number of travel
time and initial speed pairs (tfi −tmi , vmi ) off line for any fixed
vmi . A regression model RC

t (v
m
i ) is then used to fit the travel

time as follows:

RC
t (v

m
i ) = (tfi − tmi ) + ϵ(vmi ) (38)

where Rt : R → R denotes the regression model for the
optimal travel time and ϵ(vmi ) represents the regression error.
Thus, for any observed initial velocity vmi ∈ [vmin, vmax], we
can use this regression model to obtain the solution of tfi :

tfi = tmi +RC
t (v

m
i ) (39)

Given β1, β2 and vmi and the regression model RC
t (v

m
i ),

the optimal terminal time can be immediately obtained using
(39). Therefore, the problem (18) is reduced into an optimal
control problem with fixed terminal time. The transversality
condition (the last equation in (27)) is no longer needed. Then,
the integration constants can be obtained easily and quickly
through a simple matrix multiplication:


ai
bi
ci
di

 =


− 1

2β2κ̂
e
√
2β2κ̂t

m
i e−

√
2β2κ̂t

m
i 0

− 1
2β2κ̂

e
√

2β2κ̂tmi

2β2κ̂
− e−

√
2β2κ̂tmi

2β2κ̂
1

− 1
2β2κ̂

e
√

2β2κ̂t
f
i

2β2κ̂
− e−

√
2β2κ̂t

f
i

2β2κ̂
1

0 e
√
2β2κ̂t

f
i e−

√
2β2κ̂t

f
i 0


−1 

vmi
Li,1

Li

0


(40)

Although (34) for the second lower-level problem is easy
to solve, the solution can still be accelerated by a similar re-
gression approach: a number of travel time pairs (tmi −t0i , vmi )
can be calculated off line to generate a regression model:

RS
t (v

m
i ) = (tmi − t0i ) + ϵ(vmi ) (41)

which efficiently calculates the optimal terminal time. This
reduces (34) to only four equations which are easily and
quickly solved by a matrix multiplication:

ai
bi
ci
di

 =


1
2 (t

0
i )

2 t0i 1 0
1
2 (t

m
i )2 tmi 1 0

1
6 (t

0
i )

3 1
2 (t

0
i )

2 t0i 1
1
6 (t

m
i )3 1

2 (t
m
i )2 tmi 1


−1 

v0i
vmi
0
L

 (42)

V. JOINT OPTIMAL CONTROL AND CONTROL BARRIER
FUNCTION CONTROLLER (OCBF)

In Sec. IV, the optimal solution to Problem 1 with all
constraints inactive was obtained. This solution forms the
basis of the OCBF approach [15]: (i) the solution for the
unconstrained optimal control problem is used as a reference
control, (ii) the resulting control reference trajectory is opti-
mally tracked subject to the bounds (7), as well as a set of
CBF constraints enforcing (4), (5) and (6) (iii) This optimal
tracking problem is efficiently solved by discretizing time and
solving a simple Quadratic Problem (QP) at each discrete time
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step. The significance of CBFs in this approach is twofold:
first, their forward invariance property [15] guarantees that all
constraints they enforce are satisfied at all times if they are
initially satisfied; second, CBFs impose linear constraints on
the control which is what enables the efficient solution of the
tracking problem through the sequence of QPs in (iii) above.

Once we obtain the unconstrained optimal control solu-
tion for the straight (33) and circular road segment (25)
respectively, we define it as a control reference trajec-
tory uref (t). More generally, we can define any func-
tion h(u∗i (t), x

∗
i (t), xi(t)) as a control reference uref (t) =

h(u∗i (t), x
∗
i (t), xi(t)), where xi(t) provides feedback from

the actual observed CAV trajectory to add robustness to
the solution. We normally choose the simplest and most
straightforward choice uref (t) = u∗i (t) where u∗i (t) is the
unconstrained optimal control solution obtained from (33) and
(25). We will, however, revisit the case with feedback in
Section V-A.

Next, we design a controller that optimally tracks uref (t)
while satisfying all constraints. First, let xi(t) ≡ (xi(t), vi(t)).
Based on the vehicle dynamics (1), define f(xi(t)) =
[vi(t), 0]

T and g(xi(t)) = [0, 1]T . Each of the constraints
(4), (5) and (7) is expressed in the form bk(xi(t)) ≥ 0, k ∈
{1, ..., n} where n is the number of constraints. The CBF
method maps a constraint bk(xi(t)) ≥ 0 onto a new constraint
which directly involves the control ui(t) in linear fashion and
takes the general form

Lfbk(xi(t)) + Lgbk(xi(t))ui(t) + γ(bk(xi(t))) ≥ 0, (43)

where Lf , Lg denote the Lie derivatives of bk(xi(t)) along
f and g respectively and γ(·) denotes any class-K function
[15]. The forward invariance property of CBFs guarantees
that a control input that keeps (43) satisfied will also keep
bk(xi(t)) ≥ 0. In other words, the constraints (4), (5), (7) and
(6) are never violated (this comes at the expense of potential
conservativeness in the control since the CBF constraint is a
sufficient condition for ensuring its associated original problem
constraint.)

Considering all constraints in Problem 1, the rear-end safety
constraint (4), the vehicle limitations (7) and the lateral safety
constraint (6) are all straightforward to transform into a CBF
form by directly applying (43). As an example, consider (4)
by setting b1(xi(t)) = zi,ip(t)−φvi(t)−δ = xip(t)−xi(t)−
φvi(t)−δ. As b1(xi(t)) is differentiable, we can calculate the
Lie derivatives Lfb1(xi(t)) = vip − vi and Lgb1(xi(t)) =
−φ. Choosing a linear class-K function γ(x) = k1x, the CBF
constraint (43) can be obtained as

bcbf1(xi, ui) = vip − vi − φui + k1b1(xi) ≥ 0 (44)

The safe merging constraint (5) differs from the rest in that it
only applies to a single specific time instants tmk

i . This poses a
technical complication due to the fact that a CBF must always
be in a continuously differentiable form. We can convert (5)
to such a form using the technique in [15] to obtain

zi,im(t)− Φ(xi(t))vi(t)− δ ≥ 0, t ∈ [tk,0i , tki ] (45)

where tk,0i denotes the time CAV i enters the road segment
connected to Mk and Φ(·) is any strictly increasing function

as long as it satisfies the boundary constraints zi,im(tk,0i ) −
ϕvi(t

k,0
i )− δ ≥ 0 and zi,im(tki )− ϕvi(t

k
i )− δ ≥ 0 (the latter

is precisely (5)). Note that we need to satisfy (45) when a
CAV changes road segments in the roundabout and the value
of im changes. Since zi,im(tk,0i ) ≥ −Lim + Li, where Li is
the length of the road segment CAV i is in, to guarantee the
feasibility of (45), we set Φ(xi(t

k,0
i ))vi(t

k,0
i )+δ = −Lim+Li.

Then, from (5), we get Φ(xi(t
k
i )) = φ. Simply choosing a

linear Φ(·) as follows:

Φ(xi(t)) =

(
φ+

Lim − Li + δ

vi(t
k,0
i )

)
xi(t)

Li
− Lim − Li + δ

vi(t
k,0
i )

(46)
it is easy to check that it satisfies the boundary requirements.
Note that when implementing the OCBF controller, xi(t)
needs to be transformed into a relative position x̃ki +Li, which
reflects the distance between CAV i and the origin of the
current road segment. Thus, zi,ip and zi,im are calculated after
this transformation, where zi,ip = x̃kip − x̃

k
i , zi,im = x̃kim − x̃ki .

The last step is to provide the OCBF controller with the
capability to optimally track the reference speed trajectory.
This is accomplished by using a Control Lyapunov Function
(CLF) V (xi(t)) which is similar to a CBF. Letting V (xi(t)) =
(vi(t)− vref (t))

2, the CLF constraint takes the form

LfV (xi(t)) + LgV (xi(t))ui(t) + ϵV (xi(t)) ≤ ei(t), (47)

where ϵ > 0, and ei(t) is a relaxation variable which makes
this a soft constraint.

We can now formulate the problem that the OCBF controler
must solve, i.e., to optimally track the reference trajectory by
solving the optimization problem:

min
ui(t),ei(t)

∫ tfi

t0i

(
βe2i (t) +

1

2
(ui(t)− uref (t))

2

)
dt (48)

subject to the vehicle dynamics (1), the CBF constraints (43)
derived from (4), (5), (7), (6) and the CLF constraint (47). As
already mentioned, we select uref (t) = u∗i (t) and, similarly,
vref (t) = v∗i (t) in the CLF V (xi(t)) = (vi(t) − vref (t))

2,
but extend these in Section V-A.

With all constraints converted to CBF constraints in (48),
we can solve this problem by discretizing [t0i , t

f
i ] into intervals

[t0i , t
0
i +∆], . . . , [t0i + k∆, t0i + (k + 1)∆], . . . of equal length

∆ and solving (48) over each time interval. The decision
variables uk = ui(tk) and ek = ei(tk) are assumed to be
constant on each such time interval and can be easily obtained
by solving a Quadratic Program (QP) problem:

min
uk,ek

βe2k +
∆

2
(uk − uref (t

0
i + k∆))2 (49)

subject to the CBF constraints (43) and the CLF constraint
(47), all evaluated at tk, where all CBF and CLF constraints
are linear in the decision variables uk and ek. By repeating
this process until CAV i exits the CZ, the solution to (48) is
obtained.

The computational cost in using OCBF is that of solving a
Quadratic Program (QP) as shown in (49) at each time step.
The cost of QP solutions is minimal and, in practice, it is
less than 0.01 sec. By comparison, a complete solution of the
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optimal control problem (10), may require one or two orders
of magnitude more (about 0.3 to 30 seconds). Similarly, an
MPC-based approach is also an order of magnitude slower
(about 0.5 second). All the computation times are measured
in MATLAB.

A. Reference Trajectory with Feedback

As already mentioned, in (48) we can select the simplest and
most straightforward uref (t) = u∗i (t) along with vref (t) =
v∗i (t) in the CLF V (xi(t)) = (vi(t) − vref (t))

2. These
simple reference trajectories work well in problems where
the deviations (ui(t) − uref (t)) are not exceedingly large,
as observed, for instance, in optimal merging [15] and inter-
section control [16] problems. However, when the constraints
become complex, especially when traffic in the roundabout
becomes heavy, tracking these simple reference trajectories in
an open-loop way often results in such large deviations from
the unconstrained optimal solution (as illustrated in Section
VI). Thus, a reference trajectory which includes feedback is
introduced to solve this issue. In particular, we set

vref(t) =
x∗(t)

x(t)
v∗(t), uref(t) =

x∗(t)

x(t)
u∗(t), (50)

where x(t) is the actual observed CAV position.
We also introduce another type of position-feedback to

resolve the problem related to large deviations in t between
the reference and actual trajectories, as illustrated through
a specific numerical example in Fig. 7, further discussed in
Section VI-B3. We calculate a reference time tref by solving
the following equation at any t:

x∗(tref) = x(t) (51)

where x∗(·) is the optimal unconstrained position of a given
CAV in (26). Then, we choose the unconstrained optimal
trajectory at tref as the reference vref(t) = v∗(tref) and
uref(t) = u∗(tref) or

vref(t) = v∗((x∗)−1(x(t))), uref(t) = u∗((x∗)−1(x(t)))
(52)

We will show how this approach can improve performance
in Section VI-B3.

VI. SIMULATION RESULTS

In this section, we use Vissim, a multi-model traffic flow
simulation platform, as a baseline to evaluate traffic perfor-
mance in roundabouts with human-driven vehicles and com-
pare it to the performance obtained using our OCBF controller
(for all CAVs). We use the model shown in Fig. 1 constructed
in Vissim and use the same vehicle arrival patterns in the
human-driven vehicle baseline and under the OCBF controller
for consistent comparison purposes.

A. Virtual roundabout example

We first conduct a case study based on a virtual round-
about as shown in Fig. 1. The parameter settings are as
follows: La = 100m, L = 100m, δ = 0m, φ = 1.8s,
vmax = 20m/s, vmin = 0, umax = 5m/s2, umin = −5m/s2.
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Fig. 2. Velocity trajectory under different travel time weights α1. The asterisk
shows the point when the CAV enters the circular part of the roundabout from
the straight road segment.
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Fig. 3. Velocity trajectory under different comfort weights α3. The asterisk
shows the point when the CAV enters the circular part of the roundabout from
the straight road segment.

This example considers a symmetric configuration in the sense
that La = L. Different weights α1, α2, α3 directly influence
the unconstrained optimal trajectory of a CAV. To explore
this impact and determine a proper parameter setting for the
weights, we start with the analysis of a single CAV that enters
O1 with initial speed v0 = 15m/s and exits from E2 and plot
the unconstrained optimal velocity trajectory under different
weight settings in Figs. 2 and 3. In Fig. 2 the weight for
travel time α1 differs from the weight for comfort fixed at
α3 = 0.3, while in Fig. 3 α1 is fixed at 0.2 with changing α3.
Figure 2 shows that when comfort is taken into consideration
with weight α3 = 0.3, the optimal control as the weight on
time α1 changes is for the CAV to go through the roundabout
with a similar velocity trajectory but with higher speed. Figure
3 shows the influence of the comfort weight α3. When α3

decreases with α1 fixed, the CAV adopts a higher speed in
the circular part.

In what follows we will focus on the weight parameter
settings: α1 = 0.2, α2 = 0.5, α3 = 0.3 to better illustrate the
benefits of OCBF when the unconstrained velocity trajectory
is within the speed limit. We will further discuss the benefits
of a reference trajectory with feedback when this is not the
case in Section VI-B3. We compare the OCBF controller with
the human-driven vehicle Vissim baseline by simulating the
same symmetric vehicle arrival pattern. The traffic in the three
incoming roads is generated through Poisson processes and
is symmetric in the sense that they all have the same traffic
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rates. Two scenarios corresponding to a normal traffic rate
of 400 CAVs/h and a high traffic rate of 600 CAVs/h are
simulated. The former traffic rate allows vehicles to smoothly
pass the roundabout with occasional wait or stop in Vissim,
while the latter can sometimes form queues at the entry points
before the merging points. The two traffic rates are selected
based on observations of Vissim simulations so as to present
scenarios with different road saturation (roughly 66.7% and
100% respectively). A total number of approximately 200
CAVs are simulated in both cases. In this example, the OCBF
controller is applied with the SDF rule (see Section III-C)
and the reference trajectory is generated without feedback.
The results comparing the performance of OCBF to that of
human-driven vehicles in Vissim are shown in Table III.

TABLE III
PERFORMANCE COMPARISON FOR A SYMMETRIC

ROUNDABOUT UNDER SYMMETRIC TRAFFIC INPUT

Traffic rate 400 CAVs/h 600 CAVs/h

Methods OCBF Vissim OCBF Vissim

Ave. time (s) 21.00 19.77 28.49 36.87
Ave. energy 17.67 34.78 32.73 57.35
Ave. comfort 58.36 74.10 47.98 60.96

Ave. obj. (energy) 175.20 200.32 218.37 296.56

Ave. fuel (mL) 19.64 13.39 19.92 14.59
Ave. obj. (fuel) 177.17 178.92 205.56 253.81

When the traffic rate is 400 CAVs/h, there is a 6% loss in the
average travel time of CAVs using OCBF compared to that in
Vissim due to the emphasis on energy and comfort which are
improved by 49% and 21% respectively. The OCBF controller
also shows a 12.5% improvement in the total objective over
the human-driven performance in Vissim. On the other hand,
when the traffic rate becomes 600 CAVs/h (which results in
congestion), there is an improvement of 23% in the travel time
(despite the low weight of α1 = 0.2 on travel time), 43% in
the energy consumption, 20% in the comfort cost, and 26.5%
in the total objective using OCBF relative to Vissim. This
improvement in all the metrics is to be expected as the CAVs
using the OCBF method never stop and wait for CAVs in other
road segments to go through, which is the case in Vissim.

In Table III, we also include another performance metric that
captures fuel consumption through a detailed model compared
to the simple “energy” metric 1

2u
2. The fuel consumption is

measured using the model introduced in [33] using the set of
parameters given in [34]:

fV = fcruise + faccel (53)

where fcruise = b0 + b1v + b2v
2 + b3v

3 represents the fuel
consumption of cruising, faccel = u(c0+c1v+c2v

2) represents
the fuel consumption of acceleration. The OCBF controller
(which is not designed to explicitly minimize fV ) consumes
about 40% more fuel than the car-following model used in Vis-
sim; however, since we do not know the details of the Vissim
fuel consumption model, the importance of this comparison
should be discounted. Nonetheless, a higher fuel consumption
under OCBF is justified due to the following two reasons:
(i) a CAV consumes more fuel when cruising at a higher

speed - which is selected by CAVs to improve travel times,
(ii) the quadratic criterion 1

2u
2 discourages large deceleration,

whereas deceleration consumes no fuel according to [33].
On the other hand, leaving deceleration unpenalized slows
traffic down and promotes backlog. Nevertheless, despite this
difference, the total objective with fuel consumption included
is still improved using OCBF as shown in Table III.

Finally, we note that if fuel consumption as measured
through fV above becomes an optimization objective, this
can be accomplished using a numerical optimization approach
which makes use of CBFs to still guarantee all constraints;
this was shown in [15].

B. Real Roundabout

We consider next a real roundabout as shown in Fig. 4
located near Fresh Pond in Boston, MA, with the geometric
parameters L1 = 186m,L2 = 165m,L3 = 196m,La,1 =
La,2 = 53m,La,3 = 63m. This roundabout is asymmetric
with a small circle and three long entries. The remaining
settings are the same as in Section VI-A, i.e., δ = 0m,
φ = 1.8s, vmax = 20m/s, vmin = 0, umax = 5m/s2,
umin = −5m/s2. We start with the same weight parameter
settings: α1 = 0.2, α2 = 0.5, α3 = 0.3 and compare the
performance of OCBF (with the SDF rule and no feedback)
to the human-driven vehicle performance in Vissim under
two different traffic rates 600 CAVs/h and 800 CAVs/h. The
simulation results are shown in Table IV. Sample snapshots of
the Vissim and MATLAB simluation respectively are shown
in Fig. 5 and Fig. 6 at the same time instant.

TABLE IV
PERFORMANCE COMPARISON FOR AN ASYMMETRIC REAL

ROUNDABOUT UNDER SYMMETRIC TRAFFIC INPUT

Traffic rate 600 CAVs/h 800 CAVs/h

Methods OCBF Vissim OCBF Vissim

Ave. time (s) 18.97 27.44 22.28 39.13
Ave. energy 49.50 62.60 63.82 74.34
Ave. comfort 41.65 35.83 37.83 30.22

Ave. obj. (energy) 165.44 217.94 194.35 285.30

Ave. fuel 21.57 11.66 19.96 12.49
Ave. obj. (fuel) 137.52 167.00 150.48 223.45

As illustrated in Fig. 5, a backlog always forms in the
Vissim simulation which requires vehicles to stop and queue
before entering the circular road segment. The OCBF method,
however, allows the CAVs to move faster and smoothly with
guaranteed safety constraints without forming any backlogs
(see Fig. 6). Although δ is set to 0, the CAVs using OCBF still
keep an appropriate safety distance because of the φvi term
in (4); interestingly, these safety distances are actually larger
than those observed between human-driven vehicles that use
the car-following model in Vissim.

As shown in Table IV, CAVs using the OCBF controller
improve performance on average by 31% in time, 21% in
energy consumption and 24% in the total objective when
the traffic rate is 600 CAVs/h, which is consistent with the
results of the example in Section VI-A. An additional 8%
improvement in the total objective is achieved under the high
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Fig. 4. An asymmetric roundabout near Fresh Pond
in Boston, MA

Fig. 5. Vissim simulation of human-driven behav-
ior

Fig. 6. Matlab simulation of OCBF controller

traffic rate of 800 CAVs/h. Note that although the comfort cost
is included in the total objective with weight 0.3, the OCBF
controller still incurs a 16% higher comfort cost. This can be
explained by the backlog formed by human-driven vehicles
in Vissim shown in Fig. 5. As the queuing vehicles stop
before entering and re-accelerate from zero speed in the circle,
they result in a lower average velocity than those using the
OCBF controller (thus, the actual comfort experience wihin
the circular road segment is misrepresented by the average
comfort data). The fuel consumption and the associated total
objective using the model in [33], instead of the simple metric
1
2u

2, are also included in Table IV showing similar results to
those of Section VI-A.

In the following subsections, the settings of the OCBF
controller are changed and simulated to explore the influence
of weights, sequencing rules, feedback as well as asymmetric
incoming traffic.

1) Time vs. comfort: In this case study, the travel time
weight is fixed to α1 = 0.2 while the weight of comfort
α3 is changed from 0.3 to 0.01, representing almost no
emphasis on comfort. The OCBF controller uses the SDF
rule (see Section III-C) and tracks the reference trajectory
with feedback. Simulation results under the traffic rate of 800
CAVs/h is recorded in Table V.

TABLE V
PERFORMANCE COMPARISON FOR AN ASYMMETRIC REAL

ROUNDABOUT UNDER SYMMETRIC TRAFFIC INPUT

Methods OCBF Vissim

Weight of comfort α3 0.3 0.01 0.3 0.01

Ave. time (s) 22.65 21.84 39.13
Ave. energy 64.61 61.95 74.34
Ave. comfort 37.12 39.27 30.22

Ave. obj. (energy) 196.63 131.47 285.30 198.49

As shown in Table V, the OCBF controller achieves better
performance both when α3 = 0.3 and α3 = 0.01, with
improvements of over 30% in the total objective. The average
travel time as well as energy consumption decreases while the
comfort cost increases when α3 = 0.01. This is reasonable
as more emphasis is placed on energy consumption instead of
comfort. As the comfort cost is a quadratic function of speed,

a larger comfort cost indicates a higher velocity which results
in shorter travel time.

2) Effect of Sequencing Rules: In this set of simulations,
the effect of different sequencing rules is explored using
both a symmetric roundabout (the virtual one) and an asym-
metric roundabout (the real one). Simulation results on the
performance of OCBF with FIFO and OCBF with the SDF
sequencing policy are shown in Table VI.

TABLE VI
PERFORMANCE COMPARISON FOR DIFFERENT SEQUENCING

RULES UNDER SYMMETRIC TRAFFIC INPUT

Roundabout geometry Asymmetric Symmetric

Sequencing rule FIFO SDF FIFO SDF

Ave. time (s) 57.51 18.97 34.31 28.49
Ave. energy 141.37 49.50 39.61 32.73
Ave. comfort 14.27 41.65 43.66 47.98

Ave. obj. (energy) 436.14 165.44 250.44 218.37

When OCBF+FIFO is applied in a symmetric roundabout,
it performs worse than OCBF+SDF in average travel time
(20%), energy consumption (20%) as well as the total ob-
jective (14%). Comparing Table VI with Table III, it can be
seen that the CAVs still benefit from the OCBF controller
regardless of the sequencing policy selected. However, when
OCBF+FIFO is applied to an asymmetric roundabout, the
traffic becomes congested and the results become unstable
even after simulating only 50 CAVs, indicating that FIFO
works poorly in an asymmetric roundabout. For example,
when a CAV enters segment l4, it has to wait for another CAV
that has entered l2 just before it to drive more than 100 meters
for safe merging. This is unreasonable and may also result
in some extreme cases where the OCBF problem becomes
infeasible. On the other hand, OCBF+SDF still achieves better
and reliable performance in an asymmetric setting.

3) Reference Trajectory with Feedback: Here, the influence
of feedback is studied. As mentioned in Section V-A, the
reference trajectory without feedback may become unreliable
due to the exponential terms that appear in (24) and (25) which
result in large values when the time in the roundabout t is
large. This is illustrated with the simulation results shown
in Table VII for two different symmetric traffic rates 600
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CAVs/h and 800 CAVs/h with the weight parameters set
to α1 = 0.2, α3 = 0.01. When the traffic rate is 600
CAVs/h, using OCBF with feedback has a minimal effect
on performance, contributing only a 4% improvement in the
total objective. However, when the traffic rate increases to
800 CAVs/h, the roundabout becomes congested when CAVs
are CAVs are controlled by OCBF without feedback, resulting
in the explosive average travel time and energy consumption
reflected in Table VII. This instability can be explained by the
extended unconstrained optimal speed trajectory of a typical
CAV plotted in Fig. 7.

TABLE VII
PERFORMANCE COMPARISON FOR AN ASYMMETRIC REAL

ROUNDABOUT UNDER SYMMETRIC TRAFFIC INPUT

Traffic rate 600 CAVs/h 800 CAVs/h

Feedback No Yes No Yes

Ave. time (s) 19.22 18.92 111.70 21.84
Ave. energy 52.97 49.64 99.82 61.95
Ave. comfort 42.87 43.61 15.26 39.27

Ave. obj. (energy) 114.26 109.99 453.46 131.47
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Fig. 7. Extended unconstrained optimal trajectory

In Fig. 7, the unconstrained optimal speed trajectory is
shown as the solid blue line, where the terminal time tf is
marked with an asterisk. Note that tf here corresponds to the
unconstrained problem and is determined by (27), so in the
actual constrained trajectory implemented through the OCBF
controller the CAV is still in the CZ for times t > tf . This
“extended” speed trajectory is shown with the dashed line.
When the traffic is heavy and results in considerable delay,
the reference trajectory required by the OCBF controller is
the one shown by the dashed line in Fig. 7. The reference
speed will even drop to 0 after 27s in this example. Thus, the
OCBF controller will track the inappropriate reference speed,
which induces the CAV to stop and consequently block traffic.
However, when a referenced trajectory with feedback (52) is
used, the controller will map the current state of the CAV
to the point on the solid curve in Fig. 7 and thus solve the
issue related to selecting the proper time t on the reference
trajectory.

4) Imbalanced Traffic: The purpose of this case study is
to investigate the effect of traffic volume. A total number
of approximately 200 CAVs is simulated under imbalanced
incoming traffic (900 CAVs/h from O1, 450 CAVs/h from
O2 and O3). The simulation results of the performance under
OCBF+SDF compared to that of the human-driven vehicles in

Vissim under imbalanced incoming traffic are shown in Table
VIII.

TABLE VIII
PERFORMANCE COMPARISON FOR AN ASYMMETRIC REAL ROUNDABOUT

UNDER ASYMMETRIC TRAFFIC INPUT

Method CAV Origin Time Energy Comfort Ave. Obj

OCBF

All 18.28 45.63 42.24 158.45

O1 19.38 44.01 42.14 162.27
O2 16.13 41.68 39.35 142.27
O3 18.62 53.22 45.70 169.48

Vissim

All 28.87 69.25 36.09 231.88

O1 33.88 76.03 34.67 263.03
O2 26.90 71.27 33.24 222.61
O3 21.43 53.89 42.06 182.36

Comparing Table VIII with Table IV, it is seen that im-
balanced traffic causes longer travel times (∼2s) and higher
energy consumption (∼7%), although the total traffic rates
are the same. The imbalanced traffic results in an imbal-
anced performance of CAVs from different origins. The CAVs
originating from O1 with heavy traffic perform worse than
those from O2 and O3 where traffic is lighter. However, when
OCBF+SDF is applied to the system, the imbalanced traffic
brings no performance loss and becomes more balanced com-
pared to human-driven vehicle traffic. This result is interesting
because the OCBF approach does not explicitly take into
account the fact that traffic is imbalanced. An explanation of
this phenomenon is that the SDF policy gives CAVs from O1

a higher priority as they are more likely to be the closest
ones to the MP, while OCBF allows the CAVs to go through
the roundabout quickly without stopping; therefore, the CAVs
from a heavy traffic flow are less likely to get congested.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a decentralized optimal control frame-
work for controlling CAVs traveling through a circular round-
about to jointly minimize the travel time, the energy con-
sumption, and the centrifugal discomfort while satisfying
speed-dependent safety constraints, as well as velocity and
acceleration constraints. An OCBF controller, combining an
unconstrained optimal control solution with CBFs, is designed
and implemented to track the desired (unconstrained) trajec-
tory while guaranteeing that all safety constraints and vehicle
limitations are satisfied. Significant improvements are shown
in the simulation experiments which compare the performance
of the OCBF controller to a baseline of human-driven vehicles.
Future research includes extending the OCBF controller to
multiple-lane roundabout configurations and systematically
studying the effect of the passing order. As for the multi-
lane case (including the all-direction lane setting in [35]),
we expect that our analysis will follow the same natural
extensions we have already applied for merging [25] and for
signal-free intersections [26]. In addition, we are currently
exploring how this framework can be adapted to mixed traffic,
i.e., how CAVs can effectively interact with human driven
vehicles and provide system-wide performance improvements.



14

Finally, Some technical issues regarding CBFs are still under
study, including the fact that CBFs may be conservative
in guaranteeing constraints at the expense of better overall
performance.

APPENDIX

TRACKING THE REFERENCE TRAJECTORY IN TWO
DIMENSIONS

In this Appendix, we introduce an auxiliary method to deal
with the lateral offset while tracking the trajectory given by our
OCBF controller. Our OCBF controller focuses on generating
a reference trajectory with longitudinal safety guarantees in
real time. The lateral error can be dealt with using a Model
Predictive Control (MPC) tracking approach.

A. Vehicle Dynamics
We use the same vehicle dynamics as in our previous

work [29]. Ego dynamics are defined in a 2-dimensional
coordinate system with respect to a reference trajectory, where
the x coordinate lies along the reference trajectory and the y
coordinate refers to the lateral offset:

ṡ

ḋ
µ̇
v̇
ȧ

δ̇
ω̇


︸︷︷︸

ẋ

=



v cos(µ+β)
1−dκ

v sin(µ+ β)
v
lr

sinβ − κ v cos(µ+β)
1−dκ

a
0
ω
0


︸ ︷︷ ︸

f(x)

+



0 0
0 0
0 0
0 0
1 0
0 0
0 1


︸ ︷︷ ︸

g(x)

[
ujerk

usteer

]
︸ ︷︷ ︸

u

(54)

where s ∈ R is the along-trajectory distance and d ∈ R is
the lateral offset; µ is the vehicle local heading error; v, a
denote the vehicle linear speed and acceleration; δ, ω denote
the steering angle and steering rate; ujerk and usteer denote
the two control inputs for jerk and steering acceleration; κ is
the curvature of the reference trajectory at the projection point
(s, 0); β = arctan

(
lr

lr+lf
tan δ

)
where lf (lr) is the length

of the vehicle from head (tail) to the CoG.

Fig. 8. Coordinates of ego ve-
hicle w.r.t reference trajectory
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Fig. 9. Tracking performance of MPC

B. MPC controller design
To track the reference trajectory under the detailed vehicle

dynamics shown in Sec. A, we adopt a receding horizon
(MPC) approach that solves the following optimization prob-
lem with receding horizon H at each time t ≥ 0:

(umpc,xmpc) = arg min
u(0:H−1),x(1:H)

H∑
i=1

C(x(i)) +

H−1∑
i=0

J(u(i))

(55)

where C(x(i)) describes the tracking error with respect to
the reference trajectory, J(u(i)) is the penalty term for jerk
and steering acceleration. For this specific problem, the two
functions are defined as follows:

C(x) = w1(s− sref )2+w2(d−d2ref )+w3(v− vref )2 (56)

J(u) = u2jerk + u2steering (57)

For the prediction part, we use the following predictive
model derived from (54) using the Adomian Decomposition
Method (ADM):



s(k + 1)
d(k + 1)
µ(k + 1)
v(k + 1)
a(k + 1)
δ(k + 1)
ω(k + 1)


=



s(k) + v(k) cos(µ(k)+β(k))
1−d(k)κ(k)

∆T

d(k) + v(k) sin(µ(k) + β(k))∆T

µ(k) + ( v(k)
lr

sinβ(k)− κ(k) v(k) cos(µ(k)+β(k))
1−d(k)κ(k))∆T

v(k) + a(k)∆T + 1
2
ujerk∆T 2

a(k) + ujerk∆T
δ(k) + ω∆T + 1

2
usteer∆T 2

ω(k) + usteer∆T


(58)

C. Simulation Results

In this simulation example, we build a scenario consisting of
a roundabout which connects a 3/4 circle with radius r = 27m
to a 100m length straight road segment. We use the MPC
approach above to track the reference trajectory given by our
OCBF controller presented in the paper. The first simulation is
conducted without adding noise. The tracking performance of
the MPC controller is shown in Fig. 9, where we can see the
MPC trajectory precisely follows the center line of the road
(also the reference trajectory).

The tracking error of the velocity v is shown in Fig. 10.
While avoiding the lateral offset, the controller can also track
the reference velocity as well as position accurately at the
same time. This indicates that by using a reference trajectory
tracking method like MPC, we can deal with the lateral offset
while tracking our trajectory given by the OCBF controller
without much effort.
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Fig. 10. Tracking error of v
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Fig. 11. Tracking error of d with
biased noise

We further illustrate the effectiveness of the controller by
adding noise to the vehicle dynamics. Uniform noise ranging
over [0, 1](m/s) is added both to the along-trajectory veloc-
ity ṡ and the lateral offset velocity µ̇ which can represent
model inaccuracies as well as some vehicle malfunction like
imbalanced tire pressure which may result in a biased error.
The tracking performance of d with noise added is shown in
Fig. 11. Even when the biased noise is added, the vehicle can
still track the reference trajectory well. The lateral offset error
increases to around 20cm due to the large biased noise in ḋ,
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but is still quite small. Furthermore, it always keeps its error
level within this acceptable range and never diverges.

These simulation results support the argument that by using
an auxiliary method like MPC, we are able to deal with
lateral offset while tracking the trajectory given by our OCBF
controller. Lastly, we note that the OCBF controller also has
the ability to deal with the lateral offset by directly deriving
CBFs from the vehicle dynamics (54).
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