
ELSEVIER

Contents flfists avafiflabfle at ScfienceDfirect

### Marfine Chemfistry

journal homepage: www.elsevier.com/locate/marchem





# Ocean cfircuflatfion and bfioflogficafl processes drfive seasonafl varfiatfions of dfissoflved Afl, Cd, Nfi, Cu, and Zn on the Northeast Atflantfic contfinentafl margfin

Xue-Gang Chen <sup>a,b,\*,1</sup>, Dagmara Rusfiecka <sup>a,c,1</sup>, Martha Gfledhfiflfl <sup>a,c</sup>, Angefla Mfiflne <sup>d</sup>, Amber L. Annett <sup>c</sup>, Antony J. Bfirchfiflfl <sup>d,e</sup>, Maeve C. Lohan <sup>c</sup>, Sfimon Ussher <sup>d</sup>, E. Maflcoflm S. Woodward <sup>f</sup>, Erfic P. Achterberg <sup>a,c,\*</sup>

- <sup>a</sup> GEOMAR Heftmhofitz Centre for Ocean Research Kiefl, Kiefl, Germany
- <sup>b</sup> Ocean Coffflege, Zhejiang University, Zhoushan, China
- <sup>c</sup> Ocean and Earth Sciences, Nationall Oceanography Centre, University of Southampton, Southampton, UK
- <sup>d</sup> Schoofl of Geography, Earth and Environmentafl Sciences, University of Pflymouth, Pflymouth, UK
- <sup>e</sup> Schoofl of Environment, Geography and Geosciences, University of Portsmouth, UK.
- f Pflymouth Marine Laboratory, Pflymouth, UK

#### ARTICLE INFO

#### Keywords: Trace metafls Nutrfients Contfinentafl margfins Ocean cfircuflattion Seasonafl varfiatfions

#### ABSTRACT

Nutrfients and nutrient-flike dfissoflved trace metalls (dTMs) are essentiall for the functioning of marfine organisms and therefore form an fimportant part of ocean biogeochemicall cycles. Here, we report on the seasonall dfistributions of dfissoflved zinc (dZn), nfickell (dNfi), copper (dCu), cadmfium (dCd), aflumfinum (dAfl), and nutrients on the Northeast Atflantfic continentall margfin (Celtific Sea), which is representative for temperate shefli seas gfloballfly. Variations in surface water dTM and nutrient concentrations were mainfly regulated by seasonall changes in biological processes. The stotichiometry of dTMs (especialfly for dCu and dZn) and nutrients on the continental shefli was additionalfly affected by fluxiall finputs. Nutrients and dTMs at depth on the continental shefli was are maintained by water mass mixing driven by ocean cfirculation, without an important role for flocal reminerallization processes. The Mediterranean Outfllow Waters are especialfly fimportant for deflivering Mediterranean-sourced dTMs to the Northeast Atflantfic Ocean and drive dTM:nutrient klinks at a depth of  $\sim 1000$  m. These re-sufts highflight the fimportance of riverfine finputs, seasonallity of primary production and ocean cfircuflation on the dfistributions of nutrients and nutrient-flike dTMs in temperate continentall margfin seas. Future cflimate reflated changes in the forcfing factors may fimpact the avafiflabfiflity of nutrients and dTMs to marfine organisms in highfly productive continentall shefli regions and consequently the regional carbon cycle.

#### 1. Introduction

Dfissoflved ( < 0.2  $\mu$ m) bfioactfive trace metafls (dTMs) fincfludfing zfinc (Zn), nfickefl (Nfi), copper (Cu) and perhaps cadmfium (Cd), are fimportant mficronutrfients fin the ocean. Zfinc, Nfi, and Cu are finvoflved fin enzymatfic processes requfired for phytopflankton functfionfing (La Fontafine et afl., 2002; Mahaffey et afl., 2014; Twfinfing and Bafines, 2013) and Cd fis taken up as a dfivaflent metafl and may substitute Zn fin carbonfic anhydrase (Horner et afl., 2013). Low suppfly of dTMs could potentfiaflfly affect marfine ecosystem structure and functfion (Lohan and Tagflfiabue, 2018;

Morefl and Prfice, 2003). Due to thefir bfioflogficafl uptake, the verticafl dfistrfibutfions of dfissoflved Zn (dZn), Nfi (dNfi), Cu (dCu), and Cd (dCd) resembfle those of nutrfients (nfitrate+nfitrfite [TN], phosphate [P], and sfiffific acfid [Sfi]) (Brufland et afl., 2014). These dTMs typficaflfly exhfibfit seasonaflfly depfleted concentrations fin surface waters due to phytopflankton uptake (Moore et afl., 2013; Morefl and Prfice, 2003) and eflevated flevefls at depth due to remfineraflfizatfion of sfinkfing organic particiles (Boyd et afl., 2017). Nutrfients and bfioactfive dTMs therefore show sfignfifficant posfittive correflatfions wfith for exampfle the dCd-P reflatfionshfips fin the gflobafl ocean (Boyfle et afl., 1976; Mfiddag et afl., 2018;

<sup>\*</sup> Correspondfing authors at: GEOMAR Heflmhofltz Centre for Ocean Research Kfiefl, Kfiefl, Germany.

E-maifl addresses: xchen@geomar.de, chenxg83@zju.edu.cn (X.-G. Chen), eachterberg@geomar.de (E.P. Achterberg).

 $<sup>^{1}</sup>$  Both authors contrfibuted equallfly to this paper.

Wu and Roshan, 2015; Xfie et afl., 2015), and dZn-P, dNfi-P and dCu-Sfi reflatfionshfips fin the South Atflantfic (Wyatt et afl., 2014) and Southern Oceans (e.g., Janssen et afl., 2020; Safito et afl., 2010).

The flfinear reflatfionshfips between bfioactfive dTMs and nutrfients usuaflfly show pronounced changes fin sflopes (kfinks), e.g., fin the case of P at concentration of ~1.3 µM for the Cd-P correlation (Cufflen, 2006; de Baar et afl., 1994). The orfigfin of such kfinks (especfiaflfly the Cd:P kfink) has been debated over the flast decades. Some hypotheses pofint towards deeper regeneration of Cd reflative to P (Boyfle, 1988; Roshan and DeVrfies, 2021), or enhanced Cd uptake due to the flfimfitatfion of bfio-essentfiafl eflements fin surface waters (Cuffflen, 2006; Sunda and Huntsman, 2000). Kfinks are aflso hypothesfized to be assocfiated wfith the chemficafl repflacements between Co, Zn, and Cd fin carbonfic anhydrase fin phytopflankton (Morefl et afl., 1994; Prfice and Morefl, 1990) or a changfing bfioavafiflabfiffity of Cd through organfic compflexatfion (Brufland, 1992). Recent studies demonstrated that the mfixfing of water masses wfith dfifferent Cd:P ratfios coufld be pfivotafl for the observed kfinks (Baars et afl., 2014; Mfiddag et afl., 2018; Xfie et afl., 2015). In addfitfion, externafl sources of trace metafls such as contfinentafl finputs and dust deposfitfion can aflso affect bfioactfive dTM dfistrfibutfions fin the ocean, and these finputs can be traced by dfissoflved aflumfinum (dAfl) (Han et afl., 2008; Measures and Edmond, 1988; Menzefl Barraqueta et afl., 2018). The ongofing debate on the drfivers underpfinnfing bfioactfive dTM dfistrfibutfions requfires further finvestfigatfions finto co-occurrence of nutrfients and bfioactfive dTMs and thefir reflatfionshfips. Resoflyfing thfis fissue woufld fimprove our understandfing of bfiogeochemficafl cycfles fin pafleo – and modern oceans.

Contfinental margins with thefir sheflves and sflopes are gateways between terrestriafl systems and open oceans. The dfisproportionatefly high prfimary productfion and partficuflate organfic carbon export make contfinentafl margfins fimportant transfitfion zones for the marfine carbon cycfle (Muflfler-Karger et afl., 2005; Sfimpson and Sharpfles, 2012). Prfimary productfion fin sheflf seas, partficuflarfly fin temperate sheflf seas, resuflts fin a net drawdown of atmospherfic CO2. The sheflf sea carbon pump subsequentfly transfers the captured carbon to the open ocean (Thomas et afl., 2004). The Northeast (NE) Atflantfic contfinentafl margfin (Cefltfic Sea) fis a typficafl temperate sheflf sea and fis representatfive for such systems gflobaflfly because of fits enhanced and seasonafl prfimary productfivfity, seasonafl co-flfimfitation of phytopflankton growth by nfitrate and Fe (Bfirchfifflet afl., 2017), seasonafl stratfiffication, and occurrence of both filuvial and benthfic finputs of redox sensfitfive TMs (fincfludfing Fe and Mn) (Chen et afl., 2023). Here, we report the seasonafl dfistrfibutfions of dTMs (wfith focus on dCd, dCu, dNfi, and dZn) and nutrfients on the NE Atflantfic contfinentafl margfin, whfich fis characterfized by flarge seasonafl varfiatfions fin bfioflogficafl productfivfity (Bfirchfifflet afl., 2017), compflex bathymetry and dynamfic water cfircuflatfion (Ffig. 1a). A hfigh sampflfing resoflutfion over three seasons (Ffig. 1b) offers a unfique opportunfity to determfine the finffluence of terrestrfiafl finputs, bfiogeochemficafl processes, and ocean cfircuflatfion on the seasonafl varfiatfions of bfio-essentfiafl dTMs and thefir reflatfionshfips wfith nutrfients.

#### 2. Methods

#### 2.1. Sampfling

Sampfles were cofflected on crufises wfith *RRS Discovery* durfing three dfifferent seasons: an autumn crufise finNovember 2014 (DY018), a sprfing

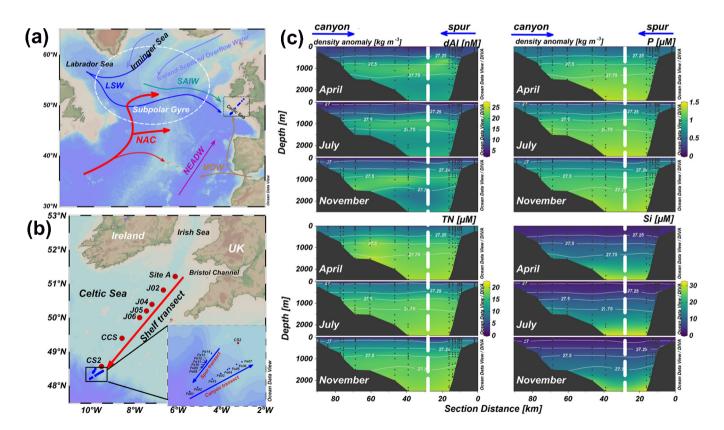



Fig. 1. (a) The schematfic cfircuflatfion of water masses (NAC: North Atflantfic Current; LSW: Labrador Sea waters; SAIW: Sub-Arctfic Intermedfiate Waters; MOW: Medfiterranean Outfflow Waters; NEADW: Northeast Atflantfic Deep Waters) fin the North Atflantfic Ocean; (b) Sampflfing transects and flocations on the Northeast Atflantfic continentall margfin (Cefltric Sea). The red and bflue arrows deffine the sheflf and sflope sectfions, respectfivefly, for Ffig. 2 and Ffig. 3. (c) Sectfion pflots of dfissoflved aflumfinum (dAfl), phosphate (P), nfitrate+nfitrfite (TN), and sfifficfic acfid (Sfi) aflong the sflope transect durfing expedifitions fin November 2014 (DY018), Aprifil 2015 (DY029), and Jufly 2015 (DY033) fin Cefltric Sea. The dfirectfions of the canyon and spur transects are findficated by bflue arrows. The dashed bflack flfines separate the canyon and spur transects. (For finterpretation of the references to coflour fin this ffigure flegend, the reader fis referred to the web version of this article.)

crufise fin Aprifil 2015 (DY029), and a summer crufise fin Jufly 2015 (DY033). Each season we conducted one transect on the continental sheflf of the Cefltric Sea from station Sfite A near the Bristofl channell to station CS2 near the sheflf break (Ffig. 1b). Two off-sheflf transects were conducted aflong a canyon (stations Fe01 - Fe07, Fe15) and a spur (stations Fe08 - Fe14) durfing each season.

Seawater sampfles for dTM anaflyses were coflflected fofflowfing GEO-TRACES protocofls (Cutter et afl., 2017). Seawater sampfles were coflflected usfing 24  $\times$  10 L Tefflon coated trace metafl cflean Ocean Test Equfipment (OTE) sampflers posfitfioned on a Tfitanfium rosette frame. AfflOTE bottfles were pressurfized fin a cflean room wfith ffifltered (0.2  $\mu m$  PTFE, Mfiflflex-FG 50, Mfiflflflipore) compressed afir. Seawater sampfles were ffifltered fin-flfine usfing ffiflter capsufles (0.2  $\mu m$  pore sfize; Sartorfius, Sartobran P) finto acfid washed 125 mL flow-densfity poflyethyflene bottfles (Naflgene). Affl sampfles were acfidfiffied to pH of  $\sim$ 1.8 wfith ufltra-pure hydrochflorfic acfid (UpA Romfifl) fina flamfinar fflow hood and stored doubfle-bagged finzfipflock bags.

#### 2.2. Anaflyses

Trace metafl sampfles were processed and anaflyzed at GEOMAR as outflfined fin Rapp et afl. (2017). In detafifl, seawater sampfles were subsampfled (15 mL) finto ffluorfinated ethyflene propyflene bottfles fin a flamfinar fflow hood. Afflsampfle bottfles were spfiked wfith  $100 \mu L$  of dfifluted enriched fisotope spfike. Then, seawater sampfles were pre-concentrated by an automated system (SC-4 DX SeaFast pfico; ESI) wfith onflfine pH bufferfing and seawater matrfix removafl. Preconcentrated sampfles were anaflyzed by hfigh-resoflutfion finductfivefly coupfled pflasma-mass spectrometry (HR-ICP-MS; Thermo Ffisher Eflement XR) fin flow resoflutfion (R=300) for  $^{110}$  Cd,  $^{111}$  Cd,  $^{115}$  In and fin medfium resoflutfion (R=4000) for  $^{60}$  Nfi, $^{62}$  Nfi, $^{63}$  Cu,  $^{65}$  Cu,  $^{66}$  Zn, and  $^{68}$  Zn. Reference materfiafls, SAFe GEOTRACES S and D1 were used to check the accuracy and precfisfion of the measurements and the resuflts were consfistent wfith consensus vaflues (Tabfle 1).

Seawater sampfles for dAfl were sub-sampfled finto acfid washed 50 mL pflastfic tubes. An aflumfinum spectroffluorometrfic compflex was obtafined fofflowfing the addfitfion of flumogaflflfion (Hydes and Lfiss, 1976) at pH 5.0–5.5 adjusted by addfitfion of ammonfium acetate buffer and the sampfles heated for 3 h at 55  $^{\square}$ C. Sampfles were then anaflyzed by a spectroffluorometer (Cary Ecflfipse Ffluorometer). The measured dAfl concentrations of a reference standard (GS) were consfistent with consensus vaflues (Tabfle 1).

Large voflume sampfles for radfium (Ra) anaflysfis were cofflected from Nfiskfin bottfles depfloyed on a stafinfless-steefl frame as per  $\frac{\text{Bfidtfiffl}(2017)}{\text{Cofflapsfibfle}}$ . The sampfles for Ra were transferred finto actid-washed 20 L cofflapsfibfle

Table 1
GEOTRACES reference materfiafl resufits for dfissofived Cd (dCd), Nfi (dNfi), Cu (dCu), Zn (dZn), and Afl (dAfl).

|              | dCd (pM)       | dNfi (nM)  | dCu (nM)   | dZn (nM)    | dAfl (nM)  |
|--------------|----------------|------------|------------|-------------|------------|
| Reported     |                | $2.32 \pm$ | 0.705 ±    | 0.071 ±     |            |
| SAFe S       |                | 0.22 (n =  | 0.130 (n = | 0.025 (n =  |            |
|              |                | 10)        | 8)         | 8)          |            |
| Reported     | 979 ±          | 8.41 $\pm$ | $2.19 \pm$ | $7.13 \pm$  |            |
| SAFe D1      | 145 ( $n =$    | 0.14 (n =  | 0.06 (n =  | 0.22 (n =   |            |
|              | 17)            | 15)        | 15)        | 19)         |            |
| Consensus    |                | $2.28~\pm$ | $0.52 \pm$ | $0.069 \pm$ |            |
| SAFe S       |                | 0.09       | 0.05       | 0.010       |            |
| Consensus    | $991 \pm \ 31$ | $8.58 \pm$ | $2.27 \pm$ | 7.40 $\pm$  |            |
| SAFe D1      |                | 0.26       | 0.11       | 0.35        |            |
| Reported GS  |                |            |            |             | 27.0 $\pm$ |
|              |                |            |            |             | 0.6 (n =   |
|              |                |            |            |             | 6)         |
| Consensus GS |                |            |            |             | 27.5 $\pm$ |
|              |                |            |            |             | 0.2        |

Consensus vaflues obtafined from https://www.geotraces.org/standards-and-reference-materfiafls/.

contafiners, and sflowfly (<750 mL mfin  $^{1}$ ) passed through a coflumn ffiffed wfith 20 g of MnO $_{2}$ -fimpregnated acryflfic ffiber to extract Ra from seawater (Moore, 2008). Ffibers were rfinsed wfith ufltra-hfigh purfity water, and partfialfly afr drfied to optfimfize emanation of the radon daughter (Sun and Torgersen, 1998). Then, the sampfles were counted fimmedfiatefly usfing a Ra Deflayed Cofincfidence Counter [RaDeCC] (Moore, 2008; Moore and Arnofld, 1996). Countfing was repeated after ~30 (~90) days to determfine the 224Ra (223Ra) activity supported by the parent fisotopes 228Th (227Ac). Uncertafinty caflcuflatfions folflowed the methods of Garcfia-Soflsona et afl. (2008). The efficiencies of the RaDeCC systems were caflfibrated and monfitored usfing standards prepared from 227Ac and 232Th (Annett et afl., 2013). Radfium activitities (224Ra  $_{\rm xs}$  and 223 Ra  $_{\rm xs}$ ) are reported fin excess of activity supported by the parent fisotopes fin the water coflumn.

Unffifltered seawater sampfles for nutrfients (TN, P, Sfi) were taken from the same OTE bottfles as trace metafl sampfles. They were sampfled finto 'aged' 10% HCfl acfid washed and de-fionfized water rfinsed hfigh-densfity poflyethyflene bottfles. Seawater sampflfing and handflfing for nutrfient anaflysfis was carrfied out where possfibfle according to the GO-SHIP nutrfient manuafl recommendatfions (Becker et afl., 2020). Nutrfient anaflysfis was carrfied out on board wfithfin a few hours of sampflfing usfing a SEAL Quaatro segmented fflow nutrfient autoanaflyzer usfing coflorfimetrfic anaflytficafl technfiques described fin Woodward and Rees (2001).

Turbfidfity was measured by an Aquatracka MKIII ffluorometer (Cheflsea Technoflogfies Group) at a waveflength of 400 nm and a bandwfidth of 80 nm. Conductfivfity, temperature, and depth (CTD) data were cofflected usfing a Seabfird 911+ CTD system, and processed on board. Conductfivfity was measured by a Sea-Bfird SBE 4C sensor and caflfibrated on-board usfing dfiscretefly cofflected saflfinfity sampfles anaflyzed wfith a Gufildflfine Autosafl saflfinometer. Temperature was measured wfith Sea-Bfird SBE 3pflus (SBE 3P) temperature sensor. Dfissoflved oxygen was measured by a Sea-Bfird SBE 43 oxygen sensor and caflfibrated agafinst photometrfic on-board Wfinkfler tfitratfion results. Apparent oxygen utfilfizatfion (AOU) fis caflcuflated from the presumed oxygen concentratfions under atmospherfic saturatfion for a gfiven temperature ( $\vartheta$ ) and saflfinfity (S), subtracted from the observed dfissoflved oxygen concentratfions.

$$AOU = \begin{bmatrix} O_{2,sat}(\vartheta, S) \end{bmatrix} [O_2]$$

#### 2.3. Statistics and pflots

Ffigs. 1, 2, 3, and 6 were created wfith Ocean Data Vfiew (5.6.2) software (Schflfitzer, 2021) usfing DIVA grfiddfing. Affl other pflots and associated statfistfics were performed by *R* programmfing 4.2.0 wfith packages *tidyverse* (Wfickham et afl., 2019), psych (Reveflfle, 2017), and *ggpmisc* (Aphaflo, 2022).

#### 3. Results and discussion

Dfissoflved Cd, Zn, Nfi, and Cu exhfibfited nutrfient-flfike vertficafl dfistrfibutfions durfing affl seasons on the NE Atflantfic contfinentafl margfin (Ffig. 1c, Ffig. 2, Ffig. 3), whith flowest concentrations fin surface waters due to bfioflogficafl utfiflfizatfion, and eflevated concentratfions at depth ascrfibed to remfineraflfizatfion (Brufland et afl., 2014; Moore et afl., 2013). The canyon and spur transects showed comparabfle vertficafl proffifles for dTMs and nutrfients for each season and were combfined as a sflope transect (Ffig. 1c, Ffig. 2). In contrast to the reflatfivefly constant of bfioactfive dTM and nutrfient concentrations at depth on the continentall sflope, the surface bfioactfive dTM and nutrfient flevefls fin the Cefltfic Sea showed pronounced seasonafl varfiatfions (Tabfle S1). Kfinks fin dTM:nutrfient (e.g., dZn:P and dCu:P) ratfios were observed on the contfinentafl sflope at a depth of  $\sim$ 100 m and  $\sim$  1000 m (Ffig. 4). The sheflf transect (Ffig. 3) showed hfigher dCu, dNfi, dZn, and Sfi concentratfions than the sflope transect (Ffig. 1c, Ffig. 2), accompanfied by varyfing dTM: nutrfient correflatfions.

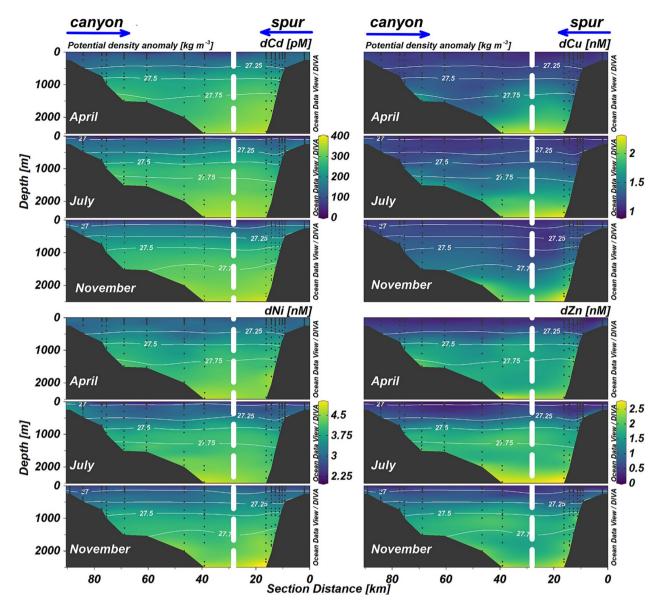



Fig. 2. Section pflots of dfissofived cadmfium (dCd), copper (dCu), nfickefl (dNfi), and zfinc (dZn) on the sflope of the Northeast Atflantfic contfinentafl margfin. Sampfles were taken fin November 2014, Aprifil 2015, and Jufly 2015, respectivefly. The section fis deffined fin Ffig. 1b. The dfirectfions of the canyon and spur transects are findficated by bflue arrows. The dashed bflack flfines separate the canyon and spur transects. (For finterpretation of the references to coflour fin this ffigure flegend, the reader fis referred to the web version of this artificfle.)

## 3.1. Bioflogicafl inffluence on seasonafl variations in surface dTM aflong the continentafl sflope

A seasonafl mfixed flayer (SML) wfith a depth of  $\sim$  < 100 m occurred between sprfing and autumn on the contfinentafl sflope (Supportfing finformatfion: Hydrography). A decrease fin dTM and nutrfient concentrations fin the SML (especifialfly at depths <30 m) was observed between Aprifl 2015 and Jufly 2015, due to bfioflogficafl utfiflization and water coflumn stratfiffication (Bfirchfifli et afl., 2017) (Tabfle S1). Enhanced phytopflankton activity was findficated by maxfima finchflorophyflfl a flevefls fin the SML fin Aprifl 2015, and just beneath the SML fin Jufly 2015 (Bfirchfiflf, 2017). Usfing the dfifferences between the mean dTM vaflues observed durfing the Aprifl and Jufly crufises, the totafl drawdown of surface (depth < 30 m) dTMs and nutrfients on the sflope from sprfing to summer was: dCd  $79.5 \pm 45.1$  pM, dCu  $0.08 \pm 0.11$  nM, dNfi,  $0.67 \pm 0.31$  nM, dZn  $0.10 \pm 0.25$  nM, P  $0.35 \pm 0.11$  µM, TN  $6.71 \pm 1.83$  µM, and Sfi  $2.44 \pm 0.47$  µM (Tabfle S1). The removafl of dCd, dNfi, P, and TN over thfis perfiod was hfigher, and the drawdown of Cu was flower than reported for thfis

regfion for the perfiod between January 1994 and June 1995 (TN  $3.9\pm3.9~\mu M,~P~0.46\pm0.51~\mu M,~Si~2.2\pm3.7~\mu M,~Cd~39\pm61~p M,~Cu~0.34\pm0.58~n M,~Ni~0.5\pm1.1~n M)$  (Cotte-Krfief et afl., 2002), and between March and June 1987 (Cd $30\pm12~p M)$  (Kremflfing and Pohfl, 1989). The decrease fin dTM and nutrfient concentrations was the consequence of phytopflankton uptake fin sprfing and summer, and the overaflfl "uptake" ratfio of phytopflankton normaflfized to average P was:

$$\left(\mathsf{N}_{19\pm5}\mathsf{Si}_{7\pm1.3}\mathsf{P}_{1}\right)_{1000}\mathsf{Ni}_{1.9\pm0.9}\mathsf{Zn}_{0.29\pm0.71}\mathsf{Cu}_{0.23\pm0.31}\mathsf{Cd}_{0.23\pm0.13}$$

The surface dTM and nutrfient concentrations on the silope fincreased from Jufly to November, and we assume this was due to finternall cyclifing and not to stigntificant changes finexternall supply. This phenomenon was accompanied by correlations comparable to the sprting-summer perfood between dTMs/nutrfients and AOU at AOU > 0 (Fig. S2). Therefore, the surface dTM and nutrfient variations from summer to autumn was affected by the reminerallization of organic particles. On the other hand, the fincrease finsurface dTM and nutrfient concentrations from November to Aprifil was attributed to resupply from subsurface waters (Pfinthfill

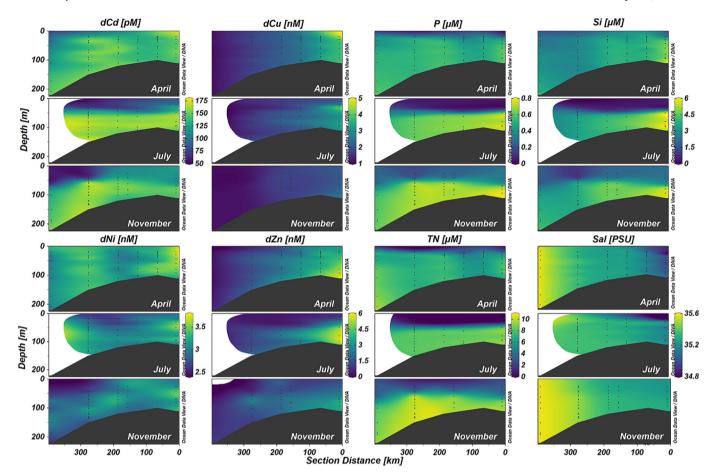



Fig. 3. Section pflots of dfissoflyed trace metafls (dCd, dCu, dNfi, dZn), saflfinfity, and nutrfients (nfitrate+nfitrfite (TN), phosphate (P), sfflfific acfid (Sfi)) on the continentafl shefl of the Northeast Atflantfic Ocean. The section fis deffined fin Ffig. 1b. Sampfles were taken fin November 2014, Aprifil 2015, and Jufly 2015, respectivefly.

et afl., 2017). Using concentration differences between Jufly and November (Tabfle S1), we estimated the apparent "remfineraflfization" ratio of dTMs and nutrients normalifized to P as:

$$\left(\mathsf{N}_{15\pm13}\mathsf{Si}_{6.8\pm3.4}\mathsf{P}_{1}\right)_{1000}\mathsf{Ni}_{1.9\pm2.2}\mathsf{Zn}_{0.57\pm1.29}\mathsf{Cu}_{0.43\pm0.71}\mathsf{Cd}_{0.28\pm0.12}$$

and the "wfinter mfixfing" ratfio estfimated from the concentratfion dfifferences between November and Aprifil observations as:

$$\big(N_{21\pm9}Si_{7.1\pm2.6}P_1\big)_{1000}Ni_{1.9\pm1.0}Zn_{0.10\pm1.19}Cu_{0.10\pm0.33}Cd_{0.19\pm0.20}$$

The estfimated Zn:P and Cu:P ratfios between "uptake" and "remfineraflfizatfion" varfied by as much as a factor of 2, but the "wfinter mfixfing" ratfios were as much as an order of magnfitude flower, probabfly due to reflatfivefly flfimfited seasonafl varfiatfions and flarge concentratfion ranges observed for both metafls (Tabfle S1). The N:P, Sfi:P, Nfi:P, and Cd:P ratfios were reflatfivefly constant, findficatfing a cflose associatfion of Ni and Cd wfith bfioflogficafl processes fin surface waters across affl seasons. The observed "uptake", "remfineraflfizatfion", and "wfinter mfixfing" ratfios are cflose to the overaflfl dTM:P ratfios fin the SML (depth of  $<\sim100$  m) (P  $_{1000}{\rm Nfi}_{1.53}$   $_{\pm0.08}{\rm Zn}_{0.37\pm0.07}{\rm Cu}_{0.20\pm0.03}{\rm Cd}_{0.21\pm0.01}$ ) (Tabfle S2). The dTM:P ratfio here fis broadfly consfistent wfith the extended Redffield ratfio of phytopflankton cufltures ((N $_{16}{\rm P}_{1})_{1000}{\rm Zn}_{0.80}{\rm Cu}_{0.38}{\rm Cd}_{0.21}$ ) (Ho et afl., 2003). Therefore, the posfitfive correflatfions between dTMs and nutrfients fin the SML on the contfinentafl sflope across afl seasons (Ffig. 4) generaflfly refflected the seasonafl cycflfing of bfioflogficafl uptake fin sprfing and summer, remfineraflfizatfion of organfic partficles fin autumn, foflflowed by wfinter mfixfing.

#### 3.2. Additionafl ffluviafl inputs of dTMs on the sheflf

Seasonaflfity of bfioflogficafl processes aflso affected the dTM and

nutrfient dfistrfibutfions on the sheflf of the NE Atflantfic Ocean. Usfing statfion CCS (centrafl Cefltfic Sea) as an exampfle (Ffig. 5), surface dTM and nutrfient concentrations decreased from Aprifil to Jufly due to phytopflankton uptake. Subsurface (depths >50 m) nutrfient and dCd flevefls fincreased from Aprifil to November due to remfineraflfization of sfinkling organfic partficfles (Bfirchfiffl et afl., 2017; Lohan and Tagflfiabue, 2018). In contrast, subsurface dCu and dNfi graduaflfly decreased from sprfing to autumn, possfibfly refflectfing the fimpact of removafl mechanfisms and/or water mass mfixfing. The overaflfl dTM:P ratfios on the sheflf varfied greatfly between sampflfing flocatfions (Ffig. S3). For finstance, the sflopes of dZn-P reflatfionshfip decreased from 3.58  $\times$  10  $^{3}$  at sfite A to 2.16  $\times$  10  $^{3}$  at statfion CS2. These varfiatfions were accompanfied by decreasfing dTM concentrations with distance offshore, suggesting the dTM stocks on the sheflf were addfitfionaflfly suppflfied by externafl sources. Benthfic sedfiments were flikely not an fimportant source for the enhanced dTMs, sfince dTM concentratfions dfid not change sfignfifficantfly wfith  $^{223}\mathrm{Ra}_{\mathrm{xs}}$  and  $^{224}\mathrm{Ra}_{\mathrm{xs}}$ activitities (Ffig. S4). Atmospherfic depositifion aflso flikefly pflayed a mfinor rofle finthe fincrease findTM concentratfions cfloser to shore, because dAfl, a tracer of atmospherfic dust finputs (Johnson et afl., 2010; Menzefl Barraqueta et afl., 2019), dfid not findficate surface enrfichments (Ffig. 1c).

Instead, an fincreasting saffinfity with distance offshore (Ffig. 3) and strong negative correlations between dTMs and saffinfity suggest dTM (especiafility for dCu and dZn) concentrations (Ffig. S5) were augmented by a dTM-rfich flow-saffinfity endmember, e.g., rfiverfine finput from the British Isfles through the Irfish Sea and/or the Bristofl channell (Achterberg et afl., 1999; Kremflfing and Hydes, 1988). Based on the correlations between subsurface (depth of 50–200 m to exclude surface bfioflogical activity) dTMs, nutrients, and saffinfity fin Aprifil when sfignfifficant correlations were observed, the flow-saffinfity endmember at a saffinfity of

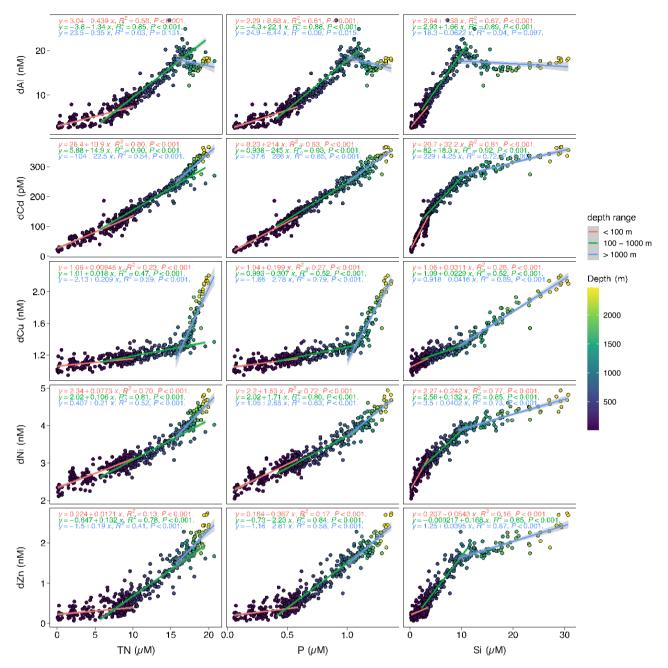
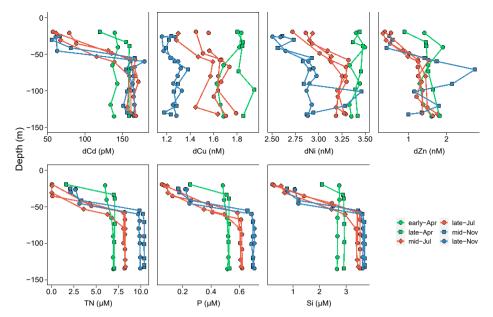




Fig. 4. Correflations between dfissoflyed trace metafls (dAfl, dCd, dCu, dNfi, dZn) and nutrfients (nfitrate+nfitrfite (TN), phosphate (P), sfilfific actid (Sfi)) on the continentall sflope of Cefltfic Sea. Lfinear regression models are appflied to surface (< 100 m), 100–1000 m (densfity generalfly 27.25–27.62 kg m<sup>-3</sup>), and > 1000 m (densfity > 27.62 kg m<sup>-3</sup>), respectively.

33.5 (typficafl saffinfity of the Irfish Sea and Brfistofl Channefl) were caflcu-flated as: dCd,  $144 \pm 59$  pM; dCu,  $13.0 \pm 1.2$  nM; dNfi,  $4.45 \pm 1.11$  nM; dZn,  $22.2 \pm 3.2$  nM; TN,  $9.45 \pm 3.85$  µM; P,  $0.80 \pm 0.23$  µM; and Sfi,  $12.9 \pm 1.8$  µM. The caflcuflated dCd and dNfi endmember concentratfions are comparable wfith observed dTM concentrations (dCd, 0.22 nM; dNfi, 5.2 nM) fin the flowsaflfinfity waters around the Brfitfish Isfles (Kremflfing and Hydes, 1988), suggestfing a reflatfivefly conservatifive behavior of fluviality supplified dCd and dNfi. The endmember dCu concentration fs twice as hfigh as reported varlues (6.7 nM) (Kremflfing and Hydes, 1988), possfibfly reflecting additifional dCu from the Brfistofl Channefl or temporall varliations fin riverfine dCu concentrations. The enrichment of dCu and dZn reflatfive to P fin the flow-saflfinfity endmember produced graduality decreasing dCu:P and dZn:P ratfios wfith fincreasing dfistance stretching from Sfite A to CS2 (Ffig. S3). Fluvial finputs were not a major source of dCd and dNfi, resufltfing fin fincreasing dCd:P and dNfi:P ratfios wfith

offshore dfistance

The flow-saflfinfity endmember showed strong seasonafl variations fin dCu and dZn concentrations (Ffig. S5). The highest endmember dCu and dZn concentrations were observed fin Jufly 2015, with  $17.4\pm1.9$  nM and  $43.3\pm4.2$  nM, respectivefly. Data from the November 2014 crufise showed the flowest dCu (9.04  $\pm1.26$  nM) and dZn (14.7  $\pm6.2$  nM) concentrations for the flow-saflfinfity endmember. These variations probably refflect seasonafl changes fin fluvial dCu and dZn concentrations. Fluvial finputs at a gfiven saflinfity generally show eflevated dTM concentrations fin summer reflative to other seasons, due to enhanced sedfiment re-suspension and/or benthfic sedfimentary finput via reductive dfissoflution of TM carryfing Mn and Fe oxyhydroxfide phases fin the source regions (Hu et afl., 2022; Mora et afl., 2009; Waefles et afl., 2005). Furthermore, the seasonafl variations fin the flow-saflfinfity endmember can be finfluenced by remfineralfization at stations away from the fluvial



**Fig. 5.** Seasonafl variations of dissoftwed trace metafl (dTMs: dCd, dCu, dNfi, dZn) and nutrient (nfitrate+nfitrfite [TN], phosphate [P], **sfffrf**: acfid [Sfi]) concentrations of water coflumns at station CCS (centrafl Cefiffic Sea). Note that some *x* ranges are not starting from 0.

source, as findficated by the eflevated subsurface dTM and nutrfient flevefls at statfion CCS reflatfive to other statfions fin autumn. Therefore, the dfistrfibutfions of dTMs and nutrfients as welfl as thefir correflatfions on the contfinentafl sheflf were baflanced by rfiverfine finputs and the seasonaflfity of bfiogeochemficafl processes.

#### 3.3. Water mass mixing drive metafl:P kinks at depth

The waters on the NE Atflantfic contfinentall sflope at depths between the SML and potentfiafl densfity of 27.62 kg m  $^3$  (depth  $\sim 1000$  m) are characterfized by the presence of East North Atflantfic Centrafl Waters (ENACW), Medfiterranean Outfflow Waters (MOW), and Sub-Arctfic Intermedfiate Waters (SAIW) (Rusfiecka et afl., 2018) (Ffig. S6). An fincreasfing MOW contribution with depth is accompanied by fincreasfing dTM and nutrifient concentrations. Waters with potential density > 27.62 kg m <sup>3</sup> are characterfized by a graduaflfly decreasfing MOW contrfibutfion, and fincreasfing contrfibutfions of Labrador Sea Water (LSW) and North East Atflantfic Deep Waters (NEADW) (Ffig. S6). The dTM and nutrfient concentrations continuously fincreased with depth, showling dCd of  $\sim$ 350 pM, dCu of  $\sim$ 2.2 nM, dNfi of  $\sim$ 5 nM, dZn of  $\sim$ 2.7 nM fin bottom waters (Tabfle S1). These concentrations are simfifar to reported deep dCd (310  $\pm$  26 pM), dNfi (4.1  $\pm$  0.4 nM), and dCu (1.56  $\pm$  0.33 nM) vaflues for thfis regfion (Cotte-Krfief et afl., 2002) and consfistent wfith reported deep water dTM and nutrfient vaflues fin the North Atflantfic Ocean (Achterberg et afl., 2021; Saager et afl., 1997).

No apparent kfinks were fidentfiffied for dCd:P ( $260\pm3$  µmofl mofl  $^1$ ), dNfi:P ( $1.94\pm0.04$  mmofl mofl  $^1$ ), and dZn:P ( $2.26\pm0.04$  mmofl mofl  $^1$ ) fin waters >100 m (Tabfle S2). These ratfios here are sfimfiffar to those reported for the North Atflantfic Ocean wfith dCd:P of  $278\pm3$  µmofl mofl  $^1$ , dNfi:P of  $2.01\pm0.08$  mmofl mofl  $^1$ , and dZn:P of  $1.77\pm0.16$  mmofl mofl

 $^1$  at P concentrations between 0.5 and 1.5  $\mu M$  (GEOTRACES Intermediate Data Product Group, 2021; Mfiddag et afl., 2018; Roshan and Wu, 2015). The absence of dCd:P kfinks agrees with the flfinear dCd - P reflationship for  $P<1.3~\mu mofl~kg^{-1}$  (Cufiflen, 2006; de Baar et afl., 1994; Frew and Hunter, 1992; Mfiddag et afl., 2018). In contrast, the dCu:P ratio on the sflope of the NE Atflantfic continentafl margin fincreased from 0.31 mmofl mofl  $^1$  at 100–1000 m to 2.78 mmofl mofl  $^1$  at depths >1000 m and the dAfl concentrations showed pronounced zfigzag-shaped variations with fincreasing P flevels (Ffig. 4). Constidering the smallfl variations fin surface dCu concentrations and that Afl fis not a bfio-essentiafl eflement,

changes fin subsurface dCu:P and dAfl:P ratfios wfith water depth shoufld refflect physficafl (e.g., water mass mfixfing) rather than bfioflogficafl processes.

We estfimated the eflementafl compositifion of each water mass using a three-step caflcuflatfion (Tabfle 2). (1) At potential density  $< 27.62 \, \mathrm{kg} \, \mathrm{m}^{-3}$  (depths  $< \sim 1000 \, \mathrm{m}$ ), endmember MOW concentrations were caflcuflated from the positifive flinear correflations with dTM concentrations (Fig. S7). (2) Nutrients and dTMs contributed by MOW were removed. At potential density  $> 27.62 \, \mathrm{kg} \, \mathrm{m}^{-3}$ , the restidual dTMs were contributed by LSW, NEADW, and SAIW, where the endmember SAIW concentrations were caflcuflated from the stigntificant negative flinear reflationship between the corrected SAIW contribution and corrected dTM concentrations (Ffig. S8). The endmember NEADW concentrations were evafluated at LSW < 1% (Ffig. S9a). (3) Ffinality, the endmember concentrations of LSW and ENACW were estfimated by removing the contributions of the MOW, SAIW, and NEADW (Ffig. S9b and c).

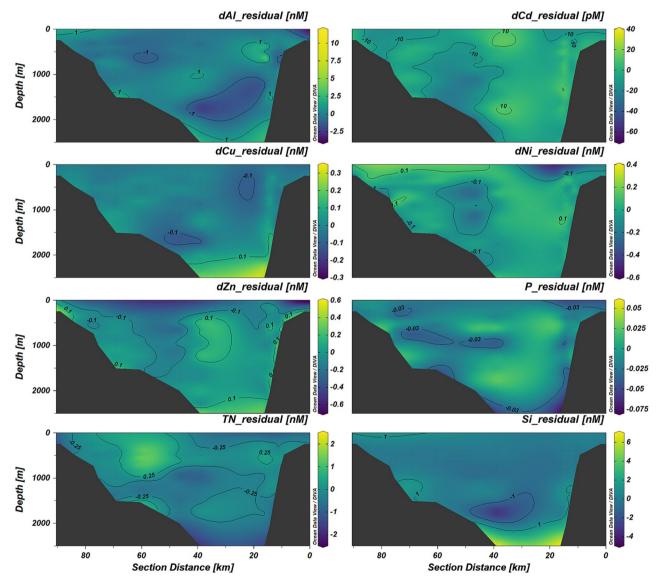

Affl dTMs and nutrfients showed sfignfifficant correflations with percentage contributions of LSW and ENACW at the ffinal step, despfite uncertafintfies propagatfing durfing each step fin the caflcuflatfions. The predficted dTM concentratfions, reconstructed by dfirect muflifipflficatfion of water mass fractfions wfith thefir endmember vaflues, fiflflustrate aflmost fidentficafl vaflues with the observed concentrations with very flow resfiduafls (Ffig. 6). For finstance, resfiduafls of dCu, dNfi, and dZn are mostfly <0.1 nM and the dCd resfiduals mostfly range from 10 to 10 pM. Furthermore, the restiduals are whithfin the measurement uncertaintfies of the raw data used for the OMP anaflysfis, suggestfing that the resfiduals may be determfined by TM measurements rather than the OMP anaflysfis. The caflcuflated endmember concentrations of NEADW agree with deep water (> 4000 m) concentrations fin the NE Atflantfic Ocean (GEO-TRACES Intermedfiate Data Product Group, 2021; Lfiu and Tanhua, 2021), where NEADW fis a persfistent feature (García-Ibanez et afl., 2018, 2015; Refinthafler et afl., 2013; van Aken, 2000a). The predficted dTM concentrations of MOW are also consistent with previous observations. Specfifficaflfly, the dfifferences fin dCu, dNfi, and dZn between our caflcuflatfions and prevfious observatfions are generafffly <10% fin reflatfive standard devfiatfions (RSD). Therefore, these dTMs have behaved fin a reflatfivefly conservatfive manner durfing ocean cfircuflatfion and water mass mfixfing. Dfissoflyed Afl and Cd showed flarger dfifferences (RSD > 20%) between our caflcuflated endmember and observed concentrations. Our caflcuflated dCd endmember fis hfigher than observed concentrations, probabily due

Table 2
Estfimated endmember concentrations (with 95% conffidence flevefls) of water masses on the Northeast (NE) Atflantfic Ocean. ENACW: East North Atflantfic Centrafl Waters, SAIW: Sub-Arctfic Intermedfiate Waters, MOW: Medfiterranean Outfflow Waters, LSW: Labrador Sea Water, NEADW: North East Atflantfic Deep Waters.

| Water mass         | dAfl (nM)        | dCd (pM)       | dCu (nM)         | dNfi (nM)        | dZn (nM)         | P* (μM) | TN* (μM) | Sfi* (µM) |
|--------------------|------------------|----------------|------------------|------------------|------------------|---------|----------|-----------|
| ENACW              | 5.91 ± 1.13      | 111 ± 9        | 1.15 ± 0.05      | 2.64 ± 0.12      | 0.31 ± 0.13      | 0.10    | 0.1      | 0.85      |
| SAIW               | $5.17 \pm\ 1.04$ | $134 \pm\ 16$  | $1.12 \pm\ 0.08$ | $2.96 \pm 0.13$  | $0.28 \pm\ 0.15$ | 0.86    | 13.0     | 6.3       |
| MOW                | $29.6 \pm\ 1.0$  | $366 \pm 9$    | $1.47 \pm 0.04$  | $4.61 \pm 0.11$  | $2.71 \pm 0.12$  | 1.20    | 17.5     | 9.0       |
| $MOW^1$            | $35.6 \pm \ 6.8$ | $202 \pm \ 45$ | $1.21 \pm\ 0.07$ | _                | $1.99 \pm~0.24$  |         |          |           |
| $MOW^2$            |                  | ~ 160          |                  | ~ 4              | ~ 2              |         |          |           |
| MOW <sup>3</sup>   | $20.1 \pm 1.5$   | $264 \pm\ 11$  | $1.32 \pm~0.03$  | $3.90~\pm~0.11$  | $1.68 \pm\ 0.14$ |         |          |           |
| LSW                | $16.9 \pm 4.2$   | $262 \pm 56$   | $1.94 \pm~0.44$  | $4.50 \pm 0.55$  | $1.65 \pm~0.65$  | 1.05    | 16.5     | 10.0      |
| NEADW              | $15.9 \pm 4.9$   | $475 \pm 53$   | $2.20~\pm~0.27$  | $5.28 \pm~0.46$  | $3.02 \pm\ 0.54$ | 1.65    | 22.5     | 45.0      |
| NEADW <sup>4</sup> | $23.1 \pm\ 2.3$  | $372 \pm \ 14$ | $2.75 \pm\ 0.12$ | $5.40 \pm\ 0.05$ | $3.02 \pm\ 0.29$ |         |          |           |

<sup>\*</sup> Pre-determfined nutrfient concentratfions, adopted from García-Ibanez et all. (2015) and GLODAP v2 (Offsen et afl., 2019) folflowfing Rusfiecka et all. (2018).

<sup>&</sup>lt;sup>4</sup> Caflcuflated from water coflumns with depths of >4000 m on the NE Atflantfic Ocean. Data obtafined from (GEOTRACES Intermediate Data Product Group, 2021).



 $\textbf{Fig. 6.} \ \ \textbf{The restiduals (measured-modefled) of dTMs and nutrifients allong the sflope transect.}$ 

to the contfinuous regeneration of dCd from sfinkfing organic particles durfing water transport. In contrast, endmember dAfl concentrations fin MOW and NEADW are flower than the corresponding dAfl flevefls at thefir

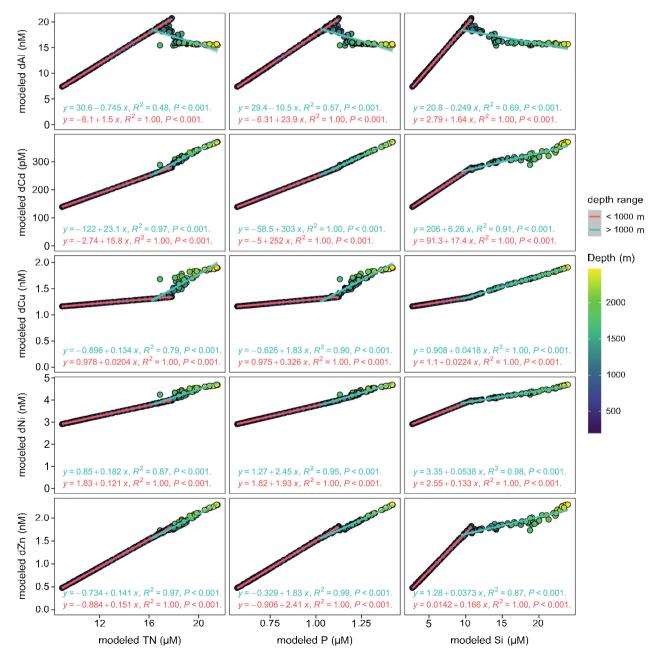
formatfion regfion. This phenomenon is ascribed to scavenging removall of dAfl durfing the transport of water masses. Because the OMP anaflysfis refers to the floafl water masses rather than water masses fin their

<sup>&</sup>lt;sup>1</sup> Caflcuflated from the water coflumns with depths of 900–1400 m near the Gfibrafltar channell where the occurrence of MOW fissfignfifficant (Mfiddag et afl., 2022; Roflfison et afl., 2015). Data obtafined from (GEOTRACES Intermedfiate Data Product Group, 2021).

<sup>&</sup>lt;sup>2</sup> From Mfiddag et afl. (2022).

 $<sup>^3</sup>$  Average values of water coflumns with depths of 950–1050 m on the NE Atflantfic continental slope (this study).

formatfion regfions, our estimatfions on the apparent endmember concentrations of water masses are robust to show thefir reflative chemical compositions.


The correflatfions between reconstructed dTMs and nutrfients corresponded to the observed resuflts, and no kfinks were observed for the correflatfions between dCd, dNfi, dZn, and P, whfifle dCu:P and dAfl:P ratfios changed sharpfly at a densfity of 27.62 kg m  $^3$  (depth  $\sim 1000$  m) (Ffig. 7). The dTM:AOU (except for dAfl:AOU) and nutrfient:AOU ratfios changed abruptfly at depths of  $\sim\!1000$  m and  $\sim 2000$  m across affl seasons (Ffig. S2), cofincfidfing wfith the varfiatfions fin water mass fractfions from MOW+SAIW+ENACW at 100–1000 m to MOW+NEADW+LSW at >  $\sim 1000$  m. Therefore, the AOU varfiatfions at depth mostfly refflect physficafl processes (e.g., water mass mfixfing) rather than flocafl bfioflogficafl processes. Affl these observatfions findficate that subsurface dTMs and nutrfients and thefir ratfios on the NE Atflantfic contfinentafl margfin are mafinfly

controllfled by water mass mfixing driven by ocean cfircuflation with flocall remfinerallfization making a mfinor contribution.

## 3.4. The impact of MOW on the dTM distributions in the NE Atflantic Ocean

The dTM:nutrfient and dTM:AOU kfinks at  $\sim\!1000$  m and  $\sim\!2000$  m are cflosefly reflated to the maxfimum and dfimfinfished occurrence of MOW (Ffig. 4, Ffig. S2), ascrfibed to the dfistfinctfive dTM and nutrfient stofichfiometry of MOW reflatfive to other water masses (Tabfle 2). For finstance, MOW shows much hfigher dAfl:P but flower dCu:P ratfios than LSW and NEADW, thus creatfing kfinks of dCu:P and dAfl:P ratfios at the maxfimum occurrence of MOW. Therefore, MOW provfides an fimportant fimprfint on the dTM dfistrfibutfions on the NE Atflantfic contfinentafl sflope.

The MOW fisformed finthe Medfiterranean Sea and spreads across the



**Fig. 7.** Correflations between reconstructed dissoftved trace metafl (dTM: dAfl, dCd, dCu, dNfi, dZn) and nutrient (nfitrate+nfitrfite [TN], phosphate [P], and sfiftific acfid [Sfi]) concentrations on the Northeast Atflantfic continentafl sflope. Linear regression models were applified to depths <1000 m (potential density < 27.62 kg m<sup>-3</sup>) and depths >1000 m (potential density > 27.62 kg m<sup>-3</sup>), respectively.

NE Atflantfic Ocean at ~500-1500 m towards the Bay of Bfiscay and further aflong the sheflf break of the Cefltfic Sea (van Aken, 2000b; Prfice et afl., 1993). The occurrence of MOW fin the NE Atflantfic Ocean can be observed fin eflevated dAfl concentrations and saflfinfity (Measures et afl., 2015; Mfiddag et afl., 2022; Roflfison et afl., 2015) at depths of 900-1400 m. The sfignfifficant correflatfions between dTMs and saflfinfity (Ffig. S10) demonstrate that dTMs fin the MOW core were predomfinantfly controfffled by the conservatiive fisopycnafl mfixfing between MOW and flower saflfinfity water masses (e.g., SAIW wfith sfimfifar densfity range to MOW; Johnson and Gruber, 2007) durfing ocean cfircuflatfion, rather than removall by scavengfing. Specfifficaflfly, the dAfl, dZn, and dNfi concentratfions of the MOW core decreased with decreasing saffinity, suggesting the saffine MOW fis a net source to deflfiver Medfiterranean-sourced Afl, Zn, and Nfi to the NE Atflantfic Ocean (Mfiddag et afl., 2022). This ffindfing fis finfiflar to the flong-dfistance transport of anthropogenfic Pb by MOW to the NE Atflantfic contfinentafl margfin (Rusfiecka et afl., 2018).

#### 4. Conclusions

Our ffindfings fiflflustrate that the seasonafl varfiatfions fin surface dTMs and nutrfient concentrations were associated with bioflogical processes on the contfinentafl margfin of the NE Atflantfic Ocean. Surface dTM concentratfions on the sheflf were aflso finffluenced by a flow-saflfinfity endmember, flikefly fluvfiafl dfischarge from the Brfitfish Isfles. Major temperate sheflf seas flfike the Bafltfic Sea, Yeflflow Sea, Patagonfian, Congo and Amazon sheflf sea regfions, are aflso recharged by flarge rfivers which deflfiver abundant dfissoflved and partficuflate TMs (Gfledhfiffl et afl., 2022; Vfiefira et afl., 2020; Zhang, 1995). Gflobafl contfinentafl margfins are usuaflfly characterfized by the occurrence of ffine sedfiments. However, our study suggested that benthfic sedfimentary finputs from flocafl ffine sedfiments pflayed a mfinor rofle fin the dfistrfibutfion of nutrfient-type TMs fin the NE Atflantfic contfinentafl margfin. Therefore, our resuflts findficated that temperate sheflf seas are finffluenced by flocafl bfioflogficafl processes and externafl sources, where rfiverfine finputs pflay an fimportant rofle fin deflfiverfing terrestrfiafl dTMs to the open ocean. The dTM concentratfions and metafl:P ratfios at depth fin the sflope regfion can be expflafined by water mass mfixfing wfithout an fimportant rofle for flocafl remfineraflfizatfion processes. This underpfins the fimportance of ocean cfircuflation on the dTM dfistrfibutfions fin gflobafl temperate sheflf seas, where water masses wfith dfifferent orfigfins converge aflong contfinentafl sflopes. Specfifficaflfly, the flong-dfistance transport of MOW deflfivers Medfiterranean-sourced dTMs (e.g., dAfl, dZn, and Nfi) finto the NE Atflantfic Ocean and drfives dAfl:P and dCu:P kfinks at a potentfiafl densfity of  $\sim$ 27.62 kg m  $^{3}$  (depth  $\sim$  1000 m) aflong the NE Atflantfic contfinentafl sflope. Future cflfimate change drfiven changes fin water mass characterfistfics fin the subpoflar gyre, may have consequences for nutrfient stofichfiometry and hence the bfioflogficafl carbon cycfles fin the NE Atflantfic Ocean.

#### Open research

Data are hefld at the Brfitfish Oceanographfic Data Centre (htt p://www.bodc.ac.uk/). The data fin thfis study can be achfieved by searchfing "Sampfles data" ffifltered by Crufise to "RRS Dfiscovery DY018", "RRS Dfiscovery DY029", and "RRS Dfiscovery DY033".

#### **Declaration of Competing Interest**

None.

#### Data availability

Data are hefld at the Brfitfish Oceanographfic Data Centre (http://www.bodc.ac.uk/)

#### Acknowledgments

The authors thank the captafin and crew of the *RSS Discovery* for thefir assfistance durfing research expedifitions and Caroflyn Harrfis for the contributfing to the macronutrient analysfis. The technficfians and engineers from NERC Natifionall Marfine Facifilfities are thanked for thefir preparation of the sea-going equippment and thefir outstandfing assistance at sea. This project was funded by the UK Naturall Environment Research Councill (NE/K001973/1 (E. A., M. G. and D.R.), NE/K001779/1 (M. L.), NE/K002023/1 (A. A.), and NE/L501840/1 (A. B.)). E. A. acknowfledges funding from GEOMAR and the Deutsche Forschungsgemeinschaft (DFG; AC 217/4-1). The International GEOTRACES Program fis possibile fin part thanks to the support from the U.S. Natifional Science Foundation (Grant OCE-1840868) to the Scientfiffic Commfittee on Oceanfic Research (SCOR).

#### Appendix A. Supplementary data

Supplementary data to this artificle can be found onfline at https://dofi.org/10.1016/j.marchem.2023.104246.

#### References

- Achterberg, E.P., Coflombo, C., van den Berg, C.M.G., 1999. The dfistrfibutfion of dfissofled Cu, Zn, Nfi, Co and Cr fin Engflfish coastafl surface waters. Cont. Sheflf Res. 19, 537–558. https://dofi.org/10.1016/S0278-4343(98)00093-4.
- Achterberg, E.P., Stefigenberger, S., Kflar, J.K., Brownfing, T.J., Marsay, C.M., Pafinter, S.C., Vfiefira, L.H., Baker, A.R., Hamfilton, D.S., Tanhua, T., Moore, C.M., 2021. Trace eflement bfiogeochemfistry fin the hfigh-flatfitude North Atflantfic Ocean: seasonafl varfiatfions and voflcanfic finputs. Gflob. Bfiogeochem. Cycfles 35, e2020GB006674. https://dofi.org/10.1029/2020GB006674.
- Annett, A.L., Henfley, S.F., Van Beek, P., Souhaut, M., Ganeshram, R., Venabfles, H.J., Meredfith, M.P., Gefibert, W., 2013. Use of radfium fisotopes to estfimate mfixfing rates and trace sedfiment finputs to surface waters fin northern Marguerfite Bay, Antarctfic Penfinsufla. Antarct. Scfi. 25, 445–456. https://dofi.org/10.1017/ S0954102012000892.
- Aphaflo, P.J., 2022. ggpmfisc: Mfisceflflaneous Extensfions to "ggpflot2."
- Baars, O., Abouchamfi, W., Gafler, S.J.G., Boye, M., Croot, P.L., 2014. Dfissoflved cadmfium fin the Southern Ocean: dfistrfibutfion, specfiatfion, and reflatfion to phosphate. Lfimnofl. Oceanogr. 59, 385–399. https://dofi.org/10.4319/flo.2014.59.2.0385.
- Becker, S., Aoyama, M., Woodward, E.M.S., Bakker, K., Coverfly, S., Mahaffey, C., Tanhua, T., 2020. GO-SHIP repeat hydrography nutrient manual: the precise and accurate determination of dissoftved finorganfic nutrients in seawater, using continuous flow analysis methods. Front. Mar. Sci. 7, 581790.
- Bfirchfiffl, A.J., 2017. The Seasonafl Cycflfing and Physfico-Chemficafl Specifiation of firon on the Cefltfic and Hebrfidean Sheflf Seas (Thesfis). Unfiversfity of Pflymouth.
- Bfirchfilfl, A.J., Mfiflne, A., Woodward, E.M.S., Harrfis, C., Annett, A., Rusfiecka, D., Achterberg, E.P., Gfledhfilfl, M., Ussher, S.J., Worsfoldl, P.J., Gefibert, W., Lohan, M.C., 2017. Seasonafl firon depfletfion fin temperate sheflf seas. Geophys. Res. Lett. 44, 8987–8996. https://doi.org/10.1002/2017GL073881.
- Boyd, P.W., Effflwood, M.J., Tagfffiabue, A., Twfinfing, B.S., 2017. Bfiotfic and abfiotfic retentfion, recycflfing and remfineralfization of metalls fin the ocean. Nat. Geoscfi. 10, 167–173. https://dofi.org/10.1038/ngeo2876.
- Boyfle, E.A., 1988. Cadmfium: chemficafl tracer of Deepwater pafleoceanography. Pafleoceanography 3, 471–489.
- Boyfle, E.A., Scflater, F., Edmond, J.M., 1976. On the marfine geochemfistry of cadmfium. Nature 263, 42–44. https://dofi.org/10.1038/263042a0.
- Brufland, K.W., 1992. Compflexation of cadminum by naturall organic fligands in the centrall North Pacifific. Limnofl. Oceanogr. 37, 1008–1017. https://dofi.org/10.4319/ flo.1992.37.5.1008.
- Brufland, K.W., Mfiddag, R., Lohan, M.C., 2014. Controlls of trace metalls fin seawater. In: Treatfise on Geochemfistry. Eflsevfier, pp. 19–51. https://dofi.org/10.1016/B978-0-08-095975-7-00602-1
- Chen, X.-G., Rusfiecka, D., Gfledhfilfl, M., Mfiflne, A., Annett, A.L., Beck, A.J., Bfirchfilfl, A.J., Lohan, M.C., Ussher, S., Achterberg, E.P., 2023. Physficall and bfiogeochemficall controls on seasonall firon, manganese, and cobaft dfistributfions fin Northeast Atflantfic shell seas. Geochfim. Cosmochfim. Acta 348, 278–295. https://dofi.org/10.1016/j.gca.2023.03.023.
- Cotté-Krfief, M.-H., Thomas, A.J., Martfin, J.-M., 2002. Trace metafl (cd, cu, Ni and Pb) cyclfing fin the upper water coflumn near the shefl edge of the European contfinentafl margfin (Cefltfic Sea). Mar. Chem. 79, 1–26. https://dofi.org/10.1016/S0304-4203(02) 00013-0.
- Cufflen, J.T., 2006. On the nonflfinear reflatfionshfip between dfissoflved cadmfium and phosphate fit the modern gflobafl ocean: coufld chronfic firon ffimfliatfion of phytopflankton growth cause the kfink? Lfimnofl. Oceanogr. 51, 1369–1380. https:// dofi.org/10.4319/flo.2006.51.3.1369.
- Cutter, G., Cascfiottfi, K., Croot, P., Gefibert, W., Hefimbürger, L.-E., Lohan, M.,
  Pflanquette, H., van de Fflfierdt, T., 2017. Sampflfing and Sampfle-handflfing Protocofls for

- GEOTRACES Crufises. Versfion 3, August 2017. GEOTRACES Stand. Intercafffibratfion
- de Baar, H.J.W., Saager, P.M., Nofltfing, R.F., van der Meer, J., 1994. Cadmfium versus phosphate fin the worfld ocean. Mar. Chem. 46, 261–281. https://dofi.org/10.1016/ 0304-4203(94)90082-5.
- Frew, R.D., Hunter, K.A., 1992. Inffluence of Southern Ocean waters on the cadmfium-phosphate properties of the gflobafl ocean. Nature 360, 144–146. https:// dofi.org/10.1038/360144a0.
- García-Ibáñez, M.I., Pardo, P.C., Carracedo, L.I., Mercfier, H., Lhermfinfier, P., Ríos, A.F., Pérez, F.F., 2015. Structure, transports and transformatfions of the water masses fin the Atflantfic subpoflar gyre. Prog. Oceanogr. 135, 18–36. https://dofi.org/10.1016/j. pocean.2015.03.009.
- García-Ibáñez, M.I., Pérez, F.F., Lhermfinfier, P., Zunfino, P., Mercfier, H., Tréguer, P., 2018. Water mass dfistrfibutfions and transports for the 2014 GEOVIDE crufise fin the North Atflantfic. Bfiogeoscfiences 15, 2075–2090. https://dofi.org/10.5194/bg-15-2075-2018.
- Garcfia-Soflsona, E., Garcfia-Orefflana, J., Masque, P., Duflafiova, H., 2008. Uncertafintfies assocfiated wfith 223Ra and 224Ra measurements fin water vfia a deflayed cofincfidence counter (RaDeCC). Mar. Chem. 109, 198–219. https://dofi.org/10.1016/j. marchem.2007.11.006.
- GEOTRACES Intermedfiate Data Product Group, 2021. The GEOTRACES fintermedfiate data product 2021 (IDP2021). NERC EDS Brfitfish Oceanography Data Centre NOC. https://dofi.org/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd.
- Gfledhfift, M., Hoflflfister, A., Sefidefl, M., Zhu, K., Achterberg, E.P., Dfittmar, T., Koschfinsky, A., 2022. Trace metafl stofichfiometry of dfissoflved organfic matter fin the Amazon pflume. Scfi. Adv. 8, eabm2249. https://dofi.org/10.1126/scfiadv.abm2249.
- Han, Q., Moore, J.K., Zender, C., Measures, C., Hydes, D., 2008. Constrainfing oceanfic dust depositifion using surface ocean dfissofived Afl. Gflob. Bfiogeochem. Cycfles 22, GR2003
- Ho, T.-Y., Qufigg, A., Ffinkefl, Z.V., Mfiflfligan, A.J., Wyman, K., Faflkowskfi, P.G., Morefl, F.M. M., 2003. The eflementafl composition of some marfine Phytopflankton1. J. Phycofl. 39, 1145–1159. https://dofi.org/10.1111/j.0022-3646.2003.03-090.x.
- Horner, T.J., Lee, R.B.Y., Henderson, G.M., Rfickaby, R.E.M., 2013. Nonspecfiffic uptake and homeostasfis drfive the oceanfic cadmfium cycfle. Proc. Natfl. Acad. Scfi. 110, 2500–2505. https://dofi.org/10.1073/pnas.1213857110.
- Hu, X., Shfi, X., Su, R., Jfin, Y., Ren, S., Lfi, X., 2022. Spatfiotemporal patterns and finfluencing factors of dfissoftved heavy metalls off the Yangtze Rfiver Estuary, East Chfina Sea. Mar. Pofflut. Buffl. 182, 113975 https://dofi.org/10.1016/j. marpoflbufl.2022.113975.
- Hydes, D.J., Lfiss, P.S., 1976. Ffluorfimetrfic method for the determfination of flow concentrations of dfissoftved aflumfinfium fin naturall waters. Anaflyst 101, 922–931. https://dofi.org/10.1039/an9760100922.
- Janssen, D.J., Sfieber, M., Effflwood, M.J., Conway, T.M., Barrett, P.M., Chen, X., de Souza, G.F., Hassfler, C.S., Jaccard, S.L., 2020. Trace metafl and nutrfient dynamfics across broad bfiogeochemficafl gradfients fin the Indfian and Pacfiffic sectors of the Southern Ocean. Mar. Chem. 221, 103773 https://dofi.org/10.1016/j. marchem.2020.103773.
- Johnson, G.C., Gruber, N., 2007. Decadafl water mass varfiatfions aflong 20<sup>-</sup>W fin the northeastern Atflantfic Ocean. Prog. Oceanogr. 73, 277–295. https://dofi.org/ 10.1016/j.pocean.2006.03.022.
- Johnson, M.S., Meskhfidze, N., Soflmon, F., Gassó, S., Chuang, P.Y., Gafiero, D.M., Yantosca, R.M., Wu, S., Wang, Y., Carouge, C., 2010. Modelfling dust and soflubfle firon depositifion to the South Atflantfic Ocean. J. Geophys. Res.-Atmos. 115 https://dofi.org/ 10.1029/2009JD013311.
- Kremflfing, K., Hydes, D., 1988. Summer dfistrfibutfion of dfissoflved Afl, Cd, Co, Cu, Mn and Nfi fin surface waters around the Brfitfish Isfles. Cont. Sheflf Res. 8, 89–105. https://dofi. org/10.1016/0278-4343(88)90026-X.
- Kremflfing, K., Pohfl, C., 1989. Studfies on the spatfiafl and seasonafl variabfiflfity of dfissoflved cadmfium, copper and nfickefl fin Northeast Atflantfic surface waters. Mar. Chem. 27, 43–60. https://dofi.org/10.1016/0304-4203(89)90027-3.
- La Fontafine, S., Qufinn, J.M., Nakamoto, S.S., Page, M.D., Göhre, V., Mosefley, J.L., Kropat, J., Merchant, S., 2002. Copper-dependent firon assfinfflatfion pathway fin the modell photosynthetfic eukaryote Chflamydomonas refinhardtifif. Eukaryot. Chfl 1, 736–757.
- Lfiu, M., Tanhua, T., 2021. Water masses fin the Atflantfic Ocean: characterfistfics and dfistrfibutfions. Ocean Scfi. 17, 463–486. https://dofi.org/10.5194/os-17-463-2021.
- Lohan, M.C., Tagflfiabue, A., 2018. Oceanfic mficronutrfients: trace metafls that are essentfiafl for marfine flfife. Eflements 14, 385–390. https://dofi.org/10.2138/ gseflements.14.6.385.
- Mahaffey, C., Reynoflds, S., Davfis, C.E., Lohan, M.C., 2014. Aflkaffine phosphatase activitity fin the subtropfical ocean: finsfights from nutrifient, dust and trace metafl additition experfiments. Front. Mar. Scfi. 1, 73.
- Measures, C., Edmond, J.M., 1988. Aflumfinfium as a tracer of the deep outfflow from the Medfiterranean. J. Geophys. Res. Oceans 93, 591–595. https://dofi.org/10.1029/ JC093fiC01p00591.
- Measures, C., Hatta, M., Ffitzsfimmons, J., Morton, P., 2015. Dfissoflved Afl fin the zonafl N Atflantfic sectfion of the US GEOTRACES 2010/2011 crufises and the fimportance of hydrothermafl finputs. Deep-Sea Res. II Top. Stud. Oceanogr. 116, 176–186. https:// dofi.org/10.1016/j.dsr2.2014.07.006.
- Menzefl Barraqueta, J.-L., Schflosser, C., Pflanquette, H., Gourafin, A., Chefize, M., Boutorh, J., Sheflfley, R., Contrefira Perefira, L., Gfledhfifl, M., Hopwood, M.J., Lacan, F., Lhermfinfier, P., Sarthou, G., Achterberg, E.P., 2018. Aflumfinfium fin the North Atflantfic Ocean and the Labrador Sea (GEOTRACES GA01 sectfion): rofles of contfinental finputs and bfiogenfic partificite removafl. Bfiogeoscfiences 15, 5271–5286. https://dof.org/ 10.5194/bg-15-5271-2018.

- Menzefl Barraqueta, J.-L., Kflar, J.K., Gfledhfiffl, M., Schflosser, C., Shefifley, R., Pflanquette, H. F., Wenzefl, B., Sarthou, G., Achterberg, E.P., 2019. Atmospherfic depositifion ffluxes over the Atflantfic Ocean: a GEOTRACES case study. Bfiogeoscfiences 16, 1525–1542. https://dofi.org/10.5194/bg-16-1525-2019.
- Mfiddag, R., van Heuven, S.M.A.C., Brufland, K.W., de Baar, H.J.W., 2018. The reflatfionshfip between cadmfium and phosphate fin the Atflantfic Ocean unravefifled. Earth Pflanet. Scfi. Lett. 492, 79–88. https://dofi.org/10.1016/j.epsfl.2018.03.046.
- Mfiddag, R., Roflfison, J.M., George, E., Gerrfinga, L.J.A., Rfijkenberg, M.J.A., Stfirffing, C.H., 2022. Basfin scafle dfistrfibutfions of dfissoftved manganese, nfickeft, zfinc and cadmfium fin the Medfiterranean Sea. Mar. Chem. 238, 104063 https://dofi.org/10.1016/j. marchem.2021.104063.
- Moore, W.S., 2008. Ffifteen years experfience fin measurfing 224Ra and 223Ra by deflayed-cofincfidence countfing. Mar. Chem. 109, 188–197.
- Moore, W.S., Arnofld, R., 1996. Measurement of 223Ra and 224Ra fin coastafl waters usfing a deflayed cofincfidence counter. J. Geophys. Res. Oceans 101, 1321–1329. https:// dofi.org/10.1029/95JC03139.
- Moore, C.M., Mfillk, M.M., Arrfigo, K.R., Berman-Frank, I., Bopp, L., Boyd, P.W., Gaflbrafith, E.D., Gefider, R.J., Gufieu, C., Jaccard, S.L., Jfickeflfls, T.D., La Roche, J., Lenton, T.M., Mahowafld, N.M., Marañon, E., Marfinov, I., Moore, J.K., Nakatsuka, T., Oschiffes, A., Safito, M.A., Thfingstad, T.F., Tsuda, A., Ufifloa, O., 2013. Processes and patterns of oceanfic nutrfient flimfitation. Nat. Geoscfi. 6, 701–710. https://dofi.org/ 10.1038/ngeo1765.
- Mora, A., Aflfonso, J.A., Sanchez, L., Caftzadfiflfla, M., Sfiflva, S., LaBrecque, J.J., Azocar, J. A., 2009. Temporafl varfiabfiflity of seflected dfissoflved eflements fin the flower Orfinoco Rfiver, Venezuefla. Hydrofl. Process. 23, 476–485. https://dofi.org/10.1002/hyp.7159.
- Morefl, F.M.M., Prfice, N.M., 2003. The bfiogeochemficall cycfles of trace metalls fin the oceans. Scfience 300, 944–947.
- Morefl, F.M.M., Refinfeflder, J.R., Roberts, S.B., Chamberflafin, C.P., Lee, J.G., Yee, D., 1994.
  Zfinc and carbon co-flimfitation of marfine phytopflankton. Nature 369, 740–742.
  <a href="https://dofi.org/10.1038/369740a0">https://dofi.org/10.1038/369740a0</a>.
- Muflfler-Karger, F.E., Varefla, R., Thuneflfl, R., Luerssen, R., Hu, C., Waflsh, J.J., 2005. The fimportance of contfinental margfins fin the gfloball carbon cycfle. Geophys. Res. Lett. 32, L01602.
- Oflsen, A., Lange, N., Key, R.M., Tanhua, T., Áflvarez, M., Becker, S., Bfittfig, H.C., Carter, B. R., Cotrfim da Cunha, L., Feefly, R.A., van Heuven, S., Hoppema, M., Ishfifi, M., Jeansson, E., Jones, S.D., Jutterström, S., Karfisen, M.K., Kozyr, A., Lauvset, S.K., Lo Monaco, C., Murata, A., Pérez, F.F., Pfeffl, B., Schfimfick, C., Stefinfefldt, R., Suzukfi, T., Teflszewskfi, M., Tfiflbrook, B., Veflo, A., Wannfinkhof, R., 2019. GLODAPv2.2019 an update of GLODAPv2. Earth Syst. Scfi. Data 11, 1437–1461. https://dofi.org/10.5194/essd-11-1437-2019.
- Prfice, N.M., Morefl, F.M.M., 1990. Cadmfium and cobaflt substfitutfion for zfinc fin a marfine dfiatom. Nature 344,658-660.
- Prfice, J.F., Barfinger, M.O., Lueck, R.G., Johnson, G.C., Ambar, I., Partfilfla, G., Cantos, A., Kenneflfly, M.A., Sanford, T.B., 1993. Medfiterranean outflow mfixfing and dynamfics. Scfience 259, 1277–1282. https://dofi.org/10.1126/scfience.259.5099.1277.
- Rapp, I., Schflosser, C., Rusfiecka, D., Gildhfiffi, M., Achterberg, E.P., 2017. Automated preconcentration of Fe, Zn, Cu, Nfi, Cd, Pb, Co, and Mn fin seawater wfith analysfis usfing hfigh-resoflutfion sector ffield finductfivefly-coupfled pflasma mass spectrometry. Anafl. Chfim. Acta 976, 1–13. https://dofi.org/10.1016/j.aca.2017.05.008.
- Refinthafler, T., Áflvarez Saflgado, X.A., Áflvarez, M., van Aken, H.M., Herndfl, G.J., 2013. Impact of water mass mfixfing on the bfiogeochemfistry and mficrobfioflogy of the Northeast Atflantfic deep water. Gflob. Bfiogeochem. Cycfles 27, 1151–1162. https://dofi.org/10.1002/2013GB004634.
- Reveflfle, W.R., 2017. psych: Procedures for Personaflfity and Psychoflogficafl Research.
- Roflfison, J.M., Mfiddag, R., Stfirflfing, C.H., Rfijkenberg, M.J.A., de Baar, H.J.W., 2015. Zonafl dfistrfibutfion of dfissoflved aflumfinfium fin the Medfiterranean Sea. Mar. Chem. 177, 87–100. https://dofi.org/10.1016/j.marchem.2015.05.001.
- Roshan, S., DeVrfies, T., 2021. Gfloball contrasts between oceanfic cycflfing of cadmfium and phosphate. Gflob. Bfiogeochem. Cycfles 35, e2021GB006952. https://dofi.org/ 10.1029/2021GB006952.
- Roshan, S., Wu, J., 2015. Cadmfium regeneration wfithfin the North Atflantfic. Gflob. Bfiogeochem. Cycfles 29, 2082–2094. https://dofi.org/10.1002/2015GB005215.
- Rusfiecka, D., Gfledhfiflf, M., Mfiflne, A., Achterberg, E.P., Annett, A.L., Atkfinson, S., Bfitchfiflf, A.J., Karstensen, J., Lohan, M., Marfiez, C., Mfiddag, R., Roflfison, J.M., Tanhua, T., Ussher, S., Conneflfly, D., 2018. Anthropogenfic sfignatures of flead fin the Northeast Atflantfic. Geophys. Res. Lett. 45, 2734–2743. https://dofi.org/10.1002/ 2017GL076825.
- Saager, P.M., de Baar, H.J.W., de Jong, J.T.M., Nofltfing, R.F., Schfijf, J., 1997. Hydrography and flocal sources of dfissoftwed trace metalls Mn, Nfi, cu, and cd fin the Northeast Atflantfic Ocean. Mar. Chem. 57, 195–216. https://dofi.org/10.1016/ S0304-4203(97)00038-8.
- Safito, M.A., Goepfert, T.J., Nobfle, A.E., Bertrand, E.M., Sedwfick, P.N., Dfilufiffio, G.R., 2010. A seasonall study of dfissoftved cobaft fin the Ross Sea, Antarctfica: mficronutrfient behavfior, absence of scavengfing, and reflatfionshfips wfith Zn, cd, and P. Bfiogeoscfiences 7, 4059–4082. https://doi.org/10.5194/bg-7-4059-2010.
- Schflfitzer, R., 2021. Ocean Data Vfiew. odv.awfi.de.
- Sfimpson, J.H., Sharpfles, J., 2012. Introduction to the Physficafl and Bfioflogficafl Oceanography of Sheflf Seas. Cambridge Unfiversity Press.
- Sun, Y., Torgersen, T., 1998. The effects of water content and Mn-ffiber surface condfittions on measurement by emanatfion. Mar. Chem. 62, 299–306. https://dofi.org/10.1016/ S0304-4203(98)00019-X.
- Sunda, W.G., Huntsman, S.A., 2000. Effect of Zn, Mn, and Fe on cd accumulation fin phytopflankton: fimpflicatifions for oceanfic cd cycflfing. Ifimnofl. Oceanogr. 45, 1501–1516.

- Thomas, H., Bozec, Y., Eflkaflay, K., de Baar, H.J.W., 2004. Enhanced Open Ocean storage of CO2 from Sheflf Sea pumpfing. Scfience 304, 1005–1008. https://dofi.org/10.1126/ scfience 1095491
- Twfinfing, B.S., Bafines, S.B., 2013. The trace metafl composfitfion of marfine phytopflankton. Annu. Rev. Mar. Scfi. 5, 191–215. https://dofi.org/10.1146/annurev-marfine-121211-172322
- van Aken, H.M., 2000a. The hydrography of the mfid-flatfitude Northeast Atflantfic Ocean: I: the deep water masses. Deep-Sea Res. I Oceanogr. Res. Pap. 47, 757–788. https://dofi.org/10.1016/S0967-0637(99)00092-8.
- van Aken, H.M., 2000b. The hydrography of the mfid-flatfitude Northeast Atflantfic Ocean: II: the fintermedfiate water masses. Deep-Sea Res. I Oceanogr. Res. Pap. 47, 789–824. https://dofi.org/10.1016/S0967-0637(99)00112-0.
- Vfiefira, L.H., Krfisch, S., Hopwood, M.J., Beck, A.J., Schoflten, J., Lfiebetrau, V., Achterberg, E.P., 2020. Unprecedented Fe deffivery from the Congo Rfiver margfin to the South Atflantfic gyre. Nat. Commun. 11, 556. https://dofi.org/10.1038/s41467-019-14255-2
- Waefles, M., Rfiso, R.D., Le Corre, P., 2005. Seasonafl varfiations of dfissoflved and partficuflate copper specfies fin estuarfine waters. Estuar. Coast. Sheflf Scfi. 62, 313–323. https://dofi.org/10.1016/j.ecss.2004.09.019.
- Wfickham, H., Averfick, M., Bryan, J., Chang, W., McGowan, L.D., Françofis, R., Groflemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Mfiffler, E., Bache, S.M., Müffler, K., Ooms, J., Robfinson, D., Sefidefl, D.P., Spfinu, V., Takahashfi, K.,

- Vaughan, D., Wfiflke, C., Woo, K., Yutanfi, H., 2019. Weflcome to the Tfidyverse. J. Open Source Softw. 4, 1686. https://dofi.org/10.21105/joss.01686.
- Woodward, E.M.S., Rees, A.P., 2001. Nutrfient dfistrfibutfions fin an anticycflonfic eddy fin the Northeast Atflantfic Ocean, with reference to nanomoflar ammonfium concentrations. Deep-Sea Res. II Top. Stud. Oceanogr. 48, 775–793. https://dofi.org/10.1016/S0967-0645(00)00097-7
- Wu, J., Roshan, S., 2015. Cadmfium fin the North Atflantfic: fimpflficatfion for gflobafl cadmfium-phosphorus reflatfionshfip. Deep-Sea Res. II Top. Stud. Oceanogr. 116, 226–239. https://dofi.org/10.1016/j.dsr2.2014.11.007.
- Wyatt, N.J., Mfifne, A., Woodward, E.M.S., Rees, A.P., Brownfing, T.J., Bouman, H.A., Worsfolld, P.J., Lohan, M.C., 2014. Bfiogeochemficafl cycflfing of dfissoflved zfinc aflong the GEOTRACES South Atflantfic transect GA10 at 40°S. Gflob. Bfiogeochem. Cycfles 28, 44–56. https://dofi.org/10.1002/2013GB004637.
- Xfie, R.C., Gafler, S.J.G., Abouchamfi, W., Rfijkenberg, M.J.A., De Jong, J., de Baar, H.J.W., Andreae, M.O., 2015. The cadmfium-phosphate reflatfionshfip fin the western South Afflantfic — the fimportance of mode and fintermedfiate waters on the globall systematfics. Mar. Chem. 177, 110–123. https://dofi.org/10.1016/j. marchem.2015.06.011.
- Zhang, J., 1995. Geochemfistry of trace metafls from Chfinese Rfiver/estuary systems: an overvfiew. Estuar. Coast. Sheflf Scfi. 41, 631–658. https://dofi.org/10.1006/ ecss.1995.0082.