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ABSTRACT

Pretraining neural networks with massive unlabeled datasets
has become popular as it equips the deep models with a bet-
ter prior to solve downstream tasks. However, this approach
generally assumes that for downstream tasks we have access
to annotated data of sufficient size. In this work, we propose
ALOE, a novel system for improving data- and label-efficiency
of non-semantic speech tasks with active learning (AL). ALOE
uses pretrained models in conjunction with active learning to
incrementally label data and learn classifiers for downstream
tasks, thereby mitigating the need to acquire labeled data be-
forehand. We demonstrate the effectiveness of ALOE on a
wide range of tasks, uncertainty-based acquisition functions,
and model architectures. Training a linear classifier on top of
a frozen encoder with ALOE is shown to achieve performance
similar to several baselines that utilize the entire labeled data.

Index Terms— active learning, audio, non-semantic
speech, self-supervised learning, transfer learning

1. INTRODUCTION

Deep neural networks require a large amount of well-annotated
training data to generalize well. In the real world, access to
labeled datasets is limited, and collecting abundant examples
requires significant investment in terms of both finance and
time. Further, the expertise required to collect high-quality
labels can be limited in domains like health monitoring. Pre-
training neural networks with massive unlabeled datasets have
become a popular choice to tackle this issue, as it equips the
deep models with a better prior for downstream problems. In
particular, the self-supervision strategy has shown to achieve
tremendous success across data modalities including audio
and speech domains [1, 2, 3]. Self-supervised learning tasks
a neural network to solve an auxiliary learning problem for
which supervision can be acquired from the unlabeled input
itself, and this pushes the model to learn useful representations
from unlabeled data. One can then use the pretrained model
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Fig. 1: Illustration of ALOE: active learning with a pretrained
model. The encoder parameters are frozen, allowing the use
of the same encoder across multiple downstream tasks.

(also known as an encoder) either as a fixed feature extractor
or as initialization in transfer learning.

Still, the downstream learning tasks require sufficient anno-
tated samples for one to train a classifier on top of the encoder
from the self-supervised or unsupervised pretraining phase.
We note that for some tasks, pretrained models may require
only a small percentage (e.g. 10%-20%) of labeled data to
match the performance of a supervised model, but the number
of labeled instances can still be huge. As mentioned previously,
data labeling is cumbersome and expensive, and it is unclear a
priori for which instances we should get annotations, as not all
examples carry useful information for learning. In comparison,
getting unlabeled data for the desired task is much easier.

In light of these observations and challenges, we design
ALOE (Active Learning of non-semantic speech tasks with
pretrained models) to improve the label- and data-efficiency of
non-semantic speech tasks [1]. Figure 1 describes how ALOE
exploits pretrained models with active learning (AL) for grad-
ual labeling of data and learning classifiers for downstream
tasks. To the best of our knowledge, our method is a first



attempt at improving label efficiency for non-semantic speech
tasks with AL. In principle, AL provides a systematic way to
procure labels for the most informative instances, e.g. a class
for which a model is highly uncertain [4, 5]. AL framework
comprises of three stages: a) acquisition—selecting relevant
examples, b) annotation—getting ground-truth labels from a
human annotator, and c) retraining—Ilearning model on ac-
quired and existing labeled instances. In practice, these steps
are time-consuming and computationally expensive because
a model has to be trained many times during the AL cycle.
We improve the efficiency of AL with the power of semantic
representations from pretrained models while also enhancing
its acquisition capability, which is otherwise limited when
training a model from scratch. Furthermore, we are privy to a
better view of the annotation process with human-in-the-loop.
We demonstrate the effectiveness of our approach on a
broad range of tasks, uncertainty-based acquisition functions,
and model architectures. Training a linear classifier on top of
a frozen encoder with AL uses only a fraction of the examples
yet results in a similar performance as several baselines that
utilize the entire labeled data. ALOE provides an end-to-end
system for exploiting pretrained models more effectively and
mitigates the need to acquire large labeled data beforehand.

2. METHODOLOGY

We propose to use a pretrained (unsupervised or self-supervised)
model with active learning (AL) to improve the data- and
label-efficiency of deep models in non-semantic speech tasks.
Importantly, ALOE has a shared fixed pretrained encoder with
separate shallow classifiers for each end-task. Our approach
leverages generic speech representations learned from massive
amounts of unlabeled data and identifies key samples from an
intended end-task that are to be labeled by a human annotator
(i.e. an oracle) depending on their uncertainty scores.

We consider an AL setup with pool-based acquisition as
commonly studied in the literature [5, 6]. Let X C R? be
d-dimensional speech data samples, ) be labels of a non-
semantic speech classification task, and Fy : X — R™ be
a pretrained encoder, whose embedding dimension m < d.
Given some labeled instances D; C X x ) and a large amount
of unlabeled data D,, C X with |D;|< |D,|, the aim is to
incrementally label samples in D,, to minimize the cost of
annotation, better understand the annotation process, and ulti-
mately improve model generalization with few labels.

For each task, we initiate the AL process by acquiring D;
to train a shallow classifier G, : R™ — R!Y! on top of the m-
dimensional representations from Fy. G,,, is a fully-connected
linear model with softmax activation such that it outputs the
probability an input z € & belongs to each class y € V:

G (Fo(x)) = [P(y1]z), P(y2|x), ..., P(yylz)]. (D)

Once G,, is trained on D;, model weights w is fixed and pre-
dictions for each instance in D,, are generated. ALOE then

uses an acquisition function A : Rl — X’ to select the most
valuable examples of D,, for label generation within a certain
budget. Once these labels are acquired, this batch of examples
is merged into the existing D;. It is followed by retraining
G., using the updated D;, and we repeat this process for a
fixed number of AL acquisition steps. We note that instead
of keeping Fy fixed during AL, one can fine-tune the entire
model (i.e. Fy and G,,) end-to-end, but this process can be
very time-consuming as retraining has to be performed after
each label acquisition step, and the learnable parameters also
increase significantly. Similarly, the feature extraction model
Fo will become task-specific; it may lose its generalizable
nature and not perform well for other downstream tasks.

For the acquisition function 4, we use an uncertainty
sampling-based method called smallest margin, which is rela-
tively simple yet shown to be effective in identifying informa-
tive examples for annotation [5, 7]. Specifically, A selects

" =arg nin P(ywlz) — Py lv), (2)

where P(y;)|x) is the ith largest probability in (1), e.g. the
predicted label for the sample is y(;y. That is, (2) chooses
samples that have a “very close second prediction.” Thus the
model is less certain about them, and acquiring their labels
from the oracle will provide more information about where
the decision boundary of the updated model should be.

3. EXPERIMENTS

For Fjy, we leverage publicly available pretrained models from
the TRILLsson family, in particular, the Audio Spectrogram
Transformer (AST) [9]. TRILLsson models are trained via
knowledge distillation using large-scale unlabeled data with a
massive self-supervised conformer-based teacher model. They
provide state-of-the-art performance on a broad spectrum of
downstream non-semantic speech tasks while being smaller
than the teacher model. All pretrained models mentioned in
this paper are from TensorFlow Hub!. F, embeds the entire
audio clip into a single vector with dimension m = 1024.
For each task, we report results aggregated from 10 inde-
pendent runs of the experiment. For each run of the experiment,
there are 100 AL acquisition steps, and at each AL acquisition
step, G, is trained for 100 epochs with Adam and a learning
rate of 0.001. As the size of w is quite small, the added benefit
of our approach is that AL executes at a rapid pace. D is ini-
tially seeded with 5 labeled examples per class. At each round
of AL, class-aware sampling selects one example per class
based on the predicted labels, while class-agnostic sampling
picks a single example from all of D,,. Note that this means
they acquire || labels and 1 label at each step, respectively.
Several publicly available datasets are used to evaluate
audio recognition models with active learning. Specifically,
we focus on non-semantic speech tasks [1, 9] as the feature

'https://tfhub.dev/



Table 1: Comparison of test set accuracy (%) of our approach with other baselines on different end-tasks. ALOE achieves similar
recognition rate with class-aware sampling, while using several folds less labeled examples. The baseline results are from [8],
where available; else we train a linear classifier on time-averaged representations using published models.

ALOE (Ours)
Dataset TRILL [1] TRILL-Dist [1] FRILL [8] TRILLsson [9] Class-Aware Class-Agnostic
Random Uncertainty Random Uncertainty
MSWC (Micro-EN) 81.3 74.4 79.1 93.7 90.6 93.0 76.0 79.7
SpeechCommands 81.9 80.2 79.7 96.4 92.6 94.9 70.3 78.6
Vocalsound 88.2 85.8 86.7 91.1 84.9 88.2 79.0 79.1
Voxforge 84.5 80.0 76.9 99.6 98.4 99.2 94.4 96.2
FluentSpeech 69.3 62.3 64.9 97.5 83.5 87.5 60.8 62.6
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Fig. 2: Uncertainty sampling outperforms random sampling at every AL round, as measured by validation set accuracy (%).

extraction models we use are pretrained on speech datasets.
We perform experiments on MSWC (Micro-English) [10]
and SpeechCommands [11] for keyword spotting, compris-
ing of (96,099 samples, 31 classes) and (100, 503 samples,
12 classes), respectively. For spoken language identification,
we use Voxforge [12] containing 176, 436 audio clips from 6
different languages. Similarly, for human vocal sounds moni-
toring, e.g. coughing and sneezing, we use Vocalsound [13]
that has 21, 024 audio examples from 6 classes. Finally, we
evaluate on the task of action detection (30, 043 samples, 6
classes) using FluentSpeech [14]. In all cases, we use the stan-
dard train, validation, and test splits provided with the original
datasets, with audio sampled at 16kHz.

We compare ALOE against many baseline models. First,
we investigate several other self-supervised or distillation-
based methods. In TRILL [1], TRILL-Dist [1], FRILL [8], and
TRILLsson (AST), the linear classifiers are trained using the
entire labeled data from the downstream task. These baselines,
particularly the AST model, establish an upper-bound perfor-

mance that can be achieved with a simple classifier trained
with all labeled examples from a specific task. Additionally,
we explore other uncertainty sampling methods [5, 6] such as
largest margin, least confidence, entropy, and norm, as well as
random acquisition, i.e. sampling from a uniform distribution
on the pool D, at each acquisition step. Lastly, we compare
the performance of AST as Fj to other neural network archi-
tectures such as ResNet-50 and EfficientNetv2 (B3) from the
TRILLsson family [9]. Unless otherwise specified, ALOE in
this work uses the TRILLsson (AST) pretrained model with
class-aware uncertainty-based sampling, specifically the small-
est margin sampling.

4. RESULTS AND ANALYSIS

Table 1 compares the test set performance of ALOE after 100
rounds of AL to other self-supervised or distillation-based
models. As expected, TRILLsson has the highest recognition
rate (often above 95%) across a wide range of non-semantic



Table 2: Uncertainty sampling provides better performance on fest set than random sampling across different architectures.

Dataset ResNet-50 EfficientNet-v2 (B3) Spectrogram Transformer (AST)
Random Uncertainty Random Uncertainty Random Uncertainty
MSWC (Micro-EN) 91.4+ 0.70 92.8+ 0.58 88.2+ 1.11 91.9+ 0.56 90.6+ 1.48 93.0+ 0.50
SpeechCommands 9244+ 1.37 93.1+ 0.89 90.44+ 0.58 92.5+ 0.96 92.6+ 1.70 94.9+ 1.12
Vocalsound 82.44+0.92 85.6+ 0.80 84.24+0.73 87.6+ 0.38 84.44 0.94 88.2+ 0.35
Voxforge 95.7+ 0.41 97.4+ 0.23 97.0+ 0.29 98.4+ 0.07 98.4+ 0.17 99.2+ 0.06
FluentSpeech 79.0+ 1.90 82.7+ 1.07 80.9+ 1.95 85.1+ 0.96 83.5+ 1.14 87.5+ 0.96
) leads to a higher test set accuracy for different tasks in both
MSWC (Micro-EN) SpeechCommands . . .
100 class-aware and class-agnostic settings. Figure 2 confirms
§9° § that this is also observed during the AL phase, as measured
g e g & by validation set accuracy. These results indicate that ALOE
S —— Smallest Margin S S .
g Largest Marg?n < successfully selects examples that are more informative than
§70 [ — Entropy § 60 random picks. Within uncertainty-based sampling, the differ-
s |- o o idence | © ent acquisition functions perform similarly well; see Figure 3.
o 1000 2000 3000 0 500 1000 Fu'rthermore, we explor'e th.e effect. of AST as the default pre-
Total Examples Total Examples trained model by switching it out with different neural network
Vocalsound Voxt architectures. Results on test set are summarized in Table 2.
Ocalsoun . . . .
100 2 The different pretrained TRILLsson models performed simi-
g g s larly, but AST showed a slight advantage. We point out from
g'80 o 90 . .
] g Table 2 that uncertainty sampling performs better than random
&:’70 < g sampling across different architectures as well.
S S .
g £ o Recall that the class-aware setting selects more examples
=60 = than the class-agnostic setting at every acquisition step, and
0 200 400 600 0 200 400 600 therefore these two cannot be directly compared to each other.
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Fig. 3: Different uncertainty sampling methods paired with
pretrained model perform similarly well on validation set.

speech classification tasks. But ALOE with class-aware
uncertainty-based sampling achieves accuracy comparable to

TRILLsson while using several times fewer labeled examples.

For example, ALOE arrives at 99.2% accuracy on Voxforge
after only acquiring labels for 600 samples, surprisingly close
to the 99.6% achieved by the upper-bound model that used the
entire labeled dataset. This suggests that with the pretrained
TRILLsson (AST) model as Fy, the linear classifier G, needs
only a couple hundred labeled examples to be near perfect in
this task. The implications are impressive: when deployed in
the real world, this human-in-the-loop approach may eliminate
the cost of acquiring excess labels in the first place, taking the
guesswork out of data collection. We note that ALOE gets
to within 0.7% to 2.9% of TRILLsson’s accuracy in MSWC,
SpeechCommands, and Vocalsound as well, supporting the
notion that AL with pretrained models can improve data- and
label-efficiency in many non-semantic speech tasks.

Next, we discuss the effect of uncertainty-based sampling
in ALOE. Comparing the neighboring random and uncertainty
columns in Table 1 shows that although the extent may differ
(0.1% to 8.3%), the uncertainty-based sampling method often

Instead, users should choose one of the approaches based on
their AL labeling budgets and computational costs. They also
need to choose the total number of AL acquisition steps. While
we fixed that number at 100 for all experiments in this work,
users can easily monitor validation accuracy as in Figure 2 to
determine different stopping points. For instance, they may
decide to do early stopping when the performance plateaus
(e.g. SpeechCommands with class-aware sampling) or let the
model train longer (e.g. Fluent Speech).

To reiterate, ALOE does not fine-tune the encoder during
AL as our motivation is to use a generic feature extractor for
more than one task, and updating the parameters with few
samples can have catastrophic consequences for the learned
representations from large-scale data. However, we note that
when a sizeable portion of the data is labeled at the end of the
AL phase, it may be used for end-to-end model fine-tuning.

5. CONCLUSIONS

We proposed ALOE, a novel approach to improve label- and
sample-efficiency of non-semantic speech tasks with active
learning. It provides an end-to-end system that exploits pre-
trained models more effectively, consequently mitigating the
need to prepare large labeled data for downstream tasks. We
plan to extend this framework to graph-based active learning.
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