


attempt at improving label efficiency for non-semantic speech

tasks with AL. In principle, AL provides a systematic way to

procure labels for the most informative instances, e.g. a class

for which a model is highly uncertain [4, 5]. AL framework

comprises of three stages: a) acquisitionÐselecting relevant

examples, b) annotationÐgetting ground-truth labels from a

human annotator, and c) retrainingÐlearning model on ac-

quired and existing labeled instances. In practice, these steps

are time-consuming and computationally expensive because

a model has to be trained many times during the AL cycle.

We improve the efficiency of AL with the power of semantic

representations from pretrained models while also enhancing

its acquisition capability, which is otherwise limited when

training a model from scratch. Furthermore, we are privy to a

better view of the annotation process with human-in-the-loop.

We demonstrate the effectiveness of our approach on a

broad range of tasks, uncertainty-based acquisition functions,

and model architectures. Training a linear classifier on top of

a frozen encoder with AL uses only a fraction of the examples

yet results in a similar performance as several baselines that

utilize the entire labeled data. ALOE provides an end-to-end

system for exploiting pretrained models more effectively and

mitigates the need to acquire large labeled data beforehand.

2. METHODOLOGY

We propose to use a pretrained (unsupervised or self-supervised)

model with active learning (AL) to improve the data- and

label-efficiency of deep models in non-semantic speech tasks.

Importantly, ALOE has a shared fixed pretrained encoder with

separate shallow classifiers for each end-task. Our approach

leverages generic speech representations learned from massive

amounts of unlabeled data and identifies key samples from an

intended end-task that are to be labeled by a human annotator

(i.e. an oracle) depending on their uncertainty scores.

We consider an AL setup with pool-based acquisition as

commonly studied in the literature [5, 6]. Let X ⊆ R
d be

d-dimensional speech data samples, Y be labels of a non-

semantic speech classification task, and Fθ : X → R
m be

a pretrained encoder, whose embedding dimension m ≪ d.

Given some labeled instances Dl ⊂ X ×Y and a large amount

of unlabeled data Du ⊂ X with |Dl|≪ |Du|, the aim is to

incrementally label samples in Du to minimize the cost of

annotation, better understand the annotation process, and ulti-

mately improve model generalization with few labels.

For each task, we initiate the AL process by acquiring Dl

to train a shallow classifier Gω : Rm → R
|Y| on top of the m-

dimensional representations from Fθ. Gω is a fully-connected

linear model with softmax activation such that it outputs the

probability an input x ∈ X belongs to each class y ∈ Y:

Gω(Fθ(x)) = [P (y1|x), P (y2|x), . . . , P (y|Y||x)]. (1)

Once Gω is trained on Dl, model weights ω is fixed and pre-

dictions for each instance in Du are generated. ALOE then

uses an acquisition function A : R|Y| → X to select the most

valuable examples of Du for label generation within a certain

budget. Once these labels are acquired, this batch of examples

is merged into the existing Dl. It is followed by retraining

Gω using the updated Dl, and we repeat this process for a

fixed number of AL acquisition steps. We note that instead

of keeping Fθ fixed during AL, one can fine-tune the entire

model (i.e. Fθ and Gω) end-to-end, but this process can be

very time-consuming as retraining has to be performed after

each label acquisition step, and the learnable parameters also

increase significantly. Similarly, the feature extraction model

Fθ will become task-specific; it may lose its generalizable

nature and not perform well for other downstream tasks.

For the acquisition function A, we use an uncertainty

sampling-based method called smallest margin, which is rela-

tively simple yet shown to be effective in identifying informa-

tive examples for annotation [5, 7]. Specifically, A selects

x∗ = arg min
x∈Du

P (y(1)|x)− P (y(2)|x), (2)

where P (y(i)|x) is the ith largest probability in (1), e.g. the

predicted label for the sample is y(1). That is, (2) chooses

samples that have a ªvery close second prediction.º Thus the

model is less certain about them, and acquiring their labels

from the oracle will provide more information about where

the decision boundary of the updated model should be.

3. EXPERIMENTS

For Fθ, we leverage publicly available pretrained models from

the TRILLsson family, in particular, the Audio Spectrogram

Transformer (AST) [9]. TRILLsson models are trained via

knowledge distillation using large-scale unlabeled data with a

massive self-supervised conformer-based teacher model. They

provide state-of-the-art performance on a broad spectrum of

downstream non-semantic speech tasks while being smaller

than the teacher model. All pretrained models mentioned in

this paper are from TensorFlow Hub1. Fθ embeds the entire

audio clip into a single vector with dimension m = 1024.

For each task, we report results aggregated from 10 inde-

pendent runs of the experiment. For each run of the experiment,

there are 100 AL acquisition steps, and at each AL acquisition

step, Gω is trained for 100 epochs with Adam and a learning

rate of 0.001. As the size of ω is quite small, the added benefit

of our approach is that AL executes at a rapid pace. Dl is ini-

tially seeded with 5 labeled examples per class. At each round

of AL, class-aware sampling selects one example per class

based on the predicted labels, while class-agnostic sampling

picks a single example from all of Du. Note that this means

they acquire |Y| labels and 1 label at each step, respectively.

Several publicly available datasets are used to evaluate

audio recognition models with active learning. Specifically,

we focus on non-semantic speech tasks [1, 9] as the feature

1https://tfhub.dev/
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