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Communicated by (xxxxxxxxxx)

In this paper we use modified versions of the SIAR–model for epidemics to pro-
pose two ways of understanding and quantifying the effect of non-compliance to non-
pharmaceutical intervention measures on the spread of an infectious disease. The SIAR
model distinguishes between symptomatic infected (I) and asymptomatic infected (A)
populations. One modification, which is simpler, assumes a known proportion of the
population does not comply with government mandates such as quaranting and social-
distancing. In a more sophisticated approach, the modifed model treats non-compliant
behavior as a social contagion. We theoretically explore different scenarios such as the oc-

currence of multiple waves of infections. Local and asymptotic analyses for both models

are also provided.

Keywords: Epidemic models; compartmental models; stability analysis; non-compliant
behavior
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1. Introduction

The COVID-19 pandemic led to the implementation of many non–pharmaceutical

interventions (NPIs) to delay the rapid spread of the novel coronavirus (SARS-

CoV-2). Some of the most common NPIs are mandated social distancing and self-

quarantine, but these inevitably lead to non-compliant populations3,46,55 and have

societal and economic impacts. Social scientiests refer to deleterious effects of NPIs

on mental health (and subsequent wane in compliance with NPIs) as quarantine

fatigue9 and hypothesize that social distancing mandates and all–or–nothing stay–

at–home orders are similar to abstinence–only messages for issues like substance

abuse and teen pregnancy prevention36, which have mixed results 49. The dynaics

of non-compliance may spread by way of social contagion 14 in which a given be-

havior spreads through a population like an epidemic. This approach has been used

to model illicit substance use2 and adolescent sexual behavior48. In this paper,

we utilize compartmental models as the primary tool for developing between-host

epidemic models with non-compliant populations.

We note that between-host compartmental modeling is one of many methods for

epidemic modeling being used to understand the COVID-19 pandemic. Disease mod-

els can broadly be divided into between-host analysis—those which analyze spread

of the disease from one person to another—and in-host analysis—those which ana-

lyze the dynamics of the disease and immune response within a person41,44,51,15,27,47.

Even in the realm of between-host analysis, there are a variety of approaches one

may take including compartmental modeling (as in this study and many of the

references below), network models 20,43,17,39,52, agent-based models 31,32,34,42, and

self-exciting point process models 13,30,24. Modeling a pandemic with high fidelity

would likely require multiscale considerations, so some effort has been devoted to

developing combined between-and-within-host models5,45,12. However, this study

will be focused on between-host compartmental modeling.
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1.1. The SIR Model and R0

There is an abundance of literature on epidemic models dating back to the early

20th century. A cornerstone of classical mass–action models is the Susceptible–

Infected–Recovered (SIR) model. The model supposes that a disease spreads among

a homogeneous and well-mixed population according to 28:























Ṡ(t) = −βI(t)S(t)

İ(t) = βI(t)S(t)− γI(t)

Ṙ(t) = γI(t)

β > 0 γ > 0,

(1.1)

where S(t), I(t), R(t) represent the susceptible, infected, and removed or recovered

populations respectively at time t. The positive parameters β and γ represent the

transmission and recovery rates of the disease, respectively. In this study we consider

the normalized version with S(t)+I(t)+R(t) = 1 for all t > 0. Modifications of the

model (1.1) have been formulated to incorporate more information about the under-

lying disease1,7,29,40,54. Additional compartments have been introduced to consider

the group of people that are asymptomatic infected23,38 and quarantined infected

individuals35. Some researchers have also introduced and studied time–dependent

transmission rates and its dynamical impact on the spread of infection11,26.

An important quantity is the basic reproduction number R0, the expected number

of secondary infections generated by a typical individual in a completely susceptible

population19. For general compartmental models, this quantity can be derived using

the next generation matrix method18,19,53. For the SIR model, R0 = β
γ
. If R0 > 1, a

small outbreak of infections will cause an epidemic (that is, cause I(t) to increase for

small t) whereas if R0 < 1, a small outbreak of infections will die off without causing

an epidemic (that is, I(t) will decrease). Due to its simplicity of both modeling

and simulation, compartmental models are widely used in the study of infectious

diseases, particularly because they reveal the worst–case scenarios.

1.2. Herd Immunity and Final Size

Another important quantity is the herd immunity threshold value S(th) with cor-

responding herd immunity time th. This is the minimum threshold required for the

recovered population to avoid continued growth of infections. In the case of the SIR

model, this threshold occurs at any time th such that S(th) < R
−1
0 . Observe, how-

ever, that for an epidemic following (1.1), it can be shown that S(t) never vanishes

and in fact, S(t) > S(0)e−R0 for all t > 0.

One may also wish to determine the final size of the susceptible population at

the end of an epidemic period37. The final susceptible population size S∞ is given

implicitly by

S∞ = S(0)e−R0(1−S∞). (1.2)
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Making the reasonable assertion of limt→∞ I(t) = 0, one can equivalently see R∞ =

1− S∞.

Therefore, for the basic epidemiological compartmental model, knowledge of R0

provides answers to three important questions:

Q1. Will an outbreak of infections cause an epidemic?

Q2. What is the herd immunity threshold S(th) with corresponding time th?

Q3. What will be the final size of the outbreak?

During the outbreak of COVID-19, there has been interest in incorporating hu-

man behavior into epidemiological models, as recent research from public health

experts suggests that a nontrivial portion of individuals will not comply with gov-

ernment mandated NPIs and that this has a significant effect on the spread of the

disease16,25,50.

In this paper we introduce two new models that take distinct routes to incorpo-

rate non-compliant populations that affect disease spread. The first model assumes

that individuals have a given – potentially time–dependent – probability of be-

ing compliant to lockdown measures. In our study, the probability is taken to be

piecewise constant. From a modeling standpoint, this may be unsatisfying because

of the difficulties to accurately measure overall compliance with social distancing

measures. Our second model is inspired by social contagion theory. The strategy of

social contagion modeling is to treat a given behavior–as an epidemic, with those

partaking in the behavior “infecting" others and causing them to behave accord-

ingly. As such, this model essentially has two epidemics running in parallel: one

representing the actual disease and another representing non-compliant behavior.

We analyze the interaction between these two with special emphasis devoted to the

effect of non-compliance on the spread of the disease. The remainder of this paper

is organized as follows: in section 2, we introduce the new models. In section 3,

we study stability and equilibria with a focus on showing that knowledge of each

model’s basic reproduction number R0 provides good local and long–time behav-

ioral properties. In section 4 and section 5, we investigate herd immunity thresholds

for both of the models introduced in section 2.

2. The New Models, Simulations and Discussion

In this section we present two new models for SIAR type dynamics that incorporate

non-pharmaceutical intervention measures and non-compliant behavior.

2.1. Constant or piecewise constant probability of compliance: the

p–model

The first model incorporates two important aspects of the COVID-19 pandemic.

First, inspired by previous work23, the model includes a new class of infectious indi-

viduals. Here, we split the typical infected compartment I into two compartments:
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symptomatic infected I and asymptomatic infected A. We assume that new infec-

tions are symptomatic with probability ζ and asymptomatic with probability 1− ζ.

Keeping the notation of (1.1), we take the natural transmission rate to be β. We

denote by γ1 the recovery rate for symptomatic infected individuals and by γ2 the

recovery rate of asymptomatic infected individuals. We model NPIs as a reduction

of interactions quantified via a new parameter α ∈ (0, 1). Specifically, we assume

that a portion (1 − α) of the compliant population is actively mixing and trans-

mitting the disease. We also assume that a portion ξ ∈ (0, 1) of the symptomatic

infected individuals isolate independently of NPIs. Finally, we assume that a given

individual (who is not symptomatic infected) complies with NPIs with a probability

p(t) at a given instant t > 0.

The susceptible population loses members at a rate proportional to the product

of the actively mixing susceptible and infected populations. Per the above discussion,

the portion of susceptible population that is actively mixing is given by

(1− α)pS + (1− p)S = (1− αp)S,

and similarly the portion of the infected population that is actively mixing is given

by

(1− αp)IM := (1− αp)((1− ξ)I +A).

Note that IM is the portion of the infected population that is actively mixing in

the absence of any NPIs.

Thus the system of differential equations for this model, henceforth referred to

as the p–model, is given by






















Ṡ = −β(1− αp)2IMS

İ = ζβ(1− αp)2IMS − γ1I

Ȧ = (1− ζ)β(1− αp)2IMS − γ2A

Ṙ = γ1I + γ2A

(2.1)

paired with initial conditions S(0) = S0 = 1 − ε, I(0) = I0 = ζε, A(0) = A0 =

(1 − ζ)ε , for ε ∈ (0, 1) representing the overall initial infected population, and

R(0) = R0 = 0.

2.2. Simulations and discussion for the p-model

In the following simulations, we use the parameter values

γ1 = 1/14, γ2 = 1/18, ζ = 0.75, ξ = 0.8, T = 100 and

p(t) =

{

0.9 t 6 T/2,

0.45 T/2 < t 6 T.

Other parameters will vary from one simulation to another. We emphasize that

these are synthetic parameter values. While faithfully estimating parameters within
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Fig. 1. A sudden decrease in compliance might result in a second wave of infections for the p-Model.

epidemic models is an active area of research 56,6,22,10, it is outside the scope of this

qualitative study.

An interesting aspect of the p-model is the possibility of several waves of infec-

tions with different peaks correlated with a change in the probability of compliance

p. Intuitively, it seems that when a large portion of the population is compliant, the

implementation of very stringent lockdown measures (e.g., α = 0.9) could eradicate

the disease before quarantine fatigue becomes significant. The p-model indicates

that this may not be the case, as illustrated in Figure 1, where the intensity of the

NPIs is α = 0.9, the transmission parameter is β = 4, ε = 0.15 so that 15% of the

population is initially infected.

The structure of this model allow us to explore a few scenarios when multiple

waves of infections do or do not occur. First, we note that controlling the size of the

infected population is only possible if the natural uncontrolled transmission rate

is small enough. If β is too large, the initial epidemic will infect a large enough

portion of the susceptible population to prevent future epidemics. We illustrate

this in Figure 2 where we increase the transmission rate to β = 6, but hold other

parameters constant. Intuitively, if the first wave of infections is large enough, there

can be no second wave.

By contrast, if the initial infection is very small and the compliance decreases,

a drastically larger second wave of infections can occur, despite the application of

severe NPIs. For instance, setting the transmission rate β = 5, if we assume that

initial infection represents only 1% of the entire population (ε = 0.01), the second

peak is bigger than the first, as illustrated in Figure 3. This idea is also discussed
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Fig. 2. A high transmission rate can negate the effect of strict lockdowns with a high compliance
rate, preventing a smaller second wave even with a drop in compliance.

in some detail in 8 for the standard SIR model with controls.

The possibility of multiple waves of infection will impact the stability analysis

Fig. 3. A decrease in compliance before the susceptible class is sufficiently small has the potential
to cause a larger second wave.
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of the model. In contrast with the basic SIR-model, the knowledge of the basic

reproduction number is unlikely to imply local asymptotic stability of the disease-

free equilibrium points, although it is possible to prove that the infected class will

eventually be driven to zero monotonically. Questions regarding herd immunity and

final sizes also depend critically on the existence of multiple peaks (and therefore

on compliant or non-compliant behavior). These dynamics can be further explored

by introducing multiple susceptible compartments and considering the underlying

fluxes among these classes. By doing so, one observes large perturbations of the

basic reproduction number even if the infectious subsystem is near equilibrium.

Our second model accounts for two classes of susceptible individuals and allows a

parallel (social) contagion corresponding to noncompliance with NPIs that triggers

the flux between them. Consequently, a more specific and detailed stability analysis

is not only possible, but necessary.

2.3. Non-compliance as a disease: the NCD–model

As mentioned earlier, the idea of modeling certain behaviors as a social contagion

has precedent in the social sciences2,14,21. To include non-compliance as a social

contagion, we let superscripts c and nc indicate compliant and non-compliant sub-

populations respectively. The variables and compartment names are otherwise the

same as in the p–model. Thus we have 1 = N c+Nnc where N c = Sc+ Ic+Ac+Rc

and Nnc = Snc + Inc + Anc + Rnc. Again assume that a portion ξ ∈ (0, 1) of the

symptomatic infected individuals isolate independently of NPIs and that only a

portion 1− ξ will be affected by noncompliance and NPIs. The additional feature is

to model non-compliance using mass-action terms with transmission rate δ > 0. In

practice, this parameter is very difficult to determine. We do not include “recovery"

for the social contagion: once an individual has become non-compliant, we assume

they are permanently non-compliant.

We use the same mass-action mixing argument from the previous model. The

first thing to consider is the amount of infected and susceptible individuals who are

actively mixing. The compliant susceptible population will isolate in compliance

with lockdown mandates. Therefore, only a portion (1 − α)Sc will be mixing. On

the other hand, non-compliant susceptible individuals do not isolate, so the com-

partment Snc is not multiplied by the factor (1− α). Applying the same reasoning

for the compartment of asymptomatic infected population we arrive at

IM = (1− ξ)((1− α)Ic + Inc) + (1− α)Ac +Anc. (2.2)

Here IM again indicates the amount of infected individuals that are mixing. Hence,

modeling compliance as a social contagion with transmission parameter δ means

that the compliant susceptible class will lose members at a rate proportional to

the the mass-action term NncSc. These members transfer to the non-compliant
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susceptible compartment. Thus the equations for the susceptible populations are

Ṡc = −β(1− α)IMSc − δNncSc, (2.3)

˙Snc = −βIMSnc + δNncSc (2.4)

Once removed from the susceptible categories, an infected individual will be

added to the symptomatic subgroup with probability ζ and will recover with rate

γ1, or added to the asymptomatic subgroup and recover with rate γ2. A similar

reasoning as before regarding compliant/non-complaint populations and the flow

among them yields the following equations for the infected compartments

İc = ζβ(1− α)IMSc − γ1I
c − δNncIc (2.5)

˙Inc = ζβIMSnc − γ1I
nc + δNncIc (2.6)

Ȧc = (1− ζ)(1− α)βIMSc − γ2A
c − δNncAc (2.7)

˙Anc = (1− ζ)βIMSnc − γ2A
nc + δNncAc (2.8)

The outwards flux from the infected compartments goes to the recov-

ered/removed compartments according to their compliance status. Therefore the

differential equations for the R-compartments are

Ṙc = γ1I
c + γ2A

c − δNncRc (2.9)

˙Rnc = γ1I
nc + γ2A

nc + δNncRc. (2.10)

We pair equations (2.3)-(2.10) with initial conditions

Sc(0) = Sc
0 = (1− ε)(1− σ), Snc(0) = Snc

0 = (1− ε)σ,

Ic(0) = Ic0 = ζ(1− σ)ε, Inc(0) = Inc0 = ζσε,

Ac(0) = Ac
0 = (1− ζ)(1− σ)ε, Anc(0) = Anc

0 = (1− ζ)σε,

Rc(0) = R0 = 0, Rnc(0) = Rnc
0 = 0,

where σ, ε ∈ (0, 1) represent the initial portion of non-compliant individuals and

the initial portion of infected individuals, respectively. Henceforth, we refer to this

as the Non-Compliance as a Disease (NCD) model.

The idea of splitting the non-compliant population into separate compartments

is relatively novel. Peng et al.43 propose a similar model rooted in network the-

ory, and Barbarossa and Fuhrmann4 simulate and discuss a similar compartmental

model, but do not consider flow between compliant and non-compliant populations.

To the authors’ knowledge, the analysis of second waves of infections, herd im-

munity, and final infection size—and specifically their dependence on the human

behavior parameters δ and σ—is novel.

2.4. Basic simulations and discussion for the NCD–model

Again, we set

γ1 = 1/14, γ2 = 1/18, ζ = 0.75, ξ = 0.8, and α = 0.9



July 30, 2022 18:18 WSPC/INSTRUCTION FILE output

10 Bongarti et al.

Fig. 4. Sample simulation for the NCD model taking δ = 0.01, σ = 0.3, and β = 5.

and vary some other parameters as discussed below. We mention once again that

these are hypothetical parameter values used to carry out a qualitative study of the

behavior of the model.

Our first sample simulation includes a significant portion of non-compliant indi-

viduals. In Figure 4, we take the non-compliance transmission rate to be δ = 0.01

and the initial non-compliance rate σ = 0.3, so that 30% of the population is non-

compliant. We use a disease transmission rate of β = 5 and the initial total infected

population of 15% (ε = 0.15). As the non-compliant portion of the population mixes

at a higher rate than the compliant population, the non-compliant populations see

earlier and larger infection peaks than the compliant population.

The simulation provided in Figure 4 has a relatively small non-compliance trans-

mission rate, leaving the total non-compliant population nearly constant for the

duration of the epidemic. If we take change the non-compliance transmission rate

to δ = 0.1 while all other parameters remain as before, we have the results shown in

Figure 5. In particular, the non-compliant compartments see even larger epidemic

peaks since they comprise a larger portion of the population during the epidemic.

Furthermore, the peaks in the non-compliant compartments occur later since the

influx terms in equations 2.6 and 2.8 are large in comparison to the out-flux due to

recovery. It is also interesting to note initial decrease in the symptomatic compliant

compartment followed by an epidemic. This phenomenon indicates that the initial

lockdown measures and low non-compliance rate were strong enough to prevent an

epidemic, but the swift increase in non-compliance and resulting increase in total

infections quickly outweighed the effects of the lockdown.
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Fig. 5. Simulation for the NCD model taking δ = 0.1, σ = 0.3, and β = 5.

Allowing the total non-compliant population to vary smoothly induces some

interesting behavior under more extreme parameter regimes. If we take the initial

non-compliant population and the non-compliance transmission rate to both be

small, we see multiple epidemic waves occur in each infected compartment. As the

time between these waves grows smaller, they merge into a single broad, bumpy

wave, see Figure 6 for an example of this behavior. These dynamics can be ex-

plained by analyzing the susceptible non-compliant population over time, which is

also displayed in Figure 6. As the initial lockdown is strong and non-compliance is

nearly non-existent, there is initially no epidemic. Once non-compliant susceptible

population grows large enough, an epidemic occurs within this compartment, cre-

ating a large enough total infected population to induce epidemics in the compliant

population. However, since the epidemic spreads quickly through the non-compliant

population, the entire epidemic dies out before the total susceptible population is

small enough to prevent another epidemic. There is then again a lull in infections

until the non-compliant susceptible population becomes sufficiently large, and the

cycle repeats.

3. Equilibria and Stability Analysis

As discussed above, a central quantity governing the behavior of epidemic models is

the basic reproduction number R0. For each of the models introduced in section 2,

the next generation matrix method18,19,53 allows us to compute the associated re-

production number R0. However, stability properties do not follow readily because

of the structure of the models.
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Fig. 6. Simulation for the NCD model taking δ = 1 × 10
−3, σ = 0.01, and β = 5.0. The initial

total infected population is ε = 1 × 10
−7. The top plot shows the infected populations, and the

bottom figure shows the susceptible non-compliant population.

To facilitate exposition, we employ the ensuing terminology and notation. An n-

dimensional dynamical system is represented by an autonomous differential equation

ẋ = f(x), (3.1)

where f : Rn → R
n is a given nonlinear function. Given an equilibrium point x (that

is, a point such that f(x) = 0), a Lyapunov criteria for local asymptotic stability is
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that

s(Df(x)) := sup {Re(λ);λ ∈ σ(Df(x))} < 0 (3.2)

where σ(·) denotes the spectrum set. We note that for basic epidemiological models

such as (1.1) local stability analysis is essentially equivalent to the analysis of R0

discussed in section 1. On one hand, subdividing the susceptible population allows

us to consider cases wherein the disease spreads differently among different demo-

graphics. On the other hand, such subdivisions complicate the analysis because they

introduce the possibility of more than one disease–free equilibrium point.

We are interested in determining stability properties of the infected subsystem

in the vicinity of disease–free equilibria. Let nI be the number of infected compart-

ments in a given system, and let w(t) be the vector representing them. We then

write the infected subsystem as

ẇ = (T +Σ)w, (3.3)

where T,Σ are the nI × nI transmission and transition matrices respectively. The

transmission matrix captures the introduction of new infections, while the transmis-

sion matrix captures flow between (and out of) the infected compartments. With

this representation, the basic reproduction number is defined as

R0 := ρ(−TΣ−1)

where ρ(A) := max{|λ|;λ ∈ σ(A)}. Here −TΣ is called the next generation

matrix. A full exposition of the next generation matrix method is given in the

references18,19,53

Proposition 3.1. Let T,Σ be n × n matrices with real entries such that T is

positivea and Σ is invertible and positive–off–diagonalb with s(Σ) < 0. Then

sign(ρ(−TΣ−1)− 1) = sign(s(T +Σ)). (3.4)

Remark 3.1. We say that an equilibrium point x is locally asymptotically stable

with respect to the subsystem of infected compartments if the infectious subsystem

(3.3) is asymptotically stable while the system as a whole is in the vicinity of an

equilibrium state. Thus combining proposition 3.1 and the Lyapunov criteria (3.2),

we see that an equilibrium point x is locally asymptotically stable with respect to

the infected compartments if and only if ρ(−TΣ−1) < 1.

aHere, an n × n matrix is called positive if all entries are nonnegative. This does not denote

positive-definiteness in the sense of operators.
bAn n× n matrix is called positive–off–diagonal if all the entries not on the diagonal are nonneg-
ative.
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3.1. Equilibrium and Stability analysis for the p-model

For the analysis of the p–model we assume that p(t) = p is constant. In essence,

this assumes that the population is divided into static compliant and non-compliant

populations, with no flow between the two.

With reference to (3.1) we denote x = (S, I, A,R)> and let f(x) denote the

right hand side of (2.1). The (pre–outbreak) disease-free equilibrium point for this

model is xp := (S, I, A,R) = (1, 0, 0, 0), and no endemic equilibrium is observed.The

transmission and transition matrices for the p–model are given by

Tp = β(1− αp)2upv
>

p and Σp =

(

−γ1 0

0 −γ2

)

where u>

p = (ζ, 1− ζ), and v>p = (1− ξ, 1).

(3.5)

The next generation matrix is then −TpΣp
−1 = −β(1 − αp)2upv

>
p Σ

−1
p , =and the

basic reproduction number is

R
p
0 = ρ(−TpΣp

−1) = β(1− αp)2v>p (−Σp)
−1up

= β(1− αp)2
[

ζ(1− ξ)

γ1
+

(1− ζ)

γ2

]

.
(3.6)

Notice that in the particular cases (α = ξ = 0 and ζ = 1) or (α = ζ = 0), R
p
0

reduces to β
γi

where i = 1 or i = 2. In these cases, the dynamics are identical to

the basic SIR model (1.1) with either I or A from the p-model playing the role of

I from the SIR model.

It follows from Proposition 3.1 and the Lyapunov criteria (3.2) that the disease

free equilibrium xp = (1, 0, 0, 0) is locally asymptotically stable if and only if R
p
0 < 1.

3.2. Equilibrium and Stability analysis for the NCD-model

The stability analysis for the NCD–model is more intricate than that of the p–

model. As in the p-model, the only non-zero populations for pre-outbreak equilib-

rium states are the susceptible individuals. However, since we allow for two types

of susceptibility, we have two disease-free equilibria:

xc := (Sc
c , S

nc
c , Icc , I

nc
c , Ac

c, A
nc
c , Rc

c, R
nc
c ) = (1, 0, 0, 0, 0, 0, 0, 0)

representing the equilibrium state at which the entire population is assumed to be

compliant to NPIs, and

xnc := (Sc
nc, S

nc
nc , I

c
nc, I

nc
nc , A

c
nc, A

nc
nc, R

c
nc, R

nc
nc) = (0, 1, 0, 0, 0, 0, 0, 0)

representing the equilibrium state at which the entire population is assumed to be

non-compliant to NPIs.
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In this case the transmission and transition matrices for the compliant equilib-

rium are given by

Tc = β(1− α)ucv
>

c and Σc =









−γ1 0 0 0

0 −γ1 0 0

0 0 −γ2 0

0 0 0 −γ2









where u>

c = (ζ, 0, 1− ζ, 0) and v>c = ((1− ξ)(1− α), 1− ξ, 1− α, 1).

For the non-compliant equilibrium, they are given by

Tnc = βuncv
>

nc and Σnc =









−(δ + γ1) 0 0 0

δ −γ1 0 0

0 0 −(δ + γ2) 0

0 0 δ −γ2









where u>

nc = (0, ζ, 0, 1− ζ) and v>nc = ((1− ξ)(1− α), 1− ξ, 1− α, 1).

Therefore the basic reproduction numbers for compliant and non-compliant equi-

libria are given (respectively) by

R
c
0 = ρ(−TcΣ

−1
c ) = β(1− α)v>c (−Σc)

−1uc = β(1− α)2
[

ζ(1− ξ)

γ1
+

(1− ζ)

γ2

]

(3.7)

and

R
nc
0 = ρ(−TncΣ

−1
nc ) = βv>nc(−Σnc)

−1unc = β

[

ζ(1− ξ)

γ1
+

(1− ζ)

γ2

]

(3.8)

For the case δ = 0, it again follows from Proposition 3.1 and the Lyapunov

criteria (3.2) that the disease free equilibrium xc is locally asymptotically if and

only if Rc
0 < 1. Likewise, the xnc is locally asymptotically stable if and only if

Rnc
0 < 1 (in this case, we do not need the caveat that δ = 0, since there will never

be a nonzero compliant population).

The basic reproduction numbers Rc
0 and Rnc

0 validate the modeling strategy

employed in this work. Notice that in case the population is at xnc, NPI strategies

– represented by α ∈ (0, 1) – play no role in the stability criteria, which is expected.

One may also note that Rc
0 = (1 − α)2Rnc

0 which is also as expected since perfect

adherence to NPIs results in a square reduction of mixing since the reduction is

applied to both the susceptible and infected classes.

Another important note is that xc and xnc represent two very extreme situ-

ations that are very unlikely to happen in practice. Moreover, in both cases the

transmission of non-compliance plays no role: in the former because there are no

non-compliant individuals to infect others and in the latter because the entire pop-

ulation is already non-compliant.

These give threshold values for stability provided one knows which equilibrium

point the population is in. However, given that our susceptible populations were
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divided based on large–scale human behavior, it is very unlikely that (1) the popu-

lation will ever be at equilibrium and (2) it will ever be possible to quantify exactly

how far from equilibrium the population is. Therefore, to offer a more practical

threshold quantity, we provide stability results on general disease-free states.

We consider a family of possible pre-outbreak disease–free states of the form

xσ = (1− σ, σ, 0, 0, 0, 0, 0, 0)

where σ ∈ (0, 1) represents the proportion of population that is non-compliant to

NPIs. Note that at states xσ, the system as a whole is not in equilibrium, but

the infected compartments are all zero and thus the infectious subsystem is in

equilibrium.

Supposing the initial state of the system is xσ, we seek a threshold parameter

that determines whether or not the introduction of infected individuals could lead to

an epidemic. This question is deeper than simply asking whether or not an outbreak

will occur given σ ∈ (0, 1). The issue is that policy makers do not have access to

precise measurements of σ and therefore cannot draw conclusions from it.

Linearizing (2.3)-(2.10) around xσ = (1 − σ, σ, 0, 0, 0, 0, 0, 0), we find that the

transmission and transition matrices for the infected sub–system are given by

Tσ = βuσv
>

σ and Σσ =









−(σδ + γ1) 0 0 0

σδ −γ1 0 0

0 0 −(σδ + γ2) 0

0 0 σδ −γ2









with

u>

σ =
(

(1− α)(1− σ)ζ, σζ, (1− α)(1− σ)(1− ζ), σ(1− ζ)
)

v>σ =
(

(1− ξ)(1− α), (1− ξ), (1− α), 1
)

,
(3.9)

Therefore,

R
σ
0 :=ρ(−TσΣ

−1
σ ) = βv>σ (−Σ−1

σ )uσ

=β

[(

1

γ1
−

α

σδ + γ1

)

(1− ξ)(1− α)(1− σ)ζ +
(1− ξ)σζ

γ1

]

+ β

[(

1

γ2
−

α

σδ + γ2

)

(1− α)(1− σ)(1− ζ) +
(1− ζ)σ

γ2

]

. (3.10)

We observe that Rc
0 = R0

0 and Rnc
0 = R1

0 . Moreover, assuming δ = 0 we can see that

the disease free state x̃σ = (1 − σ, σ, 0, 0, 0, 0, 0, 0) is locally asymptotically stable

with respect to the infectious sub–system if and only if Rσ
0 < 1. The assumption

that δ = 0 is pivotal for the validity of this stability property, but is undesirable

because it significantly simplifies the model.

We now introduce a series of lemmas that will be useful for achieving our final

stability result. First, we notice that the basic reproduction numbers Rc
0 and Rnc

0

give upper and lower bounds for the threshold values that imply disease-free local
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stability of x̃σ regardless of σ. Obviously it does not fully describe the asymptotic

profile in all cases. For example, if Rc
0 < 1 and Rnc

0 > 1, then neither of them

dictates the behavior of the system thus one needs to look specifically at Rσ
0 . In the

case where either Rc
0 > 1 or Rnc

0 < 1, the long–time behavior is well established.

The first lemma provides a monotonicity property of the basic reproduction number

as a function of σ ∈ (0, 1).

Lemma 3.1. The map σ 7→ Rσ
0 is strictly increasing on (0, 1). In particular, this

means that

R
c
0 < R

σ
0 < R

nc
0 . (3.11)

for every σ ∈ (0, 1).

Proof. Differentiating (3.10) with respect to σ we have

dRσ
0

dσ
= β

[

αδ

(σδ + γ1)2
(1− ξ)(1− α)(1− σ)ζ

−

(

1

γ1
−

α

σδ + γ1

)

(1− ξ)(1− α)ζ +
(1− ξ)ζ

γ1

]

+ β

[

αδ

(σδ + γ2)2
(1− α)(1− σ)(1− ζ)

−

(

1

γ2
−

α

σδ + γ2

)

(1− α)(1− ζ) +
(1− ζ)

γ2

]

> β

[

−
(1− ξ)(1− α)ζ

γ1
+

(1− ξ)ζ

γ1
−

(1− α)(1− ζ)

γ2
+

1− ζ

γ2

]

> 0,

since α > 0.

An immediate corollary of Lemma 3.1 is the local stability of disease-free states

in special cases.

Proposition 3.2. The values Rc
0 and Rnc

0 provide stability properties of the

disease-free state xσ in the following way:

(i) If Rc
0 > 1, then xσ is unstable for all σ ∈ [0, 1].

(ii) If Rnc
0 < 1, then xσ is locally asymptotically stable for all σ ∈ [0, 1]

Proposition 3.2 eschews the assumption δ = 0. This comes at the cost of making

a very strong assumption that either Rc
0 ≥ 1 or Rnc

0 < 1. Going back to (3.8) we

can see that all parameters except ξ involved in Rnc
0 are biological. Therefore, in the

occasion of it being small, it is natural to conclude that the force of the infectious

disease is already under control and, therefore, an epidemic can no longer occur,

regardless of the compliant/non-compliant profile of the population.

For the next stability result, we use the notation and terminology of Laukó33.

Let X be the subset of the positive cone R
8
+ defined

X =
{

x = (xi)
8
i=1 : xi ≥ 0 and

∑

xi = 1
}
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and let Xf ⊂ X be the set of disease-free states:

Xf := {x ∈ X : x3 = x4 = x5 = x6 = 0} . (3.12)

Identifying xi with the ith compartment of our NCD-model listed in the order

(Sc, Snc, Ic, Inc, Ac, Anc, Rc, Rnc), we can rewrite the model as

ẋ = f(x), x(0) = x0 ∈ X. (3.13)

Before applying the main theorem of [33], we point out some key properties of the

NCD-model. First, denote f = (fi)
8
i=1 and write each fi as

fi(x) = Fi(x)− V −

i (x) + V +
i (x),

where Fi, V
−

i , and V +
i denote the rate of appearance of new infections, the rate of

the outwards flow, and the rate of inwards flow in the i-th compartment, respec-

tively. In our case, conditions (A1)-(A5) from [33, p. 1358] are equivalent to the

following remarks:

• The set X is positive invariant. This is to say that given an initial condition

x0 ∈ X, we have x(t) ∈ X for all t > 0.

• The only compartments that receive new infected individuals are Ic, Inc,

Ac, and Anc, which means that Fi ≡ 0 for i = 1, 2, 7, 8.

• If x ∈ Xf , then no infectious compartment receives new infections since

the rate of inception depends on the prevalence of infected individuals.

In addition, no inward flow from other infected categories occurs since all

transition rates are proportional to some infected category. That is, Fi =

V +
i = 0 for i = 3, 4, 5, 6.

Let P : X → R
4
+ denote the projection of X onto the compartments of infected

individuals. That is,

P (x1, x2, x3, x4, x5, x6, x7, x8) = (x3, x4, x5, x6).

We use this projection to define stability of the disease-free stable sets.

Definition 3.1. We say that a set E ⊂ Xf is a disease-free stable set if there

exists a neighborhood U ⊂ R
8
+ of E such that, for all x̃ ∈ U , and t > 0, ‖Px(t)‖ 6

Ke−ωt‖Px̃‖. Here K and ω are positive constants independent of x̃ and x(t) denotes

the solution for (3.13) with x(0) = x̃.

Finally, to verify assumption (H) from [33, p. 1359], we define

E := {(1− σ, σ, 0, 0, 0, 0, 0, 0 : σ ∈ (0, 1)} ⊂ Xf (3.14)

and notice that for any set U such that E ⊆ U ⊆ Xf , the set

TU := {x(t) x(0) ∈ U and ẋ(t) = f(x(t)) for t > 0} ⊂ Xf

is bounded. Under these conditions, we have the following Theorem, the main sta-

bility result of this paper, whose proof is a corollary of Theorem 3.1 in [33, p.

1360].
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Theorem 3.1. Assume Rnc
0 < 1. Then E is a disease-free stable set.

Proof. The proof of this theorem reduces to verifying that, provided Rnc
0 < 1,

the hypotheses of Theorem 3.1 of [33] are satisfied. This entails showing that there

exists a neighborhood U of E such that the family of linearizations

ẏ = Df(x)y, y(0) = y0 ∈ R
8
+, (3.15)

where x ∈ Xf is a solution of (3.13) with x(0) ∈ (I−P )TU is such that the operator

y0 7→ Py is bounded with norm dominated by Ke−ωt for K and ω independent of

both y0 and x(0). For this, we notice that any w ∈ TU (here U is any set satisfying

E ⊆ U ⊆ Xf ) has the form

w = (w1, w2, 0, 0, 0, 0, w7, w8).

Thus Pw = ~0 and so (I − P )w = w. Hence (I − P )TU = TU . We now need to pick

a specific set U such that E ⊆ U ⊆ Xf ,

• TU ⊂ U , and

• s(Df̃(x)) := sup
{

Re(λ);λ ∈ σ(Df̃(x))
}

< 0 for all x ∈ U where f̃ = P ◦f .

The simplest choice (perhaps not unique) is U = E. We then have TU ⊂ U from

the very structure of the problem; that is, if the infected and recovered compart-

ments are 0 at the outset, the whole evolution will occur only within the susceptible

compartments, and the sum of these compartments must be 1 due to the definition

of X. The second requirement above follows from Rnc
0 < 1 along with Proposition

3.2.

We include a version of Theorem 3.1 that highlights its interpretation for our

model.

Corollary 3.1. Fix xσ = (1 − σ, σ, 0, 0, 0, 0, 0, 0), σ ∈ (0, 1). Let ε > 0

and assume Rnc
0 < 1. Then there exists η > 0 such that if ‖x − xσ‖R8 <

η then ‖(Ic(t), Inc(t), Ac(t), Anc(t))‖R4 < ε for all t > 0 and, in particular

‖(Ic(t), Inc(t), Ac(t), Anc(t))‖R4 → 0 exponentially as t → +∞ with the exponential

rate independent of σ ∈ (0, 1).

To better formulate the next result, we use the explicit characterization of the

evolution of the compliant population.

Proposition 3.3. Let σ ∈ (0, 1) be the proportion of non-compliant individuals at

time t = 0. Then, at each time t > 0, the proportion of non-compliant individuals

is given by

Nnc(t) =
σeδt

1− σ + σeδt
. (3.16)

Proof. This follows since the non-compliant population solves the logistic equation

˙Nnc(t) = δNnc(t)N c(t) = δ(1−Nnc(t))Nnc(t)
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with initial condition Nnc(0) = σ.

Theorem 3.2. Suppose x(0) = xσ and assume that δ > 0 and Rσ
0 < 1. Then the

sum of infected compartments is locally decreasing. That is, there exists t∗ = t∗(σ)

such that the function t 7→ Ic(t)+Inc(t)+Ac(t)+Anc(t) is decreasing for t ∈ (0, t∗).

Recall that σ ∈ (0, 1) denotes the initial amount of non-compliant susceptible

individuals. Let σ∗(t) ≡ Snc(t) denote the amount of non-compliant individuals

at time t > 0. The proof of this Theorem 3.2 is based on the following idea. If

Rnc
0 < 1, an outbreak could only be caused by a large insertion of infected individ-

uals. However, with a σ–dependent reproduction number, a new possibility arises:

even with a small insertion of infected individuals, the proportion of non-compliant

people may grow enough so that at an instant t∗ > 0 one has R
σ∗(t∗)
0 > 1 even

when Rσ
0 < 1. Since we cannot solve our system explicitly, it is likely impossible

to determine explicitly how long the number of infected individuals will decrease.

However, thanks to formula (3.16), we have a rough estimate.

Proof of Theorem 3.2. Since the map σ 7→ Rσ
0 is continuous and Rσ

0 < 1, there

exists a ∈ (σ, 1) such that Rσ
0 < 1 for σ ∈ [σ, a). The theorem then follows from

(3.16) by taking

t∗ =
1

δ
ln

(

a(1− σ)

σ(1− a)

)

since σ∗(t) ≡ Snc(t) 6 Nnc(t) for all t > 0, and Nnc(t∗) = a. �

The previous Theorem guarantees that if Rσ
0 < 1, then the sum of the infected

compartments decays, at least for a short period of time. In the last theorem of

this section, we show that if the data is such that Rnc
0 > 1, then strong enough

transmissibility of non-compliance will cause the number of infected individuals to

eventually increase.

Theorem 3.3. Suppose x(0) = xσ and Rσ
0 < 1 < Rnc

0 . Then, if δ > 0 is large

enough, the sum of infected compartments is only locally decreasing. That is, al-

though there exists t∗ = t∗(σ) such that the function t 7→ Ic(t) + Inc(t) + Ac(t) +

Anc(t) is decreasing in (0, t∗), there exists t∗∗ > t∗ such that the sum of infected

compartments is locally increasing at t∗∗.

Proof. Since Rσ
0 is strictly increasing as a function of σ and Rσ

0 < 1 < Rnc
0 , it

follows from the intermediate value theorem that there exists σ such that Rσ
0 = 1.

We claim that for the conclusion of the theorem, it is enough to have an instant

t∗∗ such that σ(t∗∗) ≡ Snc(t∗∗) > σ. Indeed, since we are excluding the case of

re–infection, we can restart the evolution of the epidemic with initial time t∗∗,

with the new total population equal the original population minus the already

recovered population, and the new initial non-compliant population σ∗(t∗∗), for
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which R
σ∗(t∗∗)
0 > Rσ

0 = 1. Therefore the total infected population will locally

increase. It now remains to prove that for δ large enough, one has σ∗(t) > σ for

some t.

Let λ ∈ (0, 1 − σ) and let tλ > 0 the first time such that Sc(tλ) < 1 − σ − λ.

Notice that this time exists since Sc is strictly decreasing and tends to 0 as t → ∞.

This means that for all 0 6 t 6 tλ we have Sc(t) > 1 − σ − λ. Now by (2.2), we

have IM (t) 6 2− ξ. From this, we see that
∫ t

0

IM (s)ds 6 (2− ξ)t.

Likewise, by (3.3), Nnc(t) > σ for all t. Plugging these bounds into (2.4), we can

use an integrating factor to see

σ∗(t) ≡ Snc(t) > e−β(2−ξ)tSnc(0) + δe−β(2−ξ)t(1− σ − λ)σt

= e−β(2−ξ)t [σ + δ(1− σ − λ)σt] ,

for all 0 < t < tλ. Now, let λ > 0 be such that tλ > t∗ and notice that for any

t ∈ (t∗, tλ) fixed, δ > 0 large enough will make σ∗(t) > σ.

The conclusion of the last theorem can be summarized as follows: information on

Rσ
0 can only provide insight on the local behavior of the evolution. This is because,

in the presence of non-compliance, one cannot guarantee that Snc is monotone, and

thus cannot guarantee that the total infection decreases after the first peak. The

non-monotonicity of Snc and resulting multiple waves of infection are demonstrated

in fig. 6 above.

4. Herd Immunity and Epidemic Final Sizes for the p–model

The goal of this section is to derive results for the p–model regarding herd immunity

level and final epidemic, similar to those listed in section 1.2 for the basic SIR model.

To do so, we again assume that p(t) = p is constant.

In analogy to the basic SIR model, if R
p
0 < 1, the function t → I(t)+A(t) reaches

its maximum at t = 0. The case where R
p
0 > 1 is more complicated. To arrive at

results analogous to the basic SIR model, we introduce a weighted measurement of

the infected class. We define

Ep(t) :=
γ2(1− ξ)I(t) + γ1A(t)

(1− αp)2(γ2(1− ξ)ζ + γ2(1− ζ))
(4.1)

and prove the following herd immunity theorem.

Theorem 4.1. Let R
p
0 > 1. Then Ep has a global maximum at th > 0 such that

S(th) = (Rp
0 )

−1. Moreover, the maximum value is given by

Ep(th) = Ep(0) +
1

(1− αp)2

(

1

R
p
0

− S0 −
1

R
p
0

ln

(

1

S0R
p
0

))

. (4.2)
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Proof. We introduce the following notation:

i(t) :=

(

I(t)

A(t)

)

, vp :=

(

1− ξ

1

)

, up :=

(

ζ

1− ζ

)

, v :=

(

γ1
γ2

)

(4.3)

and let Σp be the transition matrix introduced in (3.5).Then the p-model can be

written






























dS

dt
= −β(1− αp)2v>p iS,

di

dt
= [β(1− αp)2v>p i]upS +Σpi

dR

dt
= v

>
i

(4.4)

In this notation, the basic reproduction number for the p-model is given by

R
p
0 = −β(1− αp)2v>p Σ

−1up

and Ep(t) = −β(Rp
0 )

−1v>p Σ
−1

i(t). Thus

dEp(t)

dt
= −β(Rp

0 )
−1v>p Σ

−1 di(t)

dt

= −β(Rp
0 )

−1v>p Σ
−1([β(1− αp)2v>p i]upS +Σi)

= −βv>p i(R
p
0 )

−1β(1− αp)2v>p Σ
−1upS − β(Rp

0 )
−1v>p i

= βv>p iS − β(Rp
0 )

−1v>p i (4.5)

= βv>p i
(

S − (Rp
0 )

−1
)

, (4.6)

which implies that the global maximum of Ep(t) is reached at a time th such that

S(th) = (Rp
0 )

−1.

Next notice that

dEp

dS
=

1

(1− αp)2

(

1

R
p
0S

− 1

)

, (4.7)

which implies that

Ep(t)− Ep(0) =
1

(1− αp)2

(

1

R
p
0

ln

(

S(t)

S0

)

− S(t) + S0

)

,

so at t = th we obtain (4.2).

From the last formula, we arrive at the following conserved quantity.

Corollary 4.1 (Conservation). The function

t 7→ Ep(t) +
S(t)

(1− αp)2
−

lnS(t)

(1− αp)2Rp
0

is constant.

Next, we derive a final size transcendental equation for the p-model.
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Theorem 4.2. The functions t 7→ I(t) and t 7→ A(t) vanish as t → ∞. Moreover,

the final size of the susceptible population, denoted S∞, satisfies the transcendental

equation

S∞ = S0e
−R

p

0
(1−S∞). (4.8)

Proof. First notice that the boundedness and monotonicity of S guarantees its

limit at infinity exists. An algebraic manipulation shows that ζṠ(·) + İ(·) and (1−

ζ)Ṡ(·)+Ȧ(·) are both non-positive. This, along with boundedness of I and A, shows

I(·) and A(·) vanish as t → ∞. The result now follows by considering

lim
t→∞

(

Ep(t) +
S(t)

(1− αp)2
−

lnS(t)

(1− αp)2Rp
0

)

and using Corollary (4.1).

5. Herd Immunity and Epidemic Final Sizes for the NCD–model

In this section, we derive results analogous to those in section 4 for the NCD model.

In the same manner as the above, we introduce a weighted sum of infected popu-

lations for measuring the size of the infected compartments. Since the NCD-model

is more complicated, we first introduce some simplifying notation.

We define

iα(t) :=

(

(1− α)Ic(t) + Inc(t)

(1− α)Ac(t) +Anc(t)

)

, i(t) :=

(

Ic(t) + Inc(t)

Ac(t) +Anc(t)

)

vp :=

(

1− ξ

1

)

, up :=

(

ζ

1− ζ

)

, v :=

(

γ1
γ2

)

and let Σp be the transition matrix for the p-model. Finally, let Υ be the matrix

Υ :=





1−
αγ1

σδ + γ1
0

0 1−
αγ1

σδ + γ2



 .

We then measure the infected compartment sizes by defining the function

Eσ(t) = −β(Rσ
0 )

−1v>p [σ + (1− α)(1− σ)Υ]Σ−1
p i(t). (5.1)

We begin our analysis with a lemma from which our herd immunity results will

follow.

Lemma 5.1. The function t 7→ Eσ(t) satisfies the following identity:

dEσ(t)

dt
= βv>p iαSM − β(Rσ

0 )
−1v>p [σI + (1− α)(1− σ)Υ] i (5.2)

where I denotes the identity matrix.



July 30, 2022 18:18 WSPC/INSTRUCTION FILE output

24 Bongarti et al.

Proof. Denoting ST = Sc+Snc, RT = Rc+Rnc and defining the mixing susceptible

population SM = (1− α)Sc + Snc, the system (2.3)-(2.10) can be expressed














ṠT = −βv>p iαSM ,

i̇ = [βv>p iα]upSM +Σpi

ṘT = v
>
i

. (5.3)

We then notice that

R
σ
0 = −βv>p [σI + (1− α)(1− σ)Υ]Σ−1

p up,

so it follows that

dEσ(t)

dt
= −β(Rσ

0 )
−1v>p [σI + (1− α)(1− σ)Υ]Σ−1

p

di(t)

dt

= −β(Rσ
0 )

−1v>p [σI + (1− α)(1− σ)Υ]Σ−1
p

{

[βv>p iα]upSM +Σpi
}

= βv>p iαSM − β(Rσ
0 )

−1v>p [σI + (1− α)(1− σ)Υ] i.

Corollary 5.1 (Herd Immunity for the unstable compliant equilibrium).

Assume that Rc
0 > 1. Then the function t 7→ Eσ=0(t) attains its global maximum at

time th > 0 satisfying

(1− α)2

Rc
0

6 SM (th) 6
1− α

Rc
0

.

Moreover, the function t 7→ E0(t) increases while SM (t) >
1− α

Rc
0

and decreases

while SM (t) 6
(1− α)2

Rc
0

.

Proof. Taking σ = 0 in (5.2), we have

dE0(t)

dt
= βv>p iαSM − β(Rc

0)
−1v>p (1− α)2i,

so

βv>p iα(SM − (Rc
0)

−1(1− α)) 6
dE0(t)

dt
6 βv>p iα(SM − (Rc

0)
−1(1− α)2),

from which the claim follows.

Corollary 5.2 (Herd Immunity for the unstable non-compliant equilib-

rium). Assume that Rnc
0 > 1. Then the function t 7→ Eσ=1(t) attains its global

maximum at a time th > 0 satisfying

1

Rnc
0

6 SM (th) 6
1

(1− α)Rnc
0

.

Moreover, t 7→ E1(t) increases while SM (t) >
1

(1− α)Rnc
0

and decreases while

SM (t) 6
1

Rnc
0

.
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Proof. Taking σ = 1 in (5.2) we have

dE1(t)

dt
= βv>p iαSM − β(Rnc

0 )−1v>p i

then

βv>p iα(SM − ((1− α)Rnc
0 )−1) 6

dE0(t)

dt
6 βv>p iα(SM − (Rnc

0 )−1),

from which the claim follows.

Corollary 5.3 (Herd Immunity for the unstable disease free states). As-

sume Rσ
0 > 1. Then the function t 7→ Eσ(t) attains its global maximum at an

instant th satisfying

(σ + (1− α)2(1− σ))

Rnc
0

6 SM (th) 6
(σ + (1− α)(1− σ))

(1− α)Rnc
0

.

Moreover, t 7→ E1(t) increases when

SM (t) >
(σ + (1− α)(1− σ))

(1− α)Rnc
0

(5.4)

and decreases when

SM (t) 6
(σ + (1− α)2(1− σ))

Rnc
0

. (5.5)

Proof. From (5.2) we have

βv>p iα(SM − (σ + (1− α)(1− σ))((1− α)Rc
0)

−1) 6
dEσ(t)

dt

and

dEσ(t)

dt
6 βv>p iα(SM − (σ + (1− α)2(1− σ))(Rc

0)
−1),

from which the claim follows.

Remark 5.1. Notice that Corollary 5.3 generalizes Corollaries 5.1 and 5.2. How-

ever, Lemma 5.1 is stronger in the sense that it also provides insights on how the

non-compliance transmission rate δ > 0 affects the dynamics of Eσ. Since Rσ
0 is

an increasing function of δ, equation (5.2) shows that dEσ

dt
is an increasing function

of δ as well. This is to be expected: if the population becomes non-compliant more

rapidly, then NPIs will become ineffective more rapidly.

As a final note, we point out some limitation of this R0-analysis, which repre-

sents the largest difference in the analysis of the NCD-model as opposed to simpler

models such as the basic SIR Model or the p-model with constant non-compliance

rate p. To summarize, for these simpler models, R0-analysis more fully characterizes

the behavior of the models by supplying, among other physically relevant quanti-

ties, exact descriptions—though sometimes in the form of implicit equations—of the
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stability threshold for disease-free equilibrium, herd immunity time and final epi-

demic size (see, for example, equations (1.2), (4.8) which determine final epidemic

size). These models satisfy a type of monotonicity: the total infected population

rises to a single peak and then decays to zero. By contrast, for the NCD-model, the

behavior is non-monotone: there is a possibility of multiple peaks of infections, as

we see in fig. 6 and in theorem 3.3. Because of this, R0-analysis can only provide

local stability and estimates of key quantities for the NCD-model. Explicitly, for

the basic SIR model described in (1.1), the herd immunity time th is given exactly

as the solution to the equation S(th) = R
−1
0 : the total number of infections will

increase until this time and decrease thereafter. For the NCD-model, Corollaries

5.1-5.3 give estimates for the herd immunity time and establish similar qualitative

results in equations (5.4) and (5.5): the total number of infections will increase so

long as the total susceptible population is large enough and decrease when the total

susceptible populations becomes small enough. Likewise, Theorem 3.2 establishes a

local stability result for the NCD-model but Theorem 3.3 ensures that it is only a

local result. The medium-time dynamics of the NCD-model are more intricate, and

because of this R0-analysis cannot perfectly describe the behavior.

6. Conclusion

Inspired by the spread of SARS-CoV-2 throughout the world and the lockdown

mechanisms governments originally implemented to control the spread of the virus,

we developed two models to understand the interplay between the stringency of

lockdown, non-compliant behavior, and the spread of the disease. In the first model

(p-model), we assumed a fraction p of the population would always be compliant

whereas in the second model (NCD-model), we treated non-compliance as a social

contagion spreading through the general population in parallel with the disease.

We have investigated our models through numerical simulations, proven a number

of important qualitative results, and established estimates for key epidemiological

parameters. Of particular interest, we found that even without cycles of closing and

reopening, multiple waves of disease can emerge naturally in the NCD model; we

have proved that if the social contagion is strong enough, it is possible for the number

of active infections to initially decrease (giving the initial impression the disease is

dying out) and then later increase; and we have obtained (respectively) precise

formulas and bounds for the herd immunity in the p-model and NCD model. These

models are quite general and not specific to the SARS-CoV-2 virus. Therefore these

models and results could be useful in modeling and understanding future epidemics.

With regards to extending this work, we note that the analysis in this paper

has been entirely theoretical and qualitative, without focusing on specific disease

parameters or data from any specific city. Armed with the understanding thus

obtained, it could be of interest to study case data in specific cities and correlate

trends in such data with our models when provided parameter estimates. Likewise,

one could pair these models with in-host viral models to analyze the disease spread
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on multiple scales in an approach similar to some previous models5,45,12.
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